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Abstract. Data from satellite, aircraft, drone, and ground-
based measurements have already shown that canopy-scale
sun-induced chlorophyll fluorescence (SIF) is tightly related
to photosynthesis, which is linked to vegetation carbon as-
similation. However, our ability to effectively use those find-
ings are hindered by confounding factors, including canopy
structure, fluctuations in solar radiation, and sun–canopy ge-
ometry that highly affect the SIF signal. Thus, disentangling
these factors has become paramount in order to use SIF
for monitoring vegetation functioning at the canopy scale
and beyond. Active chlorophyll fluorescence measurements
(FyieldLIF), which directly measures the apparent fluores-
cence yield, have been widely used to detect physiological
variation of the vegetation at the leaf scale. Recently, the
measurement of FyieldLIF has become feasible at the canopy
scale, opening up new opportunities to decouple structural,
biophysical, and physiological components of SIF at the
canopy scale. In this study, based on top-of-canopy mea-
surements above a mature deciduous forest, reflectance (R),
SIF, SIF normalized by incoming photosynthetically active
radiation (SIFy), FyieldLIF, and the ratio between SIFy and
FyieldLIF (named 8k) were used to investigate the effects of
canopy structure and shadows on the diurnal and seasonal
dynamics of SIF. Further, random forest (RF) models were
also used to not only predict FyieldLIF and 8k , but also pro-
vide an interpretation framework by considering additional
variables, including the R in the blue, red, green, red-edge,
and near-infrared bands; SIF; SIFy ; and solar zenith angle

(SZA) and solar azimuth angle (SAA). Results revealed that
the SIF signal is highly affected by the canopy structure and
sun–canopy geometry effects compared to FyieldLIF. This was
evidenced by the weak correlations obtained between SIFy
and FyieldLIF at the diurnal timescale. Furthermore, the daily
mean SIFy captured the seasonal dynamics of daily mean
F yieldLIF and explained 58 % of its variability. The findings
also revealed that reflectance in the near-infrared (R-NIR)
and the NIRv (the product of R-NIR and normalized differ-
ence vegetation index (NDVI)) are good proxies of 8k at the
diurnal timescale, while their correlations with 8k decrease
at the seasonal timescale. With FyieldLIF and 8k as outputs
and the abovementioned variables as predictors, this study
also showed that the RF models can explain between 86 %
and 90 % of FyieldLIF, as well as 60 % and 70 % of 8k vari-
ations under clear-sky conditions. In addition, the predictor
importance estimates for FyieldLIF RF models revealed that
R at 410, 665, 740, and 830 nm; SIF; SIFy ; SZA; and SAA
emerged as the most useful and influential factors for predict-
ing FyieldLIF, whileR at 410, 665, 705, and 740 nm; SZA; and
SAA are crucial for predicting 8k . This study highlighted
the complexity of interpreting diurnal and seasonal dynamics
of SIF in forest canopies. These dynamics are highly depen-
dent on the complex interactions between the structure of the
canopy, the vegetation biochemical properties, the illumina-
tion angles (SZA and SAA), and the light conditions (ratio
of diffuse to direct solar radiation). However, such measure-
ments are necessary to better separate the variability in SIF
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attributable to radiation and measurement conditions from
the subtler variability attributable to plant physiological pro-
cesses.

1 Introduction

Spatial and temporal information on vegetation status is cru-
cial to gain a better understanding of vegetation functioning
and productivity. Remotely sensed data mostly from satellite
and airborne platforms have provided such information for
decades now (Ustin and Middleton, 2021). However, most of
the remote sensing methods used for detecting and monitor-
ing the dynamics of vegetation properties were exclusively
based on vegetation greenness derived from optical vegeta-
tion indices (VIs), such as the normalized difference veg-
etation index (NDVI), and more recently the near-infrared
reflectance of vegetation index (NIRv), which have been
broadly and successfully used to estimate some biophysical
and biochemical attributes, including leaf area index (LAI),
fraction of absorbed photosynthetically active radiation (fA-
PAR), and leaf chlorophyll content (Campbell et al., 2019;
Zeng et al., 2022b).

Sun-induced chlorophyll fluorescence (SIF) is a direct
indicator of the vegetation photosynthetic activity that re-
sponds to abiotic stresses, such as heat waves and droughts,
earlier than VIs (Frankenberg et al., 2011; Guanter et al.,
2014; Rascher et al., 2015; Jonard et al., 2020). Further, SIF
is not directly impacted by soil background as green vegeta-
tion is the only source of chlorophyll fluorescence in the red
and far-red. The potential carried by SIF is currently used
for estimating and monitoring terrestrial gross primary pro-
ductivity (GPP) across different vegetation types, including
crops, deciduous forests, evergreen forests, tropical forests,
wetlands, etc. (Li and Xiao, 2022; Verma et al., 2017; Wood
et al., 2017; Balde et al., 2023), for assessing vegetation
structural changes and estimating crop productivity (He et
al., 2020; Liu et al., 2022).

However, because of the coarse spatial scale of the satellite
products used in these abovementioned studies, the results
are inconclusive, and it is still questioned whether SIF can
provide reliable estimates of GPP at different spatial scales
and temporal resolutions across different vegetation types
and more particularly under various abiotic stress conditions
(Paul-Limoges et al., 2018; Yazbeck et al., 2021; Lin et al.,
2022; Balde et al., 2023; Sun et al., 2023b). Further, satellite
SIF signals are also subject to the effects of the interactions
between the roughness of upper canopy layers (tree forms,
gaps) and the solar zenith (SZA) and solar azimuth angle
(SAA). These interactions modulate the spatial and tempo-
ral distributions of sunlit and shaded leaves; the light dis-
tribution within the canopy; and the main physiological pro-
cesses, such as photosynthesis, evapotranspiration, and stom-
atal conductance (Gao et al., 2022; Morozumi et al., 2023).

The recent increased availability of diurnal and seasonal
time series of SIF data from airborne, drone, and ground-
based measurements was crucial for gaining a better under-
standing of what drives SIF at various spatial and temporal
scales and across biomes (Damm et al., 2015; Rascher et al.,
2015; Yang et al., 2017; Goulas et al., 2017; Wang et al.,
2021; Zhang et al., 2021; Wang et al., 2022; Xu et al., 2021;
De Cannière et al., 2022). However, interpretation of locally
measured SIF data should be cautiously carried out. In fact,
rapid variations in fluorescence may be due to local effects
linked to the conditions of illumination and to the light ab-
sorption by the canopy. These effects may lead to significant
variations in SIF without substantial variations in photosyn-
thesis of the entire canopy. Therefore, distinguishing the ef-
fects of endogenous factors related to canopy structure from
the effects of photosynthesis changes in the SIF signal is war-
ranted.

