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Abstract. Upscaling chamber measurements of soil green-
house gas (GHG) fluxes from point scale to landscape scale
remain challenging due to the high variability in the fluxes
in space and time. This study measured GHG fluxes and soil
parameters at selected point locations (n = 268), thereby im-
plementing a stratified sampling approach on a mixed-land-
use landscape (~ 5.8 kmz). Based on these field-based mea-
surements and remotely sensed data on landscape and veg-
etation properties, we used random forest (RF) models to
predict GHG fluxes at a landscape scale (1 m resolution)
in summer and autumn. The RF models, combining field-
measured soil parameters and remotely sensed data, out-
performed those with field-measured predictors or remotely
sensed data alone. Available satellite data products from
Sentinel-2 on vegetation cover and water content played a
more significant role than those attributes derived from a dig-
ital elevation model, possibly due to their ability to capture
both spatial and seasonal changes in the ecosystem parame-
ters within the landscape. Similar seasonal patterns of higher
soil/ecosystem respiration (SR/ER-CO;) and nitrous oxide
(N,0) fluxes in summer and higher methane (CHy4) uptake
in autumn were observed in both the measured and predicted
landscape fluxes. Based on the upscaled fluxes, we also as-

sessed the contribution of hot spots to the total landscape
fluxes. The identified emission hot spots occupied a small
landscape area (7 % to 16 %) but accounted for up to 42 % of
the landscape GHG fluxes. Our study showed that combin-
ing remotely sensed data with chamber measurements and
soil properties is a promising approach for identifying spatial
patterns and hot spots of GHG fluxes across heterogeneous
landscapes. Such information may be used to inform targeted
mitigation strategies at the landscape scale.

1 Introduction

Atmospheric concentrations of greenhouse gases (GHGs)
such as carbon dioxide (CO;), methane (CH,4), and nitrous
oxide (NO) have increased since the 1750s, substantially
driving global climate change (IPCC, 2019). Soils are key
contributors to these GHG fluxes, with recent global emis-
sions of approximately 350 Pg CO, equivalent per year (Oer-
tel et al., 2016). Soil GHG emissions have accelerated due
to human activities such as land use change for agricultural
land expansion (Dhakal et al., 2022). Globally, agricultural
soils are significant sources, accounting for about 37 % of the
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GHG emissions within the agricultural sector (Tubiello et al.,
2013). However, the estimates of soil GHG fluxes are highly
uncertain, since soil properties, land use, and land manage-
ment, which are key indirect drivers of the emissions, largely
differ across landscapes and regions. For instance, global an-
nual estimates range widely from 67 to 101 PgC (Jian et
al., 2018) for soil respiration, 2.5-6.5TgN,O —N for an-
nual soil NoO emissions (Tian et al., 2020), and 12-60Tg
for soil-CH4-uptake rates (Dutaur and Verchot, 2007). These
uncertainties make it difficult to accurately quantify the GHG
source or sink strengths of soils and to develop targeted mit-
igation options across scales.

Current upscaling approaches from localized measure-
ments of soil GHG fluxes to landscape or regional scales,
using chamber- or site-specific micro-meteorological meth-
ods such as eddy covariance (e.g., Sundqvist et al., 2015;
Warner et al., 2019; Vainio et al., 2021; Han et al., 2022),
fail to capture the spatiotemporal variation in the hot or cold
spots, resulting in uncertainties in regional and global GHG
estimates (Hagedorn and Bellamy, 2011; Levy et al., 2022).
Contrary to the eddy covariance method, chamber-based ap-
proaches can be used to capture fine-scale spatial variabil-
ities in the soil GHG fluxes within landscapes, e.g., when
measurements are conducted at sampling sites representative
of the spatial heterogeneities related to land use, land man-
agement, and topography (e.g., Warner et al., 2019; Vainio
et al., 2021; Wangari et al., 2022). However, the ability of
chambers to accurately quantify landscape fluxes over rela-
tively larger areas is limited and closely related to the number
of chamber measurement locations per unit area (Wangari et
al., 2022). Previous studies have shown that the uncertain-
ties in landscape-scale fluxes from chamber measurements
using area-weighted averages increase exponentially with a
decrease in the number of chamber measurement locations
(e.g., Arias-Navarro et al., 2017; Wangari et al., 2022). Nev-
ertheless, the practicality of increasing the number of cham-
ber measurement locations to quantify landscape fluxes is
constrained by extensive human and technical resource re-
quirements; hence, there is a need for alternative ways of es-
timating GHG landscape fluxes.

The limitation of the extensive chamber measurements re-
quired to quantify landscape fluxes can be overcome through
modeling approaches that offer cost-effective and more prac-
tical alternatives. Machine-learning (ML) algorithms are in-
creasingly used to gap-fill spatiotemporal datasets on soil
GHG fluxes, as they require less computational time and ex-
pertise than complex biophysical models (Dorich et al., 2020;
Zhang et al., 2020; Saha et al., 2021; Adjuik and Davis, 2022;
Joshi et al., 2022). Amongst the available ML algorithms, the
random forest (RF) algorithm has been evaluated as being
one of the best for predicting soil GHG fluxes (Hamrani et
al., 2020; Adjuik and Davis, 2022; Han et al., 2022). The RF
algorithm has been widely applied to gap-fill and upscale soil
GHG fluxes in temperate ecosystems from point measure-
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ments to larger scales (e.g., Philibert et al., 2013; Résénen et
al., 2021; Vainio et al., 2021).

Several studies have explored the use of high-resolution
remote-sensing (RS) datasets such as digital elevation mod-
els (DEMs) and indices from spectral characteristics derived
from satellite images in combination with on-site cham-
ber measurements to predict landscape GHG fluxes (e.g.,
Sundqvist et al., 2015; Warner et al., 2019; Vainio et al.,
2021; Résdnen et al., 2021). These studies used RS datasets
on landscape and vegetation parameters as proxies for phys-
ical and chemical characteristics of the soil, such as soil
moisture, soil vegetation cover, and nutrient availability (i.e.,
key biogeochemical drivers of soil GHG fluxes). However,
the above studies have either been conducted over relatively
small areas or have focused on individual land uses and
GHG fluxes. For instance, only one study has applied a
RF approach to predict CHy fluxes for a larger (12.4 km?)
peatland—forested landscape, based on RS data and 279 on-
site measurements of soil temperature, moisture, and vegeta-
tion (Résédnen et al., 2021). In addition, spatial CO, and CHy
fluxes have been predicted for relatively small (~ 0.1km?)
forested landscapes using DEM-derived terrain attributes and
a few site-measured (temperature and moisture) soil vari-
ables (Warner et al., 2019; Vainio et al., 2021). Applying
RF models using various RS datasets and soil parameters
for soil GHG flux predictions on larger and heterogeneous
landscapes in relation to land use, topography, and soil con-
ditions remains unexplored. It is still uncertain whether such
landscape flux predictions would improve if supplemented
by multiple actual field measurements of soil properties (e.g.,
texture) and variables (e.g., inorganic N content), which
may better describe the geochemical and physical conditions
compared to RS-derived indices.

In this study, we aimed to determine the potential of
applying the RF algorithm to predict the spatial and sea-
sonal variability in the soil CO,, CHy4, and N>O fluxes,
using a high number of stratified sampling locations (n =
268) spread across a relatively large (~ 5.8 km?) landscape
with heterogeneous land uses (forest, grassland, and arable
land). Specifically, (a) we evaluated the effectiveness of high-
resolution RS data and relatively low-resolution data on soil
physicochemical parameters in predicting soil GHG fluxes
across different land uses; (b) we predicted high-resolution
soil GHG fluxes at a landscape scale and detected GHG
hot spots and cold spots; and (c) we compared landscape
GHG fluxes upscaled from RF-predicted high-resolution
maps with aggregated landscape flux estimates from aver-
aged (point) fluxes multiplied by landscape area. We hypoth-
esized that combining RS data that act as proxies for key
drivers of soil GHG fluxes (e.g., vegetation cover and wa-
ter content) and site-measured soil parameters representing
the actual field conditions would yield improved GHG flux
prediction accuracies in our models when compared to us-
ing either RS data or site-measured soil parameters in iso-
lation. We expected fine-scale hot spots (within a few me-
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ters) to occur in cultivated areas and cold spots in forested
areas. We also hypothesized that the high-resolution upscaled
fluxes, which represent most GHG hot- and cold-spot regions
across the landscape, would avoid possible under- or overes-
timations of landscape fluxes derived from land-use-specific
area-weighted averages calculated from a few point chamber
measurement locations.

2 Materials and methods
2.1 Study area

The study area is located within the Schwingbach catchment
in Hesse, central Germany (50°30'4.23 N, 8°33/2.82 E). The
landscape covers an area of approximately 5.8 km?, exclud-
ing the human settlement areas and road networks. Land uses
within the landscape are mainly forests (57 %) and arable
lands (34 %). Grasslands cover about 8 % and are primarily
located in riparian zones. The forest is mainly covered with
mixed trees (44 %), 32 % deciduous trees, and 23 % conifer-
ous trees (Fig. 1a). The common species in the forest include
European beech (Fagus sylvatica), spruce (Picea abies), Eu-
ropean oak (Quercus robur), and Scots pine (Pinus sylvestris)
(Wangari et al., 2022). The dominant soil types (World Ref-
erence Base classification) are Cambisol (69 %; forest and
arable), Stagnosol (23 %; mainly arable), and Gleysol (5 %),
which are found along grassland riparian zones (Wangari et
al., 2022). The topsoils (05 cm) in the arable and grasslands
have a silt loam texture, while the topsoils in the forest land
mostly have a sandy loam texture (Sahraei et al., 2020). The
landscape has an average slope of 5 %, with an elevation
range of 233-415ma.s.l. (above sea level). The region has
a temperate oceanic climate (Cfb; K&ppen climate classifica-
tion), with annual average precipitation and temperature of
623 mm and 9.6 °C, based on long-term data (1969-2019)
(Sahraei et al., 2021).

2.2 Soil physicochemical parameters and GHG fluxes
2.2.1 Point measurements

Soil sampling and GHG flux measurements (CH4, N>O, and
CO,) were conducted at spatially distributed sampling sites
across the study landscape (see Table 1 for a list of observed
variables). We used a stratified random sampling approach to
distribute 270 sites across different land uses (forest, grass-
land, and arable), soil types (Cambisol, Stagnosol/Gleysol,
and Luvisol), and slopes (0 %—5 %, 6 %—11 %, and > 11 %)
to capture the spatial variability in the soil GHG fluxes and
the driving parameters (Wangari et al., 2022). Out of the 270
targeted locations, field measurements were conducted at 246
sites in the summer (30 June-9 July; field measuring cam-
paign 1) and 268 sites in the autumn (8—17 September; field
measuring campaign 2) of 2020. The estimated number of
measured points for the forest, grassland, and arable ecosys-
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tems was ~ 25, 150, and 28 per kilometer squared (Table 1).
We allocated more grassland sites due to the hypothesis that
riparian grasslands are hot spots of GHG fluxes.

