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Abstract. Satellite observations have been widely used to ex-
amine afforestation effects on local surface temperature at
large spatial scales. Different approaches, which potentially
lead to differing definitions of the afforestation effect, have
been used in previous studies. Despite their large differences,
the results of these studies have been used in climate model
validation and cited in climate synthesis reports. Such dif-
ferences have been simply treated as observational uncer-
tainty, which can be an order of magnitude bigger than the
signal itself. Although the fraction of the satellite pixel ac-
tually afforested has been noted to influence the magnitude
of the afforestation effect, it remains unknown whether it is
a key factor which can reconcile the different approaches.
Here, we provide a synthesis of three influential approaches
(one estimates the actual effect and the other two the poten-
tial effect) and use large-scale afforestation over China as a
test case to examine whether the different approaches can be
reconciled. We found that the actual effect (1Ta) often re-
lates to incomplete afforestation over a medium-resolution
satellite pixel (1 km). 1Ta increased with the afforestation
fraction, which explained 89 % of its variation. One potential
effect approach quantifies the impact of quasi-full afforesta-
tion (1Tp1 ), whereas the other quantifies the potential impact
of full afforestation (1Tp2 ) by assuming a shift from 100 %
openland to 100 % forest coverage. An initial paired-sample
t test shows that 1Ta <1Tp1 <1Tp2 for the cooling effect
of afforestation ranging from 0.07 to 1.16 K. But when all
three methods are normalized for full afforestation, the ob-

served range in surface cooling becomes much smaller (0.79
to 1.16 K). Potential cooling effects have a value in academic
studies where they can be used to establish an envelope of ef-
fects, but their realization at large scales is challenging given
its nature of scale dependency. The reconciliation of the dif-
ferent approaches demonstrated in this study highlights the
fact that the afforestation fraction should be accounted for in
order to bridge different estimates of surface cooling effects
in policy evaluation.

1 Introduction

Afforestation has been and is still proposed as an effective
strategy to mitigate climate change because forest ecosys-
tems are able to sequester large amounts of carbon in their
biomass and soil, slowing the increase of atmospheric CO2
concentration (Fang et al., 2014; Pan et al., 2011). Addition-
ally, forests regulate the exchange of energy and water be-
tween the land surface and the lower atmosphere through
various biophysical effects, including radiative processes
such as surface reflectance and non-radiative processes such
as evapotranspiration and sensible heat flux (Bonan, 2008;
Juang et al., 2007). As the net result of the surface energy
balance, land surface temperature (LST) is widely used to
measure the local climatic impact of afforestation (Li et al.,
2015; Winckler et al., 2019a).
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Climate model simulations and site-level observations
have been utilized to explore the impact of forest dynamics
on land surface temperature (Lee et al., 2011; Pitman et al.,
2009; Swann et al., 2012). However, afforestation impacts on
local LST derived from models tend to be highly uncertain
as they are limited by the coarse spatial resolution of models
and uncertainties in model parameters and processes (Oleson
et al., 2013; Pitman et al., 2011), while insights from site-
level assessments cannot be extrapolated to large spatial do-
mains (Lee et al., 2011). Alternatively, remote-sensing-based
LST products enable the assessment of local LST changes
due to forest dynamics on large spatial scales (Li et al., 2015;
Shen et al., 2019).

A number of studies investigated the surface temperature
impact of afforestation based on satellite observations, and
they have been cited in high-level climate science synthe-
sis reports (e.g., IPCC Special Report on Climate and Land,
authored by Jia et al., 2019), even though there are large dif-
ferences in afforestation impacts on LST between different
methods. For example, Alkama and Cescatti (2016) found a
cooling effect of about 0.02 K from afforestation in temperate
regions, while Li et al. (2015) reported a 0.27±0.03 K poten-
tial cooling from afforestation in the northern temperate zone
(20–50◦ N) based on the “space-for-time” method. In con-
trast, Duveiller et al. (2018) found a much stronger potential
cooling effect of 2.75 K for afforestation in the northern tem-
perate region. While such differences were acknowledged in
a recent modeling study (Winckler et al., 2019b), they were
simply treated as observational uncertainty for climate model
evaluation, with the uncertainty range being as big as, or even
an order of magnitude larger than, the afforestation effect. It
remains unclear whether the differences arising from these
different methods can be reconciled.

Until now, studies using satellite data to investigate af-
forestation impact on surface temperature have mainly fo-
cused on three methods. The first method, termed the “space-
and-time” approach (Fig. 1, red box), aims to examine the ac-
tual, realized effect of afforestation (“actual effect”) by iso-
lating the forest-cover-change effect from the gross tempera-
ture change over time in places where forest-cover change
actually occurred (Alkama and Cescatti, 2016; Li et al.,
2016a). The second method, termed the space-for-time ap-
proach (Fig. 1, orange box), compares the surface tem-
perature of forest with adjacent “openland” (i.e., cropland
or grassland) under similar environmental conditions (e.g.,
background climate and topography) and estimates the po-
tential effect of afforestation if afforestation were to occur
(Ge et al., 2019; Li et al., 2015; Peng et al., 2014). Note that
such effects are often quantified using medium-resolution
land-cover datasets (typical resolution= 1 km), which do not
necessarily represent 100 % ground coverage, and we there-
fore term such a potential effect a “mixed potential effect”.

The third method, recently used by Duveiller et al. (2018),
uses the “singular value decomposition” (SVD) technique
(Fig. 1, green box), which is claimed to extract the hypothet-

ical LST for different land-cover types by assuming a 100 %
coverage of the target cover type. The afforestation effect on
LST is then quantified as the difference between the LST of a
pixel with a hypothetical 100 % forest coverage and the LST
of an adjacent pixel with 100 % openland coverage. As with
the second method, such an approach quantifies the potential
effect of afforestation, but in this case, it quantifies the “full
potential effect” by assuming transitions between land-cover
types with 100 % complete ground coverage.

Previous studies have revealed the fraction of forest
change as an important factor determining the magnitude
of the afforestation effect. Alkama and Cescatti (2016) indi-
cated that the actual temperature effect is fraction-dependent,
and Li et al. (2016a) pointed out that use of a higher threshold
to define forest change resulted in a stronger potential effect.
Nonetheless, whether the fraction of forest change can ex-
plain the differences in the afforestation effect produced by
different methods, e.g., whether the potential effect can be
“actualized”, has not been demonstrated. Testing the role of
afforestation fraction in reconciling the afforestation effects
produced by different methods can help clarify potential con-
fusion and contribute to appropriate policy evaluation.

