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Abstract. Since a pH sensor has become available that is
principally suitable for use on demanding autonomous mea-
surement platforms, the marine CO2 system can be observed
independently and continuously by Biogeochemical Argo
floats. This opens the potential to detect variability and long-
term changes in interior ocean inorganic carbon storage and
quantify the ocean sink for atmospheric CO2. In combina-
tion with a second parameter of the marine CO2 system, pH
can be a useful tool to derive the surface ocean CO2 partial
pressure (pCO2). The large spatiotemporal variability in the
marine CO2 system requires sustained observations to deci-
pher trends and study the impacts of short-term events (e.g.,
eddies, storms, phytoplankton blooms) but also puts a high
emphasis on the quality control of float-based pH measure-
ments. In consequence, a consistent and rigorous quality con-
trol procedure is being established to correct sensor offsets
or drifts as the interpretation of changes depends on accu-
rate data. By applying current standardized routines of the
Argo data management to pH measurements from a pH /O2
float pilot array in the subpolar North Atlantic Ocean, we as-
sess the uncertainties and lack of objective criteria associated
with the standardized routines, notably the choice of the ref-
erence method for the pH correction (CANYON-B, LIR-pH,
ESPER-NN, and ESPER-LIR) and the reference depth for
this adjustment. For the studied float array, significant dif-
ferences ranging between ca. 0.003 pH units and ca. 0.04 pH
units are observed between the four reference methods which
have been proposed to correct float pH data. Through com-
parison against discrete and underway pH data from other
platforms, an assessment of the adjusted float pH data qual-

ity is presented. The results point out noticeable discrepan-
cies near the surface of > 0.004 pH units. In the context of
converting surface ocean pH measurements into pCO2 data
for the purpose of deriving air–sea CO2 fluxes, we conclude
that an accuracy requirement of 0.01 pH units (equivalent to
a pCO2 accuracy of 10 µatm as a minimum requirement for
potential future inclusion in the Surface Ocean CO2 Atlas,
SOCAT, database) is not systematically achieved in the up-
per ocean.

While the limited dataset and regional focus of our study
do not allow for firm conclusions, the evidence presented still
calls for the inclusion of an additional independent pH ref-
erence in the surface ocean in the quality control routines.
We therefore propose a way forward to enhance the float pH
quality control procedure. In our analysis, the current philos-
ophy of pH data correction against climatological reference
data at one single depth in the deep ocean appears insufficient
to assure adequate data quality in the surface ocean. Ideally,
an additional reference point should be taken at or near the
surface where the resulting pCO2 data are of the highest im-
portance to monitor the air–sea exchange of CO2 and would
have the potential to very significantly augment the impact
of the current observation network.

1 Introduction

Since the beginning of the industrial era, the ocean has
played a critical role by absorbing about 25 % (Friedling-
stein et al., 2023) of the annual anthropogenic CO2 emis-
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sions, thereby mitigating the current climate change (IPCC,
2021). Ocean CO2 uptake causes changes in the ocean chem-
istry, inducing an increase in hydronium ion concentration
(i.e., a decrease in oceanic pH). Throughout the world ocean,
these changes, also termed “ocean acidification” (OA; Doney
et al., 2009), are already observed, and a global surface ocean
pH decline of 0.1 units since the beginning of the industrial
era has been reported (Orr et al., 2005). Depending on emis-
sion scenarios, ocean acidity will increase with a projected
pH decline ranging from 0.16 to 0.44 pH units by 2100 (e.g.,
Kwiatkowski et al., 2020). These changes, while being vari-
able regionally and along the water column (Carstensen and
Duarte, 2019; Orr et al., 2005), represent a significant envi-
ronmental change and potential threat to marine organisms
and marine ecosystems that needs to be elucidated.

To assess long-term changes in ocean chemistry, oceano-
graphic cruises were conducted and discrete water samples
were collected. These historical hydrographic data have been
synthesized in databases such as the Global Ocean Data
Analysis Project (GLODAPv2) database (Olsen et al., 2016),
which provides an internally consistent reference data prod-
uct. However, in addition to anthropogenic modifications,
oceanic pH is a dynamic variable in response to biologi-
cal, physical, and chemical processes and changes on daily
to centennial timescales, with pronounced seasonal, inter-
annual, and decadal variability. In consequence, ship-based
observing strategies, being often skewed towards certain
months and regions, especially in some places where current
sampling methods are not possible (e.g., permanently or sea-
sonally ice-covered regions), cannot adequately capture the
dynamic spatiotemporal variability in this carbonate system
parameter.

In order to improve our understanding of the oceanic CO2
cycle and to decipher any temporal change, sustained time-
series measurements at fixed stations have been carried out
over the last decades (e.g., Bates et al., 2014). Neverthe-
less, the low spatial coverage associated with these sampling
sites, generally located near coastal areas, precludes a rig-
orous description of the open-ocean variability. Thus, these
long-term data collections, with uneven regional distribution
and typically moderate temporal resolutions (i.e., bi-weekly
or monthly), lead to “observational gaps” with an under-
sampling of biogeochemical variables (Tanhua et al., 2019).
Since the 1990s, the Ship Of Opportunity Program (SOOP;
Goni et al., 2010) aims to obtain data from autonomous in-
strumentation installed on volunteer merchant ships regularly
crossing certain areas. This network contributes to building
sustained carbon observing datasets and complements the
limited capacity of classical observational strategies as the
standard SOOP framework features, at least, routine pCO2
observations (e.g., Lüger et al., 2004). In the Atlantic Ocean,
parts of the SOOP network are operated as part of the Euro-
pean Research Infrastructure Integrated Carbon Observation
System (ICOS) and the Surface Ocean CO2 Reference Ob-
serving Network (SOCONET).

To circumvent these gaps and overcome the existing severe
limitations in terms of both spatial and temporal resolutions,
autonomous platforms such as moorings, profiling floats, un-
derwater gliders, or surface vehicles have been deployed at a
global scale (Bushinsky et al., 2019; Whitt et al., 2020) and
have contributed to the extension of databases (Abram et al.,
2019). Recently, the development of a pH sensor suitable for
deployment on autonomous platforms has extended our ob-
servation capabilities of the marine CO2 system (Johnson et
al., 2016)

Defined as an Essential Ocean Variable (EOV) by the
Global Ocean Observing System (GOOS, https://www.
goosocean.org, last access: 6 January 2023), pH can be
used to determine marine CO2 system changes in response
to anthropogenic impacts. However, the key to this au-
tonomous platform expansion is the achievable and docu-
mented quality of the pH data, which relies on defined prac-
tices ranging from rigorous pre-deployment sensor calibra-
tion to post-deployment assurance of data accuracy and con-
sistency (Johnson et al., 2018). Indeed, for reliably identify-
ing and interpreting change, accurate and consistent data are
needed.

