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Abstract. Predicting the responses of terrestrial ecosystem
carbon to future global change strongly relies on our abil-
ity to model accurately the underlying processes at a global
scale. However, terrestrial biosphere models representing the
carbon and nitrogen cycles and their interactions remain
subject to large uncertainties, partly because of unknown
or poorly constrained parameters. Parameter estimation is a
powerful tool that can be used to optimise these parameters
by confronting the model with observations. In this paper,
we identify sensitive model parameters from a recent ver-
sion of the ORgainzing Carbon and Hydrology in Dynamic
Ecosystems (ORCHIDEE) land surface model that includes
the nitrogen cycle. These sensitive parameters include ones
involved in parameterisations controlling the impact of the
nitrogen cycle on the carbon cycle and, in particular, the lim-
itation of photosynthesis due to leaf nitrogen availability. We
optimise these ORCHIDEE parameters against carbon flux
data collected on sites from the FLUXNET network. How-
ever, optimising against present-day observations does not
automatically give us confidence in future projections of the
model, given that environmental conditions are likely to shift
compared to the present day. Manipulation experiments give
us a unique look into how the ecosystem may respond to
future environmental changes. One such type of manipula-
tion experiment, the Free Air CO2 Enrichment (FACE) ex-

periment, provides a unique opportunity to assess vegetation
response to increasing CO2 by providing data under ambi-
ent and elevated CO2 conditions. Therefore, to better capture
the ecosystem response to increased CO2, we add the data
from two FACE sites to our optimisations, in addition to the
FLUXNET data. We use data from both CO2 conditions of
FACE, which allows us to gain extra confidence in the model
simulations using this set of parameters. We find that we are
able to improve the magnitude of modelled productivity. Al-
though we are unable to correct the interannual variability
fully, we start to simulate possible progressive nitrogen limi-
tation at one of the sites. Using an idealised simulation exper-
iment based on increasing atmospheric CO2 by 1 % yr−1 over
100 years, we find that optimising against only FLUXNET
data tends to imply a large fertilisation effect, whereas opti-
mising against FLUXNET and FACE data (with information
about nutrient limitation and acclimation of plants) decreases
it significantly.

1 Introduction

Since the start of the industrial era, the atmospheric CO2
concentration has risen from around 278 ppm in 1850 to
417.2 ppm in 2022 (Friedlingstein et al., 2022). Increases in
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atmospheric CO2 lead to increases in leaf-scale photosynthe-
sis and intrinsic water-use efficiency, which in turn have the
potential to increase plant growth, vegetation biomass and
soil organic matter (Walker et al., 2021). Known as CO2 se-
questration, this process transfers carbon (C) from the atmo-
sphere into terrestrial ecosystems. Indeed, terrestrial ecosys-
tems currently remove about 30 % of the CO2 emitted by hu-
man activities each year (Friedlingstein et al., 2020). How-
ever, predicting how this carbon sink will evolve under in-
creasing atmospheric CO2 remains a challenge, especially
due to the large uncertainties in the magnitude of carbon-
climate feedbacks. Furthermore, the terrestrial ecosystem’s
ability to store carbon will be influenced by other processes,
for example, nutrient limitations (Zaehle and Dalmonech,
2011) – most notably nitrogen (N), which is a key compo-
nent controlling the carboxylation activity of the RuBisCO
in the photosynthetic tissue of the plant.

The large uncertainties in terrestrial carbon projections are
largely related to the uncertainty in land surface models, in-
cluding parametric uncertainty, which relates to the parame-
ter values used in each parameterisation (Zaehle et al., 2005).
The first land surface models were developed to provide a
physical boundary to meteorology processes. As these mod-
els progressed, terrestrial biogeochemical cycles were im-
plemented, simulating leaf gas exchange through Ball–Berry
stomatal conductance and plant productivity based on Far-
quhar photosynthesis (Bonan, 2015). More recently, land sur-
face models have moved from a big leaf model to multi-
canopy schemes (Naudts et al., 2015) and started to include
the nitrogen cycle and its constraints on the terrestrial car-
bon balance (e.g. LPJ: Prentice, 2008, OCN: Zaehle and
Friend, 2010, ORgainzing Carbon and Hydrology in Dy-
namic Ecosystems (ORCHIDEE)-CN: Vuichard et al., 2019,
CLM: Fisher et al., 2019). However, with each new process
and complexity added to the model, we add more internal
model parameters, which in turn can add more uncertainty.
Even though these parameters are generally chosen to rep-
resent measurable real-world quantities (e.g. leaf area, plant
root depth), their default values are often issued from spe-
cific experiments studying the processes at different scales
to those used in land surface models. Therefore, it is impor-
tant to confront simulated model outputs against independent
data.

There are a lot of data with which we can evaluate model
simulations from vast in situ networks (e.g. FLUXNET, Pas-
torello et al., 2020) to state-of-the-art satellite retrievals (e.g.
Sentinel missions, Malenovskỳ et al., 2012). It is important
to evaluate land surface models against these types of data
since they help increase confidence in the model simulations.
Furthermore, these data can also be used to optimise models
through parameter estimation. Parameter estimation methods
can be used to perform parameter optimisation where uncer-
tain parameters are tuned to minimise the difference between
simulated model output and observed quantities. FLUXNET
eddy covariance data have already been used to optimise

model parameters in most land surface models, e.g. OR-
CHIDEE (Kuppel et al., 2012), BETHY (Knorr and Kattge,
2005), JULES (Raoult et al., 2016), Noah (Chaney et al.,
2016) and CLM (Post et al., 2017). However, evaluating and
optimising against historical trends and present-day observa-
tions does not necessarily give us confidence in future pro-
jections of the model, given that future environmental condi-
tions are likely to shift compared to the present day (Wieder
et al., 2019).

Fortunately, manipulation experiments give us a unique
look at how the ecosystem may respond to future environ-
mental change (Van Sundert et al., 2023). One such type
of experiment, the Free Air CO2 Enrichment experiment
(FACE; Norby et al., 2010; Walker et al., 2018a), provides
a unique opportunity to assess the vegetation response to in-
creasing CO2. FACE experiments are conducted across sev-
eral vegetation types and typically consist of two types of
plots: one where CO2 is fumigated to high concentrations
and one left as a control.

In particular, 2-decade long FACE experiments in temper-
ate forests of the south-eastern US (Duke and Oak Ridge Na-
tional Laboratory – ORNL) have been predominately studied
to test the representations of carbon–nitrogen cycle processes
in land surface models. A full intercomparison of 11 land sur-
face models (Medlyn et al., 2015) demonstrated how these
data could be used to evaluate models looking at the effect of
ambient and elevated CO2 on water (De Kauwe et al., 2013),
carbon (De Kauwe et al., 2014) and nitrogen (Walker et al.,
2014; Zaehle et al., 2014). These two sites were further used
in Wieder et al. (2019), where they showed how these exper-
imental manipulations could be incorporated into the model
benchmarking tools to help increase confidence in terrestrial
carbon cycle projections. FACE experiments can also be used
to identify processes that are not well caught by land surface
models. For instance, Walker et al. (2019) showed that ele-
vated CO2 changed carbon allocation to the wood, and none
of the models tested was able to reproduce this observation.
Combined with warming experiments within a factorial de-
sign, the FACE experiments can also be very useful for eval-
uating how much the models are able to reproduce the single
effect of elevated CO2 vs. the effect of elevated CO2 when
other drivers are changing (De Kauwe et al., 2017). More
recently, Sulman et al. (2019) used these two sites to test
the effect of adding symbiotic nutrient acquisition strategies
to land surface models, and Caldararu et al. (2020) assessed
a whole-plant growth optimality approach in improving the
representation of leaf nitrogen content compared to existing
empirical approaches. The two sites are also the sites we fo-
cus on in this study.

We use these sites to check whether the parameterisations
and parameters used in a land surface model are able to
capture the ecosystem response to increased CO2. Further-
more, by optimising a land surface model to both ambient
and elevated conditions simultaneously, we gain extra con-
fidence in the model projections using this single set of pa-
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rameters. Although ideally we would want to calibrate under
ambient conditions and test the model under elevated con-
ditions, known model structural errors do not guarantee that
the model is able to predict changes under different condi-
tions. As such, we provide an alternative approach to model
calibration, maximising the available information content of
the optimisations. Our study is the first, to our knowledge, to
do this with a global land surface model.

Using the ORCHIDEE land surface model as an exam-
ple, in this paper we show the potential of using manipula-
tion sites to not only optimise unknown model parameters
but also increase confidence in the optimised model projec-
tions by reducing parameter uncertainty. Furthermore, by op-
timising parameters linked primarily to the nitrogen cycle as
well as considering nitrogen-limited FACE sites, we get an
insight into the nitrogen-limiting effect on the fertilising ef-
fect of CO2. This study also looks at how FACE data can
complement FLUXNET data in a general optimisation pro-
cedure. As such, we aim to answer the following questions.

– Using parameter estimation, can we improve the repre-
sentation of the simulated productivity of the new ni-
trogen version of ORCHIDEE over the FLUXNET and
FACE sites (under both ambient and elevated condi-
tions)?

– What is the benefit of adding FACE data on top of
FLUXNET data when optimising a land surface model?

– How does the future evolution of terrestrial productivity
change when simulated using different sets of optimised
parameter values?

– Can these experiments help us to describe better the fu-
ture fertilising effect of CO2 under possible nitrogen
limitation?

2 Methods

2.1 Model

2.1.1 The ORCHIDEE land surface model

The ORCHIDEE model is a global terrestrial ecosystem
model developed at the IPSL (Institut Pierre Simon Laplace,
France). It simulated the energy (Ducoudré et al., 1993), wa-
ter (de Rosnay and Polcher, 1998), carbon (Krinner et al.,
2005) and nitrogen (Zaehle and Friend, 2010; Vuichard et al.,
2019) exchanges between the land surface and the atmo-
sphere. This model can be run at various spatial resolutions,
ranging from site to global simulations and over different
timescales from 1 d to thousands of years. ORCHIDEE can
be run as a stand-alone model driven by meteorological forc-
ing or as part of the IPSL Earth system model (Boucher et al.,
2020; Lurton et al., 2020).