Soil GHG flux measurements were performed during the
day (07:00-17:00 CEST), using a fast-box chamber tech-
nique (Hensen et al., 2013; Butterbach-Bahl et al., 2020). The
CO; concentrations in the opaque chamber headspace were
measured with an infrared gas analyzer (LI-840A and LI-
850; LI-COR Biosciences, Lincoln, NE, USA), while CHy4
and N, O concentrations were measured with an Off-Axis In-
tegrated Cavity Output Spectroscopy (OA-ICOS) analyzer
(ABB, Inc., Quebec, Canada). The GHG fluxes were cal-
culated based on the linear changes in the gas concentra-
tions in the chamber headspace in the first 5—7 min following
chamber closure. The CO, fluxes quantified using the opaque
chambers represented either soil respiration (SR) (root and
microbial respiration) or ecosystem respiration (ER) (root,
microbial, and plant respiration). The CO, measurements in
autumn across the entire landscape were SR, since the above-
ground biomass was not included in the chambers during
measurements. In contrast, the summer CO, measurements
on arable and grasslands were ER, since the aboveground
vegetation was incorporated using chamber extensions, while
the forest measurements remained as SR due to minimal
aboveground vegetation on the forest floor. The day-to-day
or diurnal variabilities related to our sampling strategy had a
negligible effect on our data, with most of the variability in
the data linked to spatial heterogeneities. Details of this find-
ing and the soil sampling, analysis, and flux measurement
methods are described in Wangari et al. (2022).

2.2.2 Spatial interpolation of soil parameters

Upscaling soil GHG fluxes using the RF algorithm required
spatial raster maps of the soil physicochemical predictor pa-
rameters. Thus, we interpolated our measured point data
to continuous landscape maps, using the inverse-distance-
weighted (IDW) approach in the System for Automated Geo-
scientific Analyses software (SAGA QGIS), with a distance
coefficient power of 1 (Gradka and Kwinta, 2018). The spa-
tial interpolations were performed per land use (forest, grass-
land, and arable land) and for each season (summer and au-
tumn), due to significant variations in soil parameters such
as soil moisture or inorganic N content across land uses and
seasons (see Wangari et al., 2022).

2.3 Remote sensing data

We retrieved several landscape-scale remote-sensing im-
ages with spatial data representing potential drivers of soil
GHG fluxes, such as vegetation cover and vegetation wa-
ter content. Landscape elevation was acquired from a high-
resolution (1 m) digital elevation model (DEM) retrieved
from the Hessische Verwaltung fiir Bodenmanagement und
Geoinformation on 1 March 2022 (https://hvbg.hessen.de/).

Biogeosciences, 20, 5029-5067, 2023
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Figure 1. Map showing (a) the land uses and the location of the stratified sampling sites (selected based on combined classes of land use,
slope, and soil type) across the study area. (b) The soil types (source: Geoportal Hessen, https://www.geoportal.hessen.de/, last access: 1
March 2022). (c¢) The digital elevation model (DEM; 1 m resolution) of the landscape (source: Hessische Verwaltung fiir Bodenmanagement
und Geoinformation, https://hvbg.hessen.de/, last access: 1 March 2022).

Table 1. List of the soil physicochemical parameters and remotely sensed data used in this study to upscale the GHG fluxes and details of the
spatial resolutions of the maps. DOC is dissolved organic carbon, TDN is total dissolved nitrogen, TN is total nitrogen, TOC is total organic
carbon, and CN is soil carbon to nitrogen ratio.

Resolution
Category Predictor variables Original Final  Source
Remotely  Elevation Im Im Hessische Verwaltung
sensed fiir Bodenmanagement
data (RS) und Geoinformation
Slope Im Im Calculated from
Aspect Im Im elevation data
Topographic wetness index (TWI) 1m Im
Topographic position index (TPI) 1m Im
Normalized difference vegetation index (NDVI) 10m Im Copernicus Sentinel-2
Green normalized difference vegetation index (GNDVI) 10m Im (European Space Agency)
Normalized difference moisture index (NDMI) 20m I m
Soil Soil temperature (°C) ~ 25, 150, and 28 Im Interpolated from
physico- Gravimetric soil moisture (%) sites per kilometer Im sampling point data
chemical pH squared in forest, Im measured in summer
parameters  Bulk density (g cm™3) grassland, and arable land 1m and autumn
(SPs) NOs3-N (mg per kg dry soil) Im (Wangari et al., 2022)
NH4-N (mg per kg dry soil) Im
DOC (mg per kg dry soil) Im
TDN (mg per kg dry soil) Im
Soil TN (%) Im
Soil TOC (%) Im
C:N Im
Sand content (%) Im
Silt content (%) I m
Clay content (%) 1m
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Slope and aspect were calculated from the DEM, using the
“r.slope.aspect” function in QGIS (quantum geographic in-
formation system). We further computed the topographic
position index (TPI) and topographic wetness index (TWI)
from the DEM, using the terrain analysis plugin in QGIS.
Vegetation information on chlorophyll and water content was
derived from satellite bands of Sentinel-2 images. Satel-
lite images with low (< 1%) cloud cover were accessed
from the European Space Agency (ESA) Copernicus Open
Access Hub (https://scihub.copernicus.eu/; last access: 12
March 2021), using the Semi-Automatic Classification Plu-
gin (Congedo, 2021) in QGIS for each field-measuring pe-
riod. The normalized difference vegetation index (NDVI) and
the green normalized difference vegetation index (GNDVI)
were calculated using the near-infrared (NIR), red, and green
bands (Bannari et al., 1995; Gitelson and Merzlyak, 1998;
Egs. 1 and 2). Compared to NDVI, GNDVI has a higher
ability to detect the differences in the chlorophyll content of
plants, especially later in the vegetation period, due to the
higher chlorophyll sensitivity of the green band in GNDVI
than the red band in NDVI. The vegetation water content
was estimated using the normalized difference moisture in-
dex (NDMI), which was computed using the near-infrared
(NIR) and short-wave infrared (SWIR) bands (Gao, 1996;
Malakhov and Tsychuyeva, 2020; Eq. 3). We uniformly
downscaled the resolutions of these remotely sensed vegeta-
tion indices to match the 1 m spatial resolution of the DEM-
derived data files (Table 1).

NIR —red
NDVI= ——— ()
NIR + red
NIR —
GNDVI = —— &1 )
NIR + green
NIR — SWIR
NDMI = ———— 3)
NIR 4+ SWIR

2.4 Random forest regression model

RF model development and prediction of the GHG fluxes
were performed per land use (forest, grassland, and arable)
because there were statistically significant differences ob-
served in the measured fluxes and the underlying GHG flux
controls of soil parameters for the different land uses (Wan-
gari et al., 2022). For instance, N>O fluxes and soil nitrate
concentrations were up to 2-fold higher in arable soils than
in forestry or grassland soils. The CH4-uptake rates of grass-
land and arable soils were lower than those of forest soils,
due to general differences in soil structure, nitrogen con-
centrations, and disturbances (Wangari et al., 2022). Mod-
eling land-use-specific GHG fluxes also enabled the identi-
fication of the best remotely sensed predictors, as the domi-
nance of individual GHG production and consumption pro-
cesses may vary, depending on the specific land use. These
best predictors can also be used as benchmark parameters
in future studies that use a similar modeling framework to
model GHG fluxes in single-land-use landscapes. In contrast
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to land use, we trained models using merged summer and
autumn point data to enable larger and temporally represen-
tative datasets for training models that could estimate low-
and high-landscape GHG fluxes (Fig. 2).

We used the RF algorithm built in the CARET (classifi-
cation and regression training) package in R to predict the
soil GHG fluxes at a landscape scale (Breiman, 2001; Kuhn,
2008). For model development, the input datasets were split
into a training and internal cross-validation set (70 %) and an
external test set (30 %), using a stratified random-sampling
method. In addition to this hold-out approach of model
validation, we defined a 10-fold (K = 10) repeated cross-
validation scheme on the 70 % dataset, using the “trainCon-
trol” function to internally validate our trained models and
prevent model overfitting (Berrar, 2019). This model vali-
dation strategy also minimized the limitation of the initial
hold-out approach, providing a more spatially robust model
validation step (Meyer and Pebesma, 2022). A seed value
of 123 was specified using the “set.seed” function to en-
able reproducible results each time we ran a specific model.
The random forest’s most important hyperparameters (mtry
stands for the number of variables at each tree; n.tree stands
for the number of trees) were tuned automatically within the
CARET package. Tuning was done automatically after a sen-
sitivity analysis (based on assessing the mean absolute error
or MAE) was performed 10 times to choose the best mtry
and n.tree, resulting in the optimal trained model, i.e., the
one with the lowest MAE. The predictor variables in the op-
timal trained model were then ranked according to their im-
portance, using the RF variable importance measure in the
“varImp” function. Subsequently, stepwise elimination of the
least essential variable was performed to quantify the predic-
tive power of landscape GHG fluxes using fewer predictor
variables (Fig. 2).

To assess the effectiveness of various types of predictors
in modeling landscape fluxes, we defined three categories
of datasets, namely remote sensing (RS), site-measured soil
physicochemical parameters (SPs), and combined data (CD)
(Table 1). Several RF models were trained, following the
stepwise elimination of the least important variables in each
data category (RS, SPs, and CD). Since 88 % of CH4 fluxes
were negative and 86 % of N>O fluxes were positive (Wan-
gari et al., 2022), we additionally trained models using only
the negative CHy4 and positive N, O flux datasets to compare
their performances with the models built with all (positive
and negative) fluxes.

2.5 Model performance assessment and prediction of
landscape fluxes

The performance assessment metrics of the trained mod-
els included MAE, root mean square error (RMSE), and
the coefficient of determination (r2) from the internal cross-
validation. The final models for predicting landscape fluxes
in each data category (RS, SPs, and CD) were selected based

Biogeosciences, 20, 5029-5067, 2023
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Figure 2. Workflow summary showing the input data (in blue), the approach used for RF model development and prediction of landscape

fluxes, and the performance evaluation metrics (MAE, RMSE, and r2).

on the highest possible 7> with a relatively low MAE. For
each season and land use, the surface maps of the respective
predictor variables in the final models were merged using the
raster brick function in R. The spatial fluxes for each land
use were then predicted based on the selected model and the
input raster brick, using the “predict” function in R. To im-
prove the prediction performance, the non-normal distributed
(SR/ER_CO; and N, O) fluxes were log-transformed before
model development. After prediction, the transformed fluxes
were retransformed using an exponential function.

Further evaluation of the model performances was con-
ducted through linear regression and correlation analysis of
observed against retransformed predicted fluxes for all sam-
pling sites. An additional external validation step was per-
formed using the measured and predicted fluxes of the sam-
pling sites in the 30 % test dataset that was excluded from the
model development. For this analysis, we compared the pre-
dicted mean fluxes (using RS, SPs, and CD datasets) with the
observed mean fluxes. Analyses of variances (type II) from

Biogeosciences, 20, 5029-5067, 2023

linear mixed-effects models (“nlme” package in R) were
used to compare these arithmetic means. The fixed effects
in the mixed models were seasons (summer and autumn)
and GHG flux type (measured and predicted fluxes from the
RS, SPs, and CD datasets). Random effects of site variability
were also included in the mixed models. The measured and
predicted fluxes were log-transformed to the normality as-
sumption. A Tukey post hoc test (p value < 0.05) of the least
square means was used on the mixed models to identify sta-
tistically significant differences between the measured, RS-
predicted, SP-predicted, and CD-predicted fluxes.

