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Abstract. One notable observation of enzymatic chemical
reactions is that, for a given abundance of enzymes and sub-
strates, temperature increases cause reaction rates to first
increase consistent with the Arrhenius relationship, then
plateau, and finally fall off quickly to zero at high temper-
atures. While many mathematical functions have been used
to describe this pattern, we here propose a chemical kinet-
ics theory which successfully replicates this observation and
provides insights into the processes responsible for these dy-
namics. The chemical kinetics theory combines the law of
mass action, von Smoluchowski’s diffusion-limited chemical
reaction theory, and Eyring’s transition state theory. This new
theory reveals that the thermally reversible enzyme denatu-
ration ensured by the ceaseless thermal motion of molecules
and ions in an enzyme solution explains the plateau and sub-
sequent decrease in chemical reaction rates with increasing
temperature. The temperature-dependent affinity parameter
(K) that relates enzymes and substrates through their bind-
ing also affects the shape of the emergent temperature re-
sponse. We demonstrate that with an increase in substrate
availability,K shifts the optimal temperature, where reaction
rates plateau, towards higher values. Further, we show that
the chemical kinetics theory accurately represents 12 sets of
published enzyme assay data and includes the popular mech-
anistic model by Ratkowsky et al. (2005) as a special case.
Given its good performance and solid theoretical underpin-
ning, we believe this new theory will facilitate the construc-
tion of more mechanistic-based environmental biogeochem-
ical models.

1 Introduction

When an enzyme-catalyzed chemical reaction is monitored
under a range of temperatures, one often observes that the
reaction rate first increases with temperature in a manner fol-
lowing the Arrhenius function, peaks at some temperature,
and then falls off quickly to zero when the temperature is
too high for the enzyme to function (Sharpe and DeMichele,
1977; Peterson et al., 2004). As enzymes catalyze almost ev-
ery chemical reaction relevant to life, this temperature re-
sponse has also been observed for growth and respiration
rates that emerge from the interactions among myriads of
chemical reactions in an organism (Precht et al., 1973).

In order to describe this non-monotonic relationship be-
tween enzymatic reaction rates and temperature, many em-
pirical and mechanistic-based functions have been proposed.
Sharpe and DeMichele (1977) proposed a model that incor-
porates the empirical observation of thermally reversible en-
zyme denaturation (e.g., Sizer, 1943; Alexandrov, 1964) and
the transition state theory (Eyring, 1935). They assumed that
enzymes undergo reversible transitions between three states:
a cold-induced inactive state, a heat-induced inactive state,
and an active state capable of catalysis. By assuming reac-
tions to be substrate unlimited, they obtained a model with
five thermodynamic parameters that is able to almost per-
fectly fit published temperature-dependent growth rates of
eight poikilothermic organisms (see their Figs. 5 and 6).
We note that the applicability of the Sharpe–DeMichele
model to growth rates of an organism is based on the as-
sumed existence of control by master enzymes (Johnson
and Lewin, 1946). Motivated by the success of Sharpe and
DeMichele (1977) and the work on thermally reversible pro-
tein denaturation by Murphy et al. (1990), Ratkowsky et
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al. (2005) grouped the two inactive states into one and, again
assuming no substrate limitation, derived a model with two
thermodynamic parameters and two enzyme informatic pa-
rameters which was able to very accurately fit 35 sets of
observed temperature-dependent bacterial growth rates. The
model by Ratkowsky et al. (2005) was later used by Corkrey
et al. (2012, 2014) to successfully interpret the temperature-
dependent growth rates of many more poikilothermic or-
ganisms. Ghosh et al. (2016) extended the Ratkowsky et
al. (2005) model by including the thermally reversible de-
naturation of many enzymes and proteins informed by pro-
teomics and were able to satisfactorily interpret the measured
temperature-dependent growth rates of mesophiles and ther-
mophiles.