In ORCHIDEE, the different types of vegetation are dis-
cretised in PFTs (plant functional types) defined by plant
metabolism, phenology, type of leaves and local climate.
There are a total of 15 PFTs in ORCHIDEE; 8 for the forests,
4 for the grasslands, 2 for the crops and 1 for bare soil. The
model describes the different stocks of biomass in the whole
soil–plant continuum. There are nine stocks of biomass in
the plant: the leaf, the above- and below-ground sapwood,
the above- and below-ground heartwood, the fruits, the roots
and the long-term and short-term (available to use) reserves.
For litter, there are six carbon stocks: metabolic, structural
and woody above- and below-ground. Finally, there are four
stocks for the soil organic matter: surface, active, slow and
passive.

The litter pools are limited by the fall and death of tissues.
The pools of organic matter in the soils are alimented by the
decomposition of the organic matter in the different pools of
the litter. The decomposition of the organic matter is char-
acterised by a fixed residence time for each litter and/or soil
pool modulated by environmental conditions.

The carbon/nitrogen ratio of leaf biomass is variable, con-
trolled by a supply–demand scheme, while the C/N ratio of
the other plant pools is a fixed proportion of the leaf C/N ra-
tio. A specific C/N ratio is set for each soil pool, which varies
as a function of the mineral nitrogen in soils. There are also
additional mineral nitrogen pools in soils for ammonium, ni-
trate, nitrous oxides, nitrogen oxides and dinitrogen. The in-
puts of nitrogen in the soil–plant system are considered to be
deposition, fertiliser and manure inputs and biological fixa-
tion. Nitrogen losses are associated with leaching, lixiviation
and emissions of ammonia, nitrous oxides, nitrogen oxides
and dinitrogen.

The nitrogen component for ORCHIDEE was first de-
veloped and evaluated inside OCN, a version of the OR-
CHIDEE model (Zaehle and Friend, 2010). However, at the
time, it was not embedded in the operational ORCHIDEE
version used in coupled experiments. This component has
been recently updated and is now included in default OR-
CHIDEE runs (Vuichard et al., 2019). This has notably per-
mitted studies of the interactions between the carbon and
nitrogen cycles and their effect on gross primary produc-
tion (GPP). The version of ORCHIDEE we use in our study
(ORCHIDEEv3, r6863) is more recent than the one used
by Vuichard et al. (2019, r4999). ORCHIDEEv3 (r6863)
includes the latest developments of the main ORCHIDEE
model (mainly small bug fixes). Furthermore, it includes up-
dates to a few specific N-related processes, notably growth
and maintenance respiration. Although this version has been
used in the multi-model ensemble for the Global Carbon
Budget 2020 (Friedlingstein et al., 2022), it has not yet been
optimised against independent data. As such, the initial fit of
the model to the FLUXNET data is different than that shown
in Vuichard et al. (2019).
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2.1.2 Model parameters

An initial list of parameters was compiled based on param-
eters used in past ORCHIDEE optimisations. This was ex-
tended to include parameters of the new nitrogen module
selected using expert knowledge of the module developers.
Using a Morris sensitivity analysis (Morris, 1991), we re-
move all parameters to which the different modelled outputs
tested (i.e. net primary product NPP and leaf-area index LAI)
showed no sensitivity. All the remaining parameters are opti-
mised in this study (Table 1). These parameters represent key
parameters of the model-controlling photosynthesis, carbon
and nitrogen allocation as well as respiration and global ni-
trogen cycle behaviour (full descriptions can be found in Ap-
pendix A). In addition, the KSoil parameter is used to control
the initial carbon and nitrogen stocks. This parameter makes
up for the fact that we cannot reconstruct each site’s land-use
history and its impacts on the present-day soil carbon stocks.
Instead, we add the KSoil parameter to the optimisation, a
multiplication factor applied to some soil carbon and nitro-
gen pools (slow, passive and labile) to change their initial
values. A similar parameter has been used in many previous
ORCHIDEE optimisation studies to control the initial carbon
stocks of the model (e.g. Santaren et al., 2007; Kuppel et al.,
2012; Bastrikov et al., 2018).

For each PFT, the Morris score for each parameter is nor-
malised by the most sensitive parameter. The normalised
Morris sensitivity scores are shown in Table 1 and help us
understand which are the most sensitive parameters. We see
that for sites with a strong seasonal cycle, i.e. TeBS sites, the
specific leaf area (SLA) phenology parameters are most sen-
sitive. For the evergreen sites, two of the nitrogen parameters
NUEopt and KLAtoSA,max gain importance, ranking as highly
as SLA.

2.2 Parameter estimation framework

We perform optimisations by relying on a Bayesian frame-
work to include prior knowledge about the parameters (xb).
Assuming that the errors associated with data observation,
model output and parameters follow Gaussian distributions
(Santaren et al., 2014), we seek to obtain a posterior optimal
parameter set xopt which corresponds to the minimum of the
cost function J (x):

J (x)=(M(x)− y)TR−1(M(x)− y)

+(x− xb)
TB−1(x− xb). (1)

For a given parameter set x, J (x) measures the mismatch
between observations y and the corresponding model out-
puts M(x) as well as the mismatch between the prior, or
background, parameter set xb and x. Each of these terms is
weighted by its error covariance matrices, R and B, for the
observations and parameters, respectively (Tarantola, 2005).
In this study, we set both matrices to be diagonal. For B, we

define the prior distribution of each parameter to be 40 % of
the prior range. For R, we define the observation error (vari-
ance) as the mean-squared difference between the observa-
tions and the prior model simulation so that this variance re-
flects not only the measurement errors, but also the model
errors. Furthermore, since we do not consider error covari-
ances, R is diagonal, and therefore we can decompose the
first term of Eq. (1) into different terms for each assimilated
data stream:

J (x)=KFlx(MFlx(x)−yFlx)
T (σ−1

Flx )(MFlx(x)

−yFlx)+KFACE(MFACE(x)

−yFACE)
T (σ−1

FACE)(MFACE(x)

−yFACE)+ (x− xb)
TB−1(x− xb). (2)

The Flx and FACE subscripts are used to denote the
FLUXNET and FACE parts of the equation; Ki denotes the
weighting using for each data stream, σi denotes the obser-
vational error, and Mi and yi denote modelled and observed
data streams.

There exist many different approaches we can use to find
the set of parameters which minimise J (x). These range
from simple manual tuning, which are very computation-
ally demanding and inefficient, to more complex algorithms
either based on deterministic gradient descent methods or
stochastic random search methods. Using “ORCHIDAS”, the
ORCHIDEE data assimilation tool developed at the Labo-
ratoire des Sciences du Climat et de l’Environnement (Bas-
trikov et al., 2018), we performed a couple of preliminary
experiments to determine which algorithm to use. We tested
a gradient descent method based on the L-BFGS-B algorithm
(limited memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm with bound constraints BFGS; Byrd et al., 1995) and a
random search method based on the genetic algorithm (GA;
Goldberg and Holland, 1988; Haupt and Haupt, 2004). We
found that the GA method outperformed the gradient method
in reducing the cost function. These initial results are coher-
ent with the Bastrikov et al. (2018) study, which optimised
the GPP and latent heat fluxes of a former version of OR-
CHIDEE against a number of FLUXNET site measurements
and also found that the GA algorithm outperformed the other
methods, notably by allowing a full exploration of all the pa-
rameter space.

The genetic algorithm consists in applying the laws of evo-
lution to our set of parameters by considering the set of pa-
rameters as a chromosome, with each parameter as a gene.
At each iteration, the algorithm fills h chromosomes with
parameter values. The first pool of chromosomes is created
by randomly perturbing the value of the parameter. For the
following iterations, the chromosomes are created from the
previous iterations’ chromosomes. Two processes come into
play: (a) a crossover process, where we have an exchange of
genes between two chromosomes; and (b) a mutation pro-
cess, where random genes are perturbed. To ensure that the

Biogeosciences, 21, 1017–1036, 2024 https://doi.org/10.5194/bg-21-1017-2024



N. Raoult et al.: Using Free Air CO2 Enrichment data 1021

Table 1. List of parameters used for the optimisation with descriptions, default (prior) model values, ranges of variation and normalised
Morris scores denoting the relevant importance of each parameter (labelled “rk” for rank) – darker squares mean “more sensitive”.

best chromosomes get the most descendants, each chromo-
some of each iteration is ranked as a function of the cost as-
sociated with the parameter’s value in the chromosome.

2.3 In situ data

In this study, we consider two sites from the FACE network
in nitrogen-limited temperate forest ecosystems: Oak Ridge
(ORNL; Norby et al., 2010), a site dominated by broadleaf
deciduous forests (TeBS, for temperate broadleaf summer-

green forests); and Duke (DUKE; McCarthy et al., 2010),
a site dominated by needleleaf evergreen forests (TeNE, for
temperate needleleaf evergreen forests). The data for these
sites come from the FACE Model Data Synthesis project
(Walker et al., 2018a, b, https://facedata.ornl.gov/facemds/,
last access: 15 February 2024). For each site, we use the
data from two experimental plots (with their associated er-
ror bars), one with unaffected atmospheric CO2, i.e. ambi-
ent (AMB), and one with elevated atmospheric CO2 (ELE).

https://doi.org/10.5194/bg-21-1017-2024 Biogeosciences, 21, 1017–1036, 2024
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Although the DUKE experiment also has ammonium nitrate
treatments at half of its plots from 2005 onwards (Feng et
al., 2010), we only consider the data from the plots without
nitrogen fertilisation.