Since many traditional GHG upscaling approaches rely
on aggregated fluxes (area-weighted averages), we also esti-
mated spatial fluxes for the summer and autumn seasons us-
ing this technique. GHG fluxes were aggregated on the land-
scape scale by multiplying the average fluxes measured for
each land use by the area of each land use. We compared the
total landscape fluxes upscaled using this conventional ag-
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gregation technique of average fluxes with the spatial fluxes
predicted using the modeling approach.

2.6 Identification of summer and autumn GHG “hot”
and ““cold” spots from predicted landscape fluxes

Statistical approaches were deployed to identify areas that
may have disproportionately contributed to the overall land-
scape GHG fluxes (e.g., van Kessel et al., 1993; Mason et al.,
2017). We defined the threshold for hot spots using the sum
of the median (M) flux and the interquartile (Q3 — Q1) flux
range (Eq. 4). Thus, the hot spots within the landscape were
identified as being the areas with flux values greater (lower
for CH4 uptake) than the set hot spot threshold. We fixed an
inverse threshold (Eq. 5) for cold spots and identified cold-
spot patches with fluxes below (above for CH4 uptake) this
threshold. Common emission hot spots were defined as the
areas with overlapping elevated emissions of the three GHG
fluxes (SR/ER-CO,, CH4, and N,O) within the landscape.
The average (summer and autumn) landscape fluxes were
used to identify the hot and cold spots. We also calculated
season-specific thresholds to compare the increase and de-
crease in the hot- and cold-spot areas between summer and
autumn.

Hot spot threshold = M + (Q3 — Q1) 4)
Cold spot threshold = M — (Q3 — Q1) (®)]
3 Results

3.1 RF model performance

The performance of the final models selected for the pre-
diction of landscape fluxes varied across input datasets (RS,
SPs, and CD), GHG fluxes (SR/ER_CO,, CHy, and N,O),
and land use (forest, grassland, and arable land) (Table 2).
The predictive performance (r2) from the internal cross-
validation step was higher in the models using the CD dataset
(0.15-0.78 range) than those using the RS (0.13-0.73 range)
and SP (0.15-0.63 range) datasets (Table 2). The RF mod-
els predicting SR/ER_CO, fluxes had much higher 72 (0.45-
0.78 range) than those predicting NoO and CH4 fluxes (0.13—
0.56 range). Arable ecosystem models resulted in much bet-
ter predictions of SR/ER_CO, (r2; 0.63-0.78 range) and
N> O (r%; 0.45-0.56 range) fluxes compared to those for for-
est and grassland ecosystems across all data categories (Ta-
ble 2). The prediction of CHy fluxes was also better for
arable lands but only when using the RS data (Table 2). Step-
wise elimination of the least important variables had a min-
imal effect on the performances of the trained models (Ta-
bles B1-B5). The selected models for the different categories
of datasets (RS, SPs, and CD) had varying predictor variables
across land uses. The forest and grassland models required
the most (five and six) predictor variables. In contrast, the
least number of predictors (two) were mainly observed for
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models describing GHG fluxes from arable soils, especially
in the RS and SP categories (Table 2).

Comparing the models (CD) applied to predict the land-
scape fluxes, the site-measured soil moisture content was a
key predictor variable for all three GHG fluxes across land
uses. In addition to soil moisture, the measured soil nitro-
gen content (NH4 or SN) and remotely sensed vegetation
indices (NDVI, GNDVI, or NDMI) were prevalent predic-
tors of landscape SR/ER_CO; fluxes. Soil nitrogen content
(NOs3 or CN) was also a recurrent predictor of CHy fluxes
across land uses. However, the landscape CH4 models had
other varying predictors, such as aspect and soil temperature
in forest models, pH and clay in grassland, and vegetation
indices in arable ecosystem models. For N, O, soil inorganic
nitrogen (NH4 or NO3) concentrations predicted the fluxes
in the forested areas, while vegetation indices were common
predictors in grassland and arable ecosystems (Table 2).

Further assessment of model performance was performed
through an external validation step comparing the mean of
observed and predicted fluxes in the test dataset (n =~ 140
per flux). The mean measured CO;, and CH4 fluxes were sim-
ilar to the predicted carbon fluxes across all the data cate-
gories (RS, SPs, and CD) within each season. In contrast
to the carbon fluxes, the measured N>O fluxes were signif-
icantly lower than the predicted fluxes in autumn (Fig. Al).

3.2 Observed versus predicted GHG fluxes

The measured and predicted GHG fluxes for all the sam-
pling points had significant (p < 0.001) linear relationships
(Fig. 3). The model predictions of SR/ER_CO, fluxes were
better (r2; 0.49-0.67) than for soil CHs (r2; 0.39-0.46) or
N,O (r%; 0.34-0.43) flux predictions across the three input
datasets. Based on the estimated slopes, the predicted val-
ues were 35 %—46 % lower than the measured values for
SR/ER_CO; fluxes. Compared to CO», the CH4 and N,O
predicted fluxes were lower (CHy 53 %-58 %; N>O 60 %-—
65 %) than the measured fluxes, primarily due to the under-
estimation of high fluxes. Based on r2 values, the perfor-
mances of the different predictor datasets were on the order
of CD > RS > SP for carbon fluxes and CD > SP > RS for
N> O fluxes (Fig. 3).

3.3 Spatiotemporal variation in modeled
landscape-scale fluxes

Predicted landscape fluxes for the summer and autumn
seasons ranged from 4+27.7—4+733.3mgm~2h~! for CO,—
C and —148.4—489.4ugm=2h~! for CH4—C to —8.8-
+189.9ugm=2h~! for N,O and did not differ much
in dependence of the input dataset used (RS, SPs, or
CD) (Table B6). However, the predicted flux ranges for
the landscape were narrower than the measured fluxes,
which ranged from 8.7 to 877.0mgm~2h~! for CO,-
C and —214.1-4221.2ugm~2h~! for CH4~C to —18.1-
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Table 2. List of predictor variables and the performance of the selected RF models, using either remote sensing (RS), soil physicochemical
parameters (SPs), or combined (remote sensing and soil parameters) data. The model selection was made after a cross-validation (10-fold)
step, whereby the model’s predictive power was tested based on unseen data to avoid overfitting. SN is the measured soil nitrogen content.

10-fold cross-validation

Flux type Land use Category Predictor variables R? RMSE MAE
SR/ER-CO,—C  Forest (SR) Remotely NDVI, GNDVI, NDMI 0.45 1.76 1.55
(mgm~—2h~!)  Grassland (ER) sensed NDVI, GNDVI, NDMI 0.46 1.88 161
Arable (ER) data (RS) Elevation, NDVI, GNDVI, NDMI 0.73 1.76 1.58
CHy-C Forest Aspect, NDVI, GNDVI 0.14 46.38  36.15
(ugm~2h~!)  Grassland Elevation, TPI, NDVI, NDMI 0.15 2923 21.53
Arable GNDVI, NDMI 0.35 50.79  34.72
N,O-N Forest NDVI, GNDVI, NDMI 0.13 18.46  18.62
(ugm~2h~!)  Grassland NDVI, GNDVI, NDMI 0.13 17.87 1826
Arable GNDVI, NDMI 0.53 1832 18.50
SR/ER-CO,—C  Forest (SR) Soil Soil moisture, pH, NH4—-N, DOC 0.49 1.72 1.53
(mgm~2h~!)  Grassland (ER) physico- Soil moisture, NH4—N, TDN 0.54 179 155
Arable (ER) chemical Soil moisture, SN 0.63 1.94 1.70
CH4-C Forest parameters  Soil temperature, soil moisture, pH, NO3—N, silt 0.16 4429  33.87
(ugm—2h~!)  Grassland (SPs) Soil moisture, pH, NO3-N, DOC, C: N, clay 029 2559 18.62
Arable DOC,C:N 029 4451 32.65
N>O-N Forest Soil moisture, NO3—N, NH4—-N 0.15 18.49  18.65
(ugm—2h~!)  Grassland Soil moisture, NH4—N, C : N, clay 022 18.02 1837
Arable Soil moisture, NO3—N, SN, C: N 0.46 18.28  18.48
SR/ER-CO,-C  Forest (SR) Combined  NDVI, GNDVI, NDMI, soil moisture, NH4—N, DOC  0.57 1.64 1.48
(mg m—2 hfl) Grassland (ER)  data (CD) GNDVI, soil moisture, NH4—N 0.57 1.76 1.54
Arable (ER) NDVI, GNDVI, soil moisture, SN 0.78 1.68 1.51
CHy-C Forest Aspect, soil temperature, soil moisture, NO3—-N 0.21 4350 3458
(ugm—2h~!)  Grassland Soil moisture, pH, NO3-N, C: N, clay 030 2538 18.29
Arable GNDVI, NDMI, C: N 031 4759 33.30
N>O-N Forest Soil moisture, NO3—N, NH4-N 0.15 1849  18.65
(ngm—2h 1) Grassland NDV], soil moisture 025 18.05 1837
Arable NDVI, GNDVI, NDMI, soil moisture 0.56 18.36 18.52

+281.8ugm~2h~! for NO-N. Since the CD dataset re-
vealed models with better predictions for all GHG fluxes than
the RS and SP datasets, we used GHG fluxes predicted from
CD predictors for seasonal and land use comparisons.

Most of the landscape area (99.2%) had higher
SR/ER_CO; fluxes in summer than in autumn, with a small
proportion of arable and grassland ecosystems having an op-
posite trend. Around 76 % of the landscape also had higher
N>O fluxes in summer than in autumn. Approximately 24 %
of the landscape, primarily in the forested areas, had higher
N>O fluxes in autumn than in summer. CHs-uptake rates
were lower in summer than in autumn in most of the land-
scape (63 %), especially in arable and grassland soils. How-
ever, an opposite trend was found for about 37 % of the land-
scape area, dominated by forests, where CHy-uptake rates
were lower in autumn than in summer (Fig. 4c).

High spatial heterogeneities (within short distances of <
2 m) of the predicted landscape fluxes were observed in each
land use. Overall, spatial variations were more prominent

Biogeosciences, 20, 5029-5067, 2023

in summer than in autumn (Fig. 4 and Table B6). The spa-
tial variability in the SR/ER_CO; fluxes was higher (with a
range of up to 2.6-fold) on arable soils than forest and grass-
land soils, with multiple patches of low fluxes surrounded
by high fluxes. CH4 fluxes on arable lands were also het-
erogeneous, with the soil acting as CHy sinks and sources
within a few meters, especially during summer (Fig. 4a). For
N>O fluxes, high spatial heterogeneities were observed on
grassland soil in summer, as N> O uptake and emission of the
same or even higher order of magnitude occurred at neigh-
boring pixels. Arable soils were also highly heterogeneous,
with patches of high N, O fluxes surrounded by low fluxes in
autumn (Fig. 4b).