Recently, Hobbs et al. (2013) have argued that en-
zyme denaturation is not necessary to interpret the non-
monotonic dependence of enzymatic reaction rates on tem-
perature. Instead, they proposed the macromolecular rate the-
ory (MMRT) which assumes that the change in heat ca-
pacity associated with enzyme catalysis and its consequent
effect on the temperature dependence of the Gibbs free
energy of activation can describe the temperature depen-
dence of enzyme activity. Following the success of Hobbs
et al. (2013) on modeling the temperature dependence of
single-enzyme catalyzed reactions, Schipper et al. (2014)
showed that MMRT fits measured relationships between soil
biogeochemical rates and temperature better, including those
for aerobic respiration, methane oxidation, nitrification, and
denitrification, than Arrhenius-like or Q10 functions. Later,
Alster et al. (2016) demonstrated that MMRT was success-
ful at capturing the temperature dependence of extracellular
enzyme activities, including those of β-glucosidase, leucine
aminopeptidase, and phosphatase. Following these studies,
Liang et al. (2018) recommended that MMRT should be used
for the improved description of the measured relationship be-
tween plant leaf respiration and temperature. Recently, Alster
et al. (2020) advocated that MMRT should be used widely to
represent the temperature dependence of many types of soil
biogeochemical processes.

Besides the mechanistic-based models mentioned above,
there are quite a number of empirical-based models de-
scribed in the literature, e.g., the log-polynomial function
(O’Sullivan et al., 2017), the four-parameter square root
function (Ratkowsky et al., 1983), the Zwietering model
(Zwietering et al., 1991), the cardinal temperature model
with inflection ( Lobry et al., 1991), and others. More ex-
amples can be found in Grimaud et al. (2017) and Noll et
al. (2020).

While the mechanistic-based and empirical-based mod-
els described above have been quite successful in fitting
the relationship between measured rates and temperature,
they do not account for the fact that the overall temper-
ature response may be affected by substrate availability.
This issue is acknowledged, for example, when Sharpe and
DeMichele (1977) put forward their model and may be a bar-

rier for developing biogeochemical models that strive to re-
solve the temperature dependence of biogeochemical rates
mechanistically.

In the following, we develop the chemical kinetics model
to deliver a comprehensive description of the non-monotonic
relationship between temperature and enzymatic reaction
rates. The model incorporates the observation that ther-
mally reversible enzyme denaturation always occurs due
to the thermal motion of molecules and ions in the so-
lution of enzyme proteins (Finkelstein and Ptitsyn, 2016),
as well as three well-established theories of chemical reac-
tions: (1) the law of mass action (Koudriavtsev et al., 2001),
(2) von Smoluchowski’s diffusion-limited chemical reaction
theory (von Smoluchowski, 1917), and (3) Eyring’s transi-
tion state theory (Eyring, 1935). We evaluate the theory with
12 datasets of enzyme assays and then discuss how this new
theory provides mechanistic explanations and accurate rep-
resentations of the temperature dependence of biogeochem-
ical reaction rates. We leave out the temperature-dependent
irreversible enzyme denaturation but note that it needs to be
included in a dynamic model (Tang and Riley, 2015; Alvarez
et al., 2018).

2 Methods

2.1 The enzymatic reaction problem

We consider the simplest form of enzymatic reactions:

En+ S
k+1
�
k−1

EnS
vmax
−→ En+P, (1)

where En is the concentration of free enzymes whose con-
formation structure is in the active state and able to carry out
the catalysis; P is product concentration; S is substrate con-
centration; EnS is enzyme–substrate complex concentration;
and k+1 , k−1 , and vmax are temperature-dependent (T ) kinet-
ics parameters. Although it is not necessary for the validity
of Michaelis–Menten kinetics (Briggs and Haldane, 1925),
for scaling purposes, vmax (the maximum enzymatic cataly-
sis rate) is often assumed to be much greater than k−1 (Tang
and Riley, 2017; Kooijman, 2009; Holling, 1959; Aksnes and
Egge, 1991; Van Slyke and Cullen, 1914). Throughout this
study, we take all variables to be in ISO units and provide a
list of all variables and their explanations in the Appendix.