For Biogeochemical Argo (hereafter BGC-ARGO) data,
operational procedures for physical data (temperature, salin-
ity, pressure) quality control (QC) have been established,
ranging from automated real-time (RT) checks to sophisti-
cated delayed-mode (DM) adjustments (Schmechtig et al.,
2016; Wong et al., 2022). For pH, numerous delayed-mode
procedures have been suggested (Williams et al., 2016; John-
son et al., 2017), but a uniform, fully tested, and globally
proven correction method is still missing. Recently, in the
framework of the Southern Ocean Carbon and Climate Ob-
servations and Modelling project (SOCCOM; Russell et al.,
2014), a methodology has been developed to correct nitrate,
pH, and oxygen values from sensor drifts and offsets in DM.
Two MATLAB tools named SAGE (SOCCOM Assessment
and Graphical Evaluation) and SAGE-O2 have been created
as interfaces to support the validation and correction of float
pH and oxygen data, respectively. In the SAGE procedure
(Maurer et al., 2021), the machine learning method “Car-
bonate system and Nutrient concentration from hYdrologi-
cal properties and Oxygen, Bayesian approach” (CANYON-
B; Bittig et al., 2018b), the locally interpolated regression
(LIR) algorithmic method (Carter et al., 2018), and multi-
ple linear regression techniques (Williams et al., 2016) are
used as a reference to correct float pH data at depths of
typically around 1500 dbar. The neural-network CANYON-
B approach is based on the approach originally developed
by Sauzède et al. (2017). Recently, two Empirical Seawa-
ter Property Estimation Routines (ESPERs; Carter et al.,
2021) have been included in SAGE as reference methods.
The ESPER-NN method generates estimates from neural net-
works while the ESPER-LIR routine is based on locally in-
terpolated regressions.
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In this study, we have used the SAGE tool and the included
adjustment methods to correct float pH data acquired from a
pilot array established in 2018 in the subpolar northwest At-
lantic Ocean (SNWA), a region of particular relevance in the
marine carbon cycle. This area is a key region for anthro-
pogenic carbon uptake and storage (Sabine et al., 2004; Gru-
ber et al., 2009; Khatiwala et al., 2013; Racapé et al., 2018)
as a consequence of (1) the Meridional Overturning Circu-
lation (MOC) transporting warm and anthropogenic-carbon-
laden tropical waters by its upper limb (Sabine et al., 2004;
Gruber et al., 2009; Khatiwala et al., 2013) and (2) deep win-
ter convection events occurring in the Labrador and Irminger
seas which transfer anthropogenic carbon from the surface to
the deep ocean (Körtzinger et al., 1999; Sabine et al., 2004;
Ridge and McKinley, 2020). Moreover, it should be noted
that the North Atlantic Oscillation (NAO), through its im-
pact on the atmospheric variability in the North Atlantic re-
gion, induces high temporal variability on interannual (Wat-
son et al., 2009) to decadal timescales (Leseurre et al., 2020)
and may alter the residence time of anthropogenic carbon in
the ocean by altering the rate of water mass transformation
(Levine et al., 2011). In this context, the study region can be
considered both a region of highest interest and a region of
methodological challenges.

This paper illustrates the performance of the proposed
standard Argo quality control routines with the float pH data
acquired in the SNWA region. By using float pH data and
independent pH data measured from water samples collected
at a nearby station as well as underway data obtained from an
autonomous platform in the SNWA area, we can provide an
evaluation of (1) the impact of the choice of the at-depth ref-
erence pressure as well as the choice of the reference method
used to correct float pH data, (2) differences to co-located,
in situ, discrete pH data over the water column and within
the surface layer, and (3) differences to crossovers to in situ
surface pH data collected along a ship-of-opportunity line.

2 Materials and methods

2.1 BGC-Argo float array

As part of an ongoing pilot study, 10 BGC-Argo floats
from two manufacturers (NKE instrumentation and Teledyne
Webb Research) were deployed in the SNWA region (Fig. 1)
over the 2018 to 2022 period. All floats were equipped with
pressure, temperature, salinity (SBE-41CP sensor, Sea-Bird
Electronics), oxygen (oxygen optode 4330 with individual
multi-point manufacturer calibration, Aanderaa Data Instru-
ments), and pH sensors (SeaFET™ sensor, Sea-Bird Elec-
tronics, Inc.). As some of the BGC-Argo floats considered
here are still operational, no DM data are available yet for the
entire dataset. BGC-Argo data were obtained from the Cori-
olis Data Assembly Center. For inactive BGC-Argo floats,
the Argo real-time quality control procedures have been ap-

plied by the Coriolis data center (Wong et al., 2022). Temper-
ature and salinity measurements (derived from conductivity)
are recorded with accuracies of± 0.002 °C and± 0.005 PSU.
The initial pH accuracy “claimed” by the manufacturer is
± 0.05 pH units. Data adjustment have been reported to yield
accuracies varying between ± 0.005 pH units (Johnson et
al., 2017) and ± 0.007 pH units (Maurer et al., 2021). Oxy-
gen optodes, similar to other chemical sensors, are known
to suffer from storage drift prior to deployment (Bittig and
Körtzinger, 2015; Johnson et al., 2015). SAGE-O2, or an
equivalent script, must therefore be used to correct float oxy-
gen data prior to any float pH data correction which em-
ploys oxygen values as ancillary data (e.g., CANYON-B).
In this study, oxygen data were used as predictor variables
in all reference algorithms used. We note that the oxygen
data correction employs in-air measurements routinely car-
ried out when each float surfaces to achieve the highest data
accuracy (Bittig and Körtzinger, 2015; Bittig et al., 2018a).
A stringent referencing and adjustment process for the oxy-
gen can yield accuracies of around 1.5 µmol kg−1 (Bittig et
al., 2018a), although depending on the details of the optode
calibration, handling, and usage scenario, the accuracy of O2
measurements can vary considerably. When O2 sensors in-
capable of in-air referencing are used (e.g., SBE63 optode,
Sea-Bird Electronics), oxygen values typically have uncer-
tainties of up to ca. 3 % (Takeshita et al., 2013), adding an
additional source of uncertainty when these data are used as
input parameters to derive reference pH data.

In our case, O2 from the 10 pH equipped Argo floats was
adjusted following Argo procedures (Bittig et al., 2018a;
Thierry et al., 2022) with in-air measurements, and the ad-
justments are available in near-real time. In February 2023,
one float had been recovered and five were still operational.
We point out that, unfortunately, the 10 deployed floats
suffered from an unusually high number of manufacturer-
related technical issues or failures either of the pressure
sensor (WMO 3901167, replaced from warranty by WMO
7900566), the GPS system (WMO 7900566), or the pH
sensor itself (WMO 6904110, 6904111, 6904112, 6904114,
6904115). This has severely compromised the number of
data acquired so far in the pilot study and reduces the robust-
ness of the conclusions. As the two longest-lasting floats de-
ployed in 2018 (WMO 3901668 and 3901669) showed stable
pH data and the pH sensors have serial numbers not related
to a recent problem with the pH sensor’s reference electrode,
they have been assumed to represent the optimum case for the
achievable performance of this current technology. We note
that the high failure rate points to problems in sensor manu-
facturing in recent years that need to be resolved in order for
BGC-Argo to unfold its full potential. In addition, float pH
data measured by the float WMO 6904112 have been used
in this study considering its position regarding the SOOP
line corridor and the high number of crossovers recorded.
As a consequence, only float pH data recorded by these three
floats are used here. Moreover, adjusted temperature, salin-
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Figure 1. Map of the northwest Atlantic with the Labrador Sea and
North Atlantic Current showing the trajectories of all 10 pH /O2
floats deployed so far in our pilot study. In the legend, floats in
italics are inactive. ∗ Float with a faulty pressure and/or pH sen-
sor. ∗∗ Float recovered. Dotted points show the last locations as of
7 February 2023. In the inserted map, gray lines indicate the cor-
ridor and discrete ship routes occupied by our ship-of-opportunity
platform (ICOS station DE-SOOP-Atlantic Sail) during the period
2021–2022. The red dot indicates the location of hydrographic sta-
tion 13 visited during the Maria S. Merian cruise 94 (MSM94) in
August 2020.

ity, and oxygen data were available for these floats. Although
some Argo float profiles have been reported to have been im-
pacted by a “hook” in the oxygen data at the deepest 50 m
inducing low oxygen values (Wolf et al., 2018), a visual in-
spection of the oxygen profiles from these three floats did not
show this bias.