The version of ORCHIDEE we use in this study has yet
to be optimised against FLUXNET data using a Bayesian
framework, as was done with previous nitrogen-free versions
of the model (e.g. Kuppel et al., 2012; Peylin et al., 2016).
Therefore, we also consider TeBS and TeNE sites from
the FLUXNET2015 dataset (Pastorello et al., 2020). This
dataset provides gap-filled half-hourly meteorological data
measured at each site (air temperature, humidity, pressure,
wind speed, rainfall and snowfall rates, short-wave and long-
wave incoming radiation; see Vuichard and Papale, 2015).
It also provides net carbon flux measurements, such as net
ecosystem exchange (NEE) further split into GPP and total
ecosystem respiration (TER) following a classical night-time
vs. day-time flux partition (Lasslop et al., 2010). For each
of the two vegetation types, sites with over 60 % vegetation
coverage are kept. We exclude sites with overly large discrep-
ancies with the prior model output, such as with no apparent
seasonal cycle, large data gaps or only 1 year of data. The
list of in situ sites used can be seen in Table 2 partitioned by
vegetation type.

2.4 Performed experiments

Before performing the optimisations, for each of the sites in
this study, a two-step spin-up is performed. The first step
helps to put the prognostic variables, including vegetation
state, soil carbon pools and soil moisture content, at equi-
librium. The available meteorological forcing is cycled over
several millennia (with pre-industrial CO2 concentrations) to
ensure that the long-term net carbon flux is close to zero. Af-
ter reaching equilibrium, a second simulation is performed
(transient) from the year 1860 to 1 year before the first forc-
ing year while increasing the CO2 concentration at each sim-
ulation year following global historical observations.

Before performing the optimisations, we also conduct
a sensitivity analysis of the parameters (as described in
Sect. 2.1.2 and shown in Table 1). A sensitivity analysis tests
how differently the model outputs change with respect to dif-
ferent parameters. This is done to ensure that only parame-
ters showing some sensitivity to the model outputs are used
in the optimisation, thereby minimising the risk of using pa-
rameters that are weakly constrained by the fluxes. This is an
important step since we want to avoid constraining parame-
ters that will have a small impact on the optimisation but that
have the potential to significantly degrade the model–data fit
against processes not included in the calibration.

Once spun up and with the list-sensitive parameters, we
perform two main sets of optimisations, always starting from
this spin-up. The first is over the FLUXNET sites only, while
the second also includes data from the FACE sites. Due to the
CO2 fumigation over the FACE sites, NEE is not measured at

these sites, and therefore GPP and TER estimates cannot be
derived. Instead, for the FACE sites, we have annual NPP and
daily LAI data. Throughout this study, we perform multi-site
(MS) optimisations, i.e. optimisations executed over multi-
ple sites of the same PFT simultaneously in order to find one
common set of optimised parameters. Each optimisation is
run for 20 iterations, which we found to be sufficient for the
system to converge. For each iteration, 32 chromosomes are
used, i.e. 32 different combinations of parameter values. We
leave the last year of each FLUXNET site out of the optimi-
sation to have independent data for the validation step of the
analysis.

The first set of optimisations tests two different combina-
tions of gross and net carbon fluxes.

– FlxGR: two MS optimisations against daily GPP and
TER, one for all of the TeBS sites and one for all of
the TeNE sites

– FlxGN: two MS optimisations against daily GPP and
NEE, one for all of the TeBS sites and one for all of
the TeNE sites

In each case, two fluxes are used in optimisations.
Note that GPP and TER are derived from NEE with
NEE=TER−GPP. This means that these data are model-
derived estimates, which could introduce additional uncer-
tainty into the results. However, by separating the fluxes,
we get a better understanding of the underlying mechanisms
constraining two different ecosystem functions and are able
better to diagnose the overestimations or underestimations of
the assimilated processes, as initially discussed in Santaren
et al. (2007). We are especially interested in the GPP con-
straint since this will give us an insight into plant productiv-
ity and will allow us to assess the CO2 fertilising effect under
nitrogen limitation. GPP is also directly used in the calcula-
tion of water use efficiency (WUE), here defined as the ratio
between GPP and transpiration, one of the diagnostics we
consider at the end of the study.

We further acknowledge that the data streams are not in-
dependent of one other. This poses a challenge when work-
ing in a Bayesian framework, especially when defining the R
matrix in Eq. (1). Although there are methods for including
the correlation between different data streams in R, these are
relatively new and require a lot of extra analysis beyond the
scope of this study. Instead, we rely on the standard method
of inflating variances (Chevallier, 2007).

The optimal parameters found by optimising against the
FLUXNET sites improve the fit to contemporary data. How-
ever, it is unclear whether the predicative skill of the model
is improved. Therefore, after assessing the FLUXNET re-
sults, the next step is to incorporate the FACE sites. Using
a simultaneous approach, the FACE and FLUXNET sites are
optimised together in this second set of experiments. This ap-
proach ensures that the information is not lost between steps,
as could be the case in the step-wise approach when the opti-
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Table 2. List of the in situ FACE and FLUXNET sites used in the study. The FLUXNET sites are labelled by a country code (first two letters)
and site name (last three letters). The FACE sites are both found in the US. The period corresponds to the available years of data for each of
the sites.

Temperate broadleaf summergreen (TeBS) Temperate needleleaf evergreen (TeNE)

Site ID Years Coordinates Site ID Years Coordinates

Free air CO2 enrichment experiment sites

ORNL 1999–2008 35.54, −84.20 DUKE 1996–2007 35.58, 70.5

FLUXNET2015 sites

DE-Hai 2000–2012 51.08, 10.4 CZ-Bk1 2004–2008 49.50, 18.54
DK-Sor 1996–2014 55.49, 11.64 DE-Tha 1996–2014 50.96, 13.57
FR-Fon 2005–2014 48.48, 2.78 FR-LBr 1996–2008 44.72, −0.77
IT-Col 1996–2014 41.85, 13.59 IT-Lav 2003–2014 45.96, 11.28
IT-PT1 2002–2004 45.20, 9.06 IT-Ren 1998–2013 46.57, 11.43
IT-Ro1 2000–2008 42.41, 11.93 IT-SRo 1999–2012 43.73, 10.28
IT-Ro2 2002–2012 42.39, 11.92 NL-Loo 1996–2013 52.17, 5.74
US-Ha1 1991–2012 42.54, −72.17 RU-Fyo 1998–2014 56.46, 32.92
US-MMS 1999–2014 39.32, −86.41 US-Blo 1997–2007 38.90, −120.63
US-UMB 2000–2014 45.56, −84.71 US-GLE 2004–2014 41.37, −106.24
US-WCr 1999–2014 45.81, −90.08 US-Wi4 2002–2005 46.74, −91.17

misations are done one after the other. The optimisations are
set up to give a higher weight to the single FACE site in each
case, so that KFlx = 1 and KFACE = n in Eq. (2), where n is
the number of FLUXNET sites for the given PFT. Based on
our results (see Sect. 3.1) and our motivation to better cap-
ture the productivity of the different ecosystems, we choose
to focus on the former FLUXNET optimisation, i.e. the one
against GPP and NEE. Each of the following FACE site ex-
periments is performed simultaneously with a FlxGN optimi-
sation over the relevant PFT.

– FlxGN-AMB: two optimisations against annual NPP and
daily LAI, one each for the DUKE and ORNL sites
at ambient CO2 concentrations, perform simultaneously
with a GPP–NEE multi-site FLUXNET optimisation.

– FlxGN-ELE: two optimisations against annual NPP and
daily LAI, one each for the DUKE and ORNL sites at
elevated CO2 concentrations, perform simultaneously
with a GPP–NEE multi-site FLUXNET optimisation.

– FlxGN-BOTH: two optimisations against annual NPP
and daily LAI, one each for the DUKE and ORNL sites
with both ambient and elevated CO2 concentrations si-
multaneous, perform simultaneously with a GPP–NEE
multi-site FLUXNET optimisation.

For the final part of this study, we consider the sensitivity
of the simulated GPP, NPP and WUE to CO2 increase whilst
keeping the other drivers constant. Each of the FLUXNET
sites is tested by running idealised 100-year long simulations
starting from present-day atmospheric CO2 and 380 ppm and
increasing CO2 by 1 % yr−1, leading to a near tripling of CO2

by the end of the simulation. This is done for both the prior
and optimised models, using default model parameters and
the FlxGN-BOTH model parameters, respectively.

3 Results and discussion

3.1 FLUXNET optimisations

The nitrogen cycle version of the ORCHIDEE model used
in this study has not yet been optimised against FLUXNET
data, although it has been extensively tuned manually. There-
fore, the first step is to see whether the fluxes over the TeBS
and TeNE sites are well represented in the model and whether
they can be optimised using observed data and the sensi-
tive parameters identified in the Morris experiment (Table 1).
For the FLUXNET optimisation, two tests are conducted.
The best-performing optimisation will serve as the starting
point for the optimisations including data from the FACE
sites. In this section, we present the results from both MS
FLUXNET optimisations: FlxGR and FlxGN. Figure 1 shows
the mean seasonal cycle across all the FLUXNET sites for
each PFT considered. We show the modelled GPP, TER and
NEE fluxes against the observed time series.

For the deciduous sites (TeBS; Fig. 1, left-hand column),
we see that both GPP and TER are overestimated by the prior
model, and the NEE sink is underestimated. This overestima-
tion is the most severe for TER, where the prior model sim-
ulates a maximum of approximately 9 gC m−2 d−1 when the
maximum TER observed is half that. In contrast, the overes-
timation for GPP is very slight when found at and after the
peak. Both optimisations improve the model–data fit against
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Figure 1. The main panel in each column shows the PFT-averaged
mean seasonal cycles of daily observed and simulated GPP, TER
and NEE fluxes using different parameter values. The side panels
show the model–data RMSD for the daily time series at each site,
with the black horizontal bars showing the mean value across the
sites.