By applying the law of mass action and the quasi-steady-
state approximation (Borghans et al., 1996) to Eq. (1),
i.e., k+1 EnS =

(
vmax+ k

−

1
)
C, with C being the concen-

tration of enzyme–substrate complex EnS, we obtain the
Michaelis–Menten equation for the overall reaction rate F :

F = vmaxC = vmax
EntS

K + S
, (2)

whereK = vmax/k
+

1 is the half-saturation parameter (by tak-
ing the usual assumption vmax� k−1 ; Tang and Riley, 2017),

Biogeosciences, 21, 1061–1070, 2024 https://doi.org/10.5194/bg-21-1061-2024



J. Tang and W. J. Riley: Non-monotonic temperature dependence of enzymatic reactions 1063

Figure 1. In the chemical kinetics theory, the Gibbs free energy of activation 1GV is a linear function of temperature, i.e., 1GV =1HV −
T1SV , with the enthalpy of activation 1HV and the entropy of activation 1SV both being constant. This behavior of 1GV , along with the
thermally reversible denaturation of the enzymes (as depicted by the inactive and active states here), leads to the non-monotonic temperature
response of the catalysis rate. Other variables are defined in the main text.

and Ent is the total concentration of enzymes that are able to
form enzyme–substrate complexes, i.e., Ent = En+C.

We next describe how the chemical kinetics theory repre-
sents the temperature dependence of F .

2.2 The chemical kinetics theory

In studying proteins in an aqueous solution, it was observed
that proteins may spontaneously unfold into inactive states,
which for enzymes means losing their catalysis capability
(Nojima et al., 1977; Finkelstein and Ptitsyn, 2016). By tak-
ing advantage of the thermal motion, the unfolded inactive
enzyme proteins can also refold into their active state, regain-
ing their catalysis capability (Oliveberg et al., 1995). There-
fore, as thermal motion is ceaseless for all temperatures that
are physiologically amenable to enzymatic reactions, it is
safe to assert that at any time, even without irreversible de-
naturation, some enzymes are in inactive states not capable
of catalyzing their specialized chemical reactions.

Chemical kinetics theory (Fig. 1) incorporates the observa-
tion of thermally reversible denaturation by considering that
a fraction (1− fE (T )) of the enzymes (Et) are in the ther-
mally reversible denatured inactive state (e.g., Finkelstein
and Ptitsyn, 2016; Ghosh and Dill, 2009), so the catalyti-
cally active enzyme concentration Ent is fE (T )Et. Further,
by thermodynamics, Jin and Bethke (2003) showed that, in
addition to enzyme catalysis, the chemical reaction is driven
by a thermodynamic potential parameterized through a func-
tion fR (T ), which is a function of 1GR, the Gibbs free en-
ergy of the chemical reaction of converting the reactants into
products. These turn Eq. (2) into

F =
vmaxfE (T )EtS

K + S
fR (T ), (3)

where

vmax = vmax,0fv (T ), (4)

K =
vmax

k+1
=K0fK (T ), (5)

fR (T )= 1− exp
(
−
1GR

RT

)
, (6)

and vmax,0 and K0 are values of vmax and K evaluated at
temperature T0, respectively.

For Eq. (6), fR (T ) can be computed following Jin and
Bethke (2003), with1GR dependent on its reference value at
standard conditions and the reaction quotient of the chemical
reaction under the given environmental condition (character-
ized by pressure, temperature, salinity, pH, etc.). However,
except when there is significant product inhibition, fR may
be set to one, which is adopted in the remainder of this paper.
We next derive expressions for fv (T ), fK (T ), and fE (T ).