This study develops detailed conceptual and methodolog-
ical descriptions for each of the three approaches and uses
large-scale afforestation over China as a case study to com-
pare the three approaches. We tested the following hypothe-
ses. (1) The actual effect on LST increases with the area that
has actually been afforested, defined as afforestation inten-
sity (or Faff). (2) The actual effect is smaller than the poten-
tial effects. (3) When extending Faff to a hypothetical value
of 100 %, the actual effect approaches the potential effect.
If proven, this third hypothesis implies that the LST impacts
from different approaches could be reconciled given the same
boundary condition of full afforestation. In that case, we then
have a fourth hypothesis (4) stating that changes in under-
lying biophysical processes including radiation and sensible
and latent heat fluxes that drive LST changes should also be
reconciled among different methods. To keep the focus on
reconciling methodological differences, only changes in the
daytime surface temperature were considered in this study.
Nevertheless, similar conclusions regarding the different ap-
proaches are expected for nighttime surface temperature.

2 Method

2.1 Three approaches to quantifying the impacts of
afforestation on LST

2.1.1 Actual effect of afforestation (1Ta)

The space-and-time approach assumes that the gross change
in land surface temperature (1T ) over a given time period
during which afforestation occurred contains both signals
of temperature change due to afforestation (1Ta) and back-
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Figure 1. Illustration of the three approaches to quantifying the local surface temperature effect of afforestation. Panels (a) and (b) represent
two nearby pixels, both classified as openland at time t1 by medium-resolution satellites (1 km spatial resolution), with one of them classified
as forest at time t2 (i.e., having experienced afforestation) and the other unchanged. Note that neither of these pixels will have 100 % complete
coverage of either openland (i.e., grassland or cropland) or forest, but they will have been classified as either openland or forest by medium-
resolution satellite products. Panels (c) and (d) represent pixels with 100 % forest or 100 % openland coverage whose temperature can be
derived from pixels of mixed land-cover types by using the singular value decomposition (SVD) technique (Duveiller et al., 2018). The
dotted red box describes the quantification of the actual effect of afforestation (1Ta) occurring from t1 to t2 by the space-and-time method.
The orange box represents the mixed potential effect determined by hypothesizing potential shifts between openland and forest based on
the space-for-time approach (1Tp1 ). The green box represents the full potential effect of afforestation (1Tp2 ) derived by hypothesizing a
transition from 100 % complete openland coverage to 100 % complete forest coverage.

ground temperature variation (1Tres) due to changes in large-
scale circulation patterns (Alkama and Cescatti, 2016; Li et
al., 2016a):

1T = 1Ta+1Tres, (1)

where 1T is the gross temperature change during the period
from t1 to t2 for the pixel under study. 1T can be calculated
as the difference between LSTt2 and LSTt1 , with LSTt2 being
the surface temperature after afforestation and LSTt1 being
that before afforestation. It thus follows that

1Ta =1T − 1Tres. (2)

1Tres can be approximated by averaging changes in surface
temperature for those pixels adjacent to the target afforesta-
tion pixel for which the forest cover remained constant be-
tween t1 and t2 (i.e., Faff = 0 %; Sect. 2.2.3). Here, pixels
with Faff > 0 % were defined as afforestation target pixels.
A searching window of 11 km× 11 km was established, cen-
tered on the afforestation pixel. Within this window, pixels
with Faff = 0 % were defined as control pixels and were used

to derive 1Tres. Afforestation pixels and adjacent control
pixels were both determined based on the net forest change
between t1 and t2 using Global Forest Change (GFC) data
(Fig. 2; Sect. 2.2.3).

2.1.2 Mixed potential effect (1Tp1 )

The space-for-time method relies on the “space-substitute-
for-time” assumption to obtain the potential impact of af-
forestation on local temperature (Zhao and Jackson, 2014).
By assuming that forest and openland share the same envi-
ronmental conditions (background climate, topography, etc.)
within a small spatial domain, the potential temperature ef-
fect of afforestation is examined using the search window
method with a window size of up to 40 km× 40 km (Ge et
al., 2019; Li et al., 2015; Peng et al., 2014). Here, to be con-
sistent with our actual effect approach, a more conservative
window size of 11 km× 11 km was used, smaller than that
used in the majority of previous studies (Ge et al., 2019; Li et
al., 2015; Peng et al., 2014). In most previous studies, exist-
ing medium-resolution (1 km) land-cover maps were used di-
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Figure 2. Schematic overview of the processing steps. The different output results correspond to the actual effect (1Ta), mixed potential
effect (1Tp1 ), and full potential effect of afforestation (1Tp2 ).

rectly. Such land-cover products rely on certain thresholds to
classify satellite pixels into discrete land-cover types. Given
the widespread spatial heterogeneity in land-cover distribu-
tion, it is to be expected that only in rare cases will these
medium-resolution pixels have 100 % coverage of a given
land-cover type. Therefore, when determined in this way, the
potential effect of afforestation has been named the mixed
potential effect, in contrast to the full potential effect, on
which we will focus in the next section, which assumes a
potential transition between land-cover types of 100 % cov-
erage.

To ensure consistency with the land-cover data used in the
full potential effect approach (i.e., the singular value decom-
position method), the GlobeLand30 land-cover map was ag-
gregated from its original resolution (30 m) to 1 km resolu-
tion. The land-cover type assigned to a given 1 km pixel dur-
ing aggregation was based on the land-cover type with an
area fraction > 50 % within that pixel, to be consistent with
the rationale behind the generation of medium-resolution
land-cover products (Sect. 2.2.3). A 1 km forest pixel was
then chosen as the target pixel and put at the center of a
search window with dimensions 11 km× 11 km. The mixed
potential effect of afforestation (1Tp1 ) was defined as the dif-
ference between the temperature of the target pixel (LSTF)
and the average temperature of all the surrounding openland
pixels within the window (LST′O):

1T =1Tp1 −LST′O, (3)

where LSTF is the surface temperature of the target forest
pixel at t2, and LST′O represents the elevation-corrected sur-

face temperature of openland pixels at t2 within the search
window. Given our search window size, 1Tp1 could be bi-
ased by the elevation difference between the target forest
pixel and surrounding openland pixels. Therefore, a linear
relationship was first fitted between the observed openland
temperature, LSTO, and the elevation of the openland pixel
(EleO). This fitted temperature lapse rate (k) was then used
to derive elevation-corrected openland temperature LST′O:

LST′O = LSTO+ k×1EleF−O, (4)

where 1EleF−O is the elevation difference between forest
and openland pixels. The elevation is available from NASA’s
Shuttle Radar Topography Mission (SRTM) dataset (https:
//lpdaac.usgs.gov/products/srtmgl1v003/, last access: 23 De-
cember 2022).