At the top of the canopy, the radiative transfer of SIF can
be assumed with Eq. (1):

SIF= PAR× fAPAR×8F× fesc, (1)

where PAR is the incoming photosynthetically active radi-
ation (400–700 nm), which is the first driver of the canopy
SIF signal (Miao et al., 2020). fAPAR is the fraction of ab-
sorbed PAR by the vegetation, and fesc is the fraction of all
chlorophyll fluorescence photons emitted from all leaves and
escaped from the canopy, also known as the fluorescence es-
cape probability fraction, which is dependent on the biophys-
ical and biochemical properties of the canopy and on the sun
and view geometry.8F is the chlorophyll fluorescence quan-
tum yield (the ratio of the total amount of photons emitted to
the total amount of photons absorbed by the chlorophyll pig-
ments); hence, it is a direct indicator of the photosynthetic
efficiency. From Eq. (1), it is explicit that in order to in-
terpret top-of-canopy SIF and use it as a proxy of 8F and
photosynthesis, it is necessary to understand and disentangle
8F from the SIF canopy-structure-dependent variations (due
to the spatiotemporal effect’s variations in sunlit and shaded
leaves and to the light distribution and attenuation within the
canopy) that are contained in fAPAR and fesc.

Disentangling the photosynthetically dependent variations
from the canopy-dependent ones in the SIF signal is critical
to use SIF as a proxy of vegetation response to changing en-
vironmental conditions and to abiotic stresses at large scales.
It is especially needed for the upcoming Fluorescence Ex-
plorer (FLEX) satellite mission that aims at providing mea-
surements of SIF at its full spectral emission (670–780 nm)
and with unprecedented spatial resolution (300 m) and re-
peated global coverage (Drusch et al., 2017). Therefore, the
top-of-canopy SIF measured together with GPP at the car-
bon flux sites can play a substantial role for calibrating and
validating FLEX products and airborne campaign measure-
ments.

Recent studies have developed novel approaches based on
theoretical insights to correct the SIF signal for multiple scat-
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tering and reabsorption effects (Zeng et al., 2019; Yang and
van der Tol, 2018; Yang et al., 2020) by determining fesc and
allowing the downscaling of SIF emission from canopy to
fluorescence emission yield (Lu et al., 2020). This assumes
that the entire canopy acts like a big leaf, with unique ab-
sorption, fluorescence, and photosynthetic properties. In this
situation, fesc is the ratio of top-of-canopy SIF to SIF total,
and it is closely related to canopy structural variations, in-
cluding LAI, leaf angle distribution, reabsorption, and sun–
canopy geometry, and varies across time and space (Zeng et
al., 2019). Recently, fesc has been estimated using NIRv or
the fluorescence correction vegetation index (FCVI). The for-
mer considers soil background effects and is the product of
NDVI and the reflectance in the near-infrared (NIR) (Badg-
ley et al., 2017), and it has successfully been used to assess
photosynthesis productivity (Mengistu et al., 2021). The lat-
ter, FCVI, is framed as the difference between the NIR and
the broadband visible reflectance (400–700 nm), considering
that the reflectance is measured in the same direction as the
SIF observations (Yang et al., 2020). Both approaches have
shortcomings, as they cannot be universally applied, because
some steps in the estimation of fesc using NIRv are incon-
sistent with the radiative transfer theory (Yang et al., 2020),
and their effectiveness might be greatly compromised for SIF
at the red band where the scattering is much weaker than in
the near-infrared. The use of FCVI is also limited as it is not
suitable in sparse vegetation canopies, and its computation
requires hyperspectral data in the visible spectral range.

If one would like to disentangle the radiation and
vegetation-structure-dependent SIF variations from the phys-
iological information in the SIF signal, determining 8F
would be required. 8F can be defined at the leaf scale or
even at lower scales (chloroplasts) where the absorbed light
energy is dissipated following three pathways: photosynthe-
sis, fluorescence, and heat dissipation. Estimating leaf-scale
8F from canopy SIF measurements is an ongoing work that
is under exploration. In addition, the computation of to-
tal absorbed photosynthetically active radiation (APAR) re-
quires measurements of the incident, transmitted, and re-
flected PAR, which cannot be measured at satellite or air-
borne platforms, and are not always available for all ground
sites, even those belonging to major carbon flux observation
networks, such as the Integrated Carbon Observation Sys-
tem (ICOS). This is the reason why for decades the appar-
ent 8F was estimated by normalizing the top-of-canopy SIF
signal converted in quanta energy by the incident PAR (Dau-
mard et al., 2012; Goulas et al., 2017). Recently, two promis-
ing approaches have been used by Zeng et al. (2022a) and
Loayza et al. (2023) to estimate 8F. To determine 8F over
cropped fields, including, rapeseed, barley, corn, wheat, and
sugar beet, Zeng et al. (2022a) normalized canopy SIF by
the near-infrared radiance of vegetation index (rNIRv, the
product of NDVI and the reflected vegetation radiance in the
near-infrared), while Loayza et al. (2023) used the integrated
vegetation reflected radiance between 500 and 700 nm on a

potato crop. These approaches have advantages, because the
effects of canopy structure and sun–canopy geometry on 8F
estimates may be fully canceled out, the PAR is not needed as
an input, and their applicability at the satellite scale is highly
feasible. However, how much these methods are reliable and
effective at estimating 8F under varying environmental con-
ditions and across diverse spatiotemporal scales and vegeta-
tion types is not well explored yet.

Luckily, chlorophyll fluorescence can be measured using
active methods that allow direct evaluation of the physiolog-
ical status of the vegetation at the leaf and canopy scales
(Porcar-Castell et al., 2014; Moya et al., 2019; Loayza et
al., 2023). In active techniques, a modulated source of light
is used to excite the chlorophyll that fluoresces in the spec-
tral range between 650 and 800 nm. For instance, the pulse-
amplitude modulation techniques, which use a measuring
pulsed light and an actinic continuous light, have been widely
used at the leaf scale to provide direct chlorophyll fluores-
cence yield measurements, allowing for the evaluation of
photosynthesis and vegetation responses to abiotic factors
for decades (Baker, 2008; Magney et al., 2017). But its ap-
plicability at canopy and ecosystem scales was hindered by
the technique’s limitations (Ounis et al., 2001). In the last
decades, this gap was filled based on the use of either lasers
(or laser diodes) or light emitting diodes (LED), providing
short pulses of light (microsecond to even picosecond), to-
gether with a synchronized detection to measure chlorophyll
fluorescence under daylight conditions at the canopy scale
with in situ or airborne remote sensing instruments (Moya et
al., 2019; Ounis et al., 2016; Loayza et al., 2023). Therefore,
the fluorescence efficiency can be directly observed at the
canopy and landscape scales, which is useful to gain a better
understanding of terrestrial vegetation functioning. Indeed,
LED-induced chlorophyll fluorescence (FyieldLIF) is less af-
fected by the temporal and spatial (horizontal and vertical)
distribution of sunlit and shaded leaves on the upper sur-
face and within the canopy compared to SIF, but it may be
highly sensitive to environmental conditions, such as high
wind speeds (Lopez Gonzalez, 2015).