For vmax, applying the transition state theory (Eyring,
1935), we have

fv (T )=

(
T

T0

)
exp

(
−
1HV

RT

(
1−

T

T0

))
, (7)

where T0 is the reference temperature when vmax equals
vmax,0, and1HV is the temperature-independent enthalpy of
activation. In deriving Eq. (7), the Gibbs free energy1GV of
transition state theory is taken as a linear function of temper-
ature, i.e., 1GV =1HV − T1SV , with entropy 1SV being
constant, and incorporated into vmax,0.

To derive the temperature dependence fK (T ) for K , we
follow the definition of K in Eq. (2) and adopt the assump-
tion that vmax is much greater than k−1 in Eq. (5). Applying
the diffusion-limited chemical reaction model by von Smolu-
chowski (1917) indicates that k+1 is proportional to diffusiv-
ity. Therefore, by using the Stokes–Einstein equation of dif-
fusivity (Miller, 1924) and considering the Arrhenius-type
temperature dependence of water’s dynamic viscosity, k+1
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will have a similar functional form of temperature depen-
dence as vmax (see Tang et al., 2021, for more details), re-
sulting in

fK (T )= exp
(
−
1HK

RT

(
1−

T

T0

))
. (8)

In application, considering the activation enthalpy of self-
diffusion of water as constant, e.g., 18 kJ mol−1 (Konya and
Nagy, 2018), one may compute 1HK =1HV − 18.

A two-state model (e.g., Zwanzig, 1997) is used to formu-
late the temperature-dependent function fE (T ) as

fE (T )=
1

1+ exp
(
−
1GE
RT

) , (9)

with R being the universal gas constant, and protein-
unfolding Gibbs free energy as

1GE =1HE − T1SE =1Cp (T − TH )

− T1Cp ln
(
T

TS

)
. (10)

Here 1Cp is the heat capacity of protein unfolding (com-
puted as ∂1HE/∂T = T ∂1SE/∂T ), whose sign is opposite
to that of the negative heat capacity of refolding measured by
Oliveberg et al. (1995) and which is always positive due to
protein’s hydrophobicity (Silverstein, 2020). TH is the tem-
perature at which unfolding enthalpy 1HE is zero, and TS
is the temperature at which unfolding entropy 1SE is zero.
1Cp, TH , and TS are all functions of protein chain length
(Ghosh and Dill, 2009), and, usually, TS is greater than TH .

When Eqs. (3)–(8) are combined, we have

F = vmax,0
fv (T )fE (T )EtS

K0fK (T )+ S
, (11)

which describes the temperature dependence of biochemical
reaction rates in the absence of significant product inhibition.
When Eq. (11) is applied to represent the temperature depen-
dence of an enzymatic reaction, once the reference tempera-
ture T0 is chosen, one needs to estimate four parameters: TH ,
TS , 1HV , and 1Cp.

In particular, by assuming that S is much larger than
K0fK (T ), we obtain the substrate-unlimited rate equation:

F∞ = vmax,0Etfv (T )fE (T )= r0fv (T )fE (T ), (12)

which is the four-parameter model proposed by Ratkowsky
et al. (2005) to describe the temperature-dependent growth of
various microorganisms (also see Corkrey et al., 2012, 2014).
Since the Ratkowsky model has been successfully applied to
hundreds of published datasets, the more generic chemical
kinetics theory should be equally accurate under substrate-
unlimited conditions and can provide further insights into
the non-monotonic relationship between enzymatic reaction
rates, temperature, and substrate availability.

