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Abstract. On the mainland of northwest Europe generally
only remnants of former peat landscapes subsist. Due to the
poor preservation of these landscapes, alternative approaches
to reconstruct peat initiation and lateral expansion are needed
compared to regions with intact peat cover. Here we aim
(1) to find explanatory variables within a digital soil mapping
approach that allow us to reconstruct the pattern of peat ini-
tiation and lateral expansion within (and potentially beyond)
peat remnants, and (2) to reconstruct peat initiation ages and
lateral expansion for one of the largest bog remnants of the
northwest European mainland, Fochteloërveen. Basal radio-
carbon dates were obtained from the peat remnant, which
formed the basis for subsequent analyses. We investigated
the relationship between peat initiation age and three poten-
tial covariates: (1) total thickness of organic deposits, (2) el-
evation of the Pleistocene mineral surface that underlies the
organic deposits, and (3) a constructed variable representing
groundwater-fed wetness based on elevation of the mineral
surface and current hydraulic head. Significant relationships
were found with covariates (1) and (3), which were then
used for subsequent modelling. Our results indicate simul-
taneous peat initiation at several loci in Fochteloërveen dur-
ing the Early Holocene and continuous lateral expansion un-
til 900 cal BP. Lateral expansion accelerated between 5500–
3500 cal BP. Our approach is spatially explicit (i.e. results in
a map of peat initiation ages), and it allows for a quantita-
tive evaluation of the prediction using the standard deviation
and comparison of predictions with validation points. The
applied method based on covariate (1) is only useful where
remnant peat survived, whereas covariate (3) may ultimately

be applied to reconstruct peat initiation ages and lateral peat-
land expansion beyond the limits of peat remnants.

1 Introduction

Peat initiation and subsequent lateral expansion of peat-
lands represent a significant change in the palaeoenviron-
ment. Knowledge on the timing, process rates and spatial dy-
namics of peat initiation and expansion is essential to develop
our understanding of peatland functioning and development,
carbon dynamics, climate change, and long-term human–
landscape interactions in peatland environments (e.g. Van der
Velde et al., 2021; Tolonen and Turunen, 1996; Van Beek et
al., 2015; Van Beek, 2015; Chapman et al., 2013).

Peat initiation may result from terrestrialisation (also
called infilling), paludification or primary mire formation
(Charman, 2002b; Rydin and Jeglum, 2013b). Peat deposits
form if the decay rate of biomass is slower than the rate of
production, i.e. where there is a positive production–decay
balance. The decay rate of organic material is mainly influ-
enced by the degree of moisture (Charman, 2002a), which
is dependent on a range of factors, including climate (e.g.
Weckström et al., 2010), changes in hydrological base level
(resulting from sea level rise, e.g. Berendsen et al., 2007;
or regional groundwater changes, e.g. Van Asselen et al.,
2017), impermeable deposits or resistant layers in the soil
profile (e.g. Breuning-Madsen et al., 2018; Van der Meij et
al., 2018), landforms and surface topography (e.g. Almquist-
Jacobson and Foster, 1995; Mäkilä, 1997; Loisel et al., 2013),
and anthropogenic influence (e.g. Moore, 1975, 1993).
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Peat initiation can be studied at the landscape scale or at
the local scale (Fig. 1a; Quik et al., 2022). Landscape-scale
peat initiation refers to the development of peat at a certain
locus; that is, the oldest core of a peatland, that subsequently
expands laterally and covers an increasing surface area. At
local scale, peat initiation refers to the accumulation of the
first organic deposits at this particular site, irrespective of its
landscape position, i.e. the site could either be a development
locus or become covered with peat through lateral expansion
of one or more nearby loci.

Studies on the spatio-temporal dynamics of peat initiation
and lateral expansion of peatlands appear to have focused
mostly on boreal and circum-arctic peatlands, for example, in
Scandinavia (Mäkilä and Moisanen, 2007; Edvardsson et al.,
2014), Siberia (Peregon et al., 2009), Canada (Bauer et al.,
2003), and Alaska (Loisel et al., 2013; Jones and Yu, 2010).
During the past decades, several supra-regional to global syn-
theses were published that describe large-scale trends (Rup-
pel et al., 2013; Korhola et al., 2010; Macdonald et al., 2006;
Crawford et al., 2003; Morris et al., 2018). So far, limited at-
tention has been paid to the palaeogeographical development
of the former extensive peat landscapes of the northwest Eu-
ropean mainland (for an indication of their former extent,
see, for example, Vos et al., 2020, and Casparie, 1993), with
the exception of coastal and alluvial peatlands in the Rhine-
Meuse delta (e.g. Berendsen and Stouthamer, 2000, 2001;
Hijma, 2009; Cohen et al., 2014; Pierik et al., 2017). This
is partly due to their large-scale disappearance following
reclamation activities in the past few centuries (e.g. Gerding,
1995), leaving only small peat remnants behind in the cur-
rent landscape. These remnants are under increasing threat of
drainage (e.g. Swindles et al., 2019), pollution (e.g. Limpens,
2003) and locally continuing excavation. The exploitation of
their scientific potential is therefore of poignant urgency.

In the range of studies where (boreal) peatland initiation
and long-term lateral development are studied, methodolo-
gies can roughly be divided into three approaches. In the first
category, lateral expansion rates are deduced using transects
of basal dates and distance between dating points, but the
palaeogeographical pattern of lateral development is not vi-
sualised (e.g. Almquist-Jacobson and Foster, 1995; Turunen
et al., 2002; Anderson et al., 2003; Turunen and Turunen,
2003; Peregon et al., 2009; Robichaud and Bégin, 2009;
Weckström et al., 2010; Loisel et al., 2013; Zhao et al., 2014).
In the second category, transects of basal dates are manually
converted to isochrones, i.e. lines of equal age that are de-
duced from the spatial distribution of obtained ages (Fig. 1b).
The isochrones visualise the pattern and rate of lateral de-
velopment (e.g. Bauer et al., 2003; Edvardsson et al., 2014;
Foster et al., 1988; Korhola, 1994, 1996; Mäkilä, 1997; Mäk-
ilä and Moisanen, 2007). As a third category, numerical peat
growth models can be distinguished that are based on hydro-
logical and ecohydrological feedbacks. These simulate ver-
tical peat growth (age–depth) for a peat column (e.g. the
Holocene Peat Model – Frolking et al., 2010; the DigiBog

model – Baird et al., 2012, and Morris et al., 2012; and the
coupled DigiBog-STREAM model – Swinnen et al., 2021).
However, models that include lateral expansion are so far un-
available (see, for example, the discussion on peat models by
Baird et al., 2012).

The use of transects of basal dates across a peatland is gen-
erally applied in areas where the natural extent of the peat-
land(s) under study is still intact. In regions where large areas
of peatland have disappeared, the placing of such transects is
questionable as the orientation of peat remnants within the
former extensive peat landscape is unknown (Fig. 1c). Ad-
ditionally, peat cutting (and ongoing excavation) may have
damaged basal peat layers. Consequently, an adapted strat-
egy is needed to collect (field) data from peat remnants. The
number of studies that focus on peat remnants appears to be
very low compared to studies of peatlands of which the ex-
tent is still intact (with some exceptions, e.g. the studies by
Chapman et al., 2013, and Crushell et al., 2008).