GPP by correcting the overestimation found after the peak.
FlxGN performs best, with the average seasonal peak now the
same as the observations. FlxGR on the other hand reduces
the peak below that observed. Similarly, both optimisations
now start production later in the year, degrading the fit to the
observations in the early months. In ORCHIDEE, deciduous
sites lose all their leaves in winter, and therefore no photosyn-
thesis occurs before the leaves start growing back in spring.
In contrast, the observations never go to zero, implying that
there is undergrowth or evergreen vegetation present that we
are not accounting for in the model set-up. When looking at
the root-mean-square deviations (RMSDs) of the individual
sites, we also see that FlxGN reduces the spread relative to the
prior. For TER, both optimisations improve the model–data
fit over the whole period, with FlxGR performing slightly bet-
ter. This is not surprising since this optimisation directly con-
siders the TER component of NEE. The optimisations mainly
change the magnitude of the peak and do not correct for its
late timing. When looking at the RMSD, we can see that a
group of sites is driving the overestimation of TER, with val-
ues close to 4.5 – this is corrected for in both optimisations.
For NEE, the FlxGN optimisation performs better than FlxGR,
especially in fitting the autumn month. However, the overes-
timation of summer TER with this parameter set means we
do not attain the minimum of the NEE trough. We note that,

for NEE, the posterior spreads of the RMSDs over all the
sites are the same for both optimisations.

For the evergreen sites (TeNE; Fig. 1, right-hand col-
umn), the optimisations improve the GPP underestimation
in the prior model by increasing the peak by approximately
2.5 gC m−2 d−1. However, this falls short of correcting the
full overestimation, which is closer to 4 gC m−2 d−1. The
FlxGN optimisation performs best, with the timing of the
average peak closest to the observed value. However, both
optimisations degrade the average fit to TER, increasing the
overestimation found when using the prior set of parameters.
Both optimisations move the summer peak up by between
0.5 and 1 gC m−2 d−1, with FlxGN increasing the most. When
considering the fit of the individual sites (right-hard part of
each panel), we note that two anomalous sites are driving this
behaviour. These sites (IT-Lav and US-Wi4) have respiration
rates much lower than the other sites. Since we cannot match
the respiration rates, we cannot capture the full NEE dip in
summer. However, the improved GPP with both optimisa-
tions does mean that the NEE is slightly improved compared
to the prior mode.

In these optimisations, we have included a parameter,
KSoil, which acts as a multiplicative factor of the initial soil
and nitrogen pools (slow, passive and labile). We have used
such a parameter in past ORCHIDEE optimisations at the
FLUXNET sites (e.g. Kuppel et al., 2012; Peylin et al., 2016;
Bastrikov et al., 2018; Bacour et al., 2023) and found that it
played a large role in improving the model–data fit against
respiration. Therefore, it seems counter-intuitive that we do
not improve the fit to respiration as much as expected when
including KSoil in the ORCHIDEE v3 optimisations, espe-
cially for the TeNE sites. The past ORCHIDEE experiments
all used a previous version of ORCHIDEE without the ni-
trogen cycle, so this factor solely acted on the carbon pools
and heterotrophic respiration. HereKSoil multiplies both car-
bon and nitrogen pools to maintain the carbon/nitrogen ratio.
However, by acting on the nitrogen pools, we directly impact
the mineralisation rate and thus indirectly the plant N uptake,
leaf N content, Vmax and, therefore, GPP. While KSoil used
only to impact soil respiration, it now impacts both respira-
tion and GPP, and so the optimisation needs to find a compro-
mise to fit both. To adjust the respiration, KSoil is decreased,
reducing the carbon and nitrogen pools in the soils, but, at
the same time, GPP is significantly reduced, deteriorating its
fit to observations.

Overall, the ORCHIDEE model reasonably represents the
TeBS and TeNE carbon fluxes, although respiration at the
TeNE sites is high, even after optimisation. The FlxGN op-
timisation results in the best-simulated production for both
types of vegetation.

3.2 Incorporating data from the FACE sites

Given the results from the previous section and our motiva-
tion to improve the model performance regarding ecosystem
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productivity, we will further include the FACE data in the
FlxGN optimisation.

3.2.1 Improving simulated NPP values

At ORNL, we can see in Fig. 2 that the uncalibrated ver-
sion of ORCHIDEE (prior) overestimates the yearly NPP
under both ambient and elevated conditions. This is consis-
tent with prior GPP overestimation observed at the TeBS
FLUXNET sites (Fig. 1). When using parameters from the
FLUXNET-only optimisation (FlxGN), we partly reduce this
overestimation. For both CO2 conditions, including FACE
data as an additional constraint in the optimisation (FlxGN-
AMB, FlxGN-ELE and FlxGN-BOTH) improves the estima-
tion of NPP compared to solely relying on the data from the
FLUXNET sites. Under all the atmospheric CO2 conditions,
FlxGN-ELE reduces the RMSD the most, followed by FlxGN-
BOTH and then by FlxGN-AMB. We would expect the latter
to perform best at fitting NPPAMB since it uses the observa-
tions in the optimisation, unlike FlxGN-ELE. However, as we
will see later in Fig. 3, this is because the fit to LAI, the other
part of the cost function, is improved most with the FlxGN-
AMB optimisation.

When considering the NPP ratio (elevated over ambient
values) at ORNL, we see that the observations show a de-
creasing trend, suggesting a possible progressive nitrogen
limitation. The prior model is unable to capture this trend
with a fixed ratio of around 1.3. Similarly, the FLUXNET-
only and optimisation under ambient conditions do not
mimic this decreasing trend. When using the FACE data from
the elevated experiments in optimisation (FlxGN-ELE and
FlxGN-BOTH), the resulting ratio trend is negative. The ob-
servations of NPPAMB and NPPELE clearly show a slight de-
crease in NPP for the last years of the observations. Based on
additional experiments, it has been shown that this limitation
is due to nitrogen limitation (Norby et al., 2010). Again, the
prior does not capture the NPP decrease. For optimisations,
FlxGN-ELE and FlxGN-BOTH may show a small signal, al-
though it is not so obvious. This leads us to think that OR-
CHIDEE does not reproduce the dynamics of nitrogen in the
soil well, notably the reduction in nitrogen availability for the
plant, at least for this site. It is also possible that the model
starts with too large a nitrogen content in the soil. Since pa-
rameter optimisation is insufficient for capturing this trend,
we would instead need structural changes to the ORCHIDEE
land surface model or possibly set a better initial nitrogen
available content.

For DUKE, the prior model underestimates the NPP values
under both CO2 conditions, which again is consistent with
the GPP fit seen at the other TeNE sites (Fig. 1). The optimi-
sation against FLUXNET data corrects this underestimation
slightly. However, it is only by including the FACE data in
the optimisation that we get the right magnitude and start
getting the right inter-annual pattern. In each case, the opti-
misation performing best is the one that includes the relevant

observations, i.e. FlxGN-AMB under ambient conditions and
FlxGN-ELE under elevated conditions. The FlxGN-BOTH op-
timisation is able to fit both the ambient and elevated data,
reducing the RMSD to a similar extent to the best optimi-
sation. When considering the elevated-to-ambient NPP ratio
for DUKE, we see that the prior model and the FLUXNET-
only optimisation (FlxGN) perform worst, with some values
below 1. Values below 1 suggest that the forest is less produc-
tive under increased atmospheric CO2. Looking more closely
at the ORCHIDEE simulations for these years and parame-
ter settings, we found that the mean-annual GPP under el-
evated conditions is higher than GPP under ambient condi-
tions. Therefore, changes in autotrophic respiration are re-
sponsible for the negative NPP ratio at the site. Maintenance
respiration is a function of leaf nitrogen content; the more
nitrogen, the more respiration. It is, therefore, possible that
the maintenance respiration sensitivity to leaf nitrogen is too
high in the model for TeNE under these parameter settings,
at least at the DUKE site. The optimisations using FACE
data do much better at simulating positive ratios, with FlxGN-
BOTH performing best. However, none of the optimisations
constantly achieves the high magnitude of around 1.3 in the
observations.

3.2.2 Improving the fit of the LAI

During the FACE experiments, we also optimised the model
against daily LAI values (Fig. 3) since this allows us to
capture some of the sub-annual variability driving NPP. For
ORNL, under ambient and elevated CO2, the prior model
overestimates the LAI, peaking late and keeping its leaves
late into the winter. The optimisation against the FLUXNET
sites partly fixes both of these issues, bringing forward the
leaf fall and decreasing the seasonal peak to 65 % of the
observed peak. When adding the FACE data under ambient
conditions to the optimisation (i.e. FlxGN-AMB) we get the
best fit, although the peak is still underestimated. The optimi-
sation against both atmospheric conditions (FlxGN-BOTH)
performs similarly to FlxGN-AMB. When we only add the
elevated data to the optimisations, we do the worst of the
FACE optimisations, with the summer peak nearly half of the
observed one. This explains why FlxGN-ELE outperformed
FlxGN-AMB in fitting NPP at ORNL (Fig. 2). By improving
NPP to a larger extent than FlxGN-AMB, FlxGN-ELE was
unable to improve the LAI as much. This highlights one of
the common issues with multi-stream parameter estimation
– improving the fit against one data stream can be part of
one trade-off against another. Sometimes this can even be a
degradation compared to the prior. Finally, although leaves
are kept into the winter, unlike in the observations, the LAI
seasonality is much improved in the optimisations compared
to the prior model.
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Figure 2. Time series of annual NPP under ambient (NPPAMB; top) and elevated (NPPELE; middle) CO2 conditions for each of the ORNL
(a) and Duke (b) FACE sites. The ratios between NPP under elevated conditions and NPP under ambient conditions are shown in the bottom
row, with a dotted-grey line indicating where the ratio is 1. The observations are shown in black with error bars. The coloured lines represent
different ORCHIDEE model simulations under different parameter sets – “prior” refers to the standard ORCHIDEE run using uncalibrated
parameters, and the different “Flx” runs denote the data streams used in the optimisations (defined in Sect. 2.4). The bar chart inset in each
time series panel shows the RMSD between the observations and each model run. The multi-annual NPP mean ± its standard deviation is
shown next to each panel.