2.1.3 Full potential effect (1Tp2 )

The full potential effect represents the temperature change
due to hypothesizing a shift from 100 % openland to 100 %
forest coverage and was determined here by employing the
singular value decomposition (SVD) method used in Du-
veiller et al. (2018). The SVD technique assumes that the
temperature observed for a pixel at 1 km scale is a linear
composition of the temperatures of different land-cover types
at a finer resolution (in our study at a 30 m resolution). For
each 1 km pixel, the observed temperature can be written
as the composition of the temperature of each component
land-cover type and its corresponding fraction, based on the
land-cover fractions derived from the 30 m resolution Glo-
beLand30 map (Sect. 2.2.3). The temperature of each type of

Biogeosciences, 20, 75–92, 2023 https://doi.org/10.5194/bg-20-75-2023

https://lpdaac.usgs.gov/products/srtmgl1v003/
https://lpdaac.usgs.gov/products/srtmgl1v003/


H. Wang et al.: Reconciling different approaches to quantifying land surface temperature impacts 79

land cover was assumed constant within a search window of
11 km× 11 km. For each given search window, the following
equations can be obtained: y1

...

yn

=
 x11 . . . x1m

...
. . .

...

xn1 · · · xnm

×
 β1

...

βm

 , (5)

where n is the total number of 1 km pixels within the win-
dow, after accounting for the elevation difference (thus the
maximum value of n is 121 given our 11 km× 11 km search
window), m is the number of land-cover types, xij refers to
the fraction of land-cover type j in pixel i, and βi refers to
the temperature of land-cover type i. To minimize elevation
impacts, the linear regression relationship for a given 1 km
pixel was included only when the elevation difference be-
tween this pixel and the central pixel of the search window
was smaller than 100 m. Using matrix notation, Eq. (5) can
be simplified to

y = X×β, (6)

where the matrix X contains land-cover fraction for the n
1 km pixels as an explanatory variable, the response variable
y contains n LST observations, and the coefficient vector,
β, contains the regression coefficients which show tempera-
tures of different land-cover types. Note that this linear equa-
tion system cannot be easily solved because the matrix X is
“closed”; i.e., by definition, the elements in each row of the
matrix X add up to 1. After removing the mean of each col-
umn (Zhang et al., 2007), the matrix X was transformed by
applying the SVD technique to another matrix, Z, of reduced
dimension (more details in Duveiller et al., 2018). After this
transformation, we have the following:

y = Z×β ′+ ε (7)

in which the β ′ coefficient can be obtained from Eq. (8):

β ′ =
(
ZtZ

)−1Zty. (8)

However, the β ′ vector calculated from the transformed ma-
trix Z cannot directly provide surface temperatures for corre-
sponding land-cover types. To obtain temperatures for each
land-cover type by assuming 100 % ground coverage, an
identity matrix Y with its dimension equal to the number of
land-cover types must be constructed to represent the hypo-
thetical case in which each 1 km pixel was 100 % covered by
a single land-cover type. The same transformation as applied
to the matrix X was then applied to Y, to obtain a transformed
matrix Z′. Finally, the predicted temperature (LST′100 %) for
each land-cover type assuming a 100 % coverage is calcu-
lated as

LST′100 % = Z′ β ′. (9)

For the central pixel of the local search window, 1Tp2 is de-
fined as the difference between the predicted LST′100 % for
forest (LST′100 %F) and openland (LST′100 %O).

1Tp2 = LST′100 %F−LST′100 %O (10)

More details, including an illustration of the SVD method,
can be found in Fig. 7 in Duveiller et al. (2018).

At the scale of the searching windows used in this analy-
sis (11 km× 11 km), any nonlocal effects cancel out when
comparing temperature differences over neighboring areas
because the effects of advection and atmospheric circulation
have been reported to be similar for adjacent areas (Pongratz
et al., 2021; Winckler et al., 2019a). Hence the quantified
afforestation effect for each of the three methods can be con-
sidered to be the local effect only.

2.2 Dataset and processing

2.2.1 The test case: large-scale afforestation over China

China was selected as the test case for addressing the impor-
tant methodological issues in quantifying land surface im-
pacts of afforestation because afforestation is a key national
strategy for sustainable development and climate mitigation
(Bryan et al., 2018; Qi and Wu, 2013). According to the
8th National Forest Inventory conducted in 2013, China’s
afforestation area has reached 69× 106 ha, accounting for
33 % of the total global afforestation area (Chen et al., 2019).
Afforestation in China during 2000–2012 occurred mainly
in regions with more than 400 mm of precipitation per year
(Fig. 3a), which is considered a threshold below which there
is a high risk of afforestation failing due to water limita-
tion (Mátyás et al., 2013). China covers a wide range of lat-
itude from 3.9 to 53.6◦ N, and its forest ecosystems cover
an elevation range of 100 to 4000 m. This wide range of cli-
mate zones, from tropical/subtropical to temperate and bo-
real, makes it highly suitable for our methodological analysis
because the impact of afforestation on LST might differ with
latitude and background climate (Lee et al., 2011; Alkama
and Cescatti, 2016). Further justification for using China as
a test case comes from the strongly diverging published LST
impacts of afforestation there, which range from an actual ef-
fect of−0.0036 K per decade by Li et al. (2020) to a potential
effect of −1.1 K by Peng et al. (2014).