Here we aim (1) to find explanatory variables within a
digital soil mapping approach that allow us to reconstruct
the pattern of peat initiation and lateral expansion within
(and potentially beyond) peat remnants, and (2) to recon-
struct peat initiation ages and lateral expansion for one of
the largest bog remnants of the northwest European main-
land, Fochteloërveen, in a former peat landscape of which
the majority has been lost during the past centuries. The ele-
vation of the Pleistocene surface relative to its surroundings
is likely the primary control on the moment of peat initiation
at Fochteloërveen: the lowest points in a region tend to grow
over by peat first. However, as a secondary control, large-
scale geomorphology may influence local wetness: locations
that are situated relatively far from a draining river tend to
have higher groundwater tables that come closer to the sur-
face than locations adjacent to a river. Based on the hypothe-
sis of a two-fold control of peat initiation as discussed above,
we investigate the relationship between peat initiation age
and three potential covariates: (1) total thickness of organic
deposits, (2) elevation of the Pleistocene mineral surface that
underlies the organic deposits, and (3) a constructed variable
based on elevation of the mineral surface and hydraulic head.
Covariate (1) is only useful where remnant peat survived,
whereas covariates (2) and (3) are potentially useful for re-
constructing peat initiation age beyond peat remnants. The
Holocene period up to 900 cal BP (i.e. approximate start of
the High Middle Ages in the study area) forms the tempo-
ral scope for our study because of increased human influence
from then onwards (see Sect. 2.2).

2 Study area

2.1 Selection and description of study area

The Fochteloërveen peatland in the Netherlands (Fig. 2) was
chosen as case study area. Fochteloërveen (∼ 2500 ha) is
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Figure 1. Conceptual illustration of peat initiation and lateral expansion of peatlands. (a) Schematic top view of a landscape (peat is indicated
in brown), showing the meaning of peat initiation at the landscape and local scales (redrawn from Quik et al., 2022). (b) Approach to
reconstruct peat initiation and the pattern of lateral expansion using dating transects and isochrones for an intact peatland. (c) Situation when
only remnants of the former peat landscape remain.

the largest Dutch bog reserve (Joosten et al., 2017), and it
is one of the largest bog remnants on the northwest Euro-
pean mainland. It was part of an extensive peat landscape
(Fig. 2c) and is protected as a Natura 2000 area (Provin-
cie Drenthe, 2016). The widespread occurrence of its min-
eral substrate and characteristic climatic conditions (see be-
low) make this peatland area representative of larger parts of
the northwest European mainland. Because of the availability
of earlier obtained radiocarbon dating evidence (Quik et al.,
2022) and detailed subsurface data from national databases,
we consider Fochteloërveen as an ideal case study to in-
vestigate temperate peatland development. In addition, back-
ground information on peat initiation trends in the wider re-
gion is available from a recent study based on a large set of
legacy radiocarbon dates (Quik et al., 2021). Various impor-
tant archaeological finds have been done in the vicinity of
Fochteloërveen, including a Mesolithic aurochs butchering
site (Prummel and Niekus, 2011), wooden trackways from
the Iron Age (Casparie, 1985), and a Roman-period settle-
ment site that is assumed to have been deserted due to rising
groundwater levels (Van Giffen, 1958).

In the north of the Netherlands, a continental ice sheet was
present during the Saalian (OIS 6, oxygen isotope stage).
This led to deposition of glacial till (Rappol, 1987; Rappol et
al., 1989; Van den Berg and Beets, 1987; TNO-GSN, 2021a)
on the Drenthe Plateau (Bosch, 1990; Ter Wee, 1972). Depo-
sition of aeolian cover sands over northwest Europe during
the Weichselian (OIS 4-2) resulted in the formation of the
European Sand Belt (Koster, 1988, 2005). Cover sands occur
with a thickness of approximately 0.5–2 m on the Drenthe
Plateau (TNO-GSN, 2021b; Ter Wee, 1979). Fochteloërveen
is located close to the western edge of the Drenthe Plateau.
Below the cover sands, a discontinuous till layer with a thick-
ness up to 3.5 m is present underneath the peat remnant
(Provincie Drenthe, 2022). Fochteloërveen is part of three
catchments (Fig. 2b). Currently, average temperatures are
2.8 ◦C in January and 17.5 ◦C in July, average annual rain-
fall amounts to 805 mm, and the potential evapotranspiration
is 566 mm (KNMI, 2021). Throughout the paper, we indi-
cate elevation in metres O.D., i.e. relative to Dutch Ordnance
Datum (+NAP), which is roughly equal to mean sea level.
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Fochteloërveen does not fit within a single definition or
classification as it probably formed through coalescence of
multiple smaller mires (see Results section of this paper) that
formed on a non-coastal and non-alluvial topographic plain.
However, in the hydromorphological classification (cf. Char-
man, 2002b), the resultant composite peatland can probably
best be described as a plateau raised bog. Fochteloërveen
started off as a fen (minerogenous mire) but later on tran-
sitioned to a bog (ombrotrophic mire) (more information be-
low; Quik et al., 2022).

Biostratigraphical analyses by Quik et al. (2022) show that
the vegetation was mesotrophic during peat initiation. This
vegetation was dominated by sedges, with some presence
of Juncus. Water tables fluctuated during the peat initiation
process, and wetter and drier conditions probably alternated.
Wildfires must have occurred regularly, as indicated by the
frequent presence of charred plant remains. Conditions be-
came more oligotrophic after the peat initiation process. The
vegetation developed probably to an oligotrophic bog, with
Calluna vulgaris, Erica tetralix and Sphagnum at two of
the locations studied by Quik et al. (2022), and to a moss
(Bryales) and heather vegetation at the third studied location.

The vegetation of Fochteloërveen is currently dominated
by Sphagnum mosses occurring in a hummock and hol-
low topography (Provincie Drenthe, 2016). Species include,
amongst others, S. magellanicum, S. papillosum, S. rubel-
lum, and vascular species typical for ombrotrophic condi-
tions such as Eriophorum vaginatum, Andromeda polifo-
lia and Vaccinium oxycoccos. Fochteloërveen harbours sev-
eral protected animal species, including the common ringlet
(Coenonympha tullia), subarctic darner (Aeshna subarc-
tica), smooth snake (Coronella austriaca), common Euro-
pean adder (Vipera berus) and a wide range of bird species.
From 2001 onwards, crane birds (Grus grus) settled in the
area (Provincie Drenthe, 2016). Since the 1980s, nature con-
servation is directed at peatland restoration (Altenburg et al.,
2017; Provincie Drenthe, 2016). Main threats for nature con-
servation include atmospheric nitrogen deposition and desic-
cation due to intense drainage for surrounding agriculture.

2.2 Peatland development and decline in the (wider)
study area

There is a hiatus between the deposition of cover sand dur-
ing the Weichselian and the formation of peat in the cover
sand areas in the eastern half of the Netherlands. This can
be deduced from the occurrence of soil profiles in cover
sand (e.g. podzols) underneath the peat and sometimes by
the presence of bog wood (i.e. evidence of previous vegeta-
tion cover; Staring, 1983; Jongmans et al., 2013). Theories
deviate on the timing when peat growth started in the cover
sand landscape, on the period when these peatlands expanded
and when they reached their maximum extent (Fig. 3). Note
that in the text below, we repeat the “old” chronostratigraphic
terms that were used in the cited papers. We have added cali-

brated Before Present (cal BP) ages to ease interpretation and
comparison with the new formal subdivision of the Holocene
(Walker et al., 2019).

The national palaeogeographic maps created by Zag-
wijn (1986) indicate that peat formation started during the
Early Atlantic climatic period (∼ 7450 cal BP). By the Late
Atlantic (∼ 6050 cal BP), large raised bog complexes had
formed and reached their maximum extent. From then on-
wards, they remained laterally stable. Zagwijn (1986) placed
the reaching of maximum extent in the Late Atlantic but in-
dicates that the true timing remains uncertain due to lack of
data as a result of peat cutting.