To facilitate parametric fitting (as will be described in
Sect. 2.3), taking the logarithm of Eq. (11) leads to

lnF (T )= lnvmax,0+ ln(1+ S/K0)

+ ln
(
fv (T )fE (T )

fK (T )+ S/K0

)
. (13)

2.3 Empirical data reanalysis

We extracted the assay data of all seven enzymes from Hobbs
et al. (2013) and all five enzymes from Peterson et al. (2004)
to evaluate the chemical kinetics theory. We did not try to
analyze data from soils, as that would involve a more com-
prehensive model (considering both the production and de-
struction of enzymes), which is beyond the scope of this
study. Since we were not able to extract the reaction rates
directly from the figures in these studies or to obtain the orig-
inal data, the rate for each enzyme was normalized with its
own rate at a selected reference temperature Tr, based on the
criterion that the data point at Tr is crossed by lines of their
original numerical fitting (Hobbs et al., 2013, used MMRT
and Peterson et al., 2004, used their equilibrium model).
In the logarithm form (i.e., lnF (T )), this normalization en-
sures that the values of lnF (T )− lnF (Tr) used as observa-
tions at different temperatures are independent of the value
of lnvmax,0+ ln(1+ S/K0) at the reference temperature T0
of the enzyme assay. We obtain the best-fit parameters by
using the “fminsearch” function from MATLAB R2020b to
minimize the summed difference between modeled and mea-
sured values of lnF (T )−lnF (Tr). In the process of parame-
ter estimation, we found that fminsearch estimated the same
parameter values corresponding to the global minimum of
the cost function even when starting from differential initial
guesses, indicating that the parametric fitting is robust. How-
ever, this robustness leads to some difficulty in estimating the
uncertainty of the parameter fitting process. Specifically, be-
cause we were not able to digitally extract meaningful uncer-
tainty of the observations from the figures either in Peterson
et al. (2004) or in Hobbs et al. (2013), we could not apply
the Monte Carlo method to compute uncertainties of the es-
timated parameters. We also tried using finite difference to
approximate the Hessian matrix of the cost function at the
best parameter estimates obtained by fminsearch. However,
the ill condition of the approximated Hessian matrix prevents
us from estimating the parametric uncertainty meaningfully.
We could not apply the bootstrapping method because too
few data points were available. Nonetheless, the excellent
parametric fitting indicates that the results are robust.

3 Results

For the data of all 12 enzyme assays, the chemical kinetics
theory obtained almost perfect model–data fitting with the
fminsearch-computed best-fit parameters (Fig. 2). The R2

values for the linear regression between model predictions
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Figure 2. Fitting of the chemical kinetics theory (solid lines) to the enzyme assay data (red circles). Panels (a)–(g) are measurements from
Hobbs et al. (2013), and panels (h)–(l) are from Peterson et al. (2004). Tr is the reference temperature used in the data extracted from
published figures (and is different from the reference temperature T0 that was actually involved in the enzyme assay experiments). R2 is for
the linear regression between the model predictions with best-fit parameters (blue lines) and measurements (in red circles). Following their
original studies, parametric fitting for panels (f) and (g) used S/K0 =2, while others used S/K0 = 10.

and observations are above 0.97 for 11 cases and 0.85 for 1
case (barnase) (Fig. 2f). The best-fit heat capacity 1Cp val-
ues of the thermodynamically reversible conversion between
active and inactive conformation states of the enzymes are
all positive, varying between 1.34 kJ mol−1 K−1 (for adeno-
sine deaminase in Fig. 2i) and 22.74 kJ mol−1 K−1 (for aryl-
acylamidase in Fig. 2k), in agreement with the range reported
in Fig. 2c by Ghosh and Dill (2009).

For the four example enzymes chosen from the estimated
parameters from Fig. 2, we found the optimal temperature
(i.e., where the reaction rate reaches its maximum) has vary-
ing dependence on substrate availability (Fig. 3). We show
temperature response curves of the other eight enzymes in
the Supplement and note that they show similar patterns to
those in Fig. 3. All examples show that as substrate availabil-
ity increases, the optimal temperature increases and the tem-
perature response curve shifts towards higher temperatures.
For enzyme aryl-acylamidase (Fig. 3d), the true physiolog-
ical optimal temperature under the saturating substrate con-
centration (i.e., when S =∞, computed by Eq. 12) equals
the emergent optimal temperature at a substrate concen-
tration of 10K0 and is 1 K higher than those at substrate
concentrations of K0 and K0/2. For enzymes V200S and
A43C/S80C, the optimal temperature at a substrate concen-