In forest stands, such as temperate deciduous forests, when
the vegetation green-up and senescence phases are excluded,
LAI is merely constant. However, the spatial dynamics in
LAI may be large from one plot to another. Thus, the canopy
structural effect correction on the SIF signal is all the more
crucial from a spatial viewpoint. Further, the SIF signal is
subject to diurnal variations due to the complex interac-
tions between lighting conditions (diffuse/total radiation, so-
lar, and viewing angles) and canopy structure (Aasen et al.,
2019; Xu et al., 2021). Therefore, correcting SIF from these
effects, which are very local, is warranted for (i) interpret-
ing and upscaling the SIF signal spatially and temporally
across diverse vegetation types, (ii) disentangling the phys-
iological response from variations due to exogenous effects
on SIF, (iii) assessing how SIF responds to extreme environ-
mental conditions (heat waves, drought, etc.), and ultimately
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(iv) gaining a better understanding of the relationships be-
tween SIF and GPP. Nevertheless, to the best of our knowl-
edge, an attempt to use active fluorescence measurements at
the canopy scale to correct SIF from canopy structure, inci-
dent sunlight, and sun–canopy geometry effects has not been
addressed yet.

The main objective of this work is to use active chloro-
phyll fluorescence (FyieldLIF) as a reference measurement
and to compare it to SIF yield (SIFy =SIF/PAR) in order
to analyze and correct for the effects of canopy structure
and sun–canopy geometry on top-of-canopy SIF at diurnal
and seasonal timescales in a temperate deciduous forest, con-
sidering diverse environmental conditions. More specifically,
this study intends to (i) evaluate the relationship between
FyieldLIF and SIFy as well as evidence the effects of canopy
structure and sun–canopy geometry on top-of-canopy SIF
through their influence over this relationship and (ii) examine
these effects with the aim of developing a correction method
based on reflectance measurements and lightning conditions
(solar angles, ratio of diffuse to total radiation, etc.).

2 Materials and methods

2.1 Study site description

This study was conducted at the Fontainebleau-Barbeau for-
est site (FR-Fon), which is an eddy covariance (EC) flux
observation site belonging to the ICOS network (Delpierre
et al., 2016). The site is located 53 km southeast of
Paris, France. It is occupied by a temperate deciduous
broadleaf forest type. The dominant forest overstory con-
sisted of mature sessile oak trees (Quercus petraea (Matt.)
Liebl.), accounting for 79 % of the basal area (Mayson-
nave et al., 2022), with an understory of hornbeam (Carpi-
nus betulus L.) (for more details, see http://www.barbeau.
universite-paris-saclay.fr/, last access: 10 October 2023).
The stand height is around 25 m. The soil is an Endostag-
nic Luvisol, covered by an oligomull humus (Maysonnave et
al., 2022). The climate is temperate and characterized by an
annual average rainfall of approximately 680 mm and an av-
erage air temperature of approximately 11 °C (Soudani et al.,
2014). The LAI is approximately 5.8 m2 m−2 using the lit-
ter collection method over the 2012–2018 period (Soudani et
al., 2021). At the Fontainebleau-Barbeau site, carbon and wa-
ter fluxes have been continuously monitored at 35 m height
using the EC method. The main micrometeorological vari-
ables, including incident and reflected radiations, are mea-
sured at high frequency (1 min), while vapor pressure deficit,
precipitation, air and soil temperature, water table depth, soil
moisture, and wind speed are either recorded or estimated at
a half-hourly timescale.

2.2 Sun-induced and light-emitting-diode-induced
chlorophyll fluorescence and reflectance
measurements of the canopy

2.2.1 Sun-induced chlorophyll fluorescence
measurement system

In the framework of the ECOFLUO1 project, a passive in situ
spectral measurement automated instrument (named SIF3)
was developed based on a collaboration between the Lab-
oratoire de Météorologie Dynamique (LMD), École Poly-
technique, France, and Laboratoire Écologie, Systématique
et Évolution (ESE), Université Paris-Saclay, France. SIF3 ac-
quires continuous measurements of incident and reflected ra-
diation above the canopy. It was installed at the top of the
35 m high tower of the Fontainebleau-Barbeau site above the
canopy in July 2021 (Supplement Fig. S1). To avoid artificial
shading of the measured area, SIF3 was set to the southern
part of the tower.

The SIF3 measurement system includes a control com-
puter (LattePanda V1, LattePanda Shanghai, China, and two
Arduino microcontrollers), two spectrometers with coolers,
shutter controllers, a general cooler with temperature con-
troller inside the box, two optical fibers, a reference panel, a
servo motor, a PAR sensor, a GPS device, temperature and
relative humidity sensors, and a camera. The two spectrom-
eters are a high-resolution spectrometer (ASEQ instruments,
Vancouver, Canada, HR1-T model, with thermoelectric cool-
ing) and a broadband spectrometer (ASEQ, LR1-T model,
with thermoelectric cooling). The high-resolution spectrom-
eter (HR1-T) has a spectral range between 650 and 800 nm,
a high spectral resolution with full width at half maximum
(FWHM) of approximately 0.3 nm. The HR1-T was used to
determine sun-induced chlorophyll fluorescence. The broad-
band spectrometer (LR1-T) has a spectral range between 400
and 1000 nm and a FWHM of approximately 1.5 nm. It was
used to measure canopy reflectance and the optical vegeta-
tion indices (VIs).

In order to reduce the noise and dark current, both spec-
trometers were contained within a dry and thermoregulated
box system that maintained the temperature at 19± 0.61 °C.
SIF3 performs sequential vegetation reflected radiance mea-
surements and irradiance measurements on a polytetraflu-
oroethylene (PTFE) reference panel (PMR10P1, Thorlabs,
Maisons-Laffitte, France). The sequential measurements of
SIF3 were first to measure the reference PTFE with LR1-T
and HR1-T spectrometers and second to measure vegetation-
reflected radiance with both spectrometers. Within one mea-
surement of the target canopy or the reference, each spec-
trometer performed the following steps: (i) optimizing the in-
tegration time (IT) for measurement, (ii) measurement, and

1“Télédétection in-situ de la fluorescence chlorophyllienne pour
le suivi du fonctionnement carboné des écosystèmes en support à la
mission FLEX”
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(iii) measurement of the dark current. The date and time at
the start and end of each measurement were recorded. Two
15 m long optical fibers (FT1000EMT and FT1000UMT,
Thorlabs, Maisons-Laffitte, France, for HR1-T and LR1-T
spectrometers, respectively) with a 1000 µm core diameter
and a numerical aperture (NA) of 0.39 were used to measure
the irradiance of the reference and the radiance of the canopy,
at the nadir position. The field of view (FOV) of each mea-
suring channel is adjusted to 25° with the use of a Gershun
tube to ensure a flatter spatial response and covered approx-
imately 6 m2 of the canopy area. Long-pass optical filters
(5CGA-550, cut-off wavelength 550 nm, and 5CGA-375,
cut-off wavelength 375 nm; Newport, Irvine, CA, USA, for
the HR1-T and LR1-T channels, respectively) were placed
in front of each tube to avoid second-order detection and to
protect fiber ends. The dark current measurements were sub-
tracted from the reference and canopy measurements before
SIF retrieval. The IT of each spectrum was automatically op-
timized to achieve values that are as high as possible but un-
saturated to improve as much as possible the signal-to-noise
ratio (SNR). Note that SIF3 integrates a quantum sensor to
measure the PAR at high frequency and a camera that allows
for taking RGB images of the canopy in the FOV. Before the
installation of SIF3 in the field, we performed lens alignment
and radiometric and spectral calibrations of the instrument
using a calibrated light source (4P-GPS-060-SF and EHLS-
100-075R, Labsphere, North Sutton, NH, USA).