According to the recent palaeogeographic map series by
Vos et al. (2020), peat initiation also started during the be-
ginning of the Atlantic (∼ 7450 cal BP). However, the peat-
lands continued to expand gradually during the Atlantic and
Subboreal and reached their maximum extent at the begin-
ning of the Subatlantic (∼ 2450 cal BP). From ∼ 1500 CE
(∼ 450 cal BP) onwards, the peat-covered area rapidly de-
clines according to the map series by Vos et al. (2020) due
to agricultural reclamation and peat-cutting activities. The
national palaeogeographic maps are based on elaborate and
detailed data on the development of river deltas and coastal
areas in the Netherlands (Vos, 2015b). In contrast, the recon-
structions of peatlands in the cover sand region have rela-
tively large uncertainty as the amount of data on these areas
is low (Vos, 2015a; Van Beek, 2009; Spek, 2004).

Few studies with regional palaeogeographical focus are
available for Fochteloërveen and surroundings, but impor-
tant exceptions include the work of Fokkens (1998) and Wa-
terbolk (2007), who deduce patterns of peatland develop-
ment based on archaeological find distributions. In doing
so, Waterbolk (2007) deduces the presence of peat through
the absence of archaeological finds, whereas Fokkens (1998)
considers an approach using archaeological finds only as
terminus-post-quem dates for peat initiation most appropri-
ate (i.e. absence of finds is not used as an indication for pres-
ence of peat).

Waterbolk (2007) deduces that large areas were al-
ready covered by peat during the Early and Middle Ne-
olithic (4900–2850 BCE; 6850–4800 cal BP). This situation
remained stable for several thousand years. Rapid peatland
expansion during the Iron Age, which Waterbolk (2007)
linked to climate change as discussed by Van Geel et
al. (1998), left the majority of the area uninhabited during the
Roman period (19 BCE–450 CE; 1969–1500 cal BP). This is
in contrast to the conclusions of Fokkens (1998), who as-
sumed that (oligotrophic) peat on the plateau was largely ab-
sent during the Middle Neolithic (5000 cal BP), except for
very local sites.

Until recently, radiocarbon dating evidence from a (near)
basal peat layer was only available for a single site in
Fochteloërveen (Klaver, 1981; later published by Van Geel
et al., 1998), which indicated an age of 2920–2736 cal BP (at
95.4 % confidence interval). Fokkens (1998) mentions that
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this site represents the nucleus of the area, and consequently
places peat initiation in the Fochteloërveen area between the
beginning of the early Iron Age and the end of the Roman
period (800 BCE–400 CE; 2750–1550 cal BP). He also as-
sumes that the maximum extent was reached during this pe-
riod. Waterbolk (2007) assumes that the peatland reached its
maximum extent slightly later during the Early Middle Ages
(450–1000 CE; 1500–950 cal BP), prior to the onset of sys-
tematic reclamation activities.

New dating evidence at three sites presented by Quik
et al. (2022) indicates that within the boundaries of
the Fochteloërveen nature reserve peat developed from
∼ 9000 cal BP onwards and that new areas became cov-
ered with peat at least until ∼ 3500 cal BP, suggesting that
landscape-scale peat initiation occurred much earlier than
suggested in the studies mentioned above (Vos et al., 2020;
Fokkens, 1998; Waterbolk, 2007; Zagwijn, 1986). The sub-
stantial differences between the studies discussed above and
the overview presented in Fig. 3 highlights the need to bet-
ter constrain the timing of peat initiation and the period
of lateral development in the cover sand landscape and at
Fochteloërveen specifically.

Even though local peat cutting (i.e. on a household level)
took place since the Middle Ages, large-scale reclamations
of the Fochteloërveen area only started in the 17th cen-
tury (Gerding, 1995; Douwes and Straathof, 2019). This
happened mainly for turf production and lasted (in the last
decades on a smaller scale) until the 1970s. In a large part
of the area, superficial peat layers are affected by buckwheat
cultivation, which was at its height in the late 18th and 19th
centuries (Douwes and Straathof, 2019). However, this prac-
tice did not affect the basal peat layers that are of interest
to our study. Data from the 18th century indicate that peat
thickness at Fochteloërveen has locally declined by as much
as 7 m during the past three centuries (Douwes and Straathof,
2019).

3 Methods

3.1 Methods part 1: collection of field data and
radiocarbon dating evidence

3.1.1 Field approach and site selection

Our field approach is directed at obtaining an extensive set
of basal radiocarbon dates, which forms the basis for subse-
quent modelling steps. Testing the influence of the elevation
of the Pleistocene surface and large-scale geomorphology re-
quires insight into both vertical and horizontal landscape di-
mensions within the Fochteloërveen peat remnant. Transects
of basal peat dates are generally used for reconstructions of
peat initiation and lateral development (Fig. 2b). In sea level
research, where the focus is on the vertical dimension, it is
custom to date basal peat samples that overlie compaction-

free sediments where the groundwater level that steered peat
growth can be related to former sea level (e.g. Törnqvist et
al., 1998). To obtain the required insight into vertical and hor-
izontal landscape dimensions at Fochteloërveen, we chose a
hybrid approach that combines spatially distributed transects
with elevation gradients in the (compaction-free) mineral de-
posits underlying the organic deposits (also see Chapman et
al., 2013).

Our field exploration consisted of 93 gouge coring lo-
cations, mostly grouped in transects of 185 to 575 m long
that were placed perpendicular to the elevation gradients of
subsurface cover sand ridges and depressions (Figs. 2d and
4). At a few sites, a central gouge coring location was sur-
rounded by four coring locations in a radial pattern to de-
rive the subsurface topography. For each core, the stratigra-
phy was described (see Quik et al., 2022, for details). Af-
ter the field exploration, 21 sites were selected for sampling,
taking the distribution over the study area into account. Ad-
ditionally, it was ensured that the combination of sample
sites stretched the elevation range of the mineral surface un-
derlying the organic deposits (samples cover an elevation
range of 7.2–11.7 m O.D.). Collection and subsampling of
cores, (bio)stratigraphical analyses, selection of dating sam-
ples, and radiocarbon dating procedures followed Quik et
al. (2022) and are summarised in Sect. 3.1.2–3.1.4.

3.1.2 Collection and subsampling of cores

Cores were collected in 2019 with a hand-operated stainless-
steel peat corer (Russian type) with a core volume of 0.5 dm3

(Eijkelkamp Soil & Water, 2018). Prior to sampling, the corer
was cleaned with deionised water. After retrieving the core,
it was carefully packaged in a PVC half-pipe and placed in a
refrigerator at 3 ◦C within 12 h. Location and elevation of all
sampling sites were recorded with a Topcon 250 Global Nav-
igation Satellite System (GNSS) receiver, with a horizon-
tal precision of ∼ 5 mm and vertical precision of ∼ 10 mm
(RTK; TOPCON, 2017).

Directly after opening the cores, the stratigraphy was de-
scribed (additional to field descriptions), and the approxi-
mate mineral-to-peat transition (following Quik et al., 2022)
was determined through visual inspection. Around this tran-
sition, 6 to 12 contiguous 1 cm thick slices were cut from
the core. Outer edges of these slices were carefully cleaned
to avoid contamination. From each slice, a subsample of
∼ 2 cm3 was collected for loss-on-ignition (LOI) measure-
ments; all remaining material (∼ 5 cm3) was reserved to se-
lect plant macrofossils for radiocarbon dating after subsam-
ple selection (see Sect. 3.1.3).