2.2.2 MODIS dataset and preparation

In this study, the actual effect was estimated by combining
the actual satellite-derived afforestation for 2000 to 2012 (see
Sect. 2.2.3) with satellite-based estimates of biophysical vari-
ables for the periods 2002–2004 (t1) and 2010–2014 (t2).
MODIS remote sensing products for land surface tempera-
ture (MOD11A2), albedo (MCD43B3), and evapotranspira-
tion (MOD16A2) were used to characterize the biophysical
effects (Table 1). The datasets were regridded to harmonize
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Figure 3. (a) Spatial distribution of afforestation intensity (Faff) in China during 2000–2012. The solid black line crossing China is the
400 mm annual precipitation isoline. (b) Frequency distribution of Faff and cumulative afforestation area with the increase in Faff. The
dashed red line represents the cumulative afforestation area corresponding to Faff = 10 %.

with spatial (1 km) and temporal (annual) resolutions (Ta-
ble 1).

The MOD11A2 product provides 8 d land surface temper-
ature for 10:30 and 22:30 from the Terra satellite, but here
we focused on daytime surface temperature. Only valid LST
observations from the original data were used to compute the
average daily values for a given year. Years for which more
than 40 % of daily data are missing were excluded from the
analysis. Annual data were then aggregated to obtain the av-
erage annual temperature for periods t1 and t2.

The MCD43B3 product provides white-sky and black-sky
shortwave albedo at 16 d temporal resolution (Table 1). The
observed white-sky albedo was used as the daytime albedo
(Peng et al., 2014). For evapotranspiration (ET), we used the
ET band in MOD16A2, which includes water fluxes from
soil evaporation, wet canopy evaporation, and plant transpi-
ration. To calculate the mean annual albedo and evapotran-
spiration for 2002–2004 (t1) and 2010–2014 (t2), we used
the same approach as used for LST.

2.2.3 Land-cover datasets and processing

Two land-cover datasets were used in this study: the ac-
tual effect approach was based on the Global Forest Change
(GFC) dataset, while the mixed potential effect and full po-
tential effect used the GlobeLand30 land-cover data (Ta-
ble 1).

The SVD technique, used in the full potential effect ap-
proach, requires a land-cover map with a higher spatial res-
olution than the 1 km spatial resolution of the LST data. The
GlobeLand30 product, which is based on Landsat images,
provides land-cover information for China at a 30 m resolu-
tion for the years 2000 and 2010 (Chen et al., 2015). Culti-
vated land and grassland in GlobeLand30 were classified as
openland. Discrete land-cover type information at 30 m res-
olution in 2010 was aggregated to obtain the area fractions
of the different land-cover types at 1 km resolution, which
were then used to construct matrix X in Eq. (5) (Fig. 2).
Furthermore, land-cover type information at the 1 km scale

was extracted, based on the vegetation type with area frac-
tion > 50 % for every 1 km× 1 km window. These data were
then applied in the space-for-time method to identify forest
and openland (Fig. 2).

GlobeLand30 data are not suitable for detecting forest
change (Zeng et al., 2021). The Global Forest Change (GFC)
data, however, provide forest gain and forest loss at a spatial
resolution of 30 m between 2000 and 2012 and have been
used for mapping global forest change (Hansen et al., 2013).
This product shows an overall accuracy of greater than 99 %
for areas of forest gain at the global scale when compared
with statistical data reported in Forest Resource Assessment
(FRA), lidar detection (Geoscience Laser Altimeter System),
and MODIS NDVI time series (Hansen et al., 2013) and thus
has been recommended for use in forest and forest-change
estimates (Chen et al., 2020; Zeng et al., 2021). Using this
dataset, forest loss events were identified for each year be-
tween 2000 and 2012, but forest gain was only identified
for the whole period, simply because forest loss is an abrupt
change which can be effectively identified over short time
periods, whereas forest gain is a gradual change which can
only be confidently identified over longer time spans. Here,
forest losses and gains from GFC were aggregated at a 1 km
resolution to obtain net forest change (defined as forest gain
minus forest loss) during this period (Fig. 2). A positive net
change indicates afforestation, and the area percentage of af-
forestation for the 1 km pixel area was defined as Faff. The
land-cover type of pixels with Faff = 0 % was considered to
be stable. This net forest-change information was then used
in the calculation of the actual afforestation-induced temper-
ature effect (1Ta) (Fig. 2).

2.3 Decomposition of changes in surface temperature

Changes in surface temperature following forest-cover
change are the net result of changes in underlying fluxes that
collectively determine the land surface energy balance:
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Table 1. Summary of the datasets and their main characteristics.

Type Dataset Selected band Resolution Projection Time span

Forest change Global forest
change

Forest gain;
loss year

30 m, annual WGS84 2000–2012

Land-cover type GlobeLand 30 Land-cover type 30 m, – UTM 2000; 2010

Land surface
Temperature

MOD11A2 Daytime temperature 1 km, 8 d sinusoidal 2002–2004;
2010–2014

Albedo MCD43B3 Albedo WSA shortwave 1 km, 16 d sinusoidal 2002–2004;
2010–2014

Incoming shortwave
radiation

CERES sfc_sw_down_all_mon 1◦, monthly WGS84 2002–2004;
2010–2014

Surface broadband
emissivity

MOD11C3 Emis_29; Emis_31;
Emis_32

0.05◦, monthly sinusoidal 2002–2004;
2010–2014

Evapotranspiration MOD16A2 ET_500m 500 m, 8 d sinusoidal 2002–2004;
2010–2014

Elevation SRTM30 Be75 30 m, – WGS84 –

1SWin−1SWout+1LWin−1LWout

=1H +1LE +1G, (11)

where 1SWin, 1SWout, 1LWin, and 1LWout are the
changes in incoming and outgoing shortwave and longwave
radiation, respectively, and 1H , 1LE, and 1G are changes
in sensible heat flux, latent heat flux, and ground heat flux,
respectively. All the terms of Eq. (11) are expressed in watts
per square meter (W m−2).