2.2.2 Light-emitting-diode-induced chlorophyll
fluorescence measurement system

FyieldLIF measurements were acquired with an active fluo-
rometer instrument, named LIF, developed in the LMD labo-
ratory, which was installed at the top of the 35 m high tower
next to SIF3 above the canopy. This instrument is very sim-
ilar to the one described by Moya et al. (2019). It uses a
blue LED array (Enfis Ltd., Swansea, UK; peak wavelength
455 nm, FWHM 21 nm, radiant power 6 W) as an excitation
source. To separate the chlorophyll fluorescence emission in-
duced by the LED from that induced by daylight and from
the reflected sunlight in the filter bandwidth, the LED light
is pulsed at a variable frequency with a pulse duration of
about 5 µs. Note that the instrument uses a bimodal excitation
conditioned by the PAR: for PAR< 90 µmol m−2 s−1 (night-
time), the frequency is set at 30 Hz, while it is set at 200 Hz
(daytime) for PAR> 100 µmol m−2 s−1. This bimodal exci-
tation scheme helps to avoid variable fluorescence induction
during night and to increase SNR during daytime. The in-
strument optical head consisted of two main parts: (i) the
source module that includes the blue LED array, its electronic
driver, a heat dissipation module, and a Fresnel lens (diame-
ter 180 mm) to collimate the excitation light and (ii) a detec-
tion module that includes a second Fresnel lens of the same
diameter, a set of optical filters, a large-area PIN photodiode
(10× 10 mm2, S3590, Hamamatsu Photonic, Japan), and a

laboratory designed amplifier that selects the LED-induced
fluorescence signal (FyieldLIF) from the reflected sunlight in
the same wavelength band (LNIR, reflected sunlight in the
near-infrared). This amplifier uses a sample and hold circuit
(AD585, Analog Devices, Wilmington, MA, USA) to deliver
the peak value of the fluorescence signal to the digital–analog
(AD) conversion card (USB 6212, NI, Austin, Texas, USA)
and a low-pass electronic filter to deliver LNIR to the same
card. The set of optical filters includes a high-pass interfer-
ential filter with a cut-off wavelength at 400 nm to reject UV
light, a second high-pass interferential filter with a cut-off
wavelength at 650 nm to reject the excitation light, and a
3 mm thick RG9 filter (Schott, Germany) to select the far-red
fluorescence emission over 725 nm. The FOV can be con-
trolled thanks to an onboard camera (RLC-520A, Reolink,
Hong Kong). We selected a top-of-canopy area in the FOV
of the SIF instrument, resulting in a 9 m measuring distance
with a viewing zenith angle of 30° However, as the FOV
of the instrument is about 100 mrad, the measured area was
about 0.4 m2, which is much smaller than the FOV of SIF3
(approximately 6 m2). Power supplies as well as synchro-
nization and acquisition electronics are enclosed in a sepa-
rate box, connected to the optical head by a 5 m long cable.
FyieldLIF and LNIR data are stored on disk with an acquisi-
tion and control program written in LabVIEW (NI, Austin,
Texas, USA) that runs on a LattePanda V1 microcomputer.
Other variables such as PAR and LED, photodiode and box
temperatures are also continuously monitored.

2.3 Canopy–sun-induced chlorophyll fluorescence
retrieval

As spectral measurements are recorded in digital counts, they
were converted into radiometric units before SIF retrieval.
SIF was retrieved at the far-red oxygen observation band
(O2-A) from the HR1-T canopy reflectance measurements.
Data quality control was performed prior to SIF retrieval fol-
lowing the protocol proposed by Cogliati et al. (2015) to put
aside abnormal data caused by abrupt changes in incident ra-
diation. SIF retrieval was performed using the classical three-
band Fraunhofer line discrimination (3FLD) method at the
O2-A band (Meroni et al., 2009; Daumard et al., 2012).

The 3FLD approach is rooted in the FLD principle, which
requires measurements in two channels, one inside and one
outside a Fraunhofer or absorption line (Meroni et al., 2009).
The FLD hypothesis is based on the consistency of re-
flectance and SIF at both bands. However, studies have found
evidence that the two variables are not constant (Meroni et
al. 2009). The 3FLD method rather assumes that reflectance
and SIF vary linearly around the absorption band considered,
which solves the limitation given by the FLD hypothesis and
uses three spectral bands per absorption line to retrieve SIF
(Zhang et al., 2021). The 3FLD SIF retrieval at 760 nm (O2-
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A band) can be derived as follows:

SIF760 =
(El× wl+Er×wr)×Lin− (Ll×wl+ Lr×Er)×Ein

(El×wl+ Er×wr)−Ein
,

wl =
λr− λin

λr− λl
,wr =

λin− λl

λr− λl
, (2)

where L is the upwelling radiance. E is the downwelling ir-
radiance measured on the reference panel. Indices “l”, “r”,
and “in” represent the reference bands at the left, right, and
inside the absorption band, respectively. wl and wr denote
the weighting factors depending on the wavelength, λ, on
the left, inside, and right of the absorption band. Within this
study, the left, inside, and right bands were set at 757.86,
760.51, and 770.46 nm, respectively.

2.4 Theoretical derivations of 8k , vegetation indices,
and SIF yield

NIRv has been used to isolate vegetation signal properties
from soil background and to correct canopy-scale far-red SIF
for scattering effects (Badgley et al., 2017). NIRv can be
computed according to Badgley et al. (2017) and Zeng et al.
(2019) using the following Eq. (4):

NDVI=
R[780−800]−R[670−680]

R[780−800]+R[670−680]
, (3)

NIRv = R−NIR×NDVI, (4)

where R represents the spectral reflectance, and the in-
dex number denotes the wavelength range or wavelength
at which the reflectance was measured. In Eq. (4), NIRv is
largely dependent on the LAI, the leaf angle distribution, and
the geometry of the sun–canopy, as well as on the influence
of fluctuations in incident radiation at the diurnal and sea-
sonal timescales.R-NIR was calculated at the 850 nm central
wavelength.
FyieldLIF is an active measurement and is not directly de-

pendent on the ambient light conditions. Thus, it is not im-
pacted by ambient radiation changes, because the measured
LED-induced chlorophyll fluorescence is directly and only
emitted by the leaves targeted by the LED. Variations in
FyieldLIF are then presumably only induced by changes in the
photosynthetic pigment concentrations, in the leaf area inside
the FOV, and in the vegetation functioning that modulates
the chlorophyll fluorescence quantum yield. As no signifi-
cant phenological changes occurred during the study period,
we assumed that FyieldLIF is free from the vegetation struc-
ture and sun–canopy geometry effects and can be used as a
reference measurement in this respect. The blue LED light
can be considered as constant and, therefore, from Eq. (1)
we can assume that 8F is equal to FyieldLIF and then Eq. (1)

becomes

SIF= PAR× fAPAR×FyieldLIF× fesc, (5)
SIF(

PAR×FyieldLIF
) = fAPAR× fesc. (6)

From Eq. (6), we defined 8k as following:

8k =
SIF(

PAR×FyieldLIF
) = SIFy

FyieldLIF
, (7)

Note that this is a simplification of the complex relation
that does exist between SIFy and FyieldLIF, as SIF yield and
FyieldLIF respond differently to canopy structure effects. At
the diurnal timescale, 8k is subject to variations in leaf an-
gle distribution, incident sunlight, or atmosphere conditions
(clear or cloudy sky conditions), as well as to the effects of
sun–canopy geometry (including SZA and SAA).