tration of 10K0 is 1 K lower than the physiological optimal
temperature (Fig. 3a, b). However, this difference is 20 K for
adenosine deaminase (Fig. 3c). These results clearly demon-
strate that substrate availability plays a potentially important
role in the emergent temperature response of biochemical re-
action rates. Nevertheless, we note that this prediction of the
substrate-abundance-induced shift in optimal temperature is
appropriate for single enzyme reactions. As we discuss be-
low, the relationship between optimal temperature and sub-
strate abundance in real soils is much more complicated.

4 Discussion and conclusion

Our theoretical analysis suggests that, even for a single-
substrate–single-enzyme reaction, its temperature response
involves contributions from at least four processes: (1) the
thermally reversible transition between active and inactive
enzymes (which is ensured by the ceaseless thermal motions
of molecules and ions in the enzyme solution), (2) the bind-
ing between active enzymes and substrates to form enzyme–
substrate complexes, (3) the transition state activation of
the enzyme–substrate complex, and (4) the thermodynamic
feasibility for the biochemical reaction to generate prod-
uct molecules. The chemical kinetics theory explicitly ac-
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Figure 3. Substrate availability strongly affects the temperature sensitivity of the enzymatic reaction rates, as shown for four example
enzymes chosen from parameters inferred in Fig. 2. For substrate level c4, the rate curve corresponds to fv (T )fE (T ) from Eq. (12). The
bulge in (d) is due to the special combination of the inferred parameters.

counts for these four processes and can be extended to in-
clude more processes when more complex biochemical reac-
tions are considered (e.g., as discussed in Tang et al., 2021).
In particular, this theory demonstrates that substrate avail-
ability affects the functional relationship between biochemi-
cal rates and temperature (Eq. 11). Ignoring this effect may
lead to the misinterpretation of observed optimal tempera-
tures and confound analyses of, e.g., microbial thermal adap-
tation. Specifically, we find that higher optimal temperatures
can be achieved under higher substrate availability for single-
enzyme–single-substrate reactions. Such a shift in optimal
temperature with substrate abundance also appears to align
with the findings in Alvarez et al. (2018), although their in-
terpretation attributes it to irreversible enzyme denaturation.

Recently, Numa et al. (2021) and Robinson et al. (2020)
observed that adding plant litter or glucose to soil incubation
samples resulted in lower inferred optimal temperatures of
soil respiration (when fitted with MMRT). Since adding more
substrate most likely increased substrate concentrations, the
lower optimal temperature appeared to contradict predic-
tions by the chemical kinetics theory. However, applying the
chemical kinetics theory to soils requires the consideration
of interactions between substrates, microbes, and organo-
mineral interactions. Since sorption interactions between or-
ganic matter and soil minerals tend to increase the over-
all activation energy or enthalpy of carbon use by microbes
(Tang and Riley, 2015) and newly added substrates most
likely have a lower activation energy than existing soil or-
ganic substrates, we expect a decrease in the optimal temper-

Figure 4. An example demonstrating that lower activation energy
causes the optimal temperature to shift towards lower values. The
curves are drawn based on Eq. (12), with the high-activation-energy
case using parameters from V200S and the low-activation-energy
case reduced 1HV from 78.82 to 58.82 kJ mol−1.

ature of soil respiration. We explore this effect by computing
temperature response curves for low- and high-activation-
energy cases computed using Eq. (12) that assumes no sub-
strate limitation. This example shows that lowering the ac-
tivation energy reduced the optimal temperature by ∼ 2 K
(Fig. 4). Therefore, what Numa et al. (2021) and Robin-
son et al. (2020) observed could have resulted from a shift
in substrate type and availability, which should be modeled
through the explicit representation of substrate competition
and organo-mineral interactions (as discussed in Tang and
Riley, 2013, 2015). In particular, we argue that the change in
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optimal temperature is not a simple indication of microbial
physiological adaption but an emergent consequence due to
interactions among many factors, including substrate avail-
ability; soil conditions; enzyme dynamics; and, among oth-
ers, microbial physiology.