Firstly, it can be reasonably assumed that 1SWin ≈ 0 and
1LWin ≈ 0, given that all three approaches consider only lo-
cal effects on surface temperature by following a comparison
of target pixels with surrounding control pixels, thus exclud-
ing feedbacks from, e.g., cloud formation (Duveiller et al.,
2018). Changes in reflected shortwave radiation can be de-
rived as

1SWout = SWin×1α, (12)

where SWin is available from the CERES EBAF surface
product Ed 4.1 (Kato et al., 2018; Liu et al., 2018) (Ta-
ble 1), and 1α is the surface albedo change. To approximate
1LWout, we used its first-order differential equation:

1LWout = σ(4εBT
31T +1εBT

4), (13)

where σ is Stefan–Boltzmann’s constant (5.67×
10−8 W m−2 K−4), T is daytime surface temperature,
and 1T is the afforestation impact on surface temperature.
Surface broadband emissivity, εB, is usually obtained from
an empirical relationship (Zhang et al., 2020):

εB = 0.2122ε29+ 0.3859ε31+ 0.4029ε32, (14)

where ε29, ε31, and ε32 are obtained from the estimated emis-
sivity for bands 29 (8400–8700 nm), 31 (10 780–11 280 nm),
and 32 (11 770–12 270 nm) in the MOD11C3 data (Duveiller
et al., 2018).

Latent heat flux change (1LE) refers to changes in the en-
ergy used for evapotranspiration (ET, unit: mm d−1), which
can be obtained from the change in evapotranspiration
(1ET):

1LE =1ET× 28.94Wm−2 (mmd−1)−1. (15)

Therefore, the sum of sensible heat change and ground heat
change (1H +1G) can be calculated as the difference be-
tween net radiation change and latent heat flux change (1LE)
based on Eq. (11). The afforestation effects on albedo (1α),
εB (1εB), and ET (1ET) needed in the above equations were
calculated in a similar way to 1T for each of the three dif-
ferent approaches as described in Sect. 2.1.

2.4 Statistical analysis

The spatial distributions of original samples for the three
methods are different because of the different land-cover
maps used (Figs. 2 and A1 in Appendix A), and, therefore,
the statistical analysis was limited to those pixels shared by
all three approaches: 96 058 sample pixels at 1 km resolu-
tion. The distribution of these shared sample pixels retained
the characteristics of the spatial distribution of the original
samples (Fig. A2).

Differences in the afforestation effects on LST of the three
approaches were tested by performing paired-sample t tests
between pairs of approaches. The paired-sample t test was
used, rather than a normal t test, to avoid the bias due to
strong spatial heterogeneity in the LST effects of afforesta-
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tion that could occur if the values of all pixels had been
pooled together for a normal t test. The test was done us-
ing the “ttest_rel” method from the “scipy.stats” package in
Python. The Bonferroni correction was applied to adjust the
significance level (p value) to mitigate the increasing type I
error when doing multiple paired-sample t tests, which in our
case involves three pairs (Lee and Lee, 2018; UC Berkeley,
2008). The Bonferroni correction sets the significance cut-
off at α/k (with α as the p value before correction and k as
number of pairs). In this study, with three hypotheses tests
(i.e., three pairs) and an original significance level α = 0.05,
the adjusted p value is 0.0167. In order to investigate 1Ta in
relation to the afforestation intensity, a linear regression was
performed between 1Ta and Faff using the ordinary least-
squares method.

3 Results

3.1 Spatial distribution of afforestation and its effect
on land surface temperature

In China, afforestation areas are mainly located in the north-
east, southwest, and south, where sufficient precipitation is
available (Fig. 3a) and largely driven by afforestation of for-
mer cropland or abandoned cropland, with a relatively small
contribution from forest regeneration or replanting following
natural disturbance or timber harvest. One prominent feature
of afforestation in China is its small afforestation patch, with
most afforested pixels (1 km2) having an afforestation frac-
tion of less than 30 % (Fig. 3b). Pixels with an afforestation
intensity below 10 % account for 93 % of the total number of
pixels (Fig. 3b), representing 0.14× 106 ha, more than half
(55.6 %) of the total afforestation area (Fig. 3b).

Although all three approaches result in similar spatial and
latitudinal patterns regarding afforestation effects on LST
(Fig. 4), their magnitudes differ substantially. The actual
effect has the lowest temperature change, followed by the
mixed potential effect, with the full potential effect showing
the greatest temperature change (Fig. 4a–c). For the latitude
range of 20–36◦ N where afforestation effects show a dom-
inant cooling effect, the full potential effect (1Tp2 ) reaches
−1.75±0.01 K, while the mixed potential effect (1Tp1 ) was
smaller at−0.96±0.00 K, but both of them were much larger
than the actual effect (1Ta) of−0.09±0.00 K. Similarly, the
full potential effect (1Tp2 ) showed the strongest warming
effect (0.35± 0.01 K) in the area north of 48◦ N, stronger
than the mixed potential effect (0.22± 0.01 K), and again
the actual effect is the smallest (0.07±0.01 K). However, re-
garding the latitude where the effects change from a warm-
ing to cooling effect, the three approaches largely converge
(Fig. 4d). Between 40 and 48◦ N, the afforestation effects
are largely neutral, with the mean temperature change for
the three approaches being 0.07± 0.01 K (1Ta =−0.01±
0.01 K; 1Tp1 = 0.11± 0.01 K; 1Tp2 = 0.12± 0.01 K).

3.2 Reconciling temperature effects of afforestation

Even though the observed land surface temperature is as-
sumed to be uniform for the 1 km afforested satellite pixel,
the underlying afforestation intensity varies substantially
(Fig. 3a). This leads to our first hypothesis that for a 1 km
pixel, 1Ta should be influenced by the area fraction that
has been afforested within the pixel (i.e., afforestation in-
tensity or Faff). Indeed, the actual daytime surface cooling
increases significantly with afforestation intensity (Fig. 5),
with a 0.079± 0.017 K (mean±SD) increase for each 10 %
increase in Faff.

The afforestation effects obtained from the three ap-
proaches were compared for each Faff interval (Fig. 6). When
afforestation intensity is less than 60 %, significant differ-
ences exist in the temperature change obtained by the three
approaches, with 1Ta <1Tp1 <1Tp2 . This result confirms
our second hypothesis that the actual effect is expected to
be smaller than potential effects. However, for pixels with
relatively low Faff, the mixed potential effect is found to be
smaller than the full potential effect, which is reasonable but,
to our knowledge, has not been reported before. When the af-
forestation intensity is greater than 60 %, the significant dif-
ference in cooling effect between the different approaches
disappears, likely because afforestation intensity and the as-
sociated forest coverage at 1 km resolution reach values high
enough to allow the potential effects to be realized.