3.1.3 (Bio)stratigraphical analyses and selection of
dating samples

The organic matter (OM) content was measured using loss
on ignition. Sample dry weight was determined after drying
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Figure 2. (a) Location of the Fochteloërveen peat remnant within Europe (ESRI, 2022); (b) digital elevation model (DEM) of the wider area
around Fochteloërveen (version AHN3, horizontal resolution 5 m, vertical resolution 0.1 m; AHN, 2021a, b), indicating the main drainage
pattern (Ministerie van Verkeer en Waterstaat, 2007). Coordinates are in metres (Dutch RD-new (Rijksdriehoeksstelsel) projection). Extent of
the Fochteloërveen Natura 2000 area is indicated (Ministerie van Economische Zaken, 2018); (c) palaeogeographical map of Fochteloërveen
and surroundings, showing reconstructed situation for 500 BCE (2450 cal BP) as indicated by the Dutch national palaeogeographical map
series (Vos et al., 2020; RCE, 2022); (d) topographical map of Fochteloërveen (OpenTopo; Van Aalst, 2022), showing coring locations (see
Sect. 3.1.1 and 3.1.2) and position of archaeological validation points (for details see Table 2). Peatland is indicated with purple colours.
The area surrounding Fochteloërveen shows the landscape structure that resulted from historical peat colonies, peat-cutting activities and
agricultural reclamation.
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Figure 3. Timing of peat initiation and period of lateral devel-
opment in the Dutch cover sand landscape (upper two) and at
Fochteloërveen specifically (lower three), according to different
studies. The x axis is equal to Fig. 10, to ease comparison with
the outcomes of the present study.

for 24 h at 105 ◦C, followed by combustion at 550 ◦C. After
obtaining the OM% for the range of slices cut from a par-
ticular core, the lowermost slice that contained ≥ 40 % OM
was defined as the basal peat layer (following Quik et al.,
2022). Charred and un-charred plant macrofossils (above-
ground tissues) were selected at BIAX Consult in Zaandam,
the Netherlands, for radiocarbon dating (Table 1). For 12
cores, radiocarbon samples were obtained from the basal
peat slice. These basal dates form the calibration dataset for
subsequent modelling (see Sect. 3.2). In addition, five ra-
diocarbon samples were obtained from slices of five cores
that represent terminus-ante-quem (TAQ) and terminus-post-
quem (TPQ) dates for peat initiation (i.e. from slices with
> 40 % OM and slices with < 40 % OM, respectively). The
TAQ and TPQ dates are part of our validation dataset (to-
gether with archaeological validation data; see Sect. 3.2.3).
A table with organic matter gradients, on which selection of
dating samples is based, and a table with all encountered
plant macrofossils (i.e. including material not selected for
dating) are available online (see the “Data availability” sec-
tion). For three additional cores, dating information of the
basal peat layer is available from Quik et al. (2022).

3.1.4 Radiocarbon dating

Radiocarbon measurements were performed at the Centre for
Isotope Research of the University of Groningen (the Nether-
lands). A full description of the methods used at this labora-
tory can be found in Dee et al. (2020); methods applied to our
samples are only concisely explained below. Samples were
either pre-treated using the acid–base–acid (n= 9) method,
or only with acid (n= 5), or not pre-treated in the case of
very small and delicate samples (n= 3) (see the “Data avail-
ability” section for details per sample). Samples were mea-
sured using a MICADAS (MIni CArbon DAting System) ac-
celerator mass spectrometer (Ionplus AG; Synal et al., 2007).

Depending on sample weight after the pre-treatment, sam-
ples were measured as graphite in a regular batch (in the case
of 1.0–2.5 mg C) in a batch for small-sized graphite samples
(0.1–1.0 mg C) or measured directly as CO2 after combus-
tion (< 0.15 mg C). F14C and 14C ages were calculated ac-
cording to the conventions (Stuiver and Polach, 1977). Re-
sults are corrected for isotopic fractionation using the δ13C
value measured with AMS. Dates were calibrated using Int-
Cal20 (Reimer et al., 2020) in the OxCal program (version
4.4; Bronk Ramsey, 1995).

3.2 Methods part 2: reconstructing peat initiation age
spatially

3.2.1 Covariates and construction of covariate maps

The relationship with median peat initiation age was tested
for (1) the total thickness of organic deposits [O], (2) the
elevation of the Pleistocene mineral surface [zP] underlying
the organic deposits, and (3) a constructed variable based on
elevation of the mineral surface and hydraulic head, which
captures the effect of groundwater-fed wetness that results
from geomorphological position (Fig. 5). The latter covari-
ate, denoted with zPH , is defined as the peat initiation height
(i.e. the elevation of the Pleistocene mineral surface, zP) at
location x minus the current hydraulic head (Ht0 ) at location
x.

Two Dutch national databases with subsurface data, man-
aged by the Dutch Geological Survey (TNO-GDN), were
consulted (see below) for the construction of the covari-
ate maps. Geological coring data for a region surrounding
Fochteloërveen (see extent of corings in Fig. 4a) were down-
loaded from DINOloket (DINOloket – TNO, 2022) and se-
lected for the presence of peat or gyttja (n= 485). In addi-
tion, information from gouge corings (n= 71) and sample
corings (n= 21) from the fieldwork (see Sect. 3.1.2) was
used. For each coring (total n= 577), the elevation of the
Pleistocene surface [zP] and total thickness of organic de-
posits [O] was registered (for geological corings, the sum
was used of peat and gyttja if present). Using ArcGIS Pro
(version 2.3.3), a palaeoDEM of the Pleistocene surface was
interpolated based on the zP values through inverse distance
weighing (IDW). In addition, a map of the total thickness
of organic deposits was interpolated through IDW based
on the O values. The resulting rasters have a resolution of
50× 50 m and a support of ∼ 10 datapoints km−2.

For the current hydraulic head [Hxt0 ], the map of the up-
per layer of the national hydrological model was downloaded
from Grondwatertools (Grondwatertools – TNO, 2022), re-
flecting the phreatic groundwater level (the upper unconfined
aquifer). This raster has a resolution of 250× 250 m. To en-
able maps of peat initiation age with a 50× 50 m resolution,
the Hxt0 raster was resampled to 50× 50 m and smoothed
through focal statistics (using the mean with a neighbour-
hood of 3× 3 cells). A zPH raster was calculated by sub-
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Figure 4. Two cross sections showing example transects perpendicular to cover sand ridges underlying the organic deposits in the
Fochteloërveen peat remnant. See Fig. 2 for location of the transects; (a) transect covering one side of a ridge; (b) transect covering both sides
of a ridge. Corings are indicated with vertical bars at the top of each cross section. The numbers (of the format Sxx) refer to the sampling
site codes (see Tables 1 and 3).
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Table 1. Overview of the aboveground plant remains that were selected for radiocarbon dating. When a number is given, this is the exact
amount encountered; cf.= resembles, += present, ++= frequent, and NA= not available.

Core Subsample From To Aboveground plant remains for 14C dating (charred unless indicated otherwise)
(m O.D.) (m O.D.)