In remote sensing, the total amount of light absorbed by
the canopy cannot be directly measured. This quantity is
highly dependent on the solar angle and canopy structure
(distribution of light and shaded areas at the top and inside
the canopy). Hence, by normalizing the canopy-emitted SIF
by the incident PAR, it is possible, as a first approximation
and empirically, to partially disentangle the SIF signal from
its dependence to incident radiation and thus to detect some
changes in the vegetation properties or the plant physiologi-
cal responses to abiotic factors. Therefore, the SIFy was cal-
culated using the PAR measured at the top of the EC tower
site. Note that the SIF fluxes were converted into quanta units
following Daumard et al. (2012) prior to SIFy calculation.

SIFy = SIF/PAR (8)

2.5 Data analysis

In this study, we used data measurements from June to Au-
gust 2022. As radiation-limited photosynthesis is expected
in the early morning and late afternoon, due to lower in-
coming irradiance, only the data recorded between 09:00 and
16:00 UTC were considered in this study. The negative SIF
values, the SIFy values higher than mean± 3 standard de-
viation, and the PAR data less than 200 µmol m−2 s−1 were
excluded in the analysis. First, we applied a linear model to
analyze at the daily and seasonal timescales the strength of
the relationships: (i) between SIFy and FyieldLIF and (ii) be-
tween NIRv and8k . Note that daily means of SIFy , FyieldLIF,
NIRv, and 8k are hereafter noted SIFy , F yieldLIF, NIRv, and
8k . The coefficient of determination (R2) and the p value
are used to assess the strength of the correlations. These
relations are examined at instantaneous (seconds to min-
utes) and daily (averaged data from 09:00 to 16:00 UTC)
timescales. Second, we used random forest (RF) models as
a tool to understand FyieldLIF and 8k dynamics by com-
paring their predictions based on a combination of remote
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sensing metrics. We chose RF models because they are non-
parametric models and are well adapted for predicting non-
linear and multi-parameter relationships in complex situa-
tions and foremostly highly interpretable by using metrics,
such as the importance of predictor variables and partial de-
pendence (Breiman, 2001). Several types of RF models were
designed for estimating FyieldLIF and 8k . The expression of
each model and its purpose are given in Table 1. We used
the clear-sky condition (the fraction of diffuse PAR over total
PAR< 0.3) data to train the models. It is worth noting that for
FyieldLIF predictions using all data (clear sky and cloudy con-
ditions) or clear-sky condition data alone yielded the same
results (data not shown), while for 8k , which was defined
to represent the effects of canopy structure and sun–canopy
geometry, only clear-sky conditions were used with respect
to satellite conditions of data acquisition. To avoid the im-
pact of correlations of predictors on the RF models’ predic-
tions, the correlations matrix between predictors was com-
puted (Supplement Fig. S2 and S3), and then the least cor-
related predictors were selected to train our models. All RF
models were established using 200 trees and sampled with
replacement based on bag fraction of 80 % (80 % of the data
for training and 20 % for testing). The out-of-bag (OOB) pre-
dictor importance estimates were determined to evaluate the
contribution of each predictor. Model performance was eval-
uated using the OOB coefficient of determination (OOB R2)
score and the adjusted coefficient of determination (adj. R2)
of the correlations between the test dataset and the predic-
tions, as well as the root mean squared error (RMSE). The
closest the OOB R2 and adj. R2 are, the better the model is
able to be generalized. All RF models were run using instan-
taneous measurements. For SIF and reflectance data extrac-
tion, MATLAB R2021a (MathWorks, Inc., USA) was used,
and Python version 3.9.1 was used for data analysis and vi-
sualization (Scikit-learn, SciPy, Seaborn, Matplotlib, Pandas,
and Numpy libraries).

3 Results

3.1 Relationships between canopy SIFy and FyieldLIF
and their seasonal variations

The results, in Fig. 1a, show that the coefficients of determi-
nation of the relationships between SIFy and FyieldLIF were
low and varied highly across the season, and that the ratio
between diffuse PAR and total PAR cannot entirely explain
this inter-daily variability. This indicates that at the diurnal
scale SIFy was weakly correlated to FyieldLIF. Note that rela-
tions between SIFy and FyieldLIF analyzed at hourly timescale
(hourly averages) relatively improved their correlation (Sup-
plement Fig. S4). At the seasonal scale (daily averages), in
Fig. 1b and c, the results show that the R2 between SIFy and
FyieldLIF was 0.58, indicating that SIFy and FyieldLIF were
better correlated at the seasonal timescale. The fraction of

diffuse to total PAR cannot explain this correlation, and their
agreements tend to diverge at some period of the season. Ad-
ditionally, note that, overall, the magnitude of both variables
has considerably decreased from the start to the end of the
given period.

3.2 Diurnal variations in PAR, NIRv, R-NIR, 8k, SIF,
SIFy , and FyieldLIF

Figure 2 shows the diurnal cycles (from 09:00 to 16:00 UTC)
of PAR, NIRv, R-NIR, 8k , SIF, SIFy , and FyieldLIF.

It shows three sunny and steady weather days, and so
the PAR constantly increased in the morning to a maximum
around noon and decreased in the afternoon for all days. Its
values were between 1000 and almost 2000 µmol m−2 s−1.

The diurnal variations in NIRv and R-NIR exhibited simi-
lar patterns, with the lowest values recorded at noon. The de-
pression observed in NIRv and R-NIR patterns from 10:00 to
around 12:00 UTC is attributed to shadows observed within
the FOV of the SIF3 instrument as has been shown by the
sunlit leaves fraction determined from RGB images (Supple-
ment Figs. S5 and S6).
8k surged in the early morning hours (not shown) and then

declined from 10:00 up to around 12:00 UTC; afterwards, it
increased in the afternoon for all days. The depression ob-
served in 8k between 10:00 and 12:00 UTC is simultaneous
to the decline in NIRv and in R-NIR. This implies that diur-
nal dynamics in 8k may be due to the intra-daily pattern in
the distribution of sunlit and shaded leaf fraction caused by
the geometric relationships between canopy structure and the
sun’s geometry.

It is well known that diurnal SIF cycles are tightly linked
with dynamics in PAR. Conversely, in Fig. 2 SIF exhib-
ited different diurnal dynamics for all days than the inci-
dent PAR ones. The pattern in SIF declined from 10:00 to
around 12:00 UTC and was afterwards dominated by dynam-
ics in PAR. It can also be observed that the magnitude of SIF
markedly decreased from 10 July to 6 August, being from
2.06 to 1.33 mW m−2 sr−1 nm−1 (approximately 35 % rela-
tive decrease in SIF emission).