3.2.3 Posterior parameter values

In Fig. 4, we consider how the different parameters have
changed by comparing results from the FLUXNET-only op-
timisation and the optimisation including the FACE data. For
the temperate broadleaf summergreen parameters it is hard to
distinguish significant patterns. The posterior values some-
times move in the same direction for both optimisations (e.g.
KN, FCNwood, Rroot and z), and at other times the parameters
are pulled in different directions (e.g. CNleaf,max and Rleaf).
When considering the most sensitive parameters, both opti-
misations agree with the direction of change, with the excep-
tion of NUEopt. For the photosynthetic parameters A1 and
B1, we see that these are changed during the FLUXNET-only
optimisation but are less important in correcting the fit when
the FACE data are included in the optimisation. Overall, this
highlights that adding the FACE data can pull the parame-
ters in a different direction than when using only FLUXNET
data. This indicates that there are likely compensating effects
(or a different repartitioning of the model error). It is possi-
ble that, with more datasets, the results would be more ro-

bust, but this would need to be confirmed with the use and
assimilation of additional data streams.

In contrast, for the temperate needleleaf parameters, nearly
half (11 out of 23) of the parameters were unchanged (or
only slightly changed) during the FLUXNET-only optimi-
sation. However, when optimised with the additional FACE
data, these parameters changed greatly. These parameters in-
clude a number of the most sensitive parameters, suggesting
that these are especially important in capturing the model re-
sponse under both atmospheric regimes for needleleaf sites.

Although looking at these parameter values can be very
informative, we must remember that there are complex inter-
actions between the parameters and processes that will not
be evident from just looking at these values.

3.2.4 Maintaining the fit to the FLUXNET sites

The misfit part of the cost function (i.e. measuring the dif-
ference between the model and observations) is made up of
two components during the FACE optimisations. The first is
the fit of the FACE site to annual NPP (Fig. 2) and daily LAI
(Fig. 3) under ambient or evaluated conditions. The second
is the fit of the multiple FLUXNET sites to daily GPP and
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Figure 3. Model fit against seasonal LAI under different param-
eter sets at ORNl and DUKE. LAI under ambient CO2 condi-
tions (LAIAMB) shown in the top row and elevated CO2 conditions
(LAIELE) in the bottom row. The bar chart inset in each panel shows
the RMSD between the observations and the model.

NEE. Although the FACE component was weighted during
the optimisation (see Sect. 2.4), it is important that we main-
tain a good model–data fit for the FLUXNET sites to ensure
confidence in the optimised parameter values. In Fig. 5, we
consider the fractional change in the model–data RMSD (cal-
culated by dividing the posterior RMSD by the prior RMSD).
In other words, this helps us see to what extent the calibra-
tion with FACE data changes the estimated fluxes shown
in Fig. 1. For both vegetation types, the best improvement
against both GPP and NEE is found when using parameters
from the experiment solely optimising over the FLUXNET
sites (FlxGN). This is true for both the optimisation years, i.e.
the years used in the optimisation, and the validation year, i.e.
the year of independent data omitted from the optimisation.
Adding further constraints by including FACE data reduces
the improvement in the model–data fit. After all, even though
they are closely related, the FACE optimisations looked at
improving the fit to NPP and LAI, not GPP and NEE. How-
ever, the sets of parameters obtained from these latter opti-
misations will give a better compromise for both the FACE
and FLUXNET sites.

For the TeBS sites, on average, we improve the fit to GPP
over the optimisation years to the same extent for all the op-
timisations. Slightly higher reductions in the fractional GPP
RMSD change are observed for the validation year. How-

ever, for NEE, fractions in RMSD are different depending on
the optimisation – with the ambient and both optimisations
resulting in the smallest decreases for the calibration years.
For the validation, these two optimisations degraded the fit
for the validation year (20 %).

In contrast, for the TeNE sites against the calibration years,
the optimisations all give similar reductions in the model–
data fit RMSD for both NEE and GPP. When confronted with
the validation year, the response is more spread out, with the
FLUXNET-only optimisation performing best, closely fol-
lowed by FlxGN-BOTH.

For the validation, we only used 1 year of data, which
helps to explain why the results are more spread out. With
1 year of data, we are more susceptible to specifics of that
given year instead of trends over a longer period. Ideally, we
would want to validate over a larger period. However, some
of the sites in this study only had a few years in their data
record, making this impossible.

3.3 Projections using the optimised models

To conclude this study, we test how the optimised model
parameters impact the model responses to CO2 increase.
We especially want to consider the additional information
gained from including FACE data in the optimisation. As
such, for this last experiment, we use parameters of the FlxGN
(FLUXNET-only) and FlxGN-BOTH (FLUXNET and FACE
data) optimisations. The FlxGN-BOTH optimisation resulted
in the best compromise in simulating NPP under ambient and
elevated conditions as well as their ratio while also maintain-
ing a satisfying model–data fit to GPP over the FLUXNET
sites.

To test the model response to CO2 increase, we run an ide-
alised 100-year long experiment increasing CO2 by 1 % yr−1

over all the FLUXNET sites. This is similar to the exper-
iment done in Vuichard et al. (2019), where the model was
also assessed with GPP, transpiration and WUE. Note that the
prior projections shown here are similar to those obtained in
Vuichard et al. (2019). We first note that the optimised mod-
els predict lower starting values of GPP, transpiration and
WUE for TeBS when compared to the prior model (Table 3).
This is consistent with Figs. 1 and 2, where for TeBS the prior
had the highest productivity. Similarly, the behaviour for the
TeNE sites mirrors earlier findings – the prior model underes-
timated productivity. The optimisations lead to higher start-
ing values (except for WUE), and including data from FACE
is found to induce a larger increase. When considering the
total plant N uptake for both vegetation types, the prior starts
with a high value and the optimised runs with much lower
values.

In Fig. 6, we consider the net increase over the 100-year
simulation. For both vegetation types, the rate of increase in
GPP found by using parameters from the FLUXNET-only
optimisation is the highest. For TeNE, the curve is starting to
plateau due to a progressive nitrogen limitation. However, in
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Figure 4. Posterior parameter values of the FLUXNET-only optimisation (blue, FlxGN) and the optimisation incorporating FACE data under
both atmospheric regimes (orange, FlxGN-BOTH). The horizontal line represents the prior value of each parameter and each box spans the
range of variation allowed for each parameter during the optimisation. The parameters highlighted in bold correspond to the parameters
identified as most sensitive in the preliminary Morris experiment (see Table 1).

Table 3. Mean values at the start of the 100-year experiment and net change by the end of the experiment for the prior model and the
optimised models.

TeBS TeNE

Prior Optimised Prior Optimised

FLUXNET-only FLUXNET and FACE FLUXNET-only FLUXNET and FACE

GPP (k gC m−2 yr−1) 5.22+ 0.55 3.58+ 1.95 4.03+ 0.99 2.85+ 0.73 3.93+ 1.73 4.59+ 0.66
Transpiration (mm yr−1) 417.29–83.43 342.93–47.06 365.57–87.52 242.62–80.05 313.35–79.92 357.47–119.82
WUE (%) 123.46+ 100.21 104.64+ 85.25 110.13–72.14 114.76+ 104.48 95.17+ 78.5 127.85+ 102.21
Plant N uptake (kg N m−2 yr−1) 7.72–0.47 2.17+ 0.09 1.86–0.31 7.24+ 0.02 1.14+ 0.12 1.32–0.29

both cases, the rate of increase is much faster compared to the
runs with parameters from the FlxGN-BOTH optimisation.
The fertilisation rate decreases compared to the FLUXNET-
only optimisation. In Fig. 2, we saw that the FlxGN-BOTH
optimisation was starting to model the declining productivity
response at ORNL. We may still be overestimating the fer-
tilisation effect over the TeBS sites, and we could expect an
even stronger response to nitrogen limitation – further reduc-
ing this GPP increase. Although the GPP increase is similar
to the prior model for forest types, the larger spread among
the sites for FlxGN-BOTH is notable – with a negative GPP

change at some sites suggesting a stronger nitrogen limita-
tion under these parameters.

For transpiration rates over both TeBS and TeNE, the
FlxGN simulations result in the smallest change by the end
of the century. In contrast, the simulations FlxGN-BOTH re-
sult in the largest change. For WUE, the differences observed
in GPP and transpiration are mostly cancelled out, and there-
fore the different parameters do not elicit a great variation in
responses. For TeBS, the prior and FlxGN simulations give
a similar increase, with FlxGN-BOTH suggesting a slightly
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Figure 5. Fractional change in the model–data RMSD for
the daily NEE and GPP at each site grouped by PFT ob-
tained by the different optimisations. Fractional change is cal-
culated by dividing the posterior RMSD by the prior RMSD
(i.e. RMSD

[
y,M(xopt)

]
/RMSD

[
y,M(xb)

]
using the notation in

Sect. 2.2). Values below 1 represent an improvement in the model–
data fit, whereas values above 1 represent an increase in RMSD
compared to the prior run. The crosses show the mean value across
the sites for a given optimal parameter set. This figure complements
Fig. 1, here showing the optimisations using the FACE data fit the
time series compared to the prior model and the optimisation (GN)
without FACE.

weaker increase. For TeNE, it is the opposite – FlxGN is
slightly weaker than the other two simulations.

For plant N uptake, changes over the 100-year period are
small in magnitude but vary between the different optimi-
sations. The prior model shows a range of responses over
the different sites (evidenced by the large spread), overall de-
creasing the rate of N uptake for TeBS and increasing the
rate of uptake for TeNE. The FLUXNET-only optimisations
lead to a slight increase in plant N uptake by the end of the
century for both vegetation types. In contrast, the FACE op-
timisation leads to a decreased plant N uptake. This is espe-
cially notable for TeNE, where the spread of responses over
the sites is greatly reduced. In all the cases, changes to the
rate of change occur during the first half of the simulations,
plateauing to a constant value for the rest of the runs.