When considering the overall differences in 1T for the
three approaches, irrespective of the afforestation intensity,
1Ta (−0.07± 0.00 K) over China was significantly lower
than 1Tp1 (−0.63± 0.00 K), which is further significantly
lower than 1Tp2 (−1.16± 0.01 K) (p < 0.05, paired-sample
t test, n= 96 058), once again confirming our second hy-
pothesis (Fig. 7). Moreover, extrapolation of the relationship
shown in Fig. 5 suggests that 1Ta would reach −0.79±
0.17 K (mean±SD) if a 1 km pixel was 100 % afforested,
which is conceptually comparable to the potential effects.
1Ta was indeed found to be higher than 1Tp1 but lower
than 1Tp2 . This result confirms our third hypothesis and
demonstrates that the potential cooling effect could indeed
be reached when a pixel is fully afforested.

3.3 Reconciling changes in surface energy fluxes by
afforestation

In order to investigate whether the underlying surface en-
ergy fluxes could be reconciled following the reconciliation
of the LST changes, changes in surface energy fluxes due
to afforestation were quantified using each of the three ap-
proaches, under the same boundary conditions as for full
afforestation (i.e., changes following the actual effect ap-
proach were extended for Faff = 100 %). As illustrated in
Fig. 8, changes in all the relevant surface energy fluxes un-
der the three different approaches have the same direction,
with similar magnitudes, confirming the reconciliation of
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Figure 4. Afforestation effects on LST quantified by three approaches: (a) actual effect based on a space-and-time approach (1Ta), (b) mixed
potential effect based on a space-for-time approach (1Tp1 ), and (c) full potential effect assuming a transition from 100 % openland coverage
to 100 % forest coverage using the SVD method (1Tp2 ). The solid black line crossing China is the 400 mm precipitation isoline. (d) Zonal
averages of the annual mean daytime LST change within 2◦ latitudinal bins, with shaded areas representing the standard errors (SE). Note
that in (d), 1Ta corresponds to the vertical axis on the left; 1Tp1 and 1Tp2 correspond to the vertical axis on the right.

Figure 5. Changes in 1Ta as a function of afforestation intensity (Faff), defined as the fraction of afforested area to the total pixel area at a
1 km resolution. Error bars indicate the standard error of1Ta within each 10 % bin of Faff. The red line represents the fitted linear regression
line between 1Ta and Faff.

the different approaches in terms of surface energy fluxes.
More specifically, the three approaches converge on a re-
duction in reflected shortwave radiation (1SWout) of 0.56–
1.23 W m−2 due to the lower albedo of forest compared to
openland (Fig. A3). Emitted longwave radiation (1LWout)
was reduced by 1.03–3.10 W m−2, and sensible and ground
heat fluxes (1H +1G) reduced by 4.84–6.14 W m−2. All
these reduced fluxes were offset by an increased latent heat
flux of 7.99–8.41 W m−2 (1LE), the single energy flux lead-
ing to surface cooling.

4 Discussion

The three approaches (Li et al., 2015; Alkama and Cescatti,
2016; Duveiller et al., 2018) used to quantify local surface
temperature change following forest-cover change and pre-
sented in detail in this study have been cited over 919 times
in research papers (Web of Science, December 2021) and in
high-level climate science synthesis reports. Despite the ap-
parently large differences in temperature effect among them,
to our knowledge, no studies have examined whether these
differences can be reconciled. This study fills that gap by
comparing the three approaches for a single study case, i.e.,
large-scale afforestation in China. China is highly suitable
for the purpose of this study as the size of an afforesta-
tion patch is, in general, smaller than the spatial resolution
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Figure 6. Comparison of 1T for the three approaches for bins of afforestation intensity. Error bars are given as the standard error, and
different letters indicate that 1T calculated by the two approaches concerned are significantly different using the adjusted p value after
applying the Bonferroni correction for multiple paired-sample t tests.

Figure 7. Comparison of 1T for the three approaches, irrespective
of the afforestation intensity. Error bars are given as the standard
error, and different letters indicate 1T being significantly differ-
ent (p = 0.0167, paired-sample t test, n= 96 058). For comparison,
the predicted 1Ta with Faff reaching 100 %, which is conceptually
comparable with 1Tp1 and 1Tp2 , is also shown.

(1 km) at which the temperature effects of afforestation were
conducted in the previous studies describing the three ap-
proaches (Li et al., 2015; Alkama and Cescatti, 2016; Du-
veiller et al., 2018). Hence, the difference between the actual
and potential temperature effects is expected to be large.

Indeed, we found surface cooling following afforestation
was much less when estimated as the actual effect (1Ta)
compared to the potential effects (1Tp1 and 1Tp2 ). This
lower 1Ta has been attributed to incomplete afforestation at
a 1 km resolution, at which potential effects are quantified by
assuming complete afforestation (i.e., a complete shift from
openland to forest). Consistent with our first hypothesis, the
afforestation fraction at a 1 km resolution explained 89 % of
the variation in 1Ta, making it a key determinant of the sur-
face cooling following afforestation (Fig. 5). This result is
consistent with the fact that the observed temperature for a
mixed surface is determined by the area fractions of its re-
spective components, with each component having a unique

temperature. This fact also forms the theoretical foundation
for the SVD technique used to derive the full potential effect
(Duveiller et al., 2018).

Modeling (Li et al., 2016b) and satellite-based (Alkama
and Cescatti, 2016) studies have found that temperature
change after afforestation (or deforestation) is highly sensi-
tive to the fraction of the model grid cell or satellite pixel that
is subjected to afforestation (or deforestation), echoing our
finding that 1Ta significantly changes with Faff. In addition,
we provide strong evidence in support of our third hypothe-
sis that when Faff reaches 100 %, the expected actual effect
is comparable to the potential effects (Fig. 7). This finding
shows that the three approaches compared here are consistent
when the same boundary condition, i.e., full afforestation, is
applied and demonstrates that all three methods are mutually
compatible. It is, therefore, the basis of the reconciliation of
the three approaches. It also highlights the fact that the ac-
tual afforestation area must be considered when evaluating
the climate mitigation effects of afforestation.