The diurnal variations in SIFy surged in the early morning
(not shown) and then decreased from 10:00 UTC to noon,
and afterwards it increased in the afternoon for the three con-
sidered days. Similarly to SIF, the magnitude of SIFy also
shows an overall decrease from 10 July to 6 August. In con-
trast, the diurnal pattern in FyieldLIF shows a continuous and
significant decrease during the day, with a 10 % loss. Note
that the range of FyieldLIF have also decreased over the given
period. FyieldLIF appears insensitive to the canopy structure
and sun–canopy geometry changes, compared to the dynam-
ics in SIF and SIFy , which showed a significant decline in
the morning. Besides, it is worth noting that FyieldLIF mea-
surements are continuously recorded (day and night); the full
diurnal cycles are presented in Supplement Fig. S7.
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Table 1. Random forest models for FyieldLIF and 8k predictions. R denotes spectral reflectance in blue (410 nm), red (530 nm and 560 nm),
green (665 nm), red-edge (705 and 740 nm), and near-infrared (830 nm). SIF is the far-red sun-induced chlorophyll fluorescence at 760 nm,
SIFy is the ratio of SIF over PAR, SA stands for solar angles, including solar zenith (SZA) and azimuth (SAA) angles. FyieldLIF is the
LED-induced chlorophyll fluorescence, and 8k is the ratio between SIFy and FyieldLIF.

Model name Inputs Outputs Purpose

FY-R R410, R530, R560, R665, R705,
R740, R830

FyieldLIF To test the ability of reflectances
to predict FyieldLIF.

FY-R-SIF R410, R530, R560, R665, R705,
R740, R830, SIF

FyieldLIF To test the ability of reflectances and
SIF to predict FyieldLIF.

FY-R-SIFy R410, R530, R560, R665, R705,
R740, R830, SIFy

FyieldLIF To test the effect of apparent SIF yield
(SIF normalized by PAR) to predict
FyieldLIF.

FY-R-SA R410, R530, R560, R665, R705,
R740, R830, SZA, SAA

FyieldLIF To test the ability of reflectances and
solar angles to predict FyieldLIF.

FY-R-SIFy -SA R410, R530, R560, R665, R705,
R740, R830, SIFy , SZA, SAA

FyieldLIF To test the ability of reflectances,
SIF yield, and solar angles to predict
FyieldLIF.

8k-R R410, R530, R560, R665, R705,
R740, R830.

8k To test the ability of reflectances
to predict 8k .

8k-R-SA R410, R530, R560, R665, R705,
R740, R830, SZA, SAA

8k To test the synergy between reflectances
and solar angles to predict 8k .

3.3 Relationship between 8k and NIRv as well as its
seasonal variations

Figure 3a shows theR2 of the relationship between NIRv and
8k at instantaneous scale (acquisition time step) as a function
of the fraction between diffuse and total PAR, while Fig. 3b
depicts the relationships between 8k and NIRv at seasonal
scale, and Fig. 3c underlines their seasonal dynamics.

Conversely to the weak correlation found between SIFy
and FyieldLIF seen in Fig. 1a, the results in Fig. 3a show
that there are relatively moderate and substantially good re-
lationships between NIRv and 8k over the season. Thus, for
most of the clear-sky condition (ratio diffuse PAR to total
PAR< 0.3), NIRv may explain more than 50 % of the instan-
taneous variations in 8k at the diurnal scale, but the strength
of the relationship between these two variables under clear
skies remains variable. The lowest values of R2 are mostly
related to diffuse sky conditions.

The results in Fig. 3b show a weak but statistically signif-
icant relationship between the daily mean NIRv and 8k with
an R2 of 0.16 at the seasonal scale. This indicates that NIRv
is a weak proxy of 8k at the seasonal scale. Furthermore,
we can also infer that the fraction of diffuse to total PAR ex-
plains this correlation, as lower correlation values of NIRv
and 8k are closely related to clear-sky conditions and high
correlation values to diffuse sky conditions. In addition, the
seasonal dynamics in NIRv and8k (Fig. 3c) exhibited a good
match for some days at the seasonal scale. The magnitude of

NIRv and8k also varied significantly over the season, which
can be caused by rapid changes in ambient environmental
conditions and in leaf and canopy biochemical and structural
properties. Note that an independent analysis, identical to the
one presented here on the relationship between NIRv and8k ,
was realized on the relationships between R-NIR and 8k .
The results shown in Supplement Fig. S8 suggest that the R-
NIR reflectance alone can also be a good proxy of 8k at the
diurnal timescale. This is paramount for implementing this
approach at the satellite scale.

3.4 Random forest models for predicting FyieldLIF and
8k in a temperate deciduous forest

We tested the potential of the RF modeling approach to pre-
dict FyieldLIF and 8k based on remotely sensed products. We
intended to show FY-R-SIFy-SA and FY-R-SA models’ re-
sults for FyieldLIF and 8k-R and 8k-R-SA results for 8k es-
timates. The other RF models’ results for FyieldLIF are given
in Supplement Fig. S9.

The results show that all random forest models had a
strong performance on the prediction of FyieldLIF (Table 2),
with OOB R2 varying between 0.86 and 0.90 and adj. R2

between 0.87 and 0.90. In Fig. 4, the RF models’ residu-
als between observed and predicted FyieldLIF are randomly
distributed, and FyieldLIF is not overestimated or underesti-
mated. Note that adding SIF (FY-R-SIF, OOBR2

= 0.87 and
adj. R2

= 0.88) or SIFy (FY-R-SIFy , OOB R2
= 0.88 and

adj. R2
= 0.89) relatively increases the model performance
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Figure 1. Panel (a) shows the inter-daily variations in the coefficient of determination (R2) of the relationship between SIFy and FyieldLIF
and panel (b) shows the relationship between daily mean SIFy and F yieldLIF. In panels (a) and (b), the color of the points shows the fraction
of diffuse to total PAR with the color scale on the left of panel (b). Panel (c) depicts seasonal dynamics of SIFy and F yieldLIF. The shading
around the lines indicates the 95 % confidence interval. The asterisks stand for the statistical significance level (∗∗∗=P ≤ 0.001).

compared to the FY-R model (FY-R, OOB R2
= 0.86 and

adj. R2
= 0.87), but the difference between R2 is not sta-

tistically significant. Thus, the use of reflectance bands only
allows us to predict FyieldLIF and SIF or SIFy and did not
provide an additional improvement for predicting FyieldLIF
at the acquisition time step. Substituting SIF for SZA and
SAA also showed good model performance (FY-R-SA, OOB
R2
= 0.90 and adj. R2

= 0.90). The FY-R-SIFy-SA model
revealed a performance similar to the FY-R-SA model’s
one (FY-R-SIFy-SA, OOB R2

= 0.90 and adj. R2
= 0.90).

The predictor importance estimates for the FY-R-SA model
showed that SZA, SAA, and R410 contribute the most in de-
termining FyieldLIF (Fig. 4d), while for the FY-R-SIFy-SA
model SZA, R830, SAA, R410, and R740 (Fig. 4b) provide
the most useful information for FyieldLIF predictions.

