

Supplement of

Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda

Joseph Okello et al.

Correspondence to: Joseph Okello (joseph.okello@ugent.be)

The copyright of individual parts of the supplement might differ from the article licence.

1 Supplementary information

2 Table S1. Pearson correlations of CO₂ respiration rate with soil parameters along the Rwenzori elevational gradient

3 under *in situ* and laboratory incubation.

Soil parameter	Correlation R value	<i>P</i> -value
pH	0.13	0.19
Water-filled pore space	-0.04	0.73
Temperature	0.24	0.02*
Organic carbon	-0.19	0.06
Total nitrogen	-0.29	< 0.01*
C:N	0.17	0.09
Total CO ₂ respiration rate in the mid	rainy season	
рН	0.56	<0.01*
Water-filled pore space	0.25	0.01*
Temperature	0.55	< 0.01*
Organic carbon	-0.61	< 0.01*
Total nitrogen	-0.59	< 0.01*
C:N	-0.40	<0.01*
Specific heterotrophic CO ₂ respiration	on rate from laboratory incubation	
pH	0.79	< 0.01*
Temperature	0.73	< 0.01*
Organic carbon	-0.73	< 0.01*
Total nitrogen	-0.75	< 0.01*
C:N	-0.69	< 0.01*

4

5 A significant *P*-value is marked with an asterisk symbol "*"

- 6 Table S2. The scores of the principle component analysis with correlations for principle component 1 (PC1) and
- 7 principle component 2 (PC2). Strong correlation scores above 0.5 by magnitude are shown in bold.

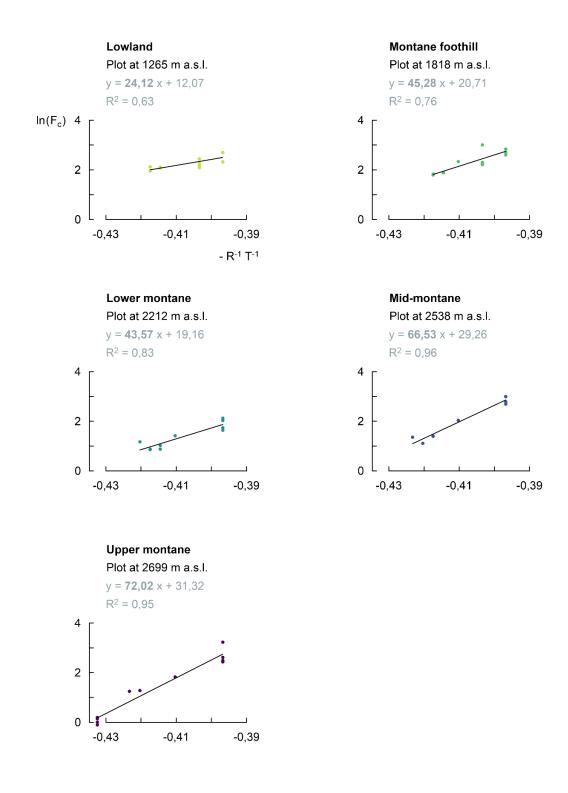
Parameter	PC1 correlation score	PC2 correlation score
Total PLFA (bacteria plus fungi)	-0.85	-0.67
Fungi	-0.88	-0.63
Gram-positive bacteria	-0.82	-0.70
Gram-negative bacteria	-0.66	-0.89
Bacteria : Fungi	0.39	-0.13
Gram-positive : Gram-negative	-0.22	0.73
Soil pH _{KCl}	0.92	-0.58
Soil organic carbon	-1.0	0.26
Soil temperature	1.0	-0.34
Soil total nitrogen	-1.00	0.25
Soil C:N	-0.90	0.34
Bulk density	0.98	-0.37