2.2 Reference measurements

In situ pH data measured from water samples are generally
regarded as reference data for float-based observations and
are useful tools to independently estimate pH data accuracy
and, if needed, apply additional adjustments. Nevertheless,
under normal circumstances, it would be nearly impossible
to obtain specifically close crossovers between CTD casts
and floats, profiling during a float’s lifetime without signifi-
cantly impacting the fieldwork schedule of a research cruise.
The comparison of discrete pH samples, taken from a hy-
drocast at the float deployment with float pH data is limited
due to the high sensor drift during the first cycles (Bittig and
Körtzinger, 2015; Bittig et al., 2018a; Maurer et al., 2021).
In the Southern Ocean, Maurer et al. (2021) reported an off-
set value for the first segment of −0.32 pH units, illustrating
the sensor performance upon deployment caused by the lack
of conditioning in some of the pH sensors and the sensor re-

Table 1. Crossover between pH profiles of float WMO 3901669 and
a CTD cast acquired in the Labrador Sea in August 2020. Time and
position refer to the end of the profile.

Profile Time Position

Float WMO 3901669, 15 August 2020 52.955° N to
Cycle 122 10:26 UTC 48.600° W

MSM94 CTD cast, 16 August 2020 52.953° N to
Station 13 05:36 UTC 48.600° W

conditioning to an aqueous environment. However, after float
pH data adjustments, Johnson et al. (2017) and Maurer et al.
(2021) showed median shipboard bottle-minus-float differ-
ences of 0.006 pH units and 0.002 pH units, respectively. In
the SNWA area, we had the unique opportunity to acquire a
hydrocast with discrete pH samples with a float profile.

A few float (WMO 3901669) pH profiles occurred close to
the R/V Maria S. Merian 94 (MSM94) cruise in August 2020
(Karstensen et al., 2020). Thanks to the cooperation of the
chief scientist of the cruise and in a joint effort with the Euro-
Argo Research Infrastructure Sustainability and Enhance-
ment (RISE) project, a spatiotemporally close crossover was
achieved: hydrographic station 13 with discrete sampling for
pH analyses was occupied less than 1 d after and at the ex-
act location of the float cycle 122 (Table 1, Fig. 1). The dis-
crete samples were poisoned onboard following standard op-
erating procedures (Dickson et al., 2007). They were mea-
sured at GEOMAR for total alkalinity (TA), dissolved in-
organic carbon (DIC), and pH. Since DIC and pH are very
sensitive to gas exchange, they were measured in parallel
as soon as the bottles were opened. DIC was measured us-
ing a classical SOMMA system (Johnson et al., 1993) with
coulometric detection, while pH was measured using the
HydroFIA-pH system from 4H-Jena. The pH measurements
were checked regularly against community-accepted certi-
fied reference material (CRM, Andrew Dickson, Scripps In-
stitution of Oceanography, La Jolla, CA, USA). Note that
the CRM is certified only for DIC and TA, but pH measure-
ments are also performed routinely for each bag and were
made available to us (Andrew Dickson, personal communi-
cation, 2020, pH= 7.8417± 0.0014 at 25 °C). The resulting
reproducibility in pH measurements for the discrete samples
was ± 0.002 pH units. The pH data were measured at 25 °C
and atmospheric pressure and were then converted to in situ
temperature and pressure using the CO2SYS software (van
Heuven et al., 2011). The matching of float pH data and dis-
crete pH data was performed in density space rather than
depth space to avoid biases from internal wave activity.

In the SNWA, GEOMAR has been operating, with in-
termissions, a carbon SOOP line for 2 decades (ICOS sta-
tion DE-SOOP-Atlantic Sail; Fig. 1). This SOOP network
can be used as a potential reference for quality control of
autonomous platform datasets. In addition to the standard
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pCO2 instrument (Model 8050 pCO2 Measuring System,
General Oceanics, Miami, FL, USA; Pierrot et al., 2009), au-
tonomous systems for TA (Contros HydroFIA™ TA system,
4H-JENA engineering GmbH, Jena, Germany) and pH mea-
surements (Contros HydroFIA™ pH system, 4H-JENA engi-
neering GmbH, Jena, Germany) were installed on this SOOP
line in 2019 and 2021, respectively. For pH, pre- and post-
calibration runs against the CRM from Andrew Dickson’s
laboratory are performed before and after each 5-week round
trip, and an individual pH correction is applied to each pH
indicator bag (metacresol purple; MCP). The overall repro-
ducibility of SOOP pH is estimated to be about ± 0.003 pH
units.

2.3 Correction of float pH data

Conceptually, the pH correction has to be done by adjust-
ing the sensor’s reference potential (k0) as this drifts over
time (Johnson et al., 2016). For each pH sensor, the in situ
pH is proportional to the voltage between the ion-sensitive
field effect transistor (ISFET) source and the reference elec-
trode (Johnson et al., 2016). The measured potential is then
converted into pH on the total proton scale using laboratory-
based calibration coefficients. Thus, pH sensors are cali-
brated in the laboratory using spectrophotometric measure-
ments and are therefore directly related to the laboratory cal-
ibration method. Each sensor’s pressure and temperature co-
efficients, needed to compute the in situ pH, are also deter-
mined in the laboratory as described in Johnson et al. (2016).
When deployed at sea, temperature changes modify the ref-
erence potential of the sensor and in return induce a sensor
drift as the Nernst slope that transforms sensor potential to
pH depends on temperature (Johnson et al., 2016, 2017).

The general adjustment process performed in the SAGE
procedure is based on the assumption that the determined
offsets and drifts are constant across the entire water column
profile (Johnson et al., 2017; Maurer et al., 2021). Thus, the
standard SAGE adjustment process relies on a reference that
is used to calculate the at-depth (typically around 1500 dbar)
anomaly between measured and estimated reference data,
which is applied as an offset to the reference potential. It
is propagated on the entire water column profile by normal-
izing the adjustment along the profile to the temperature at
which the adjustment was derived. Temperature-normalized
changes in pH are calculated by multiplying the change in
pH computed at depth by the ratio of the absolute temper-
ature of the sample to the absolute temperature at reference
depth. To calculate the correction, the float pH time series is
split into distinct segments bound on either side by break-
point nodes determined by a cost function. Then, both drift
and offset between segments are calculated by a linear least-
squares fit to the anomaly data series between two nodes.
Indeed, by breaking the time-series sensor record into dif-
ferent segments and fitting each with a linear rate of change
in k0, the adjustment better represents the sensor behavior

Figure 2. Schematic representation of the GEOMAR float pH data
adjustment method called “linear adjustment”. As in the SAGE tool,
a linear least-squares fit is calculated between reference and float pH
data for cycles located between two breakpoint nodes to derive the
offset and drift (green lines). The blue line represents the second
least-squares fit obtained and applied to the elements located three
cycles before and after the node (red dot) in the linear adjustment
method. Adapted from Maurer et al. (2021).

over time as both drifts and offsets change independently be-
tween segments, and oftentimes noticeable jumps occur over
the first few cycles in a float’s life (Maurer et al., 2021).