3.4 Summer and autumn hot spots and cold spots

The hot and cold spots of the GHG fluxes were
identified from the average (summer and autumn) up-
scaled landscape fluxes (Fig. 5a). Using Eq. (4), the
SR/ER_CO, and N,O spatial hot spots had thresh-
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Figure 3. Linear regressions (with 95 % confidence bands) of the measured and predicted GHG fluxes, using remotely sensed data (RS), soil
physicochemical parameters (SPs), and combined data (CD). GHG fluxes from all the sampling locations (both the 70 % training data and
the 30 % test data) were considered in this regression analysis. The dotted line represents the 1 : 1 line.

old values > 231.5mgC0O,-C m~2h~! for CO, and >
36.8ugN>O-Nm~2h~! for N,O. These hot spots covered
a relatively small portion (~ 16.7 %) of the landscape, yet
they played a significant role, especially the N»O hot spots,
which accounted for 42 % of the landscape fluxes. Around
29 % of the total SR/ER_CO; landscape flux emanated from
the hot spot areas (Fig. 5). Overall, the SR/ER_CO; and
N>O hot spots were mainly located on arable lands (77.0 %
and 94.5 %, respectively) and grasslands (22.9 % and 5.5 %,
respectively). Compared to the SR/ER_CO, and N»>O hot
spots, the hot and cold spots of CH4 uptake were observed in
smaller regions (3.1 % and 7.3 %) of the landscape, with high
soil CHy-uptake rates (> 87.3 ugCH4-Cm~2>h~!) and low
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soil CHy-uptake rates (< 3.4 ug CHs-Cm~2h~1). The CHy-
uptake hot spots, exclusively on the forested soils, offset 8 %
of the landscape CHy fluxes (Fig. 5). The cold spots occu-
pied 7 % of the landscape and were primarily on arable soils
(99.6 %), accounting for 2 % of the landscape’s CHy emis-
sions.

Common hot spots, with overlapping areas with elevated
GHG emissions (i.e., SR/ER_CO; and N;O hot-spot areas
and CHy-uptake cold-spot areas) were mainly on arable soils
(99.87 %), with a few located in grasslands (0.12 %) and
forests (0.01 %). Overall, these patches covered 1.5 % of the
landscape area and contributed 5 %, 1%, and 8 % of the
SR/ER_CO,, CHy4, and N, O emissions within the landscape

Biogeosciences, 20, 5029-5067, 2023
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Figure 4. Landscape maps of SR/ER_CO;, CHy, and N> O for (a) summer, (b) autumn seasons, and (c) the difference maps showing the
variation in the autumn from the summer fluxes. The surface fluxes were predicted using RF models trained with combined (remote-sensing

and site-measured soil parameters) data (CD; Table 2).

(Fig. A2). Based on field observations of the sampling sites
(n = 14) in the common hot spots, the sites at arable lands
were either cropped with barley or wheat. These arable com-
mon hot spots also had higher soil moisture content and NO3
concentrations than the average values recorded at all the
other sampling locations. The common hot spots in the forest
were found along the riparian zones if either nitrogen-fixing

Biogeosciences, 20, 5029-5067, 2023

alder trees were present or if grazed by cattle. Soil mois-
ture (%), dissolved organic carbon (DOC), NO3, and NHy
concentrations at these sites were also higher than mean val-
ues across all sampling points. The grassland common hot-
spot regions were densely covered by nitrogen-fixing clover,
with some located along the riparian zones (Fig. A3 and Ta-
ble B7).
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Figure 5. Maps showing (a) the average GHG fluxes and (b) the average hot-spot and cold-spot regions on the landscape for the summer and
autumn seasons. The pie charts show the contribution (%) of hot and cold spots to total landscape fluxes. For this analysis, landscape fluxes

were predicted using the combined data (CD; Table 2 and Fig. 3).

Comparison of the GHG emission hot spots in summer
and autumn using season-specific thresholds revealed signif-
icant shifts in their geolocations between the two seasons
(Fig. A4). SR/ER_CO; hot-spot regions expanded by 46 %
from summer to autumn, even though the emissions from
the former season were higher. Unlike CO;, N>O emission
hot spots and CHy-uptake cold spots contracted by 23 % and
86 %, respectively, from summer to autumn.
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3.5 Comparison of upscaling approaches

Seasonal differences in spatial patterns and magnitudes of
GHG fluxes were observed for upscaled fluxes, using either
RF modeling or mean values of measured fluxes. In both ap-
proaches, the SR/ER_CO, and N;O landscape fluxes were
an order of magnitude higher in summer than in autumn.
The CHy-uptake rates were higher in autumn than in sum-
mer but within the same order of magnitude. In summer,
the landscape-scale SR/ER_CO, and N;O fluxes estimated
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Figure 6. The total landscape fluxes (=SE) predicted using random
forest (RF) models (with combined dataset) and the fluxes estimated
using the area-weighted mean approach, where the average point-
measured fluxes were multiplied by the landscape area.

using the area-weighted average approach were 26 % and
50 % higher than the RF-modeled fluxes. The contrary was
observed in autumn, where the later methodology produced
slightly higher fluxes (4 % and 11 %) than the area-weighted
mean estimates.

The entire landscape CH4-uptake estimates for autumn us-
ing the area-weighted mean were 16 % higher than the mod-
eled estimates. Contrary to autumn, the area-weighted mean
approach had slightly lower estimates of CH4 uptake than the
modeling approach in summer. Additionally, the CH4 surface
flux estimates for the whole arable land in summer were net
sinks (—0.9 CH4-C gh™!) using the RF modeling approach,
contrary to the net sources (15.5 CH4-Cgh™!) estimated by
the area-weighted mean method. Overall, the total landscape
fluxes estimated using the area-weighted mean approach had
up to 2 orders of magnitude higher uncertainty (standard er-
ror) than the modeled landscape fluxes (Fig. 6).
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4 Discussion

4.1 Efficiency of in situ soil parameters and
remote-sensing data in upscaling GHG fluxes

Our study showed that remotely sensed (RS) data and mea-
sured soil parameters (SPs) could effectively upscale soil—
atmosphere CO,, N>O, and CHy fluxes from point chamber
measurements across a heterogeneous landscape with mixed
land uses. This approach represents a tier-3 approach of up-
scaling landscape GHG fluxes, as it provides spatially ex-
plicit GHG fluxes at a high resolution that is comparable to
modeled fluxes using either process-based models or statisti-
cal functions (e.g., Haas et al., 2013; Tiemeyer et al., 2020;
Koch et al., 2023). The improved prediction performance of
the combined data (CD) sources indicates the importance of
incorporating controls of soil GHG fluxes that are remotely
sensed and ground-based field observations. The prediction
models in this study suggested that the Sentinel-2-derived
indices (NDVI, GNDVI, and NDMI) were more effective
predictors than the DEM-derived terrain attributes (elevation,
slope, aspect, TWI, and TPI). This finding is supported by the
appearance of the Sentinel-2-derived indices in the prediction
models of the three GHGs, contrary to only one DEM in-
dex (aspect) that appeared in the CHy flux prediction models
for the forest ecosystem. The minor role of DEM indices in
this study can be attributed to the relatively flat terrain of our
study landscape (Fig. 1b) and is further backed by the lack
of spatial variation in the measured GHG fluxes with slope,
yet slope was considered during site stratification (Wangari
et al., 2022). Another possible explanation could be that soil
wetness, a common predictor of all the GHG fluxes across
the landscape, was better represented by the site-measured
soil moisture content and the NDMI index (vegetation wa-
ter content) than any of the DEM terrain attributes, including
the TWI that focuses on moisture conditions, as they lack a
temporal dimension.

Compared with other studies that have upscaled GHG
fluxes using the random forest algorithm, we considered
more site-measured data on soil parameters, all three GHG
fluxes, and different land uses (Table 3). Moreover, point
selections for measurements were made by implementing
a stratified sampling plan that represented the spatial vari-
ability in the several landscape characteristics, specifically
land use, soil type, and slope (Wangari et al., 2022). The
prediction accuracies of soil respiration for our mixed-forest
ecosystem (3.3 km?) were slightly better than those reported
for a smaller forested headwater watershed (0.12km?2) in
Maryland, USA (Warner et al., 2019). Our CH4 prediction
performance for forest soils was comparable to those of a
boreal forest landscape (Vainio et al., 2021). However, our
CHy prediction performance was up to 3.6-fold lower than
those of a forested headwater watershed and peatland soils,
which can be attributed to higher and more homogenous CHy
production in such ecosystems (Warner et al., 2019; Résénen
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et al., 2021). Our CH4 and N,O model prediction accura-
cies for arable soils were better than those for arable soils
in New South Wales, Australia, which only considered in-
put data from ground-based sensors such as soil pH and clay
content (McDaniel et al., 2017). Nevertheless, caution has to
be taken when interpreting any conclusions from these study
comparisons due to the limitations of different model valida-
tion techniques, different predictor variables used for model-
ing, and the different ecosystems and spatial scales of mea-
surement and predictions.

4.2 Seasonal variability in the landscape fluxes

The GHG fluxes predicted by the RF model in this study re-
vealed seasonal trends of up to 3-fold higher CO; and N>,O
fluxes in summer and 1.2-fold higher CHy uptake in autumn,
which were also evident in the measured fluxes at the sam-
pling points (Wangari et al., 2022). These trends can be at-
tributed to seasonal changes in soil parameters and vege-
tation within the landscape that were well captured by the
measured soil parameters and Sentinel-2-derived indices in
the prediction models. The higher soil moisture, mineral ni-
trogen, and vegetation cover observed during the summer
growing season enhanced the respiration rates (SR/ER_CO»)
and N, O emissions, particularly in arable ecosystems, which
were flux hot spots for both gases. Root respiration of grow-
ing plants can also enhance N,O production through denitri-
fication by creating anaerobic conditions and supplying la-
bile exudates to denitrifying microbes (Butterbach-Bahl and
Dannenmann, 2011; Malique et al., 2019). Previous stud-
ies have shown that higher mineral nitrogen and soil mois-
ture content can enhance N,O production in soils through
an increased supply of substrates and the creation of anaer-
obic conditions that enhance denitrification rates (Barton et
al., 1999; Ciarlo et al., 2007; Butterbach-Bahl et al., 2013).
The lower CHy-uptake rates in summer can be primarily ex-
plained by the observed higher soil moisture content, which
has been previously reported to hinder CHy oxidation by
slowing down gas (atmospheric CHy) diffusion in soils (Le
Mer and Roger, 2001).