Our results also show that the mixed potential effect
(1Tp1 ) is smaller than the full potential effect (1Tp2 )
(Figs. 6, 7). We suspect that this phenomenon likely also
relates to the incomplete forest coverage for the identified
forest pixels at the 1 km scale used in the space-for-time
analysis because a threshold value of 50 % forest cover
was used when upscaling the 30 m land-cover map to 1 km
resolution. This threshold, however, is consistent with the
commonly applied value in land-cover classification based
on medium-resolution satellite images, such as MCD12Q1,
which uses a tree coverage value of 60 % to identify for-
est pixels (Sulla-Menashe et al., 2019). For the purpose of
comparison, we also calculated the mixed potential effect
based on the MCD12Q1 land-cover map but using the same
LST data. The result shows that potential effects derived
using MCD12Q1 data versus those derived using spatially
upscaled GlobeLand30 data are almost identical (Fig. A5),
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Figure 8. Afforestation-induced changes in surface energy fluxes (W m−2) following the three approaches: (a) the actual effect based on
a space-and-time approach, (b) the mixed potential effect using medium-resolution land-cover maps based on a space-for-time approach,
and (c) the full potential effect assuming a transition from 100 % openland coverage to 100 % forest coverage using the SVD method. For
each approach, changes were calculated for the reflected shortwave radiation (SWout), outgoing longwave radiation (LWout), latent heat flux
(LE), and the combination of sensible and ground heat fluxes (H +G). No changes were assumed for incoming shortwave and longwave
radiation. Changes in energy fluxes for the actual effect approach have been adjusted to the condition of full afforestation (i.e., Faff = 100 %)
in a similar way as for the predicted 1Ta in Fig. 7, by fitting linear regressions between energy flux variables and Faff (Fig. A4).

lending credibility to our estimated 1Tp1 in comparison to
previous studies using MODIS land-cover data (Li et al.,
2015). Progressively increasing the forest-cover threshold
from 50 % to 90 % steadily increases 1Tp1 from −0.62±
0.02 to −0.75± 0.02 K (Fig. A6). Further increasing the
thresholds used to identify 1 km resolution openland pixels
from 50 % to 90 % increases 1Tp1 from −0.63± 0.00 to
−1.10±0.02 K (Fig. A7), bringing1Tp1 even closer to1Tp2

(−1.16±0.01 K). This is consistent with the finding of a pre-
vious study on the dependence of the temperature effect on
the forest-cover-change thresholds that were used to define
afforestation: the higher the threshold, the stronger the im-
pact on temperature (Li et al., 2016). Our results add further
support to the compatibility of the three approaches given the
same boundary condition, i.e., the complete transformation
from full openland to full forest coverage.

Several factors may contribute to the remaining differ-
ences in the temperature effects produced by different meth-
ods even after reconciliation. As described in the Method
section, there are discrepancies in the assumptions of the
three approaches, which lead to differences in the control
pixels (i.e., adjacent comparison pixels). For instance, for the
“pure” potential effect, it is assumed that the LSTs for pixels
with the same land-cover type are uniform, and forest pixels
are compared with openland pixels, whereas in the mixed po-
tential effect approach, the central target forest pixel is com-
pared with the mean value of non-forest pixels within the
searching window. Moreover, space-for-time is an assump-
tion that cannot be verified (Chen and Dirmeyer, 2016) and
which will inevitably result in differences in the estimated ac-
tual and potential effects, although the consistency between
potential and “actual” effects after reconciliation in our study
does illustrate the broad validity of this assumption.

Differences between the actual and potential temperature
effects can also arise from influences of both the timing of the
afforestation and the time period elapsed following afforesta-

tion. However, such influences are expected to be small in
our study. We argue that such influences should be more pro-
nounced in the case of deforestation than afforestation. The
temperature effect caused by deforestation is considered to
be instant (Liu et al., 2018). As a result, if deforestation oc-
curred in 1 specific year of our starting time window (i.e.,
2002–2004), using the time-averaging LST over the whole
time window to represent the LST before deforestation will
greatly bias the quantified 1T . In contrast, afforestation-
driven surface temperature change can only gradually in-
crease with forest development. The LST effect depends on
different stages of forest development and is expected to sat-
urate only when the forest canopy stabilizes (Zhang et al.,
2021; Windisch et al., 2021). Observation studies show that
closed dense-canopy old forests can exert a greater cool-
ing effect than the open-canopy young forests (Zhang et al.,
2021; Windisch et al., 2021; Duveiller et al., 2018, 2020).
Hence, given the gradual nature of the afforestation effect on
LST, when we quantify the afforestation effect by comparing
the time-averaging LST before and after afforestation, the in-
fluence of the specific timing of afforestation is expected to
be small. Furthermore, the GFC dataset used in this analysis
defined forest gain using the condition of successful detec-
tion of a stable closed forest canopy that is clearly different
from a non-forest state (Hansen et al., 2013), which enhances
the chance of temperature change saturation following af-
forestation. But, given a maximum stand age of 12 years
inferred from the GFC dataset, differences in surface tem-
peratures may still exist between newly established forests
and the mature existing forests that were used in the poten-
tial effect approaches. Thus, we cannot exclude the possible
contribution of time period elapsed following afforestation to
the difference between the actual and potential effects, which
failed to be reconciled.

Previous analyses have documented latitudinal patterns
of surface temperature change induced by afforestation
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(Alkama and Cescatti, 2016; Li et al., 2015, 2016a; Peng
et al., 2014). When comparing the three approaches for a
single case study, consistent latitudinal patterns of local sur-
face temperature effects following afforestation are observed
(Fig. 4). Notably, all three approaches show a warming effect
in the northern high latitudes and an opposite cooling effect
in the southern low latitudes, with a largely neutral effect in
the 40–48◦ N latitude band, providing further evidence that
the three approaches are compatible. In particular, although
the three approaches used different land-cover maps, they de-
rived consistent LST impacts following afforestation, which
highlights that fact that the reconciliation provided in this
study is rather robust and unlikely to be dependent on the
land-cover datasets used.

In addition to the reconciliation of the land surface temper-
ature change, we checked and confirmed that the changes in
surface energy fluxes that underlie and drive the changes in
surface temperature are compatible under the boundary con-
dition of full afforestation. This finding confirms the inherent
consistency in the three approaches and clarifies the reasons
behind the apparent discrepancies in existing studies as dis-
cussed in the Introduction. Nonetheless, when it comes to
the biophysical impacts of afforestation in the real world, our
findings have far-reaching implications. Full afforestation is
often possible at small spatial scales but becomes challeng-
ing at large scale. Therefore, the realization of the full poten-
tial effect by afforestation is scale-dependent. For example, a
complete afforestation of the semi-arid Loess Plateau in the
northwest of China is predicted to generate a surface cooling
effect of 2.40± 0.07 K, but substantial afforestation efforts
over the past 4 decades in that region have only realized a
cooling of 0.11± 0.01 K, as measured by the actual effect.
Because of greater water consumption by forest compared to
openland and the need to maintain land area for food produc-
tion, achieving the full cooling potential may not be feasible
(Huang et al., 2018; Liu and She, 2012; Liang et al., 2019).