In our analysis, three pH correction methods called “cycle-
by-cycle”, “linear adjustment”, and “three-point running
mean”, respectively, have been implemented locally. Like
in the SAGE tool, the pH adjustment is calculated by these
methods based on comparison to CANYON-B reference pH
values calculated at a user-defined pressure level, where spa-
tiotemporal variability in oceanic components is assumed to
be minimal. The CANYON-B method was chosen as a refer-
ence assuming it to be more robust in the North Atlantic re-
gion (Carter et al., 2021). Nonetheless, two slight differences
exist between SAGE and the methods proposed here. (1) The
adjustment can be applied either to each cycle individually
(cycle-by-cycle method) or, as in SAGE, to data within seg-
ments of consecutive profiles (“segment method”, with each
segment calculated using a cost function). (2) When using
the segment method, a centered seven-point linear regression
is used for cycles’ neighboring segment breakpoints to allow
for a smoother k0 drift between segments (Fig. 2; Johnson et
al., 2016). As in SAGE, offset and drift calculated with this
method (linear adjustment method) are then applied to the
measured float pH profiles after normalization to the temper-
ature at which the adjustment was derived. Finally, another
adjustment method, the three-point running mean method,
was tested in this study. In this, the adjustment calculated
by the cycle-by-cycle method was used to determine a new
offset for each cycle calculated as a running mean of three cy-
cles, i.e., including the cycle before and after the respective
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cycle. This method should smooth the adjustment obtained
with the cycle-by-cycle adjustment. Hereafter, every adjust-
ment method different from the one in SAGE will be labeled
as the “GEOMAR method”.

2.4 Comparisons with SOOP-based observations

To compare SOOP-based and float-based surface pH obser-
vations, we adopted the crossover definition from the Surface
Ocean CO2 Atlas (SOCAT; Sabine et al., 2013), which com-
bines the mismatch in both distance and time between two
measurements. In the SOCAT algorithm, 1 d of separation in
time (t in days) is heuristically equivalent to 30 km of sep-
aration in space (x in km) and 80 km is the maximum value
for an acceptable single crossover ((dx2

+ (dt ·30)2)1/2; Wan-
ninkhof et al., 2013). Here we used a much increased search
window of 400 km to yield a larger number of crossovers and
to optimize between spatial and temporal mismatch. In addi-
tion, a maximum temporal mismatch of 7 d was allowed for
a crossover. The SOCAT criterion of a maximum of 80 km
aims to compare two datasets of surface pCO2 observations
to agree better than 2 µatm. In this study, we conclude that
this is not yet routinely achieved by pH data from floats and
therefore we used a larger radius to ensure more crossovers
and better statistics. The resulting crossovers were further re-
duced by the requirement of a maximal salinity difference
between the float measurement and the salinity measurement
onboard the SOOP line of 0.5 (−0.5<1S < 0.5). To make
the pH measurements from both platforms comparable, the
SOOP-based pH data were corrected to the surface water
temperature of the corresponding float profile. We note that
for a possible future implementation of the SOOP crossover
method in the DM QC routine for float pH data, this needs
to be further explored and more elaborate crossover criteria
may have to be developed.

2.5 Mixed-layer depth calculations

Following De Boyer Montégut et al. (2004), a density thresh-
old of 0.03 kg m−3 with a reference depth of 10 dbar was
used to compute the mixed-layer depth (MLD). We used
MLD to determine waters affected by deep convection events
which cause unstable biogeochemical properties also at
depths that are being used for float pH data adjustments.

3 Results and discussion

3.1 Uncertainties in delayed-mode float pH data

In the following we first illustrate uncertainties associated
with the current correction method for float pH data as imple-
mented in the standardized routines from Argo data manage-
ment as well as in the SAGE tool for four reference methods
(CANYON-B, ESPER-NN, ESPER-LIR, and LIR-pH) and

two selected floats (WMO 3901668 and 3901669) which had
no apparent technical malfunctions during their lifetime.

3.1.1 Uncertainty associated with choice of reference
depth

In order to assess the uncertainty associated with the choice
of the reference depth for pH adjustment, differences be-
tween float pH data corrected using the “classical” refer-
ence pressure around 1500 dbar (Maurer et al., 2021) mi-
nus float pH data corrected over the pressure range 1940–
1980 dbar (i.e., pressure around 1950 dbar) were calculated
for the four reference methods LIR-pH (without the OA ad-
justment), CANYON-B (Fig. 3a), ESPER-NN, and ESPER-
LIR (Fig. 3b).

Differences between float-based pH data for the two dif-
ference reference depths as achieved by the four methods
ranged between −0.0005 and ca. 0.03 pH units, with mean
values for all cycles of the considered floats varying be-
tween 0.0047 and 0.0141 pH units (Fig. 3b). The choice of
the reference depth thus incurs a large difference of at least
ca. 0.005 pH units, which is above a tolerable level. This
points to a severe limitation of the pH correction scheme.
The deepest mixed layer depth estimated from the float time
series was at 1937 dbar, showing that the entire water col-
umn covered by the float profiles is probably affected. In
this regard, the subpolar North Atlantic region with its deep-
reaching anthropogenic CO2 imprint is certainly a most dif-
ficult area for the unambiguous choice of a stable and un-
perturbed reference depth as both float pH data and refer-
ence pH values could vary noticeably at the classical ref-
erence depth. By splitting the dataset to keep only profiles
done when the MLD was deeper than 1000 dbar, the com-
parison between raw and corrected float pH data using the
two reference pressures reveals larger variabilities when the
classical reference depth of 1500 dbar is used as compared to
the deepest one, highlighting the implication of deep convec-
tion events on the adjustment method (Table A1). Recently,
Wimart-Rousseau et al. (2022) performed a similar exercise
by changing the reference depth from ca. 1500 dbar to ca.
900 dbar for a float in the eastern tropical North Atlantic re-
gion and reported a tolerable uncertainty from this choice of
0.0008 pH units. The order of magnitude difference in the un-
certainty incurred from the reference depth choice illustrates
the regional dependence on hydrological conditions, which
can severely compromise the correction method or even ren-
der it almost useless as in the case presented here.

3.1.2 Uncertainty associated with choice of reference
model

Four distinct reference methods are used in the standardized
Argo pH quality control, both in SAGE and in this study:
the LIR pH regression method (LIR-pH), the CANYON-
B method (Fig. 3c), and the ESPER-NN and the ESPER-
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Figure 3. (a, b) Mean differences between float pH data corrected using the “classical” reference depth of 1500 dbar minus float pH data
corrected with reference pH data calculated between 1940 and 1980 dbar (i.e., 1950 dbar) for the floats WMO 3901668 (circles) and 3901669
(triangles) and for the reference methods (a) LIR-pH without the OA adjustment (green) and CANYON-B (orange) and (b) ESPER-NN
(purple) and ESPER-LIR (blue). (c, d) Raw float pH data minus float pH corrected using the “area-specific” reference depth of 1950 dbar
for the two reference methods CANYON-B (orange) and LIR-pH (green) in (c) and the two reference methods ESPER-NN (purple) and
ESPER-LIR (blue) in (d) and for the floats WMO 3901668 (circles) and 3901669 (triangles).

LIR methods (Fig. 3d). For all methods, corrected float
pH showed significant mean offsets to the raw pH profiles
comprising values between ca. −0.02 and −0.06 pH units
(Fig. 3c and d). Moreover, mean differences between the four
reference methods ranging between about 0.003 pH units and
ca. 0.04 pH units are observed in the SNWA, with the lowest
difference reported for the ESPER methods indicating that
they perform comparably (Table 2).