The high-resolution (1 m pixel size) scaled-up fluxes could
also identify the detailed temporal patterns of the GHG fluxes
across the landscape, thus revealing trends that were other-
wise undetectable in the aggregated measured (point) fluxes.
To illustrate, parts of the landscape (24 % and 37 %) showed
even opposite trends of higher N>O fluxes and lower CHy-
uptake rates in autumn, and these areas were predominantly
in the mixed-forest ecosystem. Such fine-scale patterns of
GHG fluxes result from land-use-specific local effects, de-
pending on the season. For example, decaying fallen leaves
during autumn can favor denitrification in forest soils by in-
creasing carbon and mineral N availability (e.g., Groffman
and Tiedje, 1989), which may not be true for grassland or
arable ecosystems due to harvesting and mowing. The higher
CHgy-uptake rates in summer could be due to warmer summer
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temperatures leading to drier, more aerated forest soils that
promote CH4 oxidation (Steinkamp et al., 2000). This find-
ing is supported by the importance of aspect as a predictor of
landscape CHy4 fluxes in the forest ecosystem, which influ-
ences the amount of incoming radiation an area receives.

4.3 Importance of hot spots and cold spots of
landscape-scale GHG fluxes

The high spatial resolution of our predicted GHG fluxes en-
abled the identification of areas across the landscape that
functioned as hot spots (of soil CH4 uptake, SR/ER_CO,,
and N> O) or cold spots of soil CH4 uptake. Based on field ob-
servations and analyses of important predictor variables, the
existence of these hot and cold spots was primarily driven by
human activities such as fertilizer application, crop growing
and tillage, and landscape environmental parameters related
to seasonality and proximity to riparian areas. This finding
is supported by the primary association of the SR/ER_CO;
and N, O hot spots and CH4-uptake cold spots within arable
ecosystems, since these systems showed higher soil mineral
nitrogen concentrations than grassland and forest soils. The
hot spots of SR/ER_CO; and N, O observed on the grassland
ecosystem can be attributed to the primary location of grass-
lands along the riparian areas. Increased soil moisture values
and higher soil C contents, key characteristics of the riparian
regions, have also been reported to drive elevated soil GHG
fluxes (Kaiser et al., 2018; Vainio et al., 2021).

Spatial hot spots of SR/ER_CO, and N>O played a cru-
cial role in determining total landscape fluxes, accounting
for up to 42 % of the total predicted landscape fluxes, de-
spite their relatively low (~ 16 %) coverage area. Such high
contributions suggest that failure to capture these hot spots
results in large uncertainties in the landscape GHG flux es-
timates. Overall, the contribution of the hot spot areas (of
CO», N>O, and CH4 emissions) to the landscape fluxes de-
creased on the order of NoO > CO, > CHy. This finding em-
phasizes the importance of increasing the spatial coverage of
N>O measurements to include more hot spot areas, as they
can introduce enormous uncertainty in landscape fluxes if not
quantified. A similar finding emphasizing the importance of
N>O flux heterogeneities has been concluded in a previous
study, which recorded more sampling locations required for
improved N>O flux estimates than CO; and CHy at a land-
scape scale (Wangari et al., 2022).

Identifying common patches with elevated emissions of
all three GHGs can inform priority areas for implement-
ing localized mitigation measures within a landscape. These
common patches covered only 1.5 % of our landscape (~
0.2km?) and had the highest GHG fluxes contributing
around 5 %, 1 %, and 8 % of the landscape CO,, CHy, and
N>O emissions. The location of these patches primarily
(99.9 %) on arable land emphasized the significant role of fo-
cusing on mitigating GHG fluxes from arable soils. Because
most of the common GHG hot spots in the arable soils were
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Table 3. Comparison with other studies that have upscaled landscape fluxes using the random forest algorithm. TRI is for terrain ruggedness index, DTW is for cartographic depth-to-

water index, and NDWI is for normalized difference water index.

Study area  Landscape = Number Predictor variables Measurement  Model Type of Prediction Land use Flux Model Location Reference
area (km?) of sites period algorithm validation period validation (r2)
GieBen, 5.85 268 — DEM indices: elevation, July and Random 10-fold Summer Forest, SR/ER_CO, 0.57,0.57, 50°30’4.23N,  This study
central slope, aspect, TWI, and TPI September forest repeated (Jul) and grassland, 0.78 8°33'2.82F
Germany 2020 Cross- autumn arable
— Sentinel-2 indices: NDVI, validation (Sep) Forest, CHy 0.21, 0.30,
GNDVI, and NDMI grassland, 0.31
arable
— In situ data: soil Forest, N>O 0.15,0.25,
temperature, moisture, pH, bulk grassland, 0.56
density, NO3-N, NH4-N, DOC, arable
TDN, TN, TOC, CN, sand, silt
and clay content
Hyytidla, 0.1 60 —DEM indices: slope, TWI, March— Random Distance- Summer Forest CHy 0.26 61°510N, Vainio et
southern TRI, and DTW December forest blocked Autumn (boreal) 24°170E al. (2021)
Finland — In situ data: soil moisture 2013 and leave-out 0.39
May— Cross-
December validation
2014
Maryland, 0.12 20 — DEM indices: slope, aspect, September Quantile Model Early Forest CO; and 0.61, 0.50 39°42'N, Warner et
USA TWI, flow line curvature, 2014 regression accuracy summer: (headwater CHy (CO,, CHy) 75°50' W al. (2019)
channel network base level, November forest and May-Jul watershed)
upslope accumulation area, 2016 prediction
etc. (bimonthly) uncertainty
— In situ data: soil assessment  Late 0.40, 0.64
temperature and moisture summer: (CO,, CHy)
Aug-Sep
Pallas 12.4 279 - DEM indices: elevation, 3-13 July Random Random Summer Forest CHy 0.76 67°57'- Risidnen
area, slope, aspect, TWI, TPI 2019 forest forest (July) (peatland) 68°01"N, et al.
northern and DTW regressions out-of-bag 24°10"- (2021)
Finland — Sentinel-1 and 2 indices: and binary assessment 24°15'E
NDVI, GNDVI, NDWI, etc. classifications
— In situ data: soil
moisture, vegetation
(e.g., leaf area index)
Narrabri, 0.16 > 100 —RSX-1 gamma detector 23-31 May Quantile Linear Early Arable CHy4 and 0.24, 0.07 149.82° E; McDaniel
New South variables: clay content, 2015 regression regression summer N>O (CHy, N>O) 30.28° S etal.
Wales, mineralogy, soil pH forest with (May) (2017)
Australia — DUALEM-4S validation
electromagnetic sensor dataset

variables: moisture, salinity,
clay, thickness of the solum
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also in areas with high water content, mitigation strategies
that aim to adjust the fertilizer application rates at specific ar-
eas holding more water may successfully lower the emissions
(e.g., Hassan et al., 2022). In contrast to hot spot regions of
elevated GHG emissions, CHs-uptake hot spots inform fu-
ture mechanisms for leveraging the GHG sink ability of soils,
such as expanding local forests. This finding is supported by
uptake hot spots identified on forest soils in this study, off-
setting 8 % of the total landscape CH4 flux. The expansion of
forested areas will also likely have a high mitigation impact
via CO; sequestration. Although some of the above strate-
gies are currently applied at broader scales (1km?), local-
ized mitigation strategies may be required at smaller scales
(< 100m?), especially at highly heterogeneous landscapes
with a high variability in the agricultural practices. We also
found significant shifts in the geolocations of hotspot regions
between summer and autumn, suggesting that seasonal ef-
fects of land management (e.g., fertilization, harvesting, and
residue management) and soil conditions may also lead to
a temporal expansion or contraction of the hot spot regions.
This finding further emphasizes the need for time-based mit-
igation strategies, such as considering fertilizer application
times, which not only target the spatial hot spots but also
consider the temporal patterns that result in peak emissions
(e.g., Wagner-Riddle et al., 2020).

4.4 Comparison of upscaling approaches

Contrary to the area-weighted upscaling approach of spa-
tial aggregation of chamber fluxes (Webster et al., 2008;
Molodovskaya et al., 2011; Rosenstock et al., 2016), random
forest modeling allowed us to estimate the entire spatial dis-
tributions of the fluxes at high spatial resolution (1 m pixel
size), capturing both cold spots and hot spots. In agreement
with our hypotheses, the landscape fluxes were either over- or
underestimated by the area-weighted average approach com-
pared to the RF modeling approach. The overestimated land-
scape CO, and N, O fluxes by the area-weighted average ap-
proach of up to 50 % during the peak summer season suggest
an overrepresentation of the high fluxes measured at most of
the sampling points, resulting in elevated mean and upscaled
fluxes. Furthermore, landscape CHy4-uptake rates were over-
estimated by the area-weighted average approach during the
peak autumn season. Previous studies have also observed a
similar trend of elevated mean CHg-uptake rates at measured
sites, which they attributed to the overrepresentation of high-
uptake rates during the peak-uptake seasons (Warner et al.,
2019). Conversely, the underestimation of CO,, N>O, and
CHy uptake by the area-weighted average approach, espe-
cially on arable soils, coincided with the low-flux season, im-
plying reduced mean fluxes due to the overrepresentation of
the low fluxes. An alternative explanation of the differences
in landscape flux estimates from both approaches could be
the underestimation of high fluxes by the RF models, which
we also found in our study. However, the landscape means

https://doi.org/10.5194/bg-20-5029-2023

5043

of RF predicted and measured fluxes from 30 % of our sam-
pled sites were primarily similar (Fig. A1), suggesting that
the lack of spatial representation of all hot and cold spots by
the area-weighted mean approach rather than the inability of
the RF models to reproduce high values accounted for the
findings above.

Collectively, our results illustrated that the representative-
ness of landscape fluxes using aggregated chamber fluxes
might be influenced by the spatial and temporal heterogene-
ity of the fluxes. This finding aligns with previous results on
the required number of chamber measurement locations for
reliable landscape fluxes that varied with land use and season
(Warner et al., 2019; Wangari et al., 2022). The high (50 %)
overestimation of landscape N> O fluxes suggested the higher
sensitivity of reliably estimating N,O fluxes using the (ag-
gregated means) conventional method. Previous studies have
also emphasized the importance of N, O fluxes in constrain-
ing uncertainties in landscape flux quantification (e.g., Wan-
gari et al., 2022). Compared to the suggested way of lower-
ing landscape-scale flux uncertainties in the conventional es-
timates by increasing the number of chamber measurements
within a landscape (Wangari et al., 2022), the modeling ap-
proach can be a less resource-intensive alternative.

Combining high-resolution remote sensing data and mea-
sured soil parameters to upscale the chamber fluxes reduced
the biases and the aforementioned landscape-scale flux un-
certainties. The reduced uncertainties in the modeled land-
scape fluxes can be attributed to the relation of multiple un-
derlying controls of soil GHG fluxes, which have high sea-
sonal and spatial variability. Remote sensing datasets have
unlimited spatial extents with high spatial resolution, thus al-
lowing reliable prediction of spatially continuous fluxes that
can capture the cold and hot spots over different seasons
across heterogeneous landscapes (Warner et al., 2019; Risé-
nen et al., 2021). This study’s high spatial resolution upscal-
ing (1 m pixel size) enabled capturing small-scale variabili-
ties in GHG fluxes within short distances, which would have
been missed with coarser-resolution upscaling. Upscaling at
a finer resolution was especially relevant, due to the hetero-
geneous nature of our study landscape, which is related to
different land uses, soil types, and slope positions.