S1 M4 10.53 10.54 Calluna vulgaris (stem 2 fragments (charred, very small fragments))

S1 M5 10.54 10.55 Ericaceae (twig fragments 3); Erica tetralix (leaf 1)

S2 M9 10.79 10.80 Erica tetralix (leaf 1, leaf 1 (un-charred)); Calluna/Erica (twig fragments +)

S3 M2 10.12 10.13 Eriophorum vaginatum (leaf and stem fragments with sclerenchyma tissue and epidermis
++, stem base (corm) with spindles 1, isolated spindles ++ (all un-charred))

S4 M9 7.16 7.17 Carex cf. riparia (5 (un-charred)), Carex cf. pilulifera (6 fragments (un-charred); Ericaceae
(twig 1 fragment); undetermined (herbaceous stem 3 fragments)

S5 M5 10.13 10.14 Erica tetralix (leaves 7); cf. Erica (twig fragments +)

S6 M8 9.74 9.75 Erica tetralix (leaves 8); Ericaceae (twig 3 fragments); Carex (3 fragments (un-charred))

S7 M7 10.55 10.56 Eriophorum vaginatum (spindle 1); undetermined (herbaceous stem 1 fragment)

S7 M8_9 10.56 10.58 cf. Ericaceae (stem base/root 2 fragments); Persicaria (1 fragment (un-charred)); undeter-
mined (herbaceous stem 2 fragments);

S8 M3 11.55 11.56 Erica tetralix (leaves 2); cf. Erica (flower 1); Andromeda polifolia (seed 1 (un-charred));
undetermined (herbaceous stem fragments +)

S9 M1 10.59 10.60 NA

S9 M2 10.60 10.61 Reseda luteola (seed 1 (un-charred)); undetermined (herbaceous stem 2 fragments)

S10 M6 10.78 10.79 Eriophorum vaginatum (spindles 3); Ericaceae (stem base 1); undetermined (herbaceous
stem fragments +)

S12 M7 10.91 10.92 Ericaceae (stem base 4 fragments); Sphagnum (stem 1 fragment (un-charred)); undeter-
mined (herbaceous stem fragments +)

S13 M10 8.99 9.00 Calluna vulgaris (twig fragments ++, leaves +); Erica tetralix (leaves 4, twig fragments
+); undetermined (herbaceous stem fragments +)

S14 M10 8.65 8.66 Calluna vulgaris (twigs with leaves ++, stem 1 fragment (un-charred)); Erica tetralix
(leaves ++); Calluna/Erica (flowers +); Sphagnum (stem 1 fragment)

S15 M5 8.13 8.14 Erica tetralix (leaves 3, stem base 1); undetermined (herbaceous stem fragments +)

S16 M2 7.57 7.58 Undetermined (herbaceous stem fragments +)

S16 M4 7.59 7.60 NA

S19 M8 10.44 10.45 Cyperaceae (stem 2 fragments); undetermined (herbaceous stem fragments +)

tracting the Hxt0 raster from the zP palaeoDEM. For each
coring location (n= 577), the value of zPH was obtained to
be used in linear regression analysis (see Sect. 3.2.3). Covari-
ate maps and a table with all used coring data are available
online (see “Data availability” section).

3.2.2 Linear regressions and prediction maps of peat
initiation age

Using R, the relationships between median peat initiation age
and each of the three covariates [O, zP, zPH ] were anal-
ysed with linear regression. Based on several checks (in-

cluding the normality of the residuals, homoscedasticity, and
leverage) the assumptions underlying linear regression were
deemed valid for our data (results not shown but available
through the R script; see “Data availability”). The three lin-
ear models were assessed based on their p value and adjusted
R2; those with significant results were used for subsequent
predictions of peat initiation age.

Using the linear models, covariate maps were converted
to prediction maps of peat initiation age using the R “raster”
package. The corresponding standard deviation maps were
obtained from the limits of the prediction interval of the re-
gressions. The resulting rasters were exported with the Geo-
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Figure 5. Schematic depiction of the covariates (O, zP, zPH ). For
explanation see Sect. 3.2.1.

TIFF format and opened in ArcGIS Pro (2.3.3). Values <
900 cal BP were set to “No Data”. Isochrones (contour lines)
with an interval of 1000 years were added to the map to show
the pattern of modelled peatland expansion.

A histogram and density function of the predicted peat
initiation ages were created to visualise the acceleration in
lateral expansion through time. A cumulative density func-
tion was created to show the increase in peat-covered area
through time within the boundaries of the Fochteloërveen
peat remnant.

3.2.3 Assessment of modelling results

To evaluate the agreement between the predictions of peat
initiation age, the resulting prediction rasters were subtracted
from each other. In addition, predictions were evaluated us-
ing validation points consisting of radiocarbon dates of peat
samples that indicate a terminus ante quem (n= 3) and ter-
minus post quem (n= 2) for peat initiation and archaeolog-
ical sites that indicate a terminus post quem for peat initi-
ation (n= 4; Fig. 2d and Table 2). Predicted peat initiation
ages at the locations of validation points were obtained and
compared with the TPQ/TAQ information of these points. To
ease interpretations, the predicted ages and TPQ/TAQ valida-
tion ages were plotted in OxCal (version 4.4; Bronk Ramsey,
1995). Confidence intervals of the validation points are pre-
sented both as 1σ and 2σ intervals.

4 Results

4.1 Results part 1: collection of field data and
radiocarbon dating evidence

A table with all collected coring data is available online
(see “Data availability”). The dating results for the obtained
samples from the cores are listed in Table 3. Both peat
initiation dates and terminus-post-quem/terminus-ante-quem
dates for validation are included. Ages range from 1650±

40 BP (1690–1411 cal BP at 95.4 % confidence interval) to
8305± 30 BP (9433–9142 cal BP at 95.4 %), indicating that
the period of peat initiation and subsequent lateral expansion
stretched over at least ∼ 7500 calendar years.

4.2 Results part 2: reconstructing peat initiation age
spatially

The linear regressions of median peat initiation age versus
the total thickness of organic deposits [O] is highly signifi-
cant (p value< 1× 10−3) and explains a reasonable amount
of variation with an adjusted R2 of 0.57 (Fig. 6a). The lin-
ear regression of median peat initiation age versus the ele-
vation of the Pleistocene mineral surface underlying the or-
ganic deposits [zP] has a p value of 0.09 and adjusted R2

of 0.14. Based on these values, this covariate was rejected
for further analyses. For the third covariate that was tested,
groundwater-fed wetness that results from geomorphologi-
cal position [zPH ], the linear regression has an adjusted R2

of 0.61 and is again highly significant (p value< 1× 10−3)
(Fig. 6b).

The interpolated Pleistocene surface underlying the or-
ganic deposits ([zP], Fig. 7a) indicates that the mineral sub-
strate covers an elevation range of 6–13 m O.D. The thick-
ness of organic deposits ([O], Fig. 7b) varies from 0.0 to
3.5 m. Using the Pleistocene surface ([zP], Fig. 7a) and
present-day hydraulic head ([Ht0 ], Fig. 7c), the covariate
raster for groundwater-fed wetness that results from geo-
morphological position ([zPH ], Fig. 7d) was calculated (see
Sect. 3.2.1).

Using the covariate maps in Fig. 7b and d and the linear
regressions in Fig. 6, the prediction maps of peat initiation
age in Fig. 8 were generated. Standard deviations of the pre-
dictions are shown as insets in Fig. 8. The higher the standard
deviation at a particular location, the less certain the predic-
tion of peat initiation age is for that point. Lower certainty
mainly occurs at points with a predicted peat initiation age
≥ 6000 cal BP and at points with an age of ≤ 1500 cal BP, as
the number of datapoints above and respectively below these
ages are limited (see datapoints in Fig. 7). Overall, both pre-
dictions in Fig. 8 show a similar pattern. The difference be-
tween both predictions, as shown in Fig. 9a, demonstrates
that they deviate near the edge of the Fochteloërveen area and
mostly in the northern part of the area. As this northern part
is currently forested (see Fig. 2d), present-day groundwater
levels may not reflect a natural pattern here, causing devia-
tions in the prediction based on zPH . The validation points
indicate that for the three terminus-ante-quem radiocarbon
dates (Fig. 9b), which should be younger than the predicted
peat initiation ages, two are indeed younger than the mean of
the predictions and one is slightly older but falls within the
1σ confidence interval of the predictions. Of the terminus-
post-quem radiocarbon dates (Fig. 9b), which are expected
to be older than the predicted peat initiation ages, one has a
comparable age as the mean of the predictions, and one is
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older than the mean of the predictions. Of the terminus-post-
quem archaeological validation points (Fig. 9c), three are in-
deed older. One is younger than the mean of the predictions
but still falls within the 2σ confidence interval for the pre-
diction based onO and within the 1σ confidence interval for
the prediction based on zPH . Overall, comparison with the
validation points suggests validity of the predictions.