While the CANYON-B and the LIR-pH algorithmic meth-
ods are methodologically different (one is based on a neu-
ral network, while the other uses linear regressions), both
have been trained with and tested against the GLODAPv2
dataset (Olsen et al., 2016). Still, ocean pH measurement
practices have changed over time, leading to a variety of
ways to measure pH. In addition, pH calculated from DIC
and TA is not always in line with spectrophotometrically
measured pH (Carter et al., 2018). In consequence, hetero-
geneities in pH data compilations such as GLODAPv2 exist.
While CANYON-B was trained with GLODAPv2 without

modifications, Carter et al. (2018) applied a range of adjust-
ments to create a more consistent pH data product that was
used for LIR-pH training (with pH being in line with puri-
fied spectrophotometric pH measurements). Given the dom-
inance of calculated pH data in GLODAPv2, CANYON-B
pH estimates are in line with calculated pH (Bittig et al.,
2018b; Carter et al., 2018). In the SAGE software, an op-
tional CANYON-B pH data adjustment can be applied to
align estimates with spectrophotometric pH measurements
made using purified dye following Carter et al. (2018, Eq. 1).
The recent literature (Carter et al., 2018; Johnson et al., 2018)
recommends employing this reference pH data adjustment,
emphasizing that, as pH sensors are calibrated in the lab-
oratory using spectrophotometric measurements with puri-
fied dyes, sensor measurements should be directly related to
the laboratory calibration method. In this study, we have de-
cided to include this reference pH data adjustment to cor-
rect float pH data: a linear transformation was applied to
CANYON-B pH estimates to bring estimates back into align-
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ment with spectrophotometrically measured pH. For the two
floats considered in this section, means and standard devi-
ations of the difference between float pH data corrected at
1500 dbar using CANYON-B and CANYON-B adjusted are
equal to 0.0055± 6.63× 10−5 and 0.0055± 8.31× 10−5,
respectively. The ESPER routines broadly function similarly
to LIR and CANYON-B although using a gridded anthro-
pogenic carbon product to estimate the OA, assuming a ma-
rine anthropogenic carbon increase proportional to an expo-
nential increase in atmospheric anthropogenic CO2 concen-
tration. Therefore, it is more critical than ever for the sci-
entific community to perform intercomparisons of marine
CO2 system variables and address their associated uncertain-
ties regarding the large and growing variety of instruments
and approaches used to measure, deduce, and calculate CO2
variables. Figure 4 exhibits spatial distributions of estimated
pH data at the classical reference 1500 m depth level us-
ing either LIR-pH (with the OA adjustment), CANYON-B,
ESPER-LIR, or ESPER-NN and illustrates the differences
between the estimated datasets with uncertainty between ref-
erence algorithms in the order of 0.015 pH units in the SNWA
area. Despite the undeniable strength of current algorithms,
CANYON-B and LIR-pH methods suffer from weaknesses
and uncertainties due to the pH adjustment: a complete re-
gional or temporal description of the current ocean acidifica-
tion is limited with LIR-pH (i.e., LIR-pH assumes fixed OA
rates over time; Carter et al., 2018), and the pH conversion
according to another measurement mode in CANYON-B in-
duces biases (Bittig et al., 2018b). In consequence, a mean
difference between the two methods of about ± 0.016 pH
units is observed in the SNWA (Table 2 and Fig. 4).

In addition, using the SOCCOM array, Maurer et al.
(2021) calculated LIR-pH and CANYON-B pH estimates
and observed a larger uncertainty toward the surface com-
pared to 1500 m with mean differences (CANYON-B minus
LIR-pH pH data) of −0.025 and 0.001 pH units near the sur-
face and at the 1500 m depth level, respectively. This surface
discrepancy can be explained by the difficulty for algorithms
to represent seasonal variability and air–sea gas exchange.
The new ESPER methods are an attempt to resolve the is-
sues encountered with existing routines (especially the OA
estimate) by expanding their functionality and training them
on a larger data product. In comparison with the LIR-pH es-
timates, large differences are observed in the SNWA region
and might be attributable to the OA adjustment as well as the
omission of depth as a predictor variable from ESPER-LIR
(Carter et al., 2021). Updated global algorithms (i.e., ES-
PERs) show comparable estimates in the SNWA area with
ESPER-LIR pH estimates slightly higher than pH data es-
timated with CANYON-B or ESPER-NN. In the dynamic
and strongly human-impacted studied region, the lack of co-
ordinate information as a predictor variable in the ESPER-
LIR routine could also be argued to be an explanation of
the observed differences. However, according to Carter et al.
(2021), regional assessment statistics obtained in the north-
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ern Atlantic indicate almost similar biases for both the ES-
PER and the CANYON-B methods, with a better RMSE
statistic for CANYON-B. Thus, this study illustrates the need
for further studies on the choice and performance of the ref-
erence method in different ocean regions with a special em-
phasis on regional biases and limitations.

3.1.3 Adjustment of sensor drift

In addition to the choice of reference depth and method,
some additional uncertainty can be incurred from the way
the pH sensor drift correction is applied to the float data. The
sensor response often shows different modes of variability
and drift. A typical mode of variability is sensor noise, i.e.,
variability entirely introduced by electronic components of
the sensor. This noise does not represent true variability in
the observed quantity and should therefore be removed. In
addition, long-term systematic drift in sensor response due
to changes in zero levels and/or gain factors is also an in-
ternal artifact of the sensor that needs to be corrected for.
More rarely, sensors can also show more erratic and non-
systematic variability in individual measurements or over
certain measurement periods which often has unknown rea-
sons. These are hard to distinguish from true variability in
the observed quantity and are hence also hard to be removed.
The method to apply sensor corrections in time-series mea-
surements should take a conservative approach, trying to re-
move known modes of sensor variability while conserving
real variability in the data.

In the sequence of steps in the current delayed-mode Argo
adjustment method, first the 1pH (raw corrected, at refer-
ence depth) is calculated for each cycle. In the SAGE tool, a
cost function is applied for the correction of temporal trends
which determines sections over which a linear correction is
calculated and then applied to each cycle included in the re-
spective section (Fig. 5a). We also applied three different ad-
justment methods: (1) a cycle-by-cycle method, (2) a seven-
point linear regression method named linear adjustment and
(3) a three-point running mean adjustment method, which
should smooth the correction obtained with the cycle-by-
cycle adjustment (Fig. 5b). In every case, CANYON-B was
used as the reference method as well as the classical refer-
ence pressure depth of 1500 dbar.

The choice of the correction method has to reflect our un-
derstanding of the sensor’s behavior. Over time, sensor ref-
erence potential shifts are observed for pH sensors, leading
to jumps in the data time series. As stated by Maurer et al.
(2021), these jumps are typically periodic and followed by
longer periods of steady drift. The cycle-by-cycle adjustment
has the disadvantage that it gives discontinuous adjustment
rather than a segmented set of piecewise adjustments. On the
other hand, a single linear drift adjustment across the entire
time series does not seem adequate either as it does not re-
flect the clear upward and downward swings in the record,
which are mostly interpreted as changes occurring in the sen-

sor. Therefore, the adjustment method should involve tech-
niques such as a higher-order spline fit, a centered running
mean, or a segment separation of the record into linear drift
phases. The latter is implemented in the SAGE tool (Fig. 5a).
This method, however, does not provide smooth transitions
between linear drift phases and leads to step-like changes of
the order of 0.01 pH units between two consecutive profiles
which appear to be unrealistic when compared to the pattern
of the cycle-by-cycle correction and the pH readings at the
parking depth. The correction methods for temperature and
salinity also ask for maximum smoothness in the corrections
and to avoid introducing artificial jumps (Owens and Wong,
2009). Our slightly improved GEOMAR linear adjustment
version (Fig. 5b) significantly reduces the magnitude of these
discontinuities and artificial jumps. Generally, the linear seg-
ment methods assume periods of linear sensor drift separated
by step-like changes in sensor characteristics. In our view,
the sensor instead shows undulations between smooth and
less smooth phases. The pH sensor behavior when the float
drifts at its parking depth is in agreement with this observa-
tion (Fig. 5c). In comparison with float pH data corrected us-
ing the SAGE method, no obvious discontinuities in raw pH
data are observed while the float drifts between its measure-
ment phases as well as on the uncorrected float pH time series
measured at 1500 dbar (Fig. 5e and f). In order to test the im-
pact of the reference method on the adjustment pattern, dif-
ferences between uncorrected float pH data and CANYON-B
pH data derived at the parking depth are presented in Fig. 5d.
Moreover, high variability is observed in the reference pH
time series estimated using both CANYON-B (Fig. 5e) and
ESPER-LIR (Fig. 5f), highlighting the noticeable impact of
the reference algorithm discontinuities in the final correc-
tion, while raw float pH data do not present sudden changes.
Indeed, the raw pH time series shows smoothed transitions
and the general pattern does not present noteworthy jumps.
Such sharp transitions can perhaps be best corrected with our
modified GEOMAR segment method or alternatively with a
spline fit or a three-point centered running mean (Fig. 5b).