Note that our experiment only looks at increasing CO2
while keeping the other drivers constant. It is possible that
we would see different responses if we were to include
changes in meteorological forcing (to mimic climate change)
or changes in nitrogen deposition and fertilisation, which
would change nitrogen limitation and responses to water
stress. Although we performed a sensitivity analysis to select
the parameters, it is possible that additional parameters (e.g.
ones controlling water stress or controlling the allocation of

Figure 6. Effect of changes in the atmospheric CO2 concentra-
tion on GPP, NPP, water use efficiency (WUE) and plant N uptake
for different model parameter sets. Atmospheric changes are rep-
resented by a 1 % CO2 increase per year. The prior model (grey)
and optimised model (FlxGN-BOTH; orange) were run at each
FLUXNET site (see Table 2). The thick lines represent the mean
simulated across all the sites, while the shaded areas represent the
standard deviation. The mean and standard deviation at the end of
the 100-year simulation are shown on the right-hand side of each
panel.

carbon in the plant) will give a different response. Further-
more, direct structural changes or addition to the model code
could also change the results. Nevertheless, the fact that dif-
ferent parameters give such a varied model response to ele-
vated CO2 for a given model structure highlights the impor-
tance of finding a robust set of parameters to have faith in.
When performing the FLUXNET optimisations, the optimi-
sation against GPP and NEE gave the best fit to both quan-
tities, resulting in sets of parameters that worked well across
each PFT. However, when considering production through
NPP and LAI under different atmospheric CO2 conditions,
we found that the parameters were unable to capture the
differences observed in data under different CO2 regimes.
Instead, the parameter sets found by optimising the model
against FLUXNET data and both ambient and elevated CO2
conditions were found to be more robust. These parameters
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resulted in the best fits overall against NPP and LAI under
two different CO2 regimes. As such, we have more confi-
dence in these parameters and their ability to simulate terres-
trial production under different atmospheric CO2 conditions,
leading us to have more faith in the model projections per-
formed with them.

4 Conclusions

As our terrestrial models become more complex through the
addition of more processes, we need to confront them with
observed data to ensure we have confidence in the model’s
predictions. Manipulation experiments allow us to test the
model under different CO2 regimes and its capabilities to re-
produce the ecosystem responses. FACE sites in particular
are an important tool in evaluating modelled ecosystem re-
sponse to climate change. They can be thought of as space-
for-time substitution experiments (Rastetter, 1996) but where
the change in atmospheric CO2 is controlled and even manip-
ulated to exceed conditions naturally found around the globe
currently. By optimising model parameters against data from
both ambient and elevated atmospheric CO2 conditions, we
gain confidence in the model’s ability to reproduce fluxes un-
der different atmospheric conditions. It will be interesting to
use these parameters further to assess the evaluation of car-
bon stocks under high concentrations of CO2 and at a larger
scale to evaluate more directly the impact on the global sink.

We find that through the different optimisations of this
carbon–nitrogen version of ORCHIDEE, we are able to im-
prove the representation of simulated productivity. All the
optimisations are able to improve modelled GPP, and we gen-
erally improve the magnitude for NPP for the two levels of
atmospheric CO2. However, we do not achieve as good an
improvement against respiration and, therefore, against NEE.
Although we are unable to capture fully the inter-annual vari-
ability of NPP after optimisation, at ORNL we do start to
model a negative trend for the NPP ratio, which is apparent
in the observations but is not simulated in the prior model.
This suggests that the optimised parameters are able to cap-
ture the progressive nitrogen limitation at this site. We do
struggle to capture the seasonal cycle of LAI properly at both
FACE sites, suggesting incorrect LAI allocation. These re-
sults highlight the fact that optimising a land surface model
(LSM) with the nitrogen cycle is more difficult and com-
plex than with a carbon-only LSM given the increased model
feedbacks. In particular, the dependence of plant productivity
on soil nitrogen availability and in contrast the dependence of
soil N content on litter input (and hence productivity) induce
strong positive feedbacks. This provides a warning to other
modelling groups looking to calibrate the carbon and nitro-
gen cycles in their models. Overall, the current optimisation
performs slightly worse compared to the prior optimisations
of previous ORCHIDEE versions (e.g. Kuppel et al., 2012).
One example of increased model feedbacks is through the

KSoil parameter. Without the nitrogen cycle, by changing the
initial carbon stocks, this parameter was able to fix the mag-
nitude of the respiration flux. However, the parameter now
also changes the initial nitrogen stock and hence the mineral-
isation flux in the soil, which impacts GPP. Another approach
would have been to have several multiplicative factors, each
changing different pools, or indeed one for each C and N.
However, this would likely lead to more complications given
the strong feedbacks observed. If one pool declines more
than others in terms of C and N content or if one pool be-
comes more depleted in N, it is probable that the model will
enter a transient phase with potentially strong compensating
fluxes, such as a large net carbon flux, to restore internal con-
sistency. Ideally, we would optimise various model parame-
ters that govern the turnover time and the C/N ratio of each
pool throughout the entire spin-up period. However, achiev-
ing such optimisation is not currently feasible.

Although the optimisation is not as optimal as that
achieved with a carbon-only model, this work opens a new
avenue to validate LSMs quantitatively with FACE data. We
see that not only is there a benefit to adding FACE data on top
of FLUXNET data when optimising a land surface model,
but that it is, in fact, risky not to. The FLUXNET-only op-
timisations do not perform well under elevated conditions,
which is critical when predicting the terrestrial response to
climate change. Furthermore, since we see that the future
evolution of terrestrial productivity change is sensitive to the
parameter values used in the model, getting these parame-
ters right is critical. This is notable for both vegetation types
where the FLUXNET-only optimisations and the optimisa-
tions with FACE data give very different trajectories in the
idealised 1 % CO2 experiments, with the FLUXNET-only
optimisations likely overestimating the CO2 fertilisation ef-
fect. However, we do need to be cautious in assessing these
results since we are only using one FACE site for each PFT,
meaning we are likely tuning to the specificities of that site.
For example, ORNL shows a progressive nitrogen limitation,
but this is not expected over all the sites. Ideally, we would
include a lot more FACE sites to capture different conditions.
In particular, if we could optimise by grouping sites based on
different levels of nitrogen limitation, then if the posterior pa-
rameters are found to be similar, the model processes allow
for these differences.

In any optimisation, there is always a danger of overfit-
ting to data, limiting the generalisability of the calibrated
model. By optimising the model against a number of dif-
ferent constraints (i.e. more than one data stream), we de-
crease the risk of overfitting and therefore gain some confi-
dence in our parameter and hence in the projections. Such
experiments can help us to describe better the future fertil-
ising effect of CO2 under possible nitrogen limitation. How-
ever, we find that, in our study, two sites are not sufficient
to draw such conclusions about terrestrial responses to ele-
vated CO2, which could vary over different ecosystems. Al-
though we have shown this approach of joint optimisations to
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be promising, more sites are needed. It would also be inter-
esting to have different levels of nitrogen input at these sites
to assess more clearly the nitrogen limitation on the CO2 fer-
tilisation effect. We are also limited by the data the sites can
provide. Due to the CO2 fumigation over the FACE sites,
daily NEE cannot be measured at the FACE sites, and there-
fore GPP and TER estimates cannot be derived. These vari-
ables are more directly linked to productivity than leaf area
index, the variable we use in our optimisations. In future opti-
misations, we might also want to include more nitrogen-type
variables in the cost function, such as leaf nitrogen content.
There are other processes at play that also need to be as-
sessed. For example, the effect of soil moisture and the stress
response to water availability will also impact the mineralisa-
tion of organic matter and, thus, nutrient availability. Finally,
structural changes do need to be made to the model to bet-
ter capture the inter-annual variability of simulated NPP and
LAI. This highlights how we can use FACE data to identify
structural issues in models, providing an important tool for
model development.

Identifying structural deficiencies is the main strength of
parameter estimation – we need to be sure that we are not
simulating the right model output for the wrong reasons. In-
deed, if we had not been able to find a set of parameters
that gave a satisfactory fit to both atmospheric regimes, this
would have highlighted a missing process in the model. Ide-
ally, we would want to calibrate under ambient conditions
and test the robustness of the theory under elevated CO2;
however, given all the missing (e.g. adaptation) or highly
simplified processes (nutrient limitation), using both condi-
tions is one approach to improve the overall model behaviour
while highlighting these deficiencies. Although not shown,
our framework also allows us to compute the posterior pa-
rameter uncertainty, which again can be very informative for
model development. We do not discuss them in this paper
since our imperfect set-up (i.e. the diagonal R matrix) means
the information content of the observations is overestimated
in the optimisation, but we do find that the uncertainty pa-
rameters are strongly reduced in all the cases.

Although we performed a sensitivity analysis to select sen-
sitivity model parameters, a large number of parameters were
kept, some of which are indirectly impacted by the processes
optimised. This can pose a risk, since changing such param-
eters may have an important impact elsewhere in the model
and, therefore, may result in a degradation in the model–
data fit against processes not considered in the optimisation.
Therefore, this study is only a first step toward a more com-
prehensive approach with more data streams.

Nevertheless, although it is by no means exhaustive, this
proof-of-concept experiment highlights the importance of
manipulation experiments and the additional information
they can provide for model improvement. This is the first
study of a global process-based model using data in this
way. With more FACE sites, these types of data could be
used more consistently as part of the model optimisation

procedures. Other data streams, such as the normalised dif-
ference vegetation index, solar-induced fluorescence satellite
data and tree rings, could also be used to complement such
optimisations, giving the best constraints on the model pa-
rameters and hence on future climate predictions.

Appendix A: Optimised parameters

All processes and equations of ORCHIDEE can be found
in the different documenting publications (e.g. Krinner
et al., 2005) as well as on its website (https://forge.ipsl.
jussieu.fr/orchidee/wiki/Documentation/UserGuide, last ac-
cess: 23 August 2023). Here, we only highlight the impacted
modules, summarise the equations in which the optimised
parameters feature and cite the relevant publications. Param-
eters optimised in the study, listed in Table 1, are coloured
red in the following text.