Potential cooling effects have a value in that they can
serve to establish the envelope of effects and measure possi-
ble outcomes given the condition of full afforestation. How-
ever, given the challenge of full afforestation at large spatial
scales, potential effects should be converted into a more re-
alistic estimate (i.e., actual effects), by taking into account
the intensity of afforestation, to better represent policy am-
bitions. The analog could also be made for the effects of
the surface energy impacts of afforestation. Taking 10 %
as the afforestation intensity threshold to compare the cu-
mulative surface energy effect between the actual and po-
tential approaches, actual cumulative biophysical changes
(5.06 EJ) for 2000–2012 are much smaller than mixed poten-
tial changes (20.13 EJ) and full potential change (19.02 EJ)
(methods in Sect. A2 in Appendix A; Fig. A8). Again, this
shows that simply using the potential effects for policy mak-
ing or evaluation risks greatly overestimating the biophysical
effects of afforestation.

5 Conclusions

In this study we provided a synthesis of the three influen-
tial methods used to quantify afforestation impact on sur-
face temperature change and provided evidence that these
different methods could in fact be reconciled. The actual ef-
fect of surface temperature change following afforestation
was highly dependent on the intensity of afforestation (Faff),
which explained 89 % of the variation in1Ta. With the com-
mon boundary condition of full afforestation being applied,
differences in afforestation impacts on LST reported by the
three methods in previous studies greatly reduced, showing
that simply treating these differences as uncertainty is in-
correct and could greatly overestimate the uncertainty. In
other words, when full afforestation is assumed, the actual
effect approaches the potential effect, demonstrating the ef-
fectiveness of the space-for-time approach and that the po-
tential cooling effect of afforestation could indeed be real-
ized. Potential cooling effects have a value in academic stud-
ies where they can be used to establish an envelope of ef-
fects, but their realization at large scales is challenging given
the scale dependency. The reconciliation of the different ap-
proaches demonstrated here stresses that the afforestation
fraction should be accounted for in order to bridge different
estimates of surface cooling effects in policy evaluation.
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Appendix A

A1 Figures

Figure A1. The distributions of the original sample pixels (at a 1 km resolution) for (a) the actual effect and (b) the two potential effects.

Figure A2. (a) Histogram of 1Ta of all pixels based on the GFC dataset. (b) Histogram of 1Ta for samples used for the statistical test.
(c) Histogram of 1Tp1 of all pixels based on the GFC dataset. (d) Histogram of 1Tp1 for samples used for the statistical test.
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Figure A3. Spatial distribution of afforestation-induced changes in albedo (α) over China from three approaches: (a) actual albedo change
following afforestation based on the space-and-time method (1αa), (b) mixed potential albedo change using medium-resolution land-cover
maps based on the space-for-time approach (1αp1 ), and (c) full potential effect (1αp2 ) based on the SVD approach.

Figure A4. Changes of actual effect in (a) 1LW, (b) 1SW, (c) 1H +1G, and (d) 1LE (W m−2) as a function of afforestation intensity
(Faff) following the actual effect approach. Error bars indicate the standard error within each 10 % percent bin of Faff. The solid black lines
represent the fitted linear regression line between each energy flux variable and Faff.
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Figure A5. The mixed potential effects (1Tp1 ) obtained based on MODIS land-cover data (MCD12Q1) and the land-cover distribution map
defined at the threshold of 50 % GlobeLand30 at 1 km resolution.

Figure A6. The influence of the forest-cover threshold applied to the land-cover map underlying the estimation of the mixed potential effect
(1Tp1 ).

Figure A7. The influence of the openland-cover threshold used to identify a 1 km pixel as openland in the estimation of the mixed potential
effect (1Tp1 ).

Figure A8. Afforestation-induced cumulative changes in surface energy fluxes (exaJoules) in China for the period 2000–2012 following the
approaches of (a) the actual effect, (b) the mixed potential effect, and (c) the full potential effect (methods in Sect. A2).
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A2 Cumulative surface energy effect

The cumulative surface energy effect (fcum) in Fig. A8 refers
to the sum of the flux change (J) from all the samples
while at the same time accounting for the forest change
area (m2). More specifically, the cumulative surface energy
change (fcum) can be calculated from Eq. (A1):

fcum =

i=n∑
i=1

areai × Fi, (A1)

where Fi is the flux change per unit area (W m−2) for pixel
i, n is the total number of samples, and areai is the forest
change area in pixel i.

Data availability. All datasets used in this study are
summarized in Table 1 and are publicly available.
MOD11A2 land surface temperature is available from
https://doi.org/10.5067/MODIS/MOD11A2.061 (Wan et al.,
2021). MOD11C3 surface broadband emissivity is avail-
able from https://doi.org/10.5067/MODIS/MOD11C3.006
(Wan et al., 2015). Evapotranspiration is available from
https://doi.org/10.5067/MODIS/MOD16A2.006 (Run-
ning et al., 2017). MCD43B3 is inaccessible and sub-
stituted by MCD43A3, which can be downloaded from
https://doi.org/10.5067/MODIS/MCD43A3.006 (Schaaf and
Wang, 2015). The Global Forest Change data are available from
http://earthenginepartners.appspot.com/science-2013-global-forest
(last access: 4 January 2023; Hansen et al., 2013). The land-
cover-type dataset (GlobeLand30) is available from http:
//www.globallandcover.com/defaults_en.html?src=/Scripts/map/
defaults/En/download_en.html&head=download&26type=data
(last access: 4 January 2023; Jun et al., 2014). In-
coming shortwave radiation data can be accessed at
https://doi.org/10.5067/TERRA-AQUA/CERES/EBAF_L3B.004.1
(NASA/LARC/SD/ASDC, 2019). The elevation data are available
from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003
(NASA JPL, 2013). Intermediate data and scripts used to generate
the results in this study are available from the corresponding author
upon reasonable request.
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