We suggest using the improved segment or running mean
method to avoid strong discontinuities in the pH correction
which could otherwise introduce biases in corrected pH of
up to 0.01 pH units in individual profiles – a magnitude that
would strongly impair quality control measures based on ref-
erencing against other in situ pH measurement from CTD
casts or surface observation platforms (see Sect. 3.2). Indeed,
and even if the impact of the adjustment method on the fi-
nal corrected dataset is almost non-significant regarding the
mean difference values (Fig. 5d), the possible impact of such
artificial jumps induced by the method itself rather than the
pH sensor could be noticeable if float pH data related to these
peculiar discontinuous cycles are compared against discrete
pH measurements and then adjusted (see Sect. 3.2).

https://doi.org/10.5194/bg-21-1191-2024 Biogeosciences, 21, 1191–1211, 2024



1200 C. Wimart-Rousseau et al.: Assessment of float pH data quality control methods

Figure 4. Spatial distributions of estimated pH data at the classical reference depth 1500 m using different reference models: LIR-pH (with
the OA adjustment) (a), CANYON-B (f), ESPER-LIR (k), and ESPER-NN (p). Maps of the spatial difference between the estimated pH
datasets are presented in panels (b)–(d), (g)–(h), and (i). Panels (e), (i)–(j), and (m)–(o) show the bias 1pH distribution (with statistics).
The upper color bar indicates the difference between estimated pH data using the different models, and the lower color bar gives the pH
values. For clarity, pH data estimated for the Black Sea, Baffin Bay, the Mediterranean Sea, and the high Arctic have been removed for this
simulation as they were outside the 5th and 95th percentiles and they caused a noticeable increase in the standard deviation (SD). World
Ocean Atlas climatology data were used to create the maps and comparisons.

3.2 Comparison with in situ discrete pH

3.2.1 Crossover with CTD hydrocast

Crossover comparisons can be used as an option to inde-
pendently estimate float pH data accuracy and determine
whether additional adjustments are needed. In 2020, we had
the rare opportunity to perform a CTD hydrocast with dis-
crete pH sampling (cruise MSM94) at the exact location and
less than 24 h after a float profile (WMO 3901669, profile
122; Fig. 1) which allows for direct comparison between dis-
crete and float-based in situ pH data after the float’s initial
drift period. Figure 6a and b present differences between dis-
crete pH measurements and float pH data along the water
column and according to two distinct reference pressure lev-
els. We find mean differences ranging between −0.0659 and
−0.0150 pH units (Fig. 6b) between the reference pH cast
and the fully corrected pH of cycle 122, with higher differ-
ences found for the classical reference depth of 1500 dbar
(Fig. 6a) and the lowest differences reported for the two ES-
PER methods.

Matching sensor data from a float with discrete samples is
a non-trivial task due to complications arising from (a) the
sensor response time and (b) the uncertainty about the effec-
tive depth from which the water captured in a Niskin bot-

tle at a given trigger depth stems from. There seems to be
no perfect way of matching these and some uncertainty re-
mains – especially in depth ranges with strong gradients in
the variable of interest. Mismatch (and resulting statistical
noise) due to internal wave activity can mostly be avoided by
matching profile and bottle data in density space, which was
done here. Differences between discrete and float tempera-
tures and salinity data add confidence in the density space
matching performed in this study (Fig. A1). However, the
likely imperfect representation of the true water sampling
depth by the trigger depth (and hence corresponding CTD
data) of a Niskin bottle introduces the potential of systematic
error in gradient regimes, although in a gradient of increasing
pH both effects (a) and (b) would lead to an underestimation
of pH. Still, the results of this comparison therefore have to
be interpreted with caution. Moreover, the laboratory-to-in-
situ temperature pH conversion uncertainty of 0.005 pH units
(Williams et al., 2017), as well as the absolute reproducibility
of the bottle pH measurements (here 0.002 pH units), have to
be taken into account before drawing strong conclusions.

The results show the smallest offsets at and/or near the ref-
erence pressure levels and an increase towards the surface.
In this area, near-surface variability and patchiness can be
large and would require a perfect match in both space and
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Figure 5. Differences between raw float pH data minus float pH corrected using the SAGE tool (a), the cycle-by-cycle GEOMAR method
(yellow, b), the linear mean regression GEOMAR method (blue, b), and the three-point centered running mean correction method (green,
b) for float WMO 3901669. In every case, CANYON-B was chosen as a reference method and 1500 dbar as the reference depth. Mean
differences between raw and corrected float pH data with the standard deviations are shown in the legend boxes for each reference method.
Panel (c) shows, for comparison with the SAGE correction, the uncorrected pH data measured at the parking depth (right y axis), with black
representing mean pH values for each day. The color bar shows pressure. Panel (d) shows differences between raw float pH data minus float
pH corrected using the SAGE tool (purple, left y axis) and differences between uncorrected mean pH data measured at the parking depth
minus mean reference CANYON-B pH data calculated using measurements recorded at the parking depth (red, right y axis). Panels (e) and
(f) show mean raw float pH data measured around 1500 dbar (between 1480 and 1520 dbar) and pH data calculated by the reference methods
CANYON-B (e) and ESPER-LIR (f) using as input parameters (i.e., temperature, salinity, pressure, and oxygen) the values measured by the
float at 1500 dbar. For panels (a) to (d), differences are calculated for each cycle at each depth along the entire profile and then averaged.

time for strong conclusions and a robust significance of the
surface value observations (< 30 dbar). Nevertheless, pH off-
sets are positively correlated with temperature, being small-
est at the temperature of the reference depth. Overall, the re-
sults appear to be robust and not an artifact of the matching
procedure and point towards an imperfect representation of
the temperature and pressure dependences of the pH sensor
(Fig. 6c). Although the actual pH values may be slightly dif-
ferent due to the regional variability, the observed trend is
confirmed. However, this single crossover does not allow for

a solid conclusion and therefore can only serve as a sugges-
tion of shortcomings in the pH reference method. With larger
numbers of matchups between hydrocasts and pH profiles
and optimized SOOP–float crossover data, an independent
validation and perhaps adjustment method could be investi-
gated. Indeed, SOOP data can represent an additional refer-
ence and comparison data source.
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Figure 6. (a, b) Differences between discrete and float pH data (for the cycle 122) calculated after matching in density space to avoid biases
from internal waves and corrected using corrected reference levels of 1500 dbar (a) and 1950 dbar (b). (c) 1pH (discrete pH measurements
minus float pH data corrected at the reference depth level 1950 dbar) as a function of the difference between discrete water temperature (i.e.,
the temperature measured in situ at the time of bottle triggering at sea) and temperature values recorded at the reference depth of 1950 dbar.
The color code refers to the reference method used to correct float pH data: CANYON-B (yellow diamonds), LIR-pH (green diamonds),
ESPER-NN (purple diamonds), or ESPER-LIR (blue diamonds).