Notably, the applicability of this upscaling approach
largely depends on the availability of spatially extensive
chamber measurements. In this study, the 70 % modeling
dataset represented data from ~ 20 stratified chamber lo-
cations per kilometer squared on the arable land and ~ 16
chambers per kilometer squared in the forest. These num-
ber of chamber measurement locations are within the range
of those recommended (29 for arable and 13 for forest) by
Wangari et al. (2022) for accurate quantification of land-
scape GHG fluxes. Based on these findings, these chamber
numbers may apply to other studies looking to upscale GHG
fluxes using a combination of chamber measurements and re-
motely sensed data. However, the feasibility of this adoption

Biogeosciences, 20, 5029-5067, 2023
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will highly depend on the level of similarities in landscape
properties with our study.

5 Conclusions

This study demonstrated the potential of improved prediction
performance when combining field-based measurements of
soil parameters with remotely sensed data in scaling up flux
(chamber) measurements from stratified sites. Among the re-
motely sensed predictors, Sentinel-2 indices played a more
significant role than DEM-derived attributes in upscaling the
GHG fluxes across our relatively flat landscape terrain. The
high-resolution (1 m pixel size) scaled-up fluxes effectively
revealed fine-scale (within a few meters) hot and cold spots
of GHG fluxes across a mixed-land-use landscape in sum-
mer and autumn. The N;O hot spots were more significant
sources of GHGs, as they contributed 42 % of the landscape
N>O fluxes compared to SR/ER_CO; and CH4 emission
hotspots, which accounted for 29 % and 2 % of the landscape
CO;, and CHy4 emissions, respectively. Arable soils, which
had higher N, O fluxes, also had patches with elevated emis-
sions of the three GHGs, especially in areas with high soil
moisture content. These findings emphasize the importance
of targeted local mitigation measures, especially for agricul-
tural soils, in mitigating landscape GHG fluxes.

While we identified hot and cold spots of soil GHG flux
across the Schwingbach landscape through RF modeling, the
entire exercise was limited to two measuring campaigns of
a few days in two seasons (summer and autumn). For this
reason, it is still unclear whether these hot and cold spots
persist throughout the year and what their overall contribu-
tion is to the annual landscape GHG flux estimates. Future
studies should, therefore, aim at increasing the temporal res-
olution of similar spatially extensive measurements to at least
monthly scales, which, when combined with remotely sensed
data, may be able to create similar landscape flux maps and
identify the contribution of GHG hot and cold spots to annual
estimates.

Biogeosciences, 20, 5029-5067, 2023
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Appendix A: Figures
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Figure Al. Bar graphs showing the mean fluxes (+SE) predicted using remote sensing (RS), soil parameters (SPs), and combined data
(CD) and the measured fluxes at the sampling sites in the 30 % model test dataset. The uppercase and lowercase letters indicate significant

differences (p < 0.05) in the mean fluxes in the different seasons and across the measured and predicted fluxes.
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Figure A2. Map showing the common hot spot regions of the three GHG fluxes and the location of the measured sampling points within
these recurrent hot spots (satellite image downloaded from © Google Maps).

Figure A3. Clover (Trifolium) on grassland ecosystems.
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(c) Area change (%)
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Figure A4. Maps showing the hot spots of the (a) summer and (b) autumn seasons and (c) the percentage change in the area coverage of the
hot spots. These regions were defined using each season’s specific hot spot threshold.
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Table B1. Continued.

(c) Arable SR/ER_CO,—C flux

10-fold cross-validation

Category Predictor variables mtry RMSE R?Z MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 8 1.72  0.75 1.55
sensing Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 7 1.72  0.75 1.55
Elevation, slope, aspect, NDVI, GNDVI, NDMI 4 1.72  0.75 1.55
Elevation, aspect, NDVI, GNDVI, NDMI 3 1.73  0.75 1.55
Elevation, NDVI, GNDVI, NDMI 2 1.76  0.73 1.58
NDVI, GNDVI, NDMI 2 1.80 0.72 1.59
NDVI, GNDVI 2 1.82  0.71 1.61
GNDVI 2 1.83 0.71 1.63
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 2.00 0.59 1.76
measured  Temperature, moisture, pH, bulk density, NO3—-N, NH4—-N, DOC, SOC, SN, CN, sand, silt, clay 13 1.99 0.60 1.76
soil Temperature, moisture, pH, NO3-N, NH4—N, DOC, SOC, SN, CN, sand, silt, clay 12 1.97 0.61 1.74
parameters Temperature, moisture, pH, NO3-N, NH4—N, SOC, SN, CN, sand, silt, clay 11 1.96 0.61 1.74
Temperature, moisture, pH, NH4-N, SOC, SN, CN, sand, silt, clay 10 1.96 0.61 1.74
Temperature, moisture, pH, NH4—N, SOC, SN, CN, sand, clay 9 1.96 0.61 1.74
Moisture, pH, NH4—N, SOC, SN, CN, sand, clay 8 1.95 0.62 1.72
Moisture, pH, NH4-N, SN, CN, sand, clay 7 1.94 0.62 1.72
Moisture, pH, NH4—-N, SN, CN, sand 6 1.94 0.62 1.71
Moisture, NH4—N, SN, CN, sand 5 193 0.63 1.70
Moisture, SN, CN, sand 4 1.93 0.63 1.70
Moisture, SN, CN 3 1.88 0.66 1.67
Moisture, SN 2 1.94 0.63 1.70
Moisture 2 2.16 0.50 1.89
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 1.70 0.77 1.53
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.70 0.77 1.53
Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1.70  0.77 1.53
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 10 1.70 0.77 1.53
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, SOC, SN, CN, sand, silt, clay 10 1.70 0.77 1.53
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—-N, NH4-N, DOC, SOC, SN, CN, sand, silt, clay 17 1.69 0.77 1.52
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4-N, DOC, SOC, SN, CN, sand, clay 16 1.68 0.77 1.52
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4-N, DOC, SOC, SN, sand, clay 8 1.68 0.78 1.51
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4-N, DOC, SOC, SN, sand 8 1.68 0.78 1.51
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4—N, DOC, SOC, SN, sand 7 1.68 0.78 1.51
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NH4—N, SOC, SN, sand 7 1.68 0.78 1.51
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, NH4-N, SOC, SN, sand 6 1.67 0.78 1.50
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, pH, SOC, SN, sand 6 1.67 0.78 1.50
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN, sand 5 1.66 0.78 1.50
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SOC, SN 5 1.66 0.79 1.49
Elevation, aspect, NDVI, GNDVI, NDMI, moisture, SN 7 1.66 0.79 1.50
Elevation, aspect, NDVI, GNDVI, moisture, SN 2 1.64 0.80 1.48
Elevation, NDVI, GNDVI, moisture, SN 2 1.67 0.79 1.51
NDVI, GNDVI, moisture, SN 2 1.68 0.78 1.51
NDVI, GNDVI, moisture 2 1.72  0.75 1.54
NDVI, GNDVI 2 1.82  0.71 1.61
GNDVI 2 1.83  0.71 1.63
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Table B2. Continued.

(b) Grassland CH4—C (positive and negative) flux

10-fold cross-validation

Category Predictor variables mtry RMSE R? MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 28.88 0.15 20.98
sensing Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 28.73 0.16 20.97
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 29.19 0.15 21.54
Elevation, TPI, NDVI, GNDVI, NDMI 2 28.85 0.14 21.56
Elevation, TPI, NDVI, NDMI 2 29.23  0.15 21.53
Elevation, TPI, NDMI 2 30.08 0.14 22.04
Elevation, NDMI 2 3046 0.13 2257
Elevation 2 30.72 0.13 22.84
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 2698 0.22 19.52
measured  Temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, silt, clay 7 2696 022 1942
soil Temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SN, CN, silt, clay 7 26.86 0.23 19.38
parameters Temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SN, CN, clay 6 26.66 023 19.20
Temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, CN, clay 6 26.68 023 19.28
Temperature, moisture, pH, NO3—-N, NH4-N, DOC, TDN, CN, clay 5 26.60 024 19.16
Temperature, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.27 0.25 19.00
Moisture, pH, NO3-N, DOC, TDN, CN, clay 2 26.16 0.26 19.01
Moisture, pH, NO3-N, DOC, CN, clay 2 2559 029 18.62
Moisture, pH, NO3-N, DOC, CN 2 26.27 025 19.58
Moisture, pH, DOC, CN 2 26.81 023 19.51
Moisture, DOC, CN 2 2696 0.24 20.19
Moisture, CN 2 28.73 023 21.43
Moisture 2 3095 0.14 23.49
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 2691 022 19.51
Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 26.89 022 1942
Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, clay 2 26.74 0.23 19.36
Elevation, slope, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SN, CN, sand, clay 10 2671 0.23  19.30
Elevation, slope, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4—N, DOC, TDN, SN, CN, sand, clay 2 26.56 024 19.22
Elevation, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4—N, DOC, TDN, SN, CN, sand, clay 2 26.68 023 19.39
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4—N, DOC, TDN, SN, CN, sand, clay 2 26.75 022 19.36
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SN, CN, clay 2 26.62 023 19.29
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, CN, clay 2 2677 0.22 19.35
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, NO3—N, NH4—N, DOC, TDN, CN, clay 2 26.65 023 19.27
Elevation, TPI, NDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, CN, clay 2 26.69 0.22 19.39
Elevation, TPI, NDVI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 2645 024 19.29
Elevation, TPI, NDMI, moisture, pH, NO3—-N, DOC, TDN, CN, clay 2 26.30 024 19.14
TPI, NDMI, moisture, pH, NO3-N, DOC, TDN, CN, clay 2 2633 025 19.16
TPI, NDMI, moisture, pH, NO3-N, DOC, CN, clay 2 2591 027 1885
TPI, NDMI, moisture, pH, NO3-N, CN, clay 2 25.83 027 18.62
TPI, moisture, pH, NO3-N, CN, clay 2 2532 031 18.18
Moisture, pH, NO3-N, CN, clay 2 25.38 030 18.29
Moisture, pH, NO3-N, CN 2 26.65 025 19.61
Moisture, pH, NO3-N 2 27.60 0.19 20.52
Moisture, pH 2 29.67 0.14 22.56
Moisture 2 3095 0.14 2349
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Table B3. Cross-validation results of different models developed for all (positive and negative) N> O fluxes in (a) forest, (b) grassland, and (c) arable land using different predictors in

the training dataset. Stepwise elimination of least important predictors was implemented.