8

9

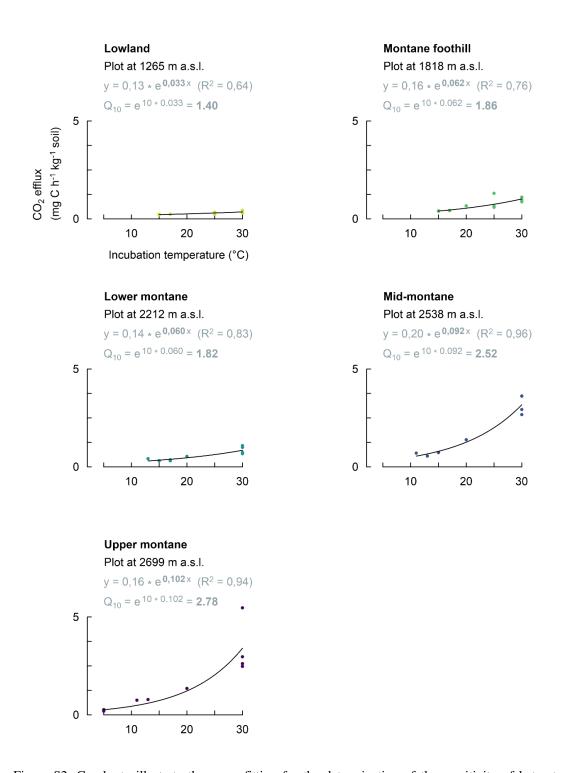
- 10 Table S3. Comparison of the *in situ* seasonal soil moisture content at the start and in the mid rainy season, the *in*
- situ soil temperature at the start and in the mid rainy season, the in situ total CO₂ respiration rate at the start and in
- 12 the mid rainy season, the specific heterotrophic CO₂ respiration rate for control and warmed soil at corresponding
- 13 field temperature, the specific heterotrophic CO₂ respiration rate for control and warmed soil at uniform reference
- 14 temperature of 20 °C and 12 °C, the temperature sensitivity Q_{10} , and the activation energy at each elevation cluster
- 15 in the Rwenzori elevational gradient.

Elevation	Parameter		
(m a.s.l.)	In situ WFPS at the start of rainy season (%)	In situ WFPS in the mid rainy season	
		(%)	
1250-1300	33.1 ± 1.2 ^b	57.2 ± 5.8^{a}	< 0.01
1750-1850	$22.2 \pm 2.5^{\circ}$	44.8 ± 3.8^{b}	< 0.01
2100-2200	41.7 ± 2.9^{a}	45.4 ± 4.8^{b}	< 0.01
2700-3000	42.7 ± 8.7^a	$44.5\pm9.0^{\textit{b}}$	0.48
	In situ temperature at the start of rainy	In situ temperature in the mid rainy	
	season (°C)	season (°C)	
1250-1300	19.56 ± 0.32^{a}	$20.44\pm0.41^{\mathbf{a}}$	< 0.01
1750-1850	$16.16\pm0.43^{\text{b}}$	16.76± 0.23 ^b	< 0.01
2100-2200	$15.02\pm0.12^{\rm c}$	$16.04\pm0.68^{\texttt{c}}$	< 0.01
2700-3000	$11.86 \pm 0.46^{\textbf{d}}$	$12.32\pm0.39^{\textbf{d}}$	< 0.01
	In situ total CO ₂ respiration rate at the start	In situ total CO2 respiration rate in the	
	of rainy season (mg C h ⁻¹ m ⁻²)	mid rainy season (mg C h ⁻¹ m ⁻²)	
1250-1300	80.1 ± 15.8^{a}	$113.2\pm35.7^{\mathbf{a}}$	< 0.01
1750-1850	$79.2 \pm 17.3^{\mathbf{a}}$	$112.8\pm20.3^{\mathbf{a}}$	< 0.01
2100-2200	95.1 ± 34.6^a	89.0 ± 22.3^{b}	0.46
2700-3000	59.3 ± 16.7^{b}	67.7 ± 9.7^{c}	0.05
	Specific heterotrophic CO ₂ respiration rate	¹³ C isotopic fractionation during	
	at respective field mean annual temperature	heterotrophic CO_2 respiration (epsilon)	
	$(\mu g C h^{-1} g^{-1} SOC)$		
1250-1300	17.2 ± 5.3	-3.2 ± 0.6	NA
1750-1850	10.8 ± 4.8	-2.8 ± 0.9	NA
2100-2200	5.3 ± 2.1	-1.7 ± 0.7	NA
2500-2600	3.7 ± 1.9	-1.0 ± 1.3	NA
2700-3000	2.4 ± 0.9	0.3 ± 0.8	NA


Specific heterotrophic CO₂ respiration rate following *in situ* soil warming at corresponding field temperature (μ g C h⁻¹ g⁻¹ SOC)