One important feature of the chemical kinetics theory is
that it infers a positive heat capacity of protein unfolding
(i.e., 1Cp associated with thermally reversible enzyme de-
naturation) and a constant enthalpy of activation1HV of the
forward conversion of the enzyme–substrate complex. This
positive 1Cp is consistent with the negative heat capacity
of enzyme refolding found by Oliveberg et al. (1995) and
with many previous studies (Ghosh and Dill, 2009; Mur-
phy et al., 1990; Finkelstein and Ptitsyn, 2016). Recently,
using molecular dynamics simulations, Aqvist and Van der
Ent (2022) inferred the heat capacity to be zero for both catal-
ysis and binding processes for a designer enzyme 1A53-2.5,
supporting a constant 1HV (note that heat capacity equals
to ∂HV /∂T ). Moreover, Aqvist and Van der Ent (2022) and
Aqvist (2022) suggested that the non-monotonic relationship
between temperature and catalysis rate can be explained by
the existence of an equilibrium between active enzyme sub-
strate complex EnS and inactive enzyme substrate complex
E′nS. To some extent, the conceptual model by Aqvist and
Van der Ent (2022) is equivalent to the chemical kinetics the-
ory if the latter allows the inactive enzymes to form inac-
tive enzyme–substrate complexes. The finding of zero heat
capacity for both catalysis and binding processes has been
debated in Lear et al. (2023) and Aqvist (2023), but they
concluded that different kinetic models can fit the measured
temperature-dependent catalysis rates equally well. In par-
ticular, Aqvist (2023) noted that a kinetic model considering
thermally reversible enzyme denaturation fits the observa-
tions equally well. However, deducing a non-zero heat capac-
ity for both catalysis and binding processes seems to require
one to ignore the thermally reversible enzyme denaturation,
which is inconsistent with the ceaseless thermal motion of
molecules and ions in the enzyme solution.

Combining the transition state theory and the protein de-
naturation model by Lumry and Eyring (1954), Peterson et
al. (2004) proposed an equilibrium model that includes both
reversible and irreversible enzyme denaturation to explain
their observed non-monotonic relationship between temper-
ature and catalysis rates. However, because they assumed
a constant enthalpy for the reversible enzyme denaturation,
their Gibbs free energy of enzyme unfolding became a linear
function of temperature. This linear function contrasts with
the nonlinear function (i.e., Eq. 10) and the existence of mul-
tiple native protein states that are usually observed or inferred
in studies of protein physics (Ghosh and Dill, 2009; Silver-
stein, 2020; Sheng and Pan, 2002; Finkelstein and Ptitsyn,
2016). Further, their model involves an explicit temporal de-
pendence in the formulated catalysis rates, which introduces
one more parameter (i.e., time) than the chemical kinetics
model. Moreover, Peterson et al. (2004) also assumed their

enzyme assays are substrate saturated, which is not always
the case in real systems and can affect the temperature de-
pendence of the substrate affinity parameter and thereby the
overall reaction rate.

In summary, we show here that the chemical kinetics
theory, by incorporating (1) the observed thermally re-
versible transitions of enzymes between their active and in-
active states (which occurs even in the absence of substrate
molecules due to the ceaseless thermal motion of molecules
and ions in the enzyme solution) (Anfinsen, 1973; Finkel-
stein and Ptitsyn, 2016; Sizer, 1943; Oliveberg et al., 1995),
(2) the law of mass action (Koudriavtsev et al., 2001),
(3) the diffusion-limited chemical reaction theory by von
Smoluchowski (1917), and (4) the transition state theory by
Eyring (1935), can satisfactorily explain the non-monotonic
relationship between temperature and catalysis rates and is a
more comprehensive mechanistic representation of the tem-
perature dependence of enzyme-catalyzed biochemical rates.