Loci of early peat initiation are distributed over the lower
central, west and northwest parts of the Fochteloërveen area
(Fig. 8a and b), indicating that landscape-scale peat initia-
tion (see Fig. 1a) occurred simultaneously at multiple sites.
The west and northwest loci are located on low-lying to-
pography (≤ 7.0 m O.D.) of the Pleistocene surface (com-
pare with Fig. 7a), but the loci in the lower central part
of the area are located on somewhat higher ground (be-
tween 9.0 and 10.5 m O.D.). Even on the highest parts of
the Pleistocene surface (between 12.0 and 13.0 m O.D.), both
predictions indicate a peat cover from about 3000 cal BP
onwards. This suggests that as the peat cover grew with
time, even cover sand ridges that initially protruded above
the peat landscape became covered with peat as time pro-
gressed. The distance between the isochrones in Fig. 8a and
b indicates the rate of lateral expansion. Where isochrones
are drawn close together, the peat cover expanded slowly.
This is the case in the blueish coloured parts of the maps,
pointing to initial slow expansion of peat initiation loci.
Later in time the peat-covered area expanded more rapidly,
with the strongest expansion between 5500–3500 cal BP (see
Fig. 10c; 5500–3500 cal BP for the prediction based on O
and 5500–3000 cal BP for the prediction based on zPH ).
Half of the Fochteloërveen area was covered with peat
by ∼ 4000 cal BP according to the prediction based on O
(Fig. 10c) and by ∼ 3500 cal BP according to the prediction
based on zPH . Peat covered nearly the entire area by ∼ 2500
and ∼ 900 cal BP, respectively.

5 Discussion

Here we discuss peat initiation and lateral expansion at
Fochteloërveen as indicated by our predictions (Sect. 5.1),
followed by an evaluation of our approach (Sect. 5.2).

5.1 Peat initiation and lateral expansion at
Fochteloërveen

Peat initiation results from terrestrialisation, paludification
and/or primary mire formation (Charman, 2002a; Rydin and
Jeglum, 2013b). As the substrate in the study region has been
deglaciated and exposed at the surface since the penultimate
Glacial (OIS 6, see Sect. 2.1), primary mire formation is not
the case here. The question then remains whether peat ini-
tiation resulted from paludification or terrestrialisation (or
both). Gyttja is often found at the base of terrestrialisation se-
quences. We did not encounter gyttja in the gouge and sample

corings of the field survey, but in part of the DINOloket cor-
ing descriptions gyttja is mentioned. However, interpretation
and terminology of the amorphous peat layer (highly humi-
fied; sapric cf. IUSS Working Group WRB, 2015; see Table 2
in Quik et al., 2022) that is regularly found near the bottom
of peat deposits may differ. The lithology of this layer can be
described as peat with blackish-brown colouring, greasy con-
sistency and very few recognisable plant remains. Depend-
ing on definitions used, it is plausible that in the DINOloket
corings reference is made to a similar facies as the amor-
phous peat layer with the term gyttja. Proximity of some of
the DINOloket corings with gyttja in the description to our
sample corings with an amorphous peat layer suggests that
both terms refer to the same layer. As this layer does not
meet the requirements of true gyttja (an organic lacustrine de-
posit) according to Bos (2010) and Bos et al. (2012), we con-
clude that peat initiation in the study area was largely caused
by paludification, i.e. waterlogging of previously unsaturated
sediments. Note that we used an OM percentage of 40 % to
define peat based on Quik et al. (2022), which is important
to keep in mind for comparison of results with other studies.

Trophic status is used in many peatland classification sys-
tems. Reference can be made to the current trophic status
(suffix “trophic”) and to trophic status during peatland ini-
tiation (suffix “genous”) (Charman, 2002b). Geogenous or
minerogenous conditions indicate that a peat-forming vege-
tation receives groundwater or surface runoff, i.e. water that
has been in contact with mineral soil. Ombrogenous condi-
tions are present when a peat-forming vegetation receives
water solely from precipitation (Rydin and Jeglum, 2013a;
Charman, 2002b; Joosten and Clarke, 2002; International
Peatland Society, 2022). The water source during formation
of the organic deposits at Fochteloërveen could be deduced
from the botanical data (Table 1; more information online,
see “Data availability”). Of the peat initiation samples, five
can be classified as geogenous, nine as transitional from ge-
ogenous to ombrogenous and only one as truly ombrogenous.
This suggests that peat initiation was strongly influenced by
groundwater and surface runoff and only to a limited degree
by perched groundwater tables that result from precipitation
and poor drainage caused by impermeable (sub)surface lay-
ers (i.e. glacial till which can be found close to the surface,
see Sect. 2.1).

The weak linear relationship between elevation of
the Pleistocene mineral surface and peat initiation age
(p value= 0.09, adjusted R2

= 0.14) shows that not all basal
peat layers of equal elevation are of the same age. In contrast,
the relationship between peat initiation age and groundwater-
fed wetness that results from geomorphological position is
highly significant (p value< 1× 10−3, adjusted R2

= 0.61).
This demonstrates that the influence of groundwater in ini-
tiating peat growth at Fochteloërveen cannot be explained
solely by elevation, but it is strongly related to groundwater-
fed wetness resulting from position within the large-scale ge-
omorphology of high topographic plains and incised valleys.
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Figure 6. Linear regressions, showing the relationships between median peat initiation age and (a) the total thickness of organic deposits [O]
and (b) groundwater-fed wetness that results from geomorphological position [zPH ]. Both regressions were significant with p < 1× 10−3.
Observations are indicated by the black circles. The regression line is shown in black; the 95 % confidence interval of the regression line is
indicated in red, and the 95 % prediction interval is in blue. The range of the covariate maps is indicated in purple and also visible in Fig. 7b
and d.