	Control	Warmed					
1250-1300	6.15± 0.28	NA	NA				
		NA 5.48 ± 1.69	0.10				
1750-1850	6.56± 0.61						
2100-2200	3.22 ± 0.25	3.31 ± 1.17	0.70				
2500-2600	3.54 ± 0.53	3.92 ± 1.40	0.06				
2700-3000	3.82 ± 0.45	2.74 ± 0.85	0.13				
Activation energy (kJ mol ⁻¹)							
	Control	Warmed					
1250-1300	28.5 ± 5.6	NA	NA				
1750-1850	49.2±17.3	30.3 ± 11.0	0.23				
2100-2200	60.2 ± 23.1	53.6 ± 9.7	1.00				
2500-2600	70.3 ± 6.9	59.8 ± 4.2	0.06				
2700-3000	69.9 ± 3.0	73.9 ± 20.7	0.80				
The sensitivit	ty of CO_2 respiration to temperature (Q_{10})						
	Control	Warmed					
1250-1300	1.50 ± 0.13	NA	NA				
1750-1850	1.92 ± 0.57	1.70 ± 0.24	0.86				
2100-2200	2.67 ± 1.28	2.14 ± 0.44	1.00				
2500-2600	2.86 ± 0.40	2.52 ± 0.47	0.20				
2700-3000	2.68 ± 0.25	2.46 ± 0.67	0.53				
Soil organic carbon (%)							
1750-1850	7.42 ± 1.03	5.89 ± 2.10	0.343				
2100-2200	13.63 ± 0.52	15.62 ± 4.07	1.00				
2500-2600	28.01 ± 3.51	23.11 ± 6.01	0.229				
2700-3000	31.72 ± 2.10	28.65 ± 9.11	0.48				
Soil δ^{13} C (‰)						
1750-1850	-26.37 ± 1.10	-24.79 ± 0.89	0.057				
2100-2200	-26.30 ± 0.69	-26.70 ± 0.78	0.486				
2500-2600	-29.70 ± 0.42	-28.07 ± 0.72	0.057				
2700-3000	-28.88 ± 0.39	-28.58± 1.27	0.686				
Soil δ^{15} N (‰)						
1750-1850	6.74 ± 0.41	7.65 ± 0.76	0.200				
2100-2200	5.76 ± 0.42	5.47 ± 1.26	0.886				
2500-2600	1.46 ± 0.61	2.61 ± 1.44	0.229				
2700-3000	1.15 ± 0.47	2.08 ± 0.90	0.200				

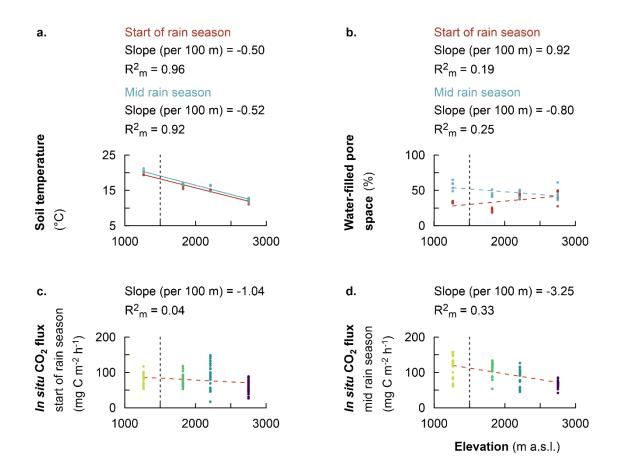
16 *NA indicate that no comparison between control and warmed soil was made because no translocation took place


17 at elevation cluster 1250-1300 m a.s.l.. Different lowercase letters in superscript (bold) next to values of each

- 18 elevation cluster (same column) indicate a significant difference among the sites at P < 0.05, and P < 0.05 (same
- 19 row) indicates a significant different between seasons or between control and warmed treatments.