Can chemical kinetics theory be upscaled to an organism
from the single-substrate–single-enzyme examples presented
here? While it is likely impossible (and certainly beyond the
scope of this paper) to demonstrate such a scaling analyti-
cally, Tang et al. (2021) showed, with an Ohm’s law analogy,
that the temperature dependence of the emergent kinetic pa-
rameters (i.e., the overall vmax and K) for chains of enzymes
followed a similar form as described by the chemical kinetics
theory. Indeed, some previous studies (e.g., Ratkowsky et al.,
2005; Corkrey et al., 2012; Ghosh et al., 2016) have shown
that even Eq. (12) (which excludes substrate dependence)
is able to satisfactorily describe the temperature-dependent
growth of many organisms. Particularly, the success in cap-
turing the temperature-dependent bacterial growth rate in
Ghosh et al. (2016), where they extended the thermally re-
versible enzyme denaturation in Eq. (12) to include all lethal
proteins sampled from the proteome of mesophilic and ther-
mophilic bacteria, suggests that the chemical kinetics theory
may be scalable to organisms. Further work is required to
evaluate whether the chemical kinetics theory has the poten-
tial to be applied directly to microbes, animals, and plants.

Finally, because almost every microbe, animal, and plant
is able to respire on multiple substrates (Madigan et al., 2009;
Cooper and Hausman, 2007) and the availability of those
substrates fluctuates at multiple timescales, the chemical ki-
netics theory and the equilibrium chemistry approximation
kinetics for substrate competition networks (Tang and Riley,
2013) together suggest that a given organism will be unlikely
to have either a fixed temperature response curve or optimal
temperature even with a fixed proteome distribution. Rather,
the temperature response curve – and therefore the optimal
temperature – is likely to be dynamic, motivating inclusion
of these concepts in biogeochemical models.
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Appendix A: Nomenclature

Symbol Unit Meaning
1Cp kJ mol−1 K−1 Heat capacity of protein unfolding.
1GR kJ mol−1 Gibbs free energy of the chemical reaction.
1GE kJ mol−1 Gibbs free energy of protein unfolding.
1HK kJ mol−1 Enthalpy of activation of parameter K .
1Hv kJ mol−1 Enthalpy of activation of vmax.
1HE kJ mol−1 Enthalpy of protein unfolding.
1SE kJ mol−1 Entropy of protein unfolding.
C mol m−3 Enzyme–substrate complex concentration.
En mol m−3 Free-active-enzyme concentration.
Ent mol m−3 Total active enzyme concentration.
Et mol m−3 Total enzyme concentration.
F mol m−3 s−1 Biochemical reaction rates.
F∞ mol m−3 s−1 Biochemical reaction rates when substrate

is unlimited.
K0 mol m−3 Half-saturation parameter at reference

temperature T0.
K mol m−3 Half-saturation parameter at temperature T .
P mol m−3 Product concentration.
R J K−1 Universal gas constant.
S mol m−3 Free-substrate concentration.
T K Thermodynamic temperature.
TH K Temperature when 1HE is zero.
TS K Temperature when 1SE is zero.
fK (T ) None Temperature dependence of parameter K .
fR (T ) None Thermodynamic potential of the chemical

reaction at T .
fv (T ) None Temperature dependence of vmax.
k+1 m3 mol−1 s−1 Specific forward binding rate between active

enzymes and substrates.
k−1 s−1 Specific enzyme–substrate complex dissociation

rate.
r0 mol m−3 s−1 Biochemical reaction rate at temperature T0.
vmax,0 s−1 Maximum specific catalysis rate at reference

temperature T0.
vmax s−1 Maximum specific catalysis rate at reference

temperature T .
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