Figure 7. (a) Interpolated elevation of the Pleistocene surface [zP] based on data obtained through sample/gouge corings and DINOloket
corings (DINOloket – TNO, 2022). (b) Interpolated current thickness of organic deposits [O] based on data obtained through sample/gouge
corings and DINOloket corings (DINOloket – TNO, 2022). Radiocarbon dates of basal peat samples show peat initiation ages (see Sect. 4.1).
(c) Current hydraulic head [Ht0 ] based on the LHM model (Grondwatertools – TNO, 2022), resampled to 50× 50 m and smoothed through
focal statistics. (d) Groundwater-fed wetness that results from geomorphological position, calculated by subtracting the hydraulic head [Ht0 ]
in (c) from the Pleistocene surface [zP] in (a). For further details on each map, see Sect. 3.2.1.
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Figure 8. (a, b) Reconstructed peat initiation ages for Fochteloërveen, with (a) based on thickness of organic deposits [O] (see Fig. 7b) and
(b) based on groundwater-fed wetness that results from geomorphological position [zPH ] (see Fig. 7d). Contours represent isochrones (lines
of equal age) and have an interval of 1000 years. Note that peat initiation age legends are equal, but legends of the standard deviation of the
prediction differ.
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Figure 9. (a) Difference between the mean predictions of peat initiation age in Fig. 8a and b (i.e. prediction of Fig. 8a minus prediction of
Fig. 8b). The locations of the validation points (of which results are presented in b and c) are also indicated on this map (for further details
on the archaeological sites, see Table 2). In (b) and (c) validation points are compared with the predicted peat initiation age as predicted by
both covariates (i.e. each validation point is compared with the prediction of Fig. 8a and with the prediction of Fig. 8b). The central circles
show the mean, bars indicate 1σ confidence interval, and grey-coloured blocks indicate the 2σ confidence interval. Note that terminus-ante-
quem validation points should be older than the prediction, whereas terminus-post-quem validation points should be younger (see Sect. 4.2).
(b) Validation points consisting of radiocarbon dates of peat samples that indicate a terminus ante quem (n= 3) and terminus post quem
(n= 2) for peat initiation. (c) Validation points consisting of archaeological sites that indicate a terminus post quem for peat initiation (n= 4;
for one archaeological site the relationship with peat growth is unclear; therefore, this site was not included here; see Table 2 for details).
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Figure 10. (a) Histogram of predicted peat initiation ages for
Fochteloërveen, showing results for the prediction based on thick-
ness of organic deposits [O] (see Fig. 8a) and for the prediction
based on groundwater-fed wetness that results from geomorpholog-
ical position [zPH ] (see Fig. 8b). Start of the Holocene follows
Walker et al. (2009). Temporal scope of the predictions runs to
900 cal BP. Note that certainty of both predictions is different (see
standard deviation maps in Fig. 8a and b). (b) Density plot of pre-
dicted peat initiation ages for Fochteloërveen (i.e. normalised to a
graph surface area of one). (c) Plot showing cumulative fraction of
peat-covered area within the Fochteloërveen area as indicated by
the two predictions.

Sea level was rising during the entire period of peat develop-
ment at Fochteloërveen (Meijles et al., 2018). As a result, the
isohypse pattern gradually rose through time.

Transects of basal peat dates are useful to distinguish de-
velopment loci from lateral expansion areas (e.g. Mäkilä,
1997; Mäkilä and Moisanen, 2007; Chapman et al., 2013). At
Fochteloërveen, landscape-scale peat initiation (Fig. 1) oc-
curred simultaneously at multiple sites (Fig. 8). Some of the
loci of peat initiation are located at positions that are lower
compared to surrounding topography (areas of accumulated
flow or sinks). Our predictions indicate that even cover sand
ridges eventually became covered with peat (Fig. 8), suggest-
ing that lateral expansion was not slope-limited in this area or
below its threshold. The pattern (Fig. 8) and pace (Fig. 10b
and c) of lateral expansion show that after initial slow lateral

growth of peat initiation loci, lateral growth accelerated. The
strongest expansion occurred between 5500–3500 cal BP.

Some of these findings are contrasting with previous
palaeogeographic reconstructions by Fokkens (1998), Water-
bolk (2007) and Vos et al. (2020). Fokkens (1998) placed
peat initiation in the Fochteloërveen area between the be-
ginning of the early Iron Age and the end of the Roman
period (800 BCE–400 CE; 2750–1550 cal BP). This is much
later than our dating results (Table 1) and predictions (Fig. 8)
demonstrate. Waterbolk (2007), on the other hand, assumes
that large areas were already covered by peat during the Early
and Middle Neolithic (4900–2850 BCE; 6850–4800 cal BP).
This is roughly in agreement with our results; according to
our predictions, half of the Fochteloërveen area was cov-
ered with peat by ∼ 4000 cal BP (Fig. 10c). However, Wa-
terbolk (2007) concludes that this situation remained sta-
ble for ∼ 3000 years followed by rapid peatland expansion,
which left the area largely abandoned by the Roman period
(19 BCE–450 CE; 1969–1500 cal BP). This is in strong con-
trast with our findings, which do not indicate a period of sta-
bility that precedes further lateral expansion. In the national-
scale reconstructions by Vos et al. (2020), it was assumed that
peatlands expanded gradually until they reached their former
maximum extent, but the authors indicate that this is mainly
due to a lack of data. Our results demonstrate that peat loci
at Fochteloërveen probably expanded in a non-gradual fash-
ion, with a phase of accelerated lateral expansion between
5500–3500 cal BP (Fig. 10b and c).

Ruppel et al. (2013) analysed an extensive dataset of basal
radiocarbon dates reflecting both peat initiation and lateral
expansion in northern Europe and in North America. Their
data on lateral growth demonstrate that the expansion of ex-
isting peatlands accelerated between approximately 5000–
3000 ka, both in northern Europe and in North America
(Ruppel et al., 2013). Similarly, Korhola et al. (2010) found
that high-latitude peatlands in Europe expanded most dras-
tically after 5 ka. Our data fit within this large-scale trend
as they indicate a phase of accelerated lateral expansion at
Fochteloërveen between 5500–3500 cal BP (Fig. 10b and c).
Ruppel et al. (2013) suggest that this trend may be related to
neoglacial cooling (Wanner et al., 2008).

In a core from Fochteloërveen studied by Klaver (1981)
and Van Geel et al. (1998), a radiocarbon date of a plant
macrofossil sample collected near the visual mineral-to-peat
transition indicated an age of 2920–2736 cal BP (95.4 % con-
fidence interval, uncalibrated age of 2690± 50 BP; core lo-
cation indicated in Fig. 9a). Based on this and a comparison
with several other regions, Van Geel et al. (1998) infer an in-
fluence of the 2.8 ka event where a change in climate results
in peat initiation on previously unsaturated soils. However,
our predictions of peat initiation age (Fig. 8) indicate that the
site studied by Van Geel et al. (1998) probably became cov-
ered with peat through lateral expansion and does not reflect
landscape-scale peat initiation (Fig. 1). An effect of the 2.8 ka
event does not become clear from our results (Fig. 10).
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5.2 Evaluation of approach

Palaeogeographical studies of former extensive peat land-
scapes are challenging as vast areas have lost their former
peat cover, affecting the natural archive formed by the peat
and thus limiting the options for collecting field data (Fig. 1b
and c). Consequently, alternative approaches are needed to
reconstruct peatland development on the northwest Euro-
pean mainland and other areas where peat is poorly pre-
served. Our field strategy consisted of spatially distributed
transects that were placed perpendicular to elevation gradi-
ents in the mineral subsurface underlying the organic de-
posits. This resulted in an extensive set of basal radiocarbon
dates that stretches both the lateral and vertical dimensions of
the Fochteloërveen peat remnant and as such formed the ba-
sis for subsequent modelling steps. This approach was found
useful when options for transects covering a whole peatland
(as in Fig. 1b) are hampered by limited a priori knowledge
on the position of peat remnants within the former peat land-
scape (Fig. 1c). The availability of coring data within na-
tional databases (see Sect. 3.2) was highly useful for con-
structing a palaeoDEM of the Pleistocene mineral surface
underneath the organic deposits. For areas where compara-
ble data are not available, the sampling scheme may need to
be expanded as it must also provide sufficient data for in-
terpolation to a palaeoDEM (for examples where basin mor-
phometry is studied, see Anderson et al., 2003; Bauer et al.,
2003; Chapman et al., 2013).

To reconstruct peat initiation age for non-sampled sites
within the peat remnant, we applied a digital soil mapping
approach. For data-intensive approaches such as geostatis-
tics (Oliver and Webster, 2014) or random forests (Breiman,
2001), the amount of data (specifically radiocarbon dates)
is generally too low. Therefore, a digital soil mapping tech-
nique was needed that is less data intensive. In our study, we
found linear regression to be the best option as it involves
only few assumptions, which were valid for our dataset.