20

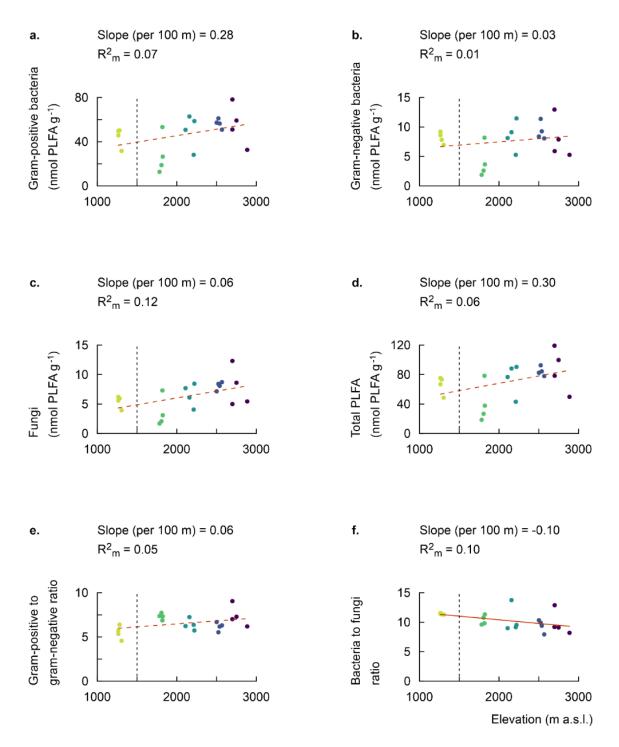
Figure S1. Graphs to illustrate the curve fitting for the determination of the activation energy, i.e., as the slope of the linear regression between log-transformed specific heterotrophic CO₂ respiration rate (ln Fc) and the negative inverse of the incubation temperature (T), multiplied with the gas constant (R). Shown here is one representative example (one replicate per plot) per elevation cluster.



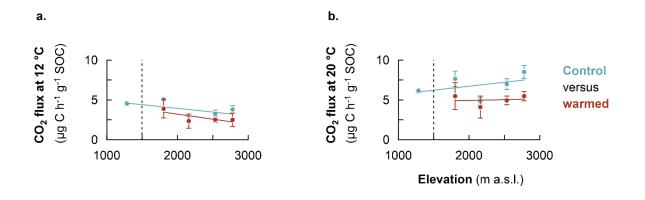
25

Figure S2. Graphs to illustrate the curve fitting for the determination of the sensitivity of heterotrophic CO₂
respiration rates to temperature (Q₁₀) through exponential curve fitting of specific heterotrophic CO₂ respiration

rates at five different incubation temperatures in order to derive parameter k, from which Q_{10} can be determined.


29 Shown here is one representative example (i.e. one replicate plot) per elevation cluster.

30


31 Figure S3. Fixed effect estimates of elevation (per 100 m elevation increase) on response variables: soil 32 temperatures at 5 cm depth at the start of rainy season (red solid line) and in the mid rainy season (blue solid line) 33 (a), water-filled pore space at 5 cm depth at the start of the rainy season (red dashed line) and in the mid rainy 34 season (blue dashed line) (**b**), in situ total CO_2 respiration at the start of the rainy season (**c**) and in situ total CO_2 35 respiration in the mid rainy season (d). The slope of the linear mixed effect model estimates per 100 m of elevation 36 increase is indicated (solid line for a significant effect and dashed line for no significant effect), as well as the 37 marginal $R^2(R^2_m)$, representing the fraction in response variable explained by elevation. Plots from montane forest 38 clusters (from 1750-3000 m a.s.l.) were compared with a nearby premontane forest (separated by vertical dashed 39 line) at an elevation of 1250-1300 m a.s.l..

40

42 Figure S4. Fixed effect estimates of elevation (per 100 m elevation increase) on response variables: gram-positive bacteria (nmol PLFA g⁻¹) (a), gram-negative bacteria (nmol PLFA g⁻¹) (b), fungi (nmol PLFA g⁻¹) (c), total 43 phospholipid fatty acids (PLFA) for bacteria and fungi (d) (nmol PLFA g⁻¹), ratio of gram-positive to gram-44 45 negative bacteria (e) and the ratio of bacteria to fungi (f). The slopes of the linear mixed effect model estimates 46 per 100 m of elevation increase are indicated (red solid line for a significant effect and red dashed line for no 47 significant effect), as well as the marginal R^2 (R^2_m), representing the fraction in response variable explained by 48 elevation. Plots from montane forest clusters (from 1750-3000 m a.s.l.) were compared with a nearby premontane 49 forest (separated by vertical dashed line) at an elevation of 1250-1300 m a.s.l..

50

Figure S5. Specific heterotrophic CO₂ respiration rate at uniform reference temperature of 20 °C (mean annual *in situ* temperature in the lowest elevation cluster at 1250-1300 m a.s.l.) (**a**) and 12 °C (mean annual *in situ*

temperature in the highest elevation cluster at 2700-3000 m a.s.l.) (b).

54