The results reveal that RF models had good performance
in predicting 8k (Fig. 5). The best performing model was
achieved using R and sun angles as inputs (8k-R-SA, OOB

Table 2. Random forest (RF) models’ statistical results for predict-
ing FyieldLIF. N denotes the number of data points used for the
RF model’s testing, Adj. R2 represents the adjusted coefficient of
determination of the relationship between the test dataset FyieldLIF
and the predicted FyieldLIF, OOB R2 is the model accuracy on the
validation data set (1/3 of the training set), and the RMSE is the
root mean square error between observed FyieldLIF and RF model
predicted FyieldLIF.

Model OOB R2 Adj. R2 RMSE N

FY-R 0.86 0.87 0.016 1802
FY-R-SIF 0.87 0.88 0.016 1802
FY-R-SIFy 0.88 0.89 0.015 1802
FY-R-SA 0.90 0.90 0.014 1802
FY-R-SA-SIFy 0.90 0.90 0.014 1802
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Figure 2. Presents the diurnal patterns acquired during three clear sky days of the diurnal pattern of the photosynthetically active radiation
(PAR, in black), the near-infrared reflectance of vegetation index (NIRv, in blue), the reflectance in the near-infrared (R-NIR, in cyan),
the ratio between SIFy and FyieldLIF (8k , in yellow), the SIF (SIF-760, in red), the ratio of SIF over PAR (SIFy , in green), and the active
chlorophyll fluorescence (FyieldLIF, in magenta). The data correspond to 17 June, 10 July, and 6 August 2022. The noisy signals observed
on 10 July and 6 August 2022 are due to high wind speed with an average value of 2.39 and 3.27 m s−1, respectively.

R2
= 0.69 and adj. R2

= 0.70), while R alone explained
58 % of 8k on the validation dataset and 62 % on the test
dataset (8k-R, OOB R2

= 0.58 and adj. R2
= 0.62). The

predictor importance estimates (Fig. 5b and d) show that
R410, R740, R665, R705, SZA, and SAA are the main predic-
tors for estimating 8k , underlining the dependency of 8k on
shadow effects.

4 Discussion

4.1 Relationships between SIFy and FyieldLIF at
instantaneous and daily timescales

The first objective of this study was to show the effects of
canopy structure on the SIF signal. The relationship between
SIFy and FyieldLIF was investigated at the daily and sea-
sonal timescales during the growing season from June to Au-
gust. The results demonstrated that SIFy and FyieldLIF were
more correlated at the seasonal timescale than at the diur-
nal timescale. Passive SIF is highly dependent on both the
structural and physiological properties of the leaf and canopy
(Biriukova et al., 2021; Dechant et al., 2022). At the diurnal
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Figure 3. Panel (a) exhibits the inter-daily variations of the coefficient of determination (R2) of the relationships between the near-infrared
reflectance of vegetation index (NIRv) and the canopy8k at instantaneous scale, as a function of the fraction between diffuse and total PAR.
Panel (b) presents the seasonal relationship between the daily means NIRv and 8k , as a function of the fraction between diffuse and total
PAR. And panel (c) shows the seasonal dynamics in NIRv and 8k . The shaded area indicates the 95 % confidence interval. The asterisks
stand for the statistical significance level (∗∗=P ≤ 0.01).

timescale, far-red SIF is strongly affected by canopy scatter-
ing and by the distribution of sunlit and shaded areas at the
top and within the canopy (Dechant et al., 2020; Zhang and
Zhang, 2023). This study showed that those factors strongly
affected SIFy (SIF normalized by PAR). Further, as SIFy was
estimated using PAR, but not absorbed radiations, SIFy esti-
mation did not consider the conditions of radiation extinction
within the canopy. Therefore, the canopy structural effects
can strongly blur the information on the physiological func-
tioning of the vegetation provided by SIFy and hence lead to
low correlations between SIFy and FyieldLIF. Thus, interpret-
ing SIFy signal for inferring vegetation physiology at the di-
urnal scale should be carried out with great care, considering
the effects of canopy structure and the complex interactions
between structure and illumination geometry. The develop-
ment of new methods and models are warranted to better ex-
plore the possibility to use SIF as a proxy for vegetation func-
tioning at high frequency (seconds to minutes), especially
when the vegetation structure is complex and heterogenous,
such as in forest stands. On the other hand, the better corre-
lation found at the seasonal timescale can be explained by a

potential removal of short-term changes in illumination con-
ditions, canopy structure, and sun–canopy geometry. Note
that the seasonal variability of SIFy is also driven by the sea-
sonal changes in leaf biochemical properties and solar zenith
and azimuth angles. The leaf biochemical properties can also
drive the seasonal dynamics in F yieldLIF, leading to a better
correlation. This may explain why the fraction of the diffuse
to total PAR could not entirely explain the relation between
SIFy and F yieldLIF (Fig. 1b). In summary, our results under-
lined that it is difficult to decouple vegetation structural and
physiological effects in SIF, owing to fluctuations of sun–
canopy geometry throughout the day at the diurnal timescale
and the difficulties linked to the accurate estimation of to-
tal SIF and the fraction of absorbed PAR at the canopy scale
(Chang et al., 2021).
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Figure 4. Random forest (RF) model outputs: panel (a) depicts the FY-R-SIFy -SA model performance between observed and predicted
FyieldLIF, panel (b) represents the predictor importance estimates for FY-R-SIFy -SA model, panel (c) represents the FY-R-SA model perfor-
mance between observed and predicted FyieldLIF, and panel (d) represents the predictor importance estimates for FY-R-SA model.N denotes
the number of data points used for the RF model’s testing, adj. R2 represents the adjusted coefficient of determination of the relationship
between the test dataset FyieldLIF and the predicted FyieldLIF, OOB R2 is the model accuracy on the validation data set (1/3 of the training
set), and the RMSE is the root mean square error between observed FyieldLIF and RF model predicted FyieldLIF. The dashed diagonal line
depicts the 1 : 1 line. FY-R-SIFy -SA denotes FyieldLIF prediction using R, SIFy , and solar angles as inputs; FY-R-SA includes R, SZA, and
SAA to predict FyieldLIF.

4.2 Effects of canopy structure and sun–canopy
geometry on diurnal dynamics in SIF, NIRv,
R-NIR, 8k , SIFy , and FyieldLIF

The fraction of absorbed solar radiation by the canopy (fA-
PAR) and the fraction of emitted chlorophyll fluorescence
that reaches the sensor heavily impact SIF. The results ob-
tained during clear sky days revealed that NIRv, R-NIR, and
8k exhibited similar diurnal patterns. This suggests that the
diurnal variations in NIRv (i.e., the product of NDVI and R-
NIR) and in 8k (i.e., the product of fAPAR and fesc) were
dominated by the bidirectional NIR reflectance effect as has
been shown in Chang et al. (2021). These authors pointed
out that the diurnal dynamics in NIRv were determined by
the diurnal pattern of the reflectance in the NIR within maize
crop rows that were under shadow conditions at midday. Sun

et al. (2023a) clearly stated that the dynamics of the fluo-
rescence escape fraction (fesc) in a homogeneous C3 crop
canopy appears to exhibit a diurnal pattern similar to di-
rectional reflectance. Further, at intra-daily timescale, 8k is
likely to be driven by canopy structure (shadow, leaf angle
distribution, etc.) and sun–canopy geometry (SZA and SAA)
effects, in particular the distribution of fractions of sunlit and
shaded leaves. This situation can lead to large variability of
the diurnal patterns in NIRv and 8k as has been shown in
Fig. 2.