Advantages of this approach are that it is spatially explicit
(i.e. results in a map of predicted peat initiation ages), and
it offers a quantitative alternative compared to manual de-
duction of isochrones from transects of basal dates (e.g. as
in Bauer et al., 2003; Foster et al., 1988; Korhola, 1994,
1996; Mäkilä, 1997; Mäkilä and Moisanen, 2007). In addi-
tion, our approach allows for a quantitative evaluation of the
prediction using the standard deviation and comparison of
predicted ages with validation points.

To the best of our knowledge, digital soil mapping ap-
proaches have so far hardly been explored for reconstruct-
ing peat initiation and lateral expansion. An important excep-
tion is the work of Chapman et al. (2013), who made use of
second-order polynomial regression to reconstruct peat ini-
tiation ages based on empirical relationships between basal
peat age and DEM derivatives for two remnants of a flood-
plain raised mire (Thorne and Hatfield Moors, UK). They
tested relationships between peat initiation age and (1) ele-

vation, (2) proximity to river courses, and (3) flow accumu-
lation. Similar to our results, they found a weak relationship
between peat initiation age and elevation (R2 values of 0.15
and 0.20 for linear and second-order polynomial regression
respectively (p value not reported) compared to an adjusted
R2 of 0.14 and p value of 0.09 for the linear regression in our
study). Proximity to rivers also yielded a weak relationship,
whereas flow accumulation produced an R2 of 0.39 for linear
regression and of 0.91 for second-order polynomial regres-
sion. Hence they apply the second-order polynomial relation-
ship with flow accumulation as covariate to reconstruct peat
initiation ages for their study area. Unfortunately, they do
not provide an indication of certainty of their prediction but
do compare the prediction result with five validation points.
Based on the relationship with flow accumulation, they con-
clude that peat growth initiated in the area at locations where
surface runoff accumulates and resulted in a terrestrialisation
process.

In our study, we reasoned with two points in mind and used
a combination of process-informed choices within a statisti-
cal approach. Firstly, we hypothesised that peat initiation at
Fochteloërveen would be subjected to a two-fold control con-
sisting of elevation and position within the large-scale geo-
morphology of high topographic plains and incised valleys.
Secondly, we valued a covariate that is independent of peat
presence or thickness, as this may have the potential to esti-
mate peat initiation age for areas that are no longer covered
by peat. Based on the assumption that the current isohypse
pattern within the Fochteloërveen peat remnant reflects the
isohypse pattern of the past (but in the past positioned at
lower elevation due to lower sea level), we constructed the
variable zPH based on elevation of the mineral surface and
present-day hydraulic head. This covariate then allows us to
explain peat initiation with groundwater-fed wetness that re-
sults from geomorphological position.

As stated above, in our model based on zPH , we assume
that the current isohypse pattern reflects the natural situa-
tion as it was once present in the area (but with the pattern
as a whole currently positioned at higher elevation). Within
the boundaries of the Fochteloërveen peat remnant, this as-
sumption is largely true, as nature conservation measures re-
quire high groundwater tables. In addition, hydraulic con-
ductivity within the area is not subjected to change (i.e. for
the deposits underneath the peat). However, as groundwater
levels in the surrounding area are much lower due to arti-
ficial drainage, an edge effect is probably present near the
border of the peat remnant. This is reflected in the predic-
tion map of peat initiation ages based on zPH in Fig. 8b,
which shows much younger ages near the edges (especially
in the north) compared to the prediction map based on O
in Fig. 8a. This is also suggested by the modelling results if
we would not hold on to our temporal scope with 900 cal BP
as limit. In that case, the zPH model predicts that peat near
the edges of Fochteloërveen is of very recent age and lo-
cally even later than 0 cal BP (i.e. these are otherwise set to
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“No Data”). However, a historical map of 1664 CE indicates
that peat was probably present at these locations (Pynacker,
1664). We encountered a comparable problem during an ex-
ploratory attempt to reconstruct peat initiation ages outside
the peat remnant, which results in peat initiation ages that
are likely too young. This shows that to obtain a reliable pre-
diction, the method requires the isohypse pattern to reflect
the natural pattern as closely as possible, and cannot predict
peat initiation ages for areas that are subject to strong artifi-
cial drainage.

Our model based on total thickness of organic deposits
[O] is based on the concept that the thicker the organic de-
posit, the longer ago peat initiated at that location. This is
of course dependent on peat growth rates, decay rates and
degree of compaction. However, despite these complicat-
ing factors, our regression model of peat initiation age ver-
sus total thickness of organic deposits is highly significant
(p value< 1× 10−3) and has a decent fit (adjusted R2

=

0.57). We made use of newly collected and existing coring
data to obtain thickness values, which reflect the thickness of
the peat layer that is still present. If the natural peat thick-
ness (from before the onset of reclamations and peat cutting)
would be known, perhaps the fit would increase further.

Where remnant peat survived, covariate O is useful and
may provide an estimation of the peat initiation age based
on the thickness of the remaining peat layer. Covariate zPH

is potentially useful for reconstructing peat initiation age be-
yond peat remnants, given that the data on which this covari-
ate is constructed reflect the natural situation. A combination
of both may offer new options to reconstruct peatland de-
velopment within and beyond peat remnants. For the zPH

model, this requires data on the natural topography of the
mineral surface that used to be covered with peat (where peat
is lost, the mineral surface may have been subject to level-
ling activities) and on the natural isohypse pattern. If this
pattern could be derived for the region surrounding a peat
remnant using hydrological modelling, the zPH model could
provide insights into peatland initiation and lateral develop-
ment for areas where this information cannot be collected
from the field. It is important to keep in mind that compli-
cating factors may have played a role during peatland devel-
opment, for instance, where peat growth in valleys changes
regional base level or where the formation of peat domes af-
fects drainage divides. As peat may be largely absent out-
side (protected) peat remnants, options to obtain radiocarbon
dates to verify model results are probably very limited. An-
other option would be to use TAQ and TPQ dates obtained
from archaeological data. In the example of Fochteloërveen,
the surrounding area contains a fairly large number of archae-
ological finds which could offer a regional-scale validation
dataset.

6 Conclusion

Reconstructions of peat initiation and lateral expansion in ar-
eas where the former peat cover is largely lost, such as the
northwest European mainland, are severely hampered by the
limited options for collecting field data. In this study we aim
(1) to find explanatory variables within a digital soil map-
ping approach that allow us to reconstruct the pattern of peat
initiation and lateral expansion within (and potentially be-
yond) peat remnants, and (2) to reconstruct peat initiation
ages and lateral expansion for one of the largest bog rem-
nants of the northwest European mainland, Fochteloërveen in
the northern Netherlands. Basal radiocarbon dates that were
obtained from the peat remnant formed the basis for subse-
quent analyses. Significant relationships were found between
peat initiation age and total thickness of organic deposits and
between peat initiation age and a constructed covariate on
groundwater-fed wetness based on the present-day hydraulic
head relative to the mineral palaeosurface underneath the
peat cover. In contrast, a weak relationship was found be-
tween peat initiation age and elevation of the mineral palaeo-
surface. These findings indicate a strong influence of posi-
tion within large-scale geomorphology (high plains and in-
cised valleys) on peat initiation at Fochteloërveen. The digi-
tal soil mapping approach based on thickness of organic de-
posits is only useful where remnant peat survived, whereas
the constructed covariate on groundwater-fed wetness may
ultimately be applied beyond the limits of peat remnants.
Thereby, this novel approach has the potential to shed light
on the pattern, timing and pace of peatland initiation and lat-
eral expansion in areas where this information can no longer
be obtained from the field. For Fochteloërveen, our results
indicate simultaneous peat initiation at several loci during
the Early Holocene and continuous lateral expansion un-
til 900 cal BP. Lateral expansion accelerated between 5500–
3500 cal BP.
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