(a) Forest NpO-N (positive and negative) flux

10-fold cross-validation

Category Predictor variables mtry RMSE RZ MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 1847 0.11 18.65
sensing Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 1847 0.11 18.65
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 1848 0.11 18.65
Elevation, aspect, NDVI, GNDVI, NDMI 2 1846 0.09 18.63
Aspect, NDVI, GNDVI, NDMI 2 18.44 0.12 18.61
NDVI, GNDVI, NDMI 2 18.46 0.13 18.62
NDVI, GNDVI 2 1843 0.11 18.61
GNDVI 2 1841 0.12 18.59
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.12 18.66
measured Temperature, moisture, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.12 18.66
soil Temperature, moisture, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt 2 1849 0.13 18.67
parameters Temperature, moisture, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 1849 0.14 18.67
Temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.13 18.67
Temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, silt 2 1849 0.12 18.66
Temperature, moisture, NO3—N, NH4—N, DOC, TDN, SN, silt 2 1849 0.13 18.67
Temperature, moisture, NO3—N, NH4—N, TDN, SN, silt 2 18.49 0.15 18.67
Temperature, moisture, NO3—N, NH4—N, TDN, SN 2 1849 0.15 18.66
Temperature, moisture, NO3—N, NH4—N, TDN 2 1848 0.15 18.66
Temperature, moisture, NO3—N, NH4—N 2 1848 0.13 18.65
Moisture, NO3—-N, NH4-N 2 18.49 0.15 18.65
Moisture, NO3-N 2 1843 0.11 18.60
NO3-N 2 18.38 0.11 18.59
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.11 18.67
Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.13 18.67
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.12 18.67
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.12 18.67
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1849 0.12 18.67
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt 2 1849 0.12 18.67
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 1849 0.13 18.67
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, NHs—N, DOC, TDN, SOC, SN, CN, silt 2 18.49 0.12 18.67
Elevation, aspect, NDVI, GNDVI, temperature, moisture, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 1849 0.13 18.67
Elevation, aspect, GNDVI, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 18.50 0.13 18.67
Elevation, aspect, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 1849 0.13 18.67
Aspect, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 2 1849 0.13 18.67
Aspect, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SN, CN, silt 2 18.49 0.13 18.67
Aspect, temperature, moisture, NO3—N, NH4-N, DOC, TDN, SN, CN 2 18.49 0.14 18.67
Aspect, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SN 2 1849 0.15 18.67
Aspect, temperature, moisture, NO3—N, NH4-N, TDN, SN 2 1849 0.16 18.67
Aspect, temperature, moisture, NO3—N, NH4—N, TDN 2 1848 0.16 18.66
Temperature, moisture, NO3—N, NH4—N, TDN 2 18.48 0.15 18.66
Temperature, moisture, NO3—N, NH4—N 2 18.48 0.13 18.65
Moisture, NO3—N, NH;-N 2 18.49 0.15 18.65
Moisture, NO3-N 2 18.43 0.11 18.60
NO3-N 2 18.38 0.11 18.59
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Table B3. Continued.

(c) Arable NoO-N (positive and negative) flux

10-fold cross-validation

Category Predictor variables mtry RMSE R? MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 18.37 0.56 18.53
sensing Elevation, slope, aspect, TWI, NDVI, GNDVI, NDMI 2 18.38 0.58 18.54
Elevation, aspect, TWI, NDVI, GNDVI, NDMI 2 18.39 0.58 18.55
Elevation, aspect, NDVI, GNDVI, NDMI 2 18.38 0.58 18.54
Elevation, NDVI, GNDVI, NDMI 4 18.37 0.57 18.53
Elevation, GNDVI, NDMI 2 18.36  0.57 18.53
GNDVI, NDMI 2 18.32  0.53 18.50
GNDVI 2 18.21 045 1842
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 8 18.27 044 1845
measured ~ Temperature, moisture, pH, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 18.28 046 18.46
soil Temperature, moisture, pH, NO3-N, NH4—N, DOC, SOC, SN, CN, sand, silt, clay 12 1829 046 18.46
parameters Moisture, pH, NO3—N, NH4—N, DOC, SOC, SN, CN, sand, silt, clay 11 18.30 048 1847
Moisture, pH, NO3-N, NH4-N, DOC, SOC, SN, CN, sand, silt 10 1829 047 1847
Moisture, pH, NO3-N, DOC, SOC, SN, CN, sand, silt 9 1829 047 1847
Moisture, NO3-N, DOC, SOC, SN, CN, sand, silt 8 18.29 046 18.46
Moisture, NO3—-N, SOC, SN, CN, sand, silt 7 18.29 047 18.46
Moisture, NO3-N, SN, CN, sand, silt 6 18.30 048 18.47
Moisture, NO3-N, SN, CN, sand 2 18.29 047 1847
Moisture, NO3-N, SN, CN 2 18.28 046 1848
Moisture, SN, CN 2 18.22 041 1843
Moisture, SN 2 18.22 041 1843
Moisture 2 18.12 033 1834
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 18.39 0.57 18.55
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 18.38 0.57 18.55
Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt 11 1838 0.57 18.54
Elevation, aspect, TWI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt 10 1838 0.57 18.55
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 10 18.38 0.57 18.54
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt 9 1838 0.57 18.54
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt 9 18.38 0.57 18.54
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4-N, DOC, TDN, SOC, SN, CN 2 18.37 057 18.54
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, pH, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN 8 1838 0.57 18.54
Elevation, NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 18.38 0.57 18.54
NDVI, GNDVI, NDMI, moisture, pH, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 7 18.38 0.57 18.54
NDVI, GNDVI, NDMI, moisture, NO3-N, NH4—N, DOC, TDN, SOC, SN, CN 6 18.38 0.57 18.54
NDVI, GNDVI, NDMI, moisture, NO3-N, DOC, TDN, SOC, SN, CN 6 18.37 056 18.54
NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, SN, CN 2 18.38 0.57 1854
NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN, CN 2 1837 0.56 18.54
NDVI, GNDVI, NDMI, moisture, TDN, SOC, SN 2 18.37 055 1853
NDVI, GNDVI, NDMI, moisture, TDN, SN 2 18.38 0.57 18.54
NDVI, GNDVI, NDMI, moisture, SN 2 18.35 0.54 18.51
NDVI, GNDVI, NDMI, moisture 2 1836 0.56 18.52
GNDVI, NDMI, moisture 2 1832 0.52 18.49
GNDVI, NDMI 2 18.32  0.53 18.50
GNDVI 2 1821 045 18.42
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Table B4. Continued.

(b) Grassland CH4—C negative fluxes only

10-fold cross-validation

Category Predictor variables mtry RMSE R? MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 17.33 0.15 13.63
sensing Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI 2 17.23  0.15 13.58
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 17.28 0.14 13.70
Elevation, TPI, NDVI, GNDVI, NDMI 2 1693 0.17 1353
Elevation, NDVI, GNDVI, NDMI 2 17.00 0.16 13.71
NDVI, GNDVI, NDMI 2 17.14  0.16 13.63
NDVI, NDMI 2 17.66 0.15 14.11
NDMI 2 1772 0.18 13.86
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 15.86 025 12.37
measured  Temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1570 027 1221
soil Moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1550 029 12.07
parameters Moisture, pH, bulk density, NO3—N, DOC, TDN, SN, CN, sand, silt, clay 2 1547 029 12.04
Moisture, pH, bulk density, NO3-N, DOC, SN, CN, sand, silt, clay 2 1535 031 1195
Moisture, pH, bulk density, DOC, SN, CN, sand, silt, clay 2 15.39 030 12.00
Moisture, pH, bulk density, DOC, CN, sand, silt, clay 2 1529 031 11.94
Moisture, pH, DOC, CN, sand, silt, clay 2 1536 030 12.05
Moisture, pH, DOC, CN, silt, clay 2 1540 030 12.01
Moisture, pH, CN, silt, clay 2 15.14 033 11.79
Moisture, pH, CN, clay 2 1532 033 11.77
pH, CN, clay 2 15.61 0.33 11.69
pH, clay 2 1580 0.33 11.84
pH 2 18.06 0.20 1443
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 1570 026 1222
Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SN, CN, sand, silt, clay 11 15.61 027 12.12
Elevation, slope, aspect, TWI, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4—N, DOC, TDN, SN, CN, sand, silt, clay 11 15,60 0.27 12.12
Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4—N, DOC, TDN, SN, CN, sand, silt, clay 10 15.56 0.28 12.08
Elevation, slope, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—-N, DOC, TDN, SN, CN, silt, clay 10 15.52 028 12.03
Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, SN, CN, silt, clay 9 1554 027 12.10
Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, NH4—N, DOC, TDN, SN, CN, silt, clay 9 15.54 028 12.07
Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, SN, CN, silt, clay 8 1537 029 1193
Elevation, aspect, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 8 1541 029 1194
Elevation, TPI, NDVI, NDMI, temperature, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 15.16 030 11.87
Elevation, TPI, NDVI, NDMI, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 1498 032 11.73
Elevation, NDVI, NDMI, moisture, pH, bulk density, DOC, TDN, CN, silt, clay 2 15.18 029 12.00
Elevation, NDVI, NDMI, moisture, pH, DOC, TDN, CN, silt, clay 2 15.16 029 1198
Elevation, NDVI, NDMI, moisture, pH, DOC, CN, silt, clay 2 15.17 030 11.98
Elevation, NDMI, moisture, pH, DOC, CN, silt, clay 2 15.06 031 11.76
NDMI, moisture, pH, DOC, CN, silt, clay 2 1517 031 11.83
NDMI, moisture, pH, CN, silt, clay 2 14.84 034 11.54
NDMI, moisture, pH, CN, clay 2 14.87 034 1143
Moisture, pH, CN, clay 2 1532 033 11.77
pH, CN, clay 2 15.61 033 11.69
pH, clay 2 15.80 033 11.84
pH 2 18.06 0.20 1443
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Table BS. Cross-validation results of different models developed for positive N> O fluxes in (a) forest, (b) grassland, and (c) arable land using different predictors in the training dataset.
Stepwise elimination of least important predictors was implemented.