3.2.2 Crossover with SOOP-based surface
measurements

In addition to the comparison of entire pH profiles as de-
scribed above, we compared float-based pH measurements
in the surface (average pH between 5 and 15 m depth) with
surface pH measurements from a SOOP line crossing the
North Atlantic twice every 5 weeks (see Sect. 2.4). The cruise
track of the SOOP line partly overlaps with the trajectories
our floats deployed in the North Atlantic region (see Fig. 1).
For this comparison, we used data from two floats (WMO
6904112 and WMO 3901669) between May 2021 and Oc-
tober 2022. We note that further testing and improvement of
this approach on larger datasets needs to be carried out to
define an optimal crossover criterion. Given the limitations
of the dataset (mostly due to massive manufacturing prob-
lems of the 2020 and 2021 pH sensor series), unfortunately
no robust recommendations in terms of absolute numbers can
be drawn from these experiments. Nevertheless, the assump-
tion was made hereafter that regressions using crossovers
achieved with a relatively wide search window yield a more
robust 1pH estimate than an average of a small number of
crossovers found with a smaller search window.

Figure 7 shows the differences (1pH=SOOP−float) be-
tween SOOP-based surface pH observations (corrected to the
temperature of the respective float surface pH observations)
and the averaged mixed layer pH values of the two pH /O2
floats as a function of 1T (temperature difference between
float data and SOOP data). While we found no dependence
between 1pH and 1S, an additional criterion of 1S ≤ 0.5
has been applied to the crossover selection in order to ex-
clude major water mass discrepancies. As any mismatch in
temperature will likely be associated with a corresponding
mismatch in pH (both due to the temperature sensitivity of
pH and different water mass properties), the1pH at1T = 0
should be a reasonable estimate of the pH offset between

SOOP and float. By fitting a linear regression to the data,
the pH offset at 1T = 0 can be estimated more robustly as
the intercept of the regression equation. We want to point out
that this analysis has its limitations: (1) the study area is char-
acterized by high spatiotemporal surface variability due to
mixing of water masses of very different provenance; (2) the
presented analysis uses only data from two floats during an
18-month period. However, the comparison between float-
based pH and SOOP-based pH data indicates that surface pH
is very consistently biased high for the two floats (between
ca. 0.05 and ca. 0.004 pH units depending on the choice of
correction methods). This apparent bias is in the same direc-
tion (albeit about a factor of 3 smaller) than what was found
in the comparison with discrete CTD cast samples for surface
waters. This suggests a systematic problem with float-based
pH measurements at the surface.

The average 1T of the crossovers for the two floats is
0.22 °C corresponding to a mean 1S of −0.003 going in the
opposite direction. This indicates that the crossovers iden-
tified for each float are a reasonable but not perfect match.
Calculating the apparent pH offset as a function of 1S (Ta-
ble and Fig. A2) yields 1pH values which are statistically
indistinguishable from the ones based on1T . Table 3 shows
the pH offsets and their uncertainties for two floats and two
pH correction methods as given by the intercept (± uncer-
tainty) of the linear regression fit to the data. We note that
the error associated with the pH offset is too large to be ap-
plied as a correction. However, despite the limited number of
floats and crossovers associated with this study, the prelimi-
nary results point to unacceptably high and almost identical
biases in surface pH values from the two floats (as seen by
the values crossing the y axis), which have been corrected
in the exact same way. An extended crossover comparison
with the addition of four floats (that were not part of our pilot
study) yields mean pH offsets that fall in the range± 0.03 pH
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Figure 7. Offsets between SOOP pH and fully corrected float pH (y axis) as a function of temperature difference (x axis) for crossovers
(1x ≤ 400 km, 1t ≤ 7 d, 1S ≤ 0.5) of two different floats. Float pH data have been corrected with the SAGE tool using the reference depth
level 1950 dbar and either CANYON-B (a) or ESPER-LIR (b) as reference.

Table 3. Statistics of the crossover analysis for SOOP and float pH
data.

1pH at 1T = 0

Float WMO pH offset Uncertainty
of the offset

CANYON-B
3901669 −0.029 0.012
6904112 −0.047 0.014

ESPER-LIR
3901669 −0.004 0.007
6904112 −0.031 0.014

units (Fig. A2). These mean pH differences are randomly dis-
tributed in space and time (Fig. A2), indicating an incomplete
float pH data adjustment rather than a drift in the SOOP ref-
erence dataset. This highlights that the present instructions to
correct pH with a unique offset established at depth are insuf-
ficient, at least in our study area. An improved understanding
of the temperature (and pressure) effect on the (individual)
sensor as well as a systematic adjustment with carbon mea-
surements could be the way forward to improve float pH data
adjustment.

3.3 Implications and changes in ocean chemistry

BGC-Argo float-based pH data can potentially be a very
powerful tool to estimate the ocean CO2 sink when con-
verted to pCO2 in combination with a second marine CO2
system variable such as DIC or TA. While float-based obser-
vations for both DIC and TA are still lacking and as TA val-
ues are readily predictable thanks to established algorithms
(e.g., the locally interpolated alkalinity regression (LIAR)
method; Carter et al., 2018) and also less impacted by bi-
ological variations (Zeebe and Wolf-Gladrow, 2001), TA is
the parameter of choice to derive pCO2 values. Current un-
derstanding (e.g., Carter et al., 2018) is that TA can be pre-
dicted with a typical uncertainty of about 6 µmol kg−1, which

does not include, however, potential regional biases due to
insufficient data coverage, contributions from inorganic nu-
trients, or biases due to unknown organic TA contributions in
highly productive and/or coastal waters. Using this TA uncer-
tainty, u(TA), we calculated the minimum required pH uncer-
tainty, u(pH), that allows us to meet two pCO2 uncertainties,
u(pCO2), as defined by Newton et al. (2015): the “climate
goal” uncertainty of 2 µatm and the “weather goal” uncer-
tainty of 10 µatm.

To frame the weather goal, pH uncertainties of around
0.01 pH units (from 0.008 to 0.016 depending on T and
pCO2), have to be reached, while to derive pCO2 data with
an uncertainty as the one defined by the climate goal criterion
and considering a u(TA) equals ± 6 µmol kg−1, a pH uncer-
tainty< 0.006 pH units is required. At u(TA)= 6 µmol kg−1,
the overall contribution of this parameter to the derived un-
certainty in pCO2 is rather marginal in comparison with the
dominant impact of u(pH), and the resulting pCO2 change
represents slightly more than 16 % of the pH impact when
considering a 0.006 pH unit pH uncertainty. Expressed dif-
ferently, it means that the uncertainty in predicted TA corre-
sponds to an uncertainty in pH of about 0.001 pH units. How-
ever, while the u(TA) is not the major obstacle to derive ac-
curate pCO2 data, TA values still would have to be carefully
estimated to then be used as a predictor variable. Regional
and/or seasonal biases in estimated TA can be observed in
some oceanic regions where high surface nutrient concentra-
tions can occur, especially during phytoplankton bloom sit-
uations. The TA uncertainty can also be more important in
areas subject to terrestrial discharges, as allochthonous mat-
ter or organic TA can be associated with non-carbonate or-
ganic alkalinity (Soetaert et al., 2007; Hunt et al., 2011). This
perhaps warrants specific tests on the accuracy of TA predic-
tions in critical regions (or seasons) but also if this parame-
ter is intended to be used to derive other parameters of the
CO2 system, especially DIC. Finally, an additional source of
uncertainty when calculating pCO2 (pH, TA) from floats is
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uncertainties in the carbonate system equilibrium constants
(Orr et al., 2018).