A1 Nitrogen-related processes

The nitrogen-related parameters and their equations are thor-
oughly described in Vuichard et al. (2019). In this version of
ORCHIDEE-CN, we prescribe leaf nitrogen concentrations.
This means that the leaf C/N ratio is fixed within a pre-
scribed range given by two of our parameters ([CNleaf, min;
CNleaf, max]; gC[gN]−1). To account for the nitrogen limita-
tion on photosynthetic activity, VCmax (the maximum rate
of RuBisCO-activity-limited carboxylation) becomes a func-
tion of the leaf nitrogen content (Nl) as proposed by Kattge
et al. (2009):

VCmax = NUEopt ·Nl, (A1)

where NUEopt (µmol CO2 s−1[gNleaf ]
−1) is the nitrogen-use

efficiency.
Nl decreases exponentially from the top to the bottom of

the canopy with decreasing light levels or increasing canopy
depth. The value of Nl at the top of the canopy, Nl(0), is
expressed as a function of the total canopy N content, Ntot,
and the LAI of the total canopy, Ltot:

Nl(0)=
KNNtot

1− exp(−KNLtot)
. (A2)

KN is a specific extinction coefficient. Note that this is differ-
ent to the extinction coefficient k used to calculate the light
profile within the canopy, although both are optimised. As we
decrease through the canopy, the value of Nl at a cumulative
LAI (L) is defined following Dewar et al. (2012):

Nl(L)= Nl(0)exp(−KNL). (A3)

It is assumed that Nl varies through the canopy due to varia-
tions in the specific leaf area (SLA; i.e. leaf area divided by
leaf mass) instead of variations in the leaf nitrogen concen-
tration, which are kept constant. The SLA at the bottom of
the canopy (SLAinit) is fixed and is also optimised.
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The model calculates the nitrogen required (GNinit,
g m−2 d−1) to satisfy the new carbon GC (g m−2 d−1) to the
different reservoirs under the assumption that CNleaf does not
vary (Zaehle and Friend, 2010).

GNinit =(FCNl/CNleaf+FCNroot/CNroot

+FCNf/CNfruit+ FCNwood/CNsap)GC (A4)

FCNi represents the fractions (unitless) of carbon allocated
to leaf (l), roots (root), fruit (f) and sapwood or stalks (wood),
and CNi represents the C/N ratios for the different biomass
pools at the previous time step. FCNroot and FCNwood are
optimised in this study. Rleaf and Rroot are the fractions of
N re-translocated when shedding leaves and roots (ftrans pa-
rameter in Zaehle and Friend, 2010). CTEbact is a parameter
relating denitrifier bacteria activity to soil organic matter.

Root density follows an exponential profile, with more
roots located in the top soil layers. The root density profile
parameter z defines the depth above which ∼ 65 % of roots
are stored and is used to calculate plant moisture availabil-
ity (Krinner et al., 2005, Eq. A18). Finally, VmaxUPTAKE is
used to calculate plant N uptake (Zaehle and Friend, 2010,
Supplement Eq. 8).

A2 Allocation

Allocation in ORCHIDEE-CN follows the formalisms of the
OCN model (Zaehle and Friend, 2010) further described
in Naudts et al. (2015) and respects the pipe model theory
(Shinozaki et al., 1964). KLAtoSA (whose range KLAtoSA,min,
KLAtoSA,max is calibrated) is used to derive a scaling factor
between leaf and sapwood mass:

dl =KLAtoSA×mw× ds, (A5)

where dl is the one-sided leaf area of an individual plant, ds is
the sapwood cross-sectional area of an individual plant and
mw is the water stress. Sapwood mass (Ms) and root mass
(Mr) are related as follows (following Magnani et al., 2000):

Ms =Ksar× dh×Mr, (A6)

where the parameter Ksar is calculated:

Ksar =
√
(Kroot/Ksap)× (kτs/kτr)× kρs, (A7)

where Kroot is the hydraulic conductivity of roots; Ksap is
the hydraulic conductivity of sapwood; Kτ s and Kτ r are the
longevity of sapwood and root, respectively; and kρs is the
sapwood density.

A3 Phenology

For the phenology parameters, we mostly refer to MacBean
et al. (2015). The photosynthetic efficiency of leaves depends
on their age Lage. Using four separate age classes, biomass

newly allocated to leaves goes into the first age class, and leaf
biomass is then transferred from one class to the next based
on a PFT-specific critical leaf age value, Lagecrit. In tem-
perate deciduous broadleaf forests, leaf senescence is trig-
gered when the monthly air surface temperature goes below
a threshold temperature:

Tthreshold = Tsenes + C1Tl + C2T
2

l , (A8)

where Tl is the long-term mean annual air surface temper-
ature and Tsenes, C1 and C2 are PFT-dependent parameters.
Once senescence has begun, a fixed turnover rate is applied,
with trees losing their fine roots at the same rate as their
leaves:

1B = B ·1t/Lfall, (A9)

where 1t is the daily time step, B is the total biomass and
Lfall is optimised.

A4 Photosynthesis

Stomatal conductance (gs) is coupled to leaf photosynthesis
by the following equation:

gs = g0 +
A + Rd

Ci −Ci∗
fVPD, (A10)

where g0 is the residual stomatal conductance when irradi-
ance approaches zero, A (µmol m CO2 m−2 s−1) is the net
assimilation rate, Ci (mol CO2 m−2) is the intercellular CO2
partial pressure, Ci∗ is the Ci-based CO2 compensation point
in the absence of respiration (Rd) and fVPD is the function
for the approximal effect of the leaf-to-air vapour pressure
difference (VPD, kPa):

fVPD =
1

1/(A1−B1VPD)− 1
. (A11)

The empirical factors A1 (unitless) and B1 (k Pa−1) are opti-
mised in this work.

A5 Respiration

Q10 (unitless) is used to calculate the temperature control of
heterotrophic respiration:

cT =min(1,Q(T−30)/10
10 ), (A12)

where T is the surface or soil temperature for the above- or
below-ground pools.

The growth respiration is calculated as a fraction of the
remaining total biomass:

Rg = FRACgrowthresp×max(B−1t ×
∑

Rm,i ,0.2×B). (A13)

B is the total biomass, 1t is the time step (1 d) and
FRACgrowthresp is a fraction to be optimised.
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Malenovskỳ, Z., Rott, H., Cihlar, J., Schaepman, M. E., García-
Santos, G., Fernandes, R., and Berger, M.: Sentinels for science:
Potential of Sentinel-1,-2, and-3 missions for scientific obser-
vations of ocean, cryosphere, and land, Remote Sens. Environ.,
120, 91–101, 2012.

MacBean, N., Maignan, F., Peylin, P., Bacour, C., Bréon, F.-M., and
Ciais, P.: Using satellite data to improve the leaf phenology of
a global terrestrial biosphere model, Biogeosciences, 12, 7185–
7208, https://doi.org/10.5194/bg-12-7185-2015, 2015.

McCarthy, H. R., Oren, R., Johnsen, K. H., Gallet-Budynek,
A., Pritchard, S. G., Cook, C. W., Ladeau, S. L., Jackson,
R. B., and Finzi, A. C.: Re-assessment of plant carbon dy-
namics at the Duke free-air CO2 enrichment site: Interac-
tions of atmospheric [CO2] with nitrogen and water avail-
ability over stand development, New Phytol., 185, 514–528,
https://doi.org/10.1111/j.1469-8137.2009.03078.x, 2010.

Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze,
M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton,
W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y-P., Weng,
E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., and
Norby, R. J.: Using ecosystem experiments to improve vegetation
models, Nat. Clim. Change, 5, 528–534, 2015.

Morris, M. D.: Factorial sampling plans for preliminary computa-
tional experiments, Technometrics, 33, 161–174, 1991.

Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade,
A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M.,
Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean,
N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B.,
Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y.,
and Luyssaert, S.: A vertically discretised canopy description for
ORCHIDEE (SVN r2290) and the modifications to the energy,
water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065,
https://doi.org/10.5194/gmd-8-2035-2015, 2015.

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and
McMurtrie, R. E.: CO2 enhancement of forest productivity con-
strained by limited nitrogen availability, P. Natl. Acad. Sci. USA,
107, 19368–19373, https://doi.org/10.1073/pnas.1006463107,
2010.

ORCHIDAS: ORCHIDEE Data Assimilation Systems, Institut
Pierre Simon Laplace/Laboratoire des Sciences du Climat et de

l’Environnement [code], https://orchidas.lsce.ipsl.fr (last access:
15 February 2024), 2024.

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson,
D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A.,
Humphrey, M., et al.: The FLUXNET2015 dataset and the ONE-
Flux processing pipeline for eddy covariance data, Sci. Data, 7,
1–27, 2020.

Peylin, P., Bacour, C., MacBean, N., Leonard, S., Rayner, P., Kup-
pel, S., Koffi, E., Kane, A., Maignan, F., Chevallier, F., Ciais, P.,
and Prunet, P.: A new stepwise carbon cycle data assimilation
system using multiple data streams to constrain the simulated
land surface carbon cycle, Geosci. Model Dev., 9, 3321–3346,
https://doi.org/10.5194/gmd-9-3321-2016, 2016.

Post, H., Vrugt, J. A., Fox, A., Vereecken, H., and Hen-
dricks Franssen, H.-J.: Estimation of Community Land Model
parameters for an improved assessment of net carbon fluxes at
European sites, J. Geophys. Res.-Biogeo., 122, 661–689, 2017.

Prentice, I. C.: Terrestrial nitrogen cycle simulation with a dynamic
global vegetation model, Global Change Biol., 14, 1745–1764,
2008.

Raoult, N. M., Jupp, T. E., Cox, P. M., and Luke, C. M.: Land-
surface parameter optimisation using data assimilation tech-
niques: the adJULES system V1.0, Geosci. Model Dev., 9, 2833–
2852, https://doi.org/10.5194/gmd-9-2833-2016, 2016.

Rastetter, E. B.: Validating models of ecosystem response to global
change, BioScience, 46, 190–198, 1996.

Santaren, D., Peylin, P., Viovy, N., and Ciais, P.: Opti-
mizing a process-based ecosystem model with eddy-
covariance flux measurements: A pine forest in south-
ern France, Global Biogeochem. Cy., 21, GB2013,
https://doi.org/10.1029/2006GB002834, 2007.

