Supplement of Biogeosciences, 20, 5229–5242, 2023 https://doi.org/10.5194/bg-20-5229-2023-supplement © Author(s) 2023. CC BY 4.0 License.

Supplement of

Adjustments to the Rock-Eval $^{\!(\!n\!)}$ thermal analysis for soil organic and inorganic carbon quantification

Joséphine Hazera et al.

Correspondence to: Joséphine Hazera (josephine.hazera@ifpen.fr) and Tiphaine Chevallier (tiphaine.chevallier@ird.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Materials

Figure S1: Example of the 5 thermograms and 9 curves (S1, S2, S3CO, S3'CO, S3CO₂, S3'CO₂, S4CO, S4CO₂ and S5) obtained during the Rock-Eval® analysis of a non-calcareous agricultural topsoil with a SOC content of 14.27 g SOC kg⁻¹. For non-calcareous soils, all the curves correspond to the pyrolytic cracking or the oxidative combustion of SOC and are thus integrated in the TOC parameter calculation.

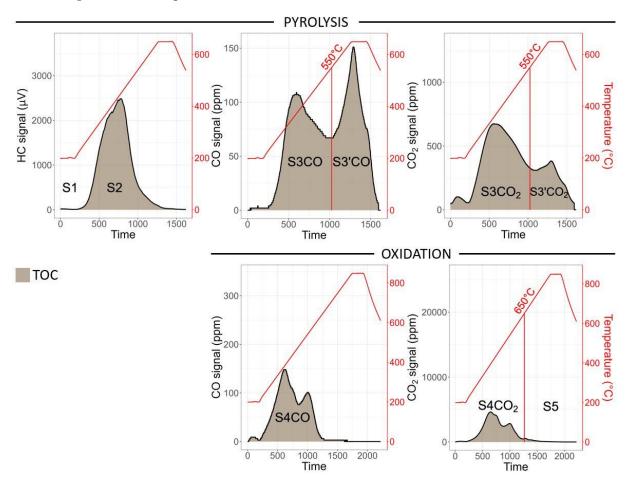


Figure S2: X-ray diffractogram of the calcite sample used in this study. ICDD: International Centre for Diffraction

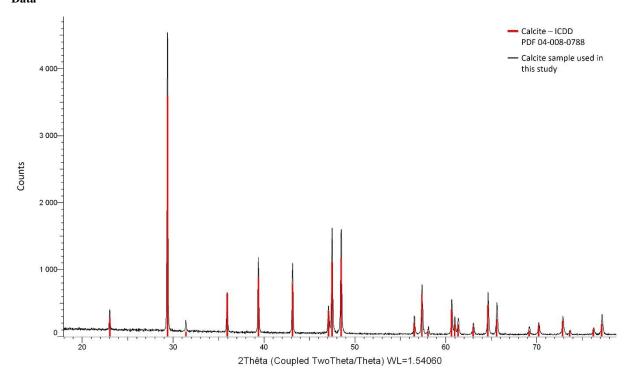
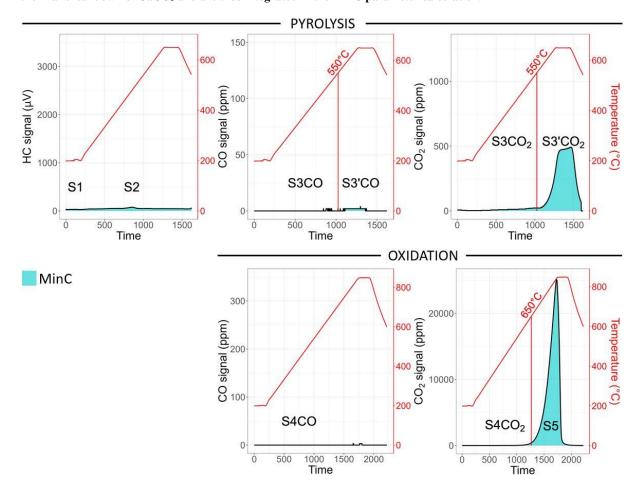



Table S1: Organic C, inorganic C, and total C contents (g OC kg⁻¹, g IC kg⁻¹ and, g TC kg⁻¹) of the three standards materials (ISE850, CC690, and SRI) and total C content (g TC kg⁻¹) of the calcite sample assessed by EA and RE on four aliquots (mean \pm standard deviation) compared to their reference values for total C content (g TC kg⁻¹). The RE values are corrected excepted for the SRI and the calcite sample.

	Measured values						Reference values
	Organic C		Inorganic C		Total C		Total C
	EA _{HCl}	RE	EA _{550°C}	RE	EA	RE	
ISE85	4.26	1.87	67.07	68.96	71.37	70.83	68.3 ± 1.9
0	± 0.08	± 0.11	± 1.56	± 0.74	± 1.51	± 0.84	00.3 ± 1.9
CC69	69.48	76.95	27.39	22.91	98.04	99.86	97 ± 4
0	± 3.49	± 2.42	± 0.43	± 0.56	± 2.39	± 1.92	91 ± 4
SR1	22.14	22.70	11.22	14.45	37.47	37.15	$36.9 \pm ND$
SKI	± 0.05	± 0.03	± 2.67	± 0.12	± 0.42	± 0.13	30.9 ± ND
Calcit	NA	NA	NA	NA	119.87	120.20	$120.0 \pm NA$
e	INA	INA	INA	INA	± 0.29	± 0.32	$120.0 \pm NA$

Figure S3: The 5 thermograms and 9 curves (S1, S2, S3CO, S3'CO, S3CO₂, S3'CO₂, S4CO, S4CO₂ and S5) obtained during the Rock-Eval \otimes analysis of the calcite sample used in this study. For calcite, all the curves correspond to the thermal breakdown of CaCO₃ and are thus integrated in the MinC parameter calculation.