In order for float pH data to be suitable for the calcula-
tion of parameters of the marine CO2 system, and in par-
ticular pCO2 data, with useful accuracies, the documented
shortcomings in accuracy of float pH need to be explored
and addressed. Taking into account the error propagation, the
u(pH) allowed for calculating pCO2 from the pH and TA
is on the order of 0.0107± 0.0018 for the weather goal and
0.0056± 1.42× 10−4 for the climate goal. In the SNWA re-
gion, the demonstration done in Sect. 3.1 of this study has
shown that the combination of uncertainties associated with
the choice of the reference method and reference depth as
well as the choice of method to calculate the adjustments for
the individual float cycles can lead to uncertainties in pH
well beyond what is deemed acceptable to exploit the pH
data for CO2 calculation purposes. Thus, to achieve the re-
quired pCO2 uncertainty, it is desirable to reduce and bet-
ter constrain the uncertainty associated with float-based pH
measurements to derive and depict the oceanic carbon cycle
entirely.

4 Conclusions

For correcting float-based pH measurements, the current
standardized routines from Argo data management rely on
a single-point, at-depth correction method along with refer-
ence algorithms such as LIR-pH, ESPERs, or CANYON-B,
assuming that the adjustment calculated at depth yields cor-
rections applicable to the entire profile.

By using both float-based pH data and in situ pH data from
other platforms acquired in the SNWA area, this study was
able to identify uncertainties and potential biases associated
with the adjustment applied which raise concerns about the
single at-depth correction on adjusted pH data. Our findings
show consistent results indicating that corrected float pH data
may be biased by several hundredths of a pH unit near the
surface in the SNWA, possibly in response to deep convec-
tion events and suggesting that similar observations might be
possible in other deep convection regions. Even if the sta-
tistical significance of our findings is limited due to the low
number of comparisons available, this apparent weakness of
the DM QC process of float pH data should be considered
in light of the challenges in interpreting TA and pH-derived
pCO2 data in a crucial area for ocean convection events and
anthropogenic carbon storage. With regard to the situation
observed in the SNWA, we suggest (1) revisiting the temper-
ature and pressure effect on the sensor and (2) considering
global crossover analysis between float pH surface data and
other platforms (SOOP lines, buoy, floats) in order to inde-
pendently quality control and perhaps correct float pH data
close the surface, where the accuracy required to better con-
strain the oceanic response to climate changes is the highest.
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Appendix A

Figure A1. (a, b) Vertical profiles of temperature (a) and salinity (b) measured during the MSM94 cruise (diamonds) and acquired by
the float WMO 3901669 during cycles 121, 122, and 123 (gray and black lines). (c, d) Differences between discrete and float (cycle 122)
temperature (c) and salinity (d) data calculated after matching in density space to avoid biases from internal waves.
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Figure A2. Offsets between SOOP pH and fully corrected float pH data (y axis) as a function of the time (a) and the crossover criterion (b)
for the six floats considered. Panel (c) shows the mean offsets and their associated uncertainties. The pH offset was determined at1T = 0 °C
(temperature difference between float data and SOOP data) by fitting a linear regression to the data for the float showing a clear spread
of 1T values (dots) or by considering the mean pH difference when clustering around 1T = 0 (crosses). Crossovers were calculated for
1x ≤ 400 km,1t ≤ 7 d, and1S ≤ 0.5. pH values were recalculated using CO2SYS (van Heuven et al., 2011) to account for any temperature
difference between matched observations. Float pH data have been corrected with the SAGE tool using either the reference depth level 950
or 1950 dbar and ESPER-LIR as reference (see Table A2). N stands for the number of values used to derive the statistics.

Biogeosciences, 21, 1191–1211, 2024 https://doi.org/10.5194/bg-21-1191-2024



C. Wimart-Rousseau et al.: Assessment of float pH data quality control methods 1207

Table A1. Mean differences between raw float pH data and float pH data corrected at two distinct depths and using the four different
methods for the floats WMO 3901668 and 3901669 only for cycles acquired when the mixed layer depth was deeper than 1000 db. SD stands
for standard deviation.

Float WMO 3901668 Float WMO 3901669

Winter 2019 Winter 2020 Winter 2019
Mean MLD= 1639.6 db Mean MLD= 1712.1 db Mean MLD= 1240.2 db

ESPER-NN
Raw-1500 db −0.0293± 1.39 × 10−4

−0.0248± 8.12 × 10−5
−0.0352± 9.97 × 10−5

Raw-1950 db −0.0181± 5.23 × 10−4
−0.0164± 1.08 × 10−4

−0.0265± 5.95 × 10−5

ESPER-LIR
Raw-1500 db −0.0416± 3.52 × 10−5

−0.0380± 1.64 × 10−4
−0.0456± 1.05 × 10−4

Raw-1950 db −0.0244± 3.30× 10−3
−0.0300± 1.80× 10−3

−0.0307± 1.77× 10−4

CANYON-B
Raw-1500 db −0.0508± 8.89× 10−5

−0.0478± 1.41× 10−4
−0.0554± 6.49× 10−5

Raw-1950 db −0.0391± 1.50× 10−3
−0.0399± 8.88× 10−4

−0.0457± 6.20× 10−5

LIR-pH
Raw-1500 db −0.0677± 4.31× 10−5

−0.0647± 3.95× 10−5
−0.0728± 8.51× 10−5

Raw-1950 db −0.0549± 4.03× 10−4
−0.0543± 2.77× 10−4

−0.0628± 6.18× 10−5

Table A2. Statistics of the crossover analysis for SOOP and float pH data. N stands for the number of values used to derive the statistics.
Crossovers were calculated for1x ≤ 400 km,1t ≤ 7 d, and1S ≤ 0.5. pH values were recalculated using CO2SYS (van Heuven et al., 2011)
to account for any temperature difference between matched observations. Float pH data have been corrected with the SAGE tool using either
the reference depth level 950 or 1950 dbar and ESPER-LIR as reference.

1pH at 1T = 0 1pH at 1S = 0

Correction depth N Float WMO pH offset Uncertainty pH offset Uncertainty
of the offset of the offset

950 11 1902303 0.025 0.010 0.018 0.010
950 11 1902304 0.018 0.006 0.012 0.006
1950 5 4903365 0.030 0.002 0.036 0.004
1950 2 6904241 0.042 0.0003 0.030 0.0003
1950 11 6904112 −0.031 0.014 −0.029 0.008
1950 8 3901669 −0.004 0.007 0.013 0.006
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Data availability. Data from the DE-SOOP-Atlantic Sail
line are available at https://meta.icos-cp.eu/resources/stations/
OS_NA-VOS (Steinhoff, 2023). Argo data are available
at http://doi.org/10.17882/42182#96550 (Argo, 2022) or at
https://data-argo.ifremer.fr/dac/coriolis/ (Coriolis, 2023). These
data were collected and made freely available by the Interna-
tional Argo Program and the national programs that contribute
to it (https://argo.ucsd.edu, Argo international program, 2023,
https://www.ocean-ops.org, OceanOPS, 2023). The Argo Program
is part of the Global Ocean Observing System. Data from the
MSM94 cruise (https://doi.org/10.48433/cr_msm94, Karstensen et
al., 2023a) can be found on the PANGAEA website (https://doi.
pangaea.de/10.1594/PANGAEA.927311, Karstensen et al., 2023b).
MATLAB code for the SAGE software tool is freely available at
https://github.com/SOCCOM-BGCArgo/ARGO_PROCESSING
(Maurer et al., 2021).
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