Santaren, D., Peylin, P., Bacour, C., Ciais, P., and Longdoz, B.:
Ecosystem model optimization using in situ flux observations:
benefit of Monte Carlo versus variational schemes and analy-
ses of the year-to-year model performances, Biogeosciences, 11,
7137–7158, https://doi.org/10.5194/bg-11-7137-2014, 2014.

Shinozaki, K., Yoda, K., Hozumi, K., and Kira, T.: A quantitative
analysis of plant form-the pipe model theory: I. Basic analyses,
Japan. J. Ecol., 14, 97–105, 1964.

Sulman, B. N., Shevliakova, E., Brzostek, E. R., Kivlin, S. N., Maly-
shev, S., Menge, D. N., and Zhang, X.: Diverse mycorrhizal as-
sociations enhance terrestrial C storage in a global model, Global
Biogeochem. Cy., 33, 501–523, 2019.

Tarantola, A.: Inverse problem theory and methods for model pa-
rameter estimation, SIAM, ISBN 978-0-89871-572-9, 2005.

Van Sundert, K., Leuzinger, S., Bader, M.-F., Chang, S. X., De
Kauwe, M. G., Dukes, J. S., Langley, J. A., Ma, Z., Mar-
iën, B., Reynaert, S., Ru, J., Song, J., Stocker, B., Terrer, C.,
Thoresen, J., Vanuytrecht, E., Wan, S., Yue, K., and Vicca, S.:
When things get MESI: the Manipulation Experiments Syn-
thesis Initiative – a coordinated effort to synthesize terrestrial
global change experiments, Global Change Biol., 29, 1922–
1938, https://doi.org/10.1111/gcb.16585, 2023.

Vuichard, N. and Papale, D.: Filling the gaps in meteoro-
logical continuous data measured at FLUXNET sites with
ERA-Interim reanalysis, Earth Syst. Sci. Data, 7, 157–171,
https://doi.org/10.5194/essd-7-157-2015, 2015.

Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S.,
Ghattas, J., Bastrikov, V., and Peylin, P.: Accounting for car-

https://doi.org/10.5194/bg-21-1017-2024 Biogeosciences, 21, 1017–1036, 2024

https://doi.org/10.5194/bg-9-3757-2012
https://doi.org/10.1029/2019MS001940
https://doi.org/10.1111/j.1469-8137.2009.03078.x
https://doi.org/10.5194/gmd-8-2035-2015
https://doi.org/10.1073/pnas.1006463107
https://orchidas.lsce.ipsl.fr
https://doi.org/10.5194/gmd-9-3321-2016
https://doi.org/10.5194/gmd-9-2833-2016
https://doi.org/10.1029/2006GB002834
https://doi.org/10.5194/bg-11-7137-2014
https://doi.org/10.1111/gcb.16585
https://doi.org/10.5194/essd-7-157-2015


1036 N. Raoult et al.: Using Free Air CO2 Enrichment data

bon and nitrogen interactions in the global terrestrial ecosystem
model ORCHIDEE (trunk version, rev 4999): multi-scale evalua-
tion of gross primary production, Geosci. Model Dev., 12, 4751–
4779, https://doi.org/10.5194/gmd-12-4751-2019, 2019.

Walker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E.,
Zaehle, S., Asao, S., Dietze, M., Hickler, T., Huntingford, C.,
Iversen, C. M., Jain, A., Lomas, M., Luo, Y., McCarthy, H., Par-
ton, W. J., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.-P.,
Warlind, D., Weng, E., Warren, J. M., Woodward, F. I., Oren, R.,
and Norby, R. J.: Comprehensive ecosystem model-data synthe-
sis using multiple data sets at two temperate forest free-air CO2
enrichment experiments: Model performance at ambient CO2
concentration, J. Geophys. Res.-Biogeo., 119, 937–964, 2014.

Walker, A. P., De Kauwe, M. G., Fenstermaker, L. F., Hungate, B.,
Medlyn, B., Megonigal, J. P., Oren, R., Pendall, E., Talhelm, A.
F., Zaehle, S., Zak, D. R., Boden, T., Brown, A. L. P., Burton, A.
J., Butnor, J. R., Day, F. P., Drake, B. G., Dijkstra, P., Evans, R.
D., Finzi, A. C., Iversen, C. M., Jackson, R. B., LeCain, D., Mc-
Carthy, H. R., Powell, T. L., Nowak, R. S., Riggs, J. S., Smith,
S. D., Stover, D. B., Tharp, L. M., Warren, J. M., Wullschleger,
S. D., and Norby, R. J.: FACE-MDS Phase 2: Data from Six US-
Located Elevated CO2 Experiments, Tech. Rep., Environmen-
tal System Science Data Infrastructure for a Virtual Ecosystem,
https://doi.org/10.15485/1480325, 2018a.

Walker, A. P., Yang, B., Boden, T., De Kauwe, M. G., Fenster-
maker, L. F., Medlyn, B., Megonigal, J. P., Oren, R., Pendall, E.,
Zak, D.R., Zaehle, S., Burton, A. J., Drake, B. G., Evans, R. D.,
Hungate, B., Johnson, D. P., Kim, D., LeCain, D., Lewin, K. F.,
Lu, M., Mueller, K. F., Nowak, R. S., Riggs, J. S., Smith, S. D.,
Tharp, L. M., Zelikova, T. J., and Norby, R. J.: FACE-MDS Phase
2: Meteorological Data and Protocols, Tech. Rep., Environmen-
tal System Science Data Infrastructure for a Virtual Ecosystem,
[data set], https://doi.org/10.15485/1480328, 2018b.

Walker, A. P., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Iversen,
C. M., Asao, S., Guenet, B., Harper, A., Hickler, T., Hungate, B.
A., Jain, A. K., Luo, Y., Lu, X., Lu, M., Luus, K., Megonigal, J.
P., Oren, R., Ryan, E., Shu, S., Talhelm, A., Wang, Y. P., Warren,
J. M., Werner, C., Xia, J., Yang, B., Zak, D. R., and Norby, R. J.:
Decadal biomass increment in early secondary succession woody
ecosystems is increased by CO2 enrichment, Nat. Commun., 10,
454, https://doi.org/10.1038/s41467-019-08348-1, 2019.

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Geor-
giou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore,
D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Bat-
tipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M.,
Campbell, E., Canadell, J. G., Ciais, P., Craig, M. E., Ellsworth,
D. S., Farquhar, G. D., Fatichi, S., Fisher, J. B., Frank, D. C.,
Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hun-
gate, B. A., Iversen, C. M., Joos, F., Jiang, M., Keenan, T. F.,
Knauer, J., Körner, C., Leshyk, V. O., Leuzinger, S., Liu, Y.,
MacBean, N., Malhi, Y., McVicar, T. R., Penuelas, J., Pongratz,
J., Powell, A. S., Riutta, T., Sabot, M. E. B., Schleucher, J., Sitch,
S., Smith, W. K., Sulman, B., Taylor, B., Terrer, C., Torn, M. S.,
Treseder, K. K., Trugman, A. T., Trumbore, S. E., van Mantgem,
P. J., Voelker, S. L., Whelan, M. E., and Zuidema P. A.: Integrat-
ing the evidence for a terrestrial carbon sink caused by increasing
atmospheric CO2, New Phytol., 229, 2413–2445, 2021.

Wieder, W. R., Lawrence, D. M., Fisher, R. A., Bonan, G. B.,
Cheng, S. J., Goodale, C. L., Grandy, A. S., Koven, C. D., Lom-
bardozzi, D. L., Oleson, K. W., and Thomas, R. Q.: Beyond
static benchmarking: Using experimental manipulations to evalu-
ate land model assumptions, Global Biogeochem. Cy., 33, 1289–
1309, 2019.

Zaehle, S. and Dalmonech, D.: Carbon–nitrogen interactions on
land at global scales: current understanding in modelling climate
biosphere feedbacks, Curr. Opin. Environ. Sustain., 3, 311–320,
2011.

Zaehle, S. and Friend, A. D.: Carbon and nitrogen cy-
cle dynamics in the O-CN land surface model: 1. Model
description, site-scale evaluation, and sensitivity to pa-
rameter estimates, Global Biogeochem. Cy., 24, GB1005,
https://doi.org/10.1029/2009GB003521, 2010.

Zaehle, S., Sitch, S., Smith, B., and Hatterman, F.: Ef-
fects of parameter uncertainties on the modeling of terres-
trial biosphere dynamics, Global Biogeochem. Cy., 19, 1–16,
https://doi.org/10.1029/2004GB002395, 2005.

Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze,
M. C., Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton,
P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen,
C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson, P.
J., Prentice, I. C., Oren, R., and Norby, R. J.: Evaluation of 11 ter-
restrial carbon–nitrogen cycle models against observations from
two temperate Free-Air CO2 Enrichment studies, New Phytol.,
202, 803–822, 2014.

Biogeosciences, 21, 1017–1036, 2024 https://doi.org/10.5194/bg-21-1017-2024

https://doi.org/10.5194/gmd-12-4751-2019
https://doi.org/10.15485/1480325
https://doi.org/10.15485/1480328
https://doi.org/10.1038/s41467-019-08348-1
https://doi.org/10.1029/2009GB003521
https://doi.org/10.1029/2004GB002395

	Abstract
	Introduction
	Methods
	Model
	The ORCHIDEE land surface model
	Model parameters

	Parameter estimation framework
	In situ data
	Performed experiments

	Results and discussion
	FLUXNET optimisations
	Incorporating data from the FACE sites
	Improving simulated NPP values
	Improving the fit of the LAI
	Posterior parameter values
	Maintaining the fit to the FLUXNET sites

	Projections using the optimised models

	Conclusions
	Appendix A: Optimised parameters
	Appendix A1: Nitrogen-related processes
	Appendix A2: Allocation
	Appendix A3: Phenology
	Appendix A4: Photosynthesis
	Appendix A5: Respiration

	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