(a) Forest NpO-N positive fluxes only 10-fold cross-validation
Category Predictor variables mtry RMSE RZ MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.60 0.15 18.73
sensing Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 2 18.60 0.15 18.73
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 2 18.61 0.17 18.74
Elevation, aspect, NDVI, GNDVI, NDMI 2 18.61 0.19 18.74
Aspect, NDVI, GNDVI, NDMI 2 18.61 023 18.74
Aspect, NDVI, NDMI 2 18.60 0.19 18.73
Aspect, NDVI 2 18.61 026 18.74
NDVI 2 18.57 0.19 18.72
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 14 18.63 024 18.75
measured Temperature, moisture, pH, bulk density, NO3—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 13 18.63 023 18.75
soil Temperature, moisture, bulk density, NO3—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 18.64 0.24 18.75
parameters Temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 11 18.64 0.25 18.75
Temperature, moisture, bulk density, NO3—N, DOC, TDN, SOC, sand, silt, clay 10 18.64 025 18.75
Temperature, moisture, bulk density, NO3—N, DOC, TDN, sand, silt, clay 9 18.64 025 18.75
Temperature, moisture, bulk density, NO3—N, DOC, sand, silt, clay 8 18.64 025 18.75
Temperature, moisture, bulk density, NO3—N, DOC, silt, clay 7 18.65 0.26 18.76
Temperature, moisture, bulk density, NO3—N, silt, clay 6 18.64 0.26 18.75
Moisture, bulk density, NO3—N, silt, clay 2 18.64 027 18.75
Moisture, bulk density, silt, clay 2 18.62 020 18.74
Moisture, silt, clay 2 18.61 0.19 18.73
Silt, clay 2 18.58 0.17 18.71
Silt 2 18.57 0.16 18.70
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 22 18.64 025 18.76
Elevation, slope, aspect, TWI, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 21 18.65 0.25 18.76
Elevation, slope, aspect, TPI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 20 18.64 0.25 18.76
Elevation, slope, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 19 18.64 0.25 18.76
Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 18 18.65 025 18.76
Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 17 18.64 025 18.76
Elevation, aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, DOC, TDN, SOC, CN, sand, silt, clay 16 18.65 026 18.76
Aspect, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 15 18.65 0.26 18.76
Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3-N, DOC, TDN, SOC, CN, sand, silt, clay 14 18.65 026 18.76
Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3—N, DOC, TDN, SOC, sand, silt, clay 2 18.65 028 18.76
Aspect, GNDVI, NDMI, temperature, moisture, bulk density, NO3—N, DOC, TDN, sand, silt, clay 2 18.65 028 18.76
Aspect, NDMI, temperature, moisture, bulk density, NO3—N, DOC, TDN, sand, silt, clay 2 18.65 0.26 18.76
Aspect, NDMI, temperature, moisture, bulk density, NO3—N, DOC, sand, silt, clay 2 18.65 0.25 18.76
Aspect, temperature, moisture, bulk density, NO3-N, DOC, sand, silt, clay 5 18.65 0.25 18.75
Aspect, temperature, moisture, bulk density, NO3-N, DOC, silt, clay 2 18.65 026 18.76
Aspect, temperature, moisture, bulk density, DOC, silt, clay 7 18.65 025 18.76
Aspect, temperature, moisture, DOC, silt, clay 6 18.66 026 18.76
Aspect, temperature, moisture, DOC, silt 5 18.67 029 18.77
Aspect, temperature, moisture, silt 3 18.66 0.26 18.76
Aspect, moisture, silt 2 18.65 027 18.76
Moisture, silt 2 18.62 022 18.74
Silt 2 18.57 0.16 18.70
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Table B5. Continued.

(c) Arable NoO-N positive fluxes only

10-fold cross-validation

Category Predictor variables mtry RMSE R? MAE
Remote Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI 5 1847 0.63 18.59
sensing Elevation, aspect, TWI, TPI, NDVI, GNDVI, NDMI 4 1848 0.64 18.60
Elevation, aspect, TPI, NDVI, GNDVI, NDMI 4 1849 0.65 18.61
Elevation, aspect, NDVI, GNDVI, NDMI 2 18.50 0.66 18.62
Elevation, NDVI, GNDVI, NDMI 2 1848 0.65 18.61
NDVI, GNDVI, NDMI 2 1848 0.65 18.61
GNDVI, NDMI 2 18.45 0.63 18.59
GNDVI 2 18.31 0.51 18.51
Site Temperature, moisture, pH, bulk density, NO3—-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 2 1826 0.39 18.42
measured  Temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, silt, clay 2 1827 040 1843
soil Temperature, moisture, pH, NO3-N, NH4—N, DOC, TDN, SOC, SN, CN, silt, clay 2 1828 041 1843
parameters Temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt, clay 2 18.28 042 1844
Temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, clay 2 18.28 042 18.44
Moisture, NO3—-N, NH4-N, DOC, TDN, SOC, SN, CN, clay 2 1828 041 1844
Moisture, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN 2 18.26 0.38 18.42
Moisture, NO3—N, NH4—N, TDN, SOC, SN, CN 2 18.26 039 18.42
Moisture, NO3-N, NH4-N, SOC, SN, CN 4 18.24 037 18.42
Moisture, NO3-N, NHy4-N, SN, CN 2 1826 039 1843
Moisture, NO3—-N, NH4-N, SN 2 18.27 040 1843
Moisture, NO3-N, SN 2 18.25 038 18.42
Moisture, SN 2 18.21 034 18.39
Moisture 2 18.09 029 18.31
Combined Elevation, slope, aspect, TWI, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3-N, NH4-N, DOC, TDN, SOC, SN, CN, sand, silt, clay 12 1846 0.62 18.60
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, sand, silt, clay 11 1846 0.62 18.60
Elevation, slope, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN, silt, clay 11 1847 0.62 18.60
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, pH, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, silt, clay 10 1847 0.62 18.60
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3—N, NH4-N, DOC, TDN, SOC, SN, CN, silt, clay 10 18.48 0.63 18.60
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN, silt 9 1847 0.63 18.60
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, bulk density, NO3—-N, NH4—N, DOC, TDN, SOC, SN, CN 9 1848 0.63 18.60
Elevation, aspect, TPI, NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN 8 1848 0.64 18.61
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, NH4—N, DOC, TDN, SOC, SN, CN 8 1848 0.64 18.61
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, NHs—N, DOC, TDN, SOC, CN 7 18.49 0.65 18.62
Elevation, aspect, NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, DOC, TDN, SOC, CN 7 1849 0.65 18.62
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3—-N, DOC, TDN, SOC, CN 6 1848 0.65 18.61
Elevation, NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, TDN, SOC, CN 6 1849 0.65 18.62
NDVI, GNDVI, NDMI, temperature, moisture, NO3—N, TDN, SOC, CN 5 1849 0.66 18.62
NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, SOC, CN 5 1849 0.66 18.62
NDVI, GNDVI, NDMI, moisture, NO3-N, TDN, CN 4 18.51 0.68 18.63
NDVI, GNDVI, NDMI, moisture, TDN, CN 6 18.51 0.68 18.63
GNDVI, NDMI, moisture, TDN, CN 5 18.51 0.68 18.63
GNDVI, NDMI, TDN, CN 3 18.52 0.69 18.64
GNDVI, NDMI, TDN 3 18.55 0.72 18.65
GNDVI, NDMI 2 1845 0.63 18.59
GNDVI 2 18.31 0.51 18.51

//doi.org/10.5194/bg-20-5029-2023

https

20, 5029-5067, 2023

10geosciences,

B



E. Gachibu Wangari et al.: Scaling chamber-measured soil GHG fluxes to landscape scale 5063

Table B6. The minimum, maximum, mean, standard deviation (SD), and standard error (SE) in the measured fluxes at all the sampling points
and the predicted landscape fluxes using remote sensing (RS), soil parameters (SPs), and combined data (CD).

Measured fluxes at sampling Summer Autumn

points

Land use Flux type Min Max Mean SD SE Min Max Mean SD SE
Forest SR/ER-CO,-C 60 589 210 111 12.0 10 446 74 53 5.5
Grassland (mgm~—2h~1) 136 693 350 123 14.1 9 419 131 82 8.6
Arable 78 877 431 192 233 14 238 84 51 6.1
Forest CHy4—C —201 176 —-62 47 51 | —214 7 —68 48 4.9
Grassland (ugm~2h~1) —84 221 -9 43 52 | =100 28 -23 21 2.4
Arable —133 157 8 74 12.3 —43 11 —-17 10 1.4
Forest N;O-N —-13 117 14 24 29 —17 78 5 11 1.3
Grassland ~ (ugm~2h~1) —17 281 32 57 70| —18 154 12 30 37
Arable 13 282 84 65 8.4 —15 54 12 12 1.6
Predicted landscape fluxes (RS

data)

Forest SR/ER-CO,-C 37 327 171 51 0.03 38 288 74 26 0.01
Grassland ~ (mgm~2h~1) 59 484 294 70  0.10 39 477 186 89  0.13
Arable 35 668 324 111 0.08 28 559 102 86  0.06
Forest CHy4-C —147 65 =70 21 0.01 | —148 65 =72 25 0.01
Grassland ~ (ugm~2h~1) —60 50 —15 17 002 | —64 32 —18 11  0.02
Arable —60 89 =5 23 0.02 —60 75 —-16 11 0.01
Forest N,O-N -8 38 7 5 0.003 —6 27 4 4 0.002
Grassland ~ (ugm~2h~1) -8 144 26 34 005 -9 69 12 8 001
Arable 0 190 60 33 0.02 -1 183 18 17 001
Predicted landscape fluxes (SP

data)

Forest SR/ER-CO,-C 55 343 194 34  0.02 41 214 70 14 0.01
Grassland (mgm~—2h~1) 72 470 320 38 0.05 52 319 128 44  0.06
Arable 36 733 266 90  0.06 28 733 124 60 0.04
Forest CHy4—C —123 54 =51 11 0.01 | —138 -29 =51 10 0.01
Grassland (ugm~2h~1) —65 37 -8 8 001 —65 13 -10 6 0.01
Arable —87 85 -7 26 0.02 —67 85 —-13 17 0.01
Forest N;O-N -9 49 9 7  0.00 -9 23 6 4 0.00
Grassland ~ (ugm~—2h~1) -6 124 20 8 00l -7 54 7 7 00l
Arable 12 157 45 10 0.01 0 150 19 9 0.01
Predicted landscape fluxes (CD

data)

Forest SR/ER-CO,-C 82 325 185 31 0.02 42 195 66 14  0.01
Grassland (mgm—2h~1) 155 496 322 47 0.07 52 349 145 61 0.09
Arable 68 694 321 105 0.08 29 568 110 59  0.04
Forest CHy4-C —125 55 -57 18 0.01 | —136 27 =59 19 0.01
Grassland ~ (ugm~2h~1) —69 36 -6 9 001 | —69 13 —11 6 001
Arable =72 78 0 24 0.02 =72 53 —-17 11 0.01
Forest N;O-N -9 49 9 7  0.00 -9 23 6 4 0.0
Grassland (ugm—2h~1) -9 152 25 31 0.05 -8 83 6 7 0.01
Arable 16 168 58 21 0.02 1 128 16 12 0.01
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Table B7. Description of the sampling locations within the common hotspot patches of all three GHG fluxes.

Site ID  Land use

Site description and observed soil properties

Q10 Forest

Q73 Grassland
Q80 Grassland
C23 Grassland
C79 Grassland
C45 Grassland
C37 Grassland
E7 Grassland
C3 Arable land
C13 Arable land
Q20 Arable land
C12 Arable land
C56 Arable land
Cc97 Arable land

A lot of clover (Trifolium)
A lot of clover (Trifolium)
A lot of clover (Trifolium)
Barley crops

Barley crops

Riparian forest with alder (Alnus) trees, higher soil moisture, nitrate, ammonium, and DOC concentrations
Riparian grassland with higher soil moisture, ammonium, and DOC concentrations

Riparian grassland with clover (Trifolium) and higher soil moisture

Higher soil moisture, nitrate, ammonium, and DOC concentrations

Higher ammonium and DOC concentrations

Barley crops and the soils had higher nitrate concentrations

Barley crops and the soils had higher soil moisture
Wheat crops and the soils had higher soil moisture
Wheat crops and the soils had higher nitrate concentrations

Data availability. The primary data concerning field-measured pa-
rameters in this study are publicly available on the Zenodo data
repository at https://doi.org/10.5281/zenodo.6821111 (Wangari et
al., 2022). However, all data encompassing the additional remotely
sensed data will be made available by the corresponding author
upon request via email.
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