The results also highlighted that, at the diurnal timescale,
the peaks in SIF and PAR do not match (Fig. 2), which
is probably due to the effects of sun–canopy geometry. In-
deed, directionality effects can induce variations in the frac-
tion of sunlit and shaded leaves within the FOV, modulating
the actual amount of radiation reaching the leaves (differ-
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Figure 5. Random forest (RF) model outputs: panel (a) depicts the 8k-R model performance between observed and predicted 8k , panel (b)
presents the predictor importance estimates for 8k-R model, panel (c) represents the 8k-R-SA model performance between observed and
predicted 8k , and panel (d) presents the predictor importance estimates for 8k-R-SA model. N denotes the number of data points used
for the RF model’s testing, adj. R2 represents the adjusted coefficient of determination of the relationship between observed and predicted
8k , OOB R2 is the model accuracy on the validation dataset (1/3 of the training set), and the RMSE is the root mean square error between
observed and RF model predicted 8k . The dashed diagonal line depicts the 1 : 1 line. 8k-R denotes 8k prediction using only R; 8k-R-SA
integrates R, SZA, and SAA to estimate 8k .

ent from the incident radiation measured at the sensor, un-
affected by shading) and therefore affecting canopy total SIF
emission. This finding is in contradiction with several studies
that showed that the diurnal patterns in SIF are mainly dom-
inated by PAR (Campbell et al., 2019; Wang et al., 2021)
but in agreement with Nichol et al. (2019), who showed that
the peaks of PAR and SIF did not match in a Boreal Scots
pine canopy. Further, note that at high incident PAR the light
energy might exceed the capacity of photosynthesis. In this
case, the plant photoprotective mechanism known as non-
photochemical heat dissipation is activated, leading first to
stomatal closure and hence to SIF emission reduction (Jonard
et al., 2020; De Cannière et al., 2022).

The results also showed that the diurnal dynamics in
SIFy and FyieldLIF did not match (Fig. 2). This is proba-
bly due to both physiological and canopy structure effects.
The early decline of SIFy before noon could be likely due

not only to shadow effects, but also to the fact that the
PAR was high. These findings corroborate with previous
studies (Loayza et al., 2023; Li et al., 2020; Moya et al.,
2019). For instance, Loayza et al. (2023) found that un-
der clear-sky conditions, at the diurnal timescale, within
potato plants, firstly the chlorophyll fluorescence yield de-
clined drastically when the PAR reached values higher than
1000 µmol m−2 s−1, and secondly FyieldLIF continuously de-
creased for PAR> 600 µmol m−2 s−1. Thus, the continuous
decline of FyieldLIF observed here (Fig. 2) is likely caused
by the fact that the PAR was higher than 1250 µmol pho-
ton m−2 s−1 for the chosen days. Within this situation, the
vegetation photosynthetic capacity could be overwhelmed,
and the energy-dependent and non-energy-dependent non-
photochemical heat dissipation can be triggered. Note that
energy-dependent heat dissipation can last from a few sec-
onds to a few minutes, while non-energy-dependent heat dis-
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sipation can lead to photoinhibition or photobleaching and
can last longer (hours to weeks) (Porcar-Castell et al., 2014).
Both mechanisms can induce a decrease in SIFy and FyieldLIF
at the diurnal timescale.

4.3 Relationships between NIRv and 8k at daily and
seasonal timescales

Strong correlations were found between NIRv and 8k at the
diurnal timescale. However, their correlations varied largely
depending on the ratio of diffuse to total PAR, with high cor-
relation corresponding to clear-sky conditions and low cor-
relation to diffuse sky conditions. This result suggests that
under clear-sky conditions NIRv is a relatively good proxy
of 8k and hence can be used to take canopy structure and
sun–canopy geometry (i.e., crown shadow, reabsorption, and
scattering within leaves and canopies) effects on SIF at the
diurnal timescale into account. Indeed, with diffuse sky con-
ditions, canopy structure, shadows, and sun–canopy geome-
try play a minor role in the variations in NIRv and 8k , even
though there are still strong fluctuations in incident light, jus-
tifying the low correlations observed between NIRv and 8k
during diffuse sky conditions. On the other hand, the pos-
itive weak but statistically significant correlation found be-
tween daily mean NIRv and daily mean 8k at the seasonal
timescale indicates that NIRv and 8k relations were driven
by the fraction between diffuse and total PAR. Indeed, this
underlined well the NIRv usage, because it was meant to cor-
rect reabsorption and scattering effects on SIF at daily and
seasonal timescales (Badgley et al., 2017).

4.4 Random forest models for FyieldLIF and 8k

predictions

How we can determine and properly disentangle the con-
founding factors, including structural, biophysical, and phys-
iological canopy components that all contribute to remotely
sensed SIF, remains a challenging task. SIF has emerged as
a promising tool for determining and characterizing struc-
tural and physiological vegetation traits. However, the rela-
tionships between these confounding factors and SIF are of-
ten complex and site-specific and thus require a model with
a set of parameters incorporating these complexities. There-
fore, in this study, we examined the potential of RF modeling
approaches to predict FyieldLIF and 8k based on different re-
motely sensed input variables under clear-sky conditions.

For FyieldLIF, the RF models can explain between 86 % and
90 % of the variability in FyieldLIF (see Table 2 and Fig. 4),
sustaining that directional reflectance, chlorophyll fluores-
cence, and sun–canopy geometry (SZA and SAA) can effec-
tively capture relevant variations in FyieldLIF. For instance,
FY-R-SA and FY-R-SIFy-SA models’ predictor importance
estimates showed that SZA, SAA, R410, R740, and R830 pro-
vide the most useful information for FyieldLIF predictions
(Fig. 4). The reflectance in the blue spectral band (R410) is

largely affected by the strong blue light absorption by the
chlorophyll pigments and it is highly subject to leaves or
canopy shadow conditions, while reflectance in the red-edge
(R740) and near-infrared bands characterize the leaf area in-
dex and the chlorophyll content of the entire forest (Zeng
et al., 2022b). The red-edge region is mainly used to deter-
mine leaf and canopy chlorophyll contents. Because of these
abovementioned characteristics of R, it is not surprising that
the combination of reflectance at specific spectral bands can
be used to infer effective and relevant information that allow
for capturing FyieldLIF variations. The data also revealed that
adding SIF or SIFy as predictors did not significantly im-
prove the model performance estimates as it has been shown
in Balde et al. (2023). This result indicates that even at high
temporal resolution the contribution of SIF or SIFy is impor-
tant compared to each reflectance band individually, but the
combined effect of reflectance bands could mitigate or hide
the use of SIF as vegetation physiological proxy. The results
showed that SZA and SAA significantly improved the model
prediction for FyieldLIF (FY-R-SA). First, the contribution of
SZA can be attributed to the illumination conditions, because
incoming radiation is tightly related to SZA. Second, the ef-
fect of SAA is attributable to the anisotropy in reflectance
and canopy structure in the azimuthal plane.

For 8k , results indicate that RF models can explain be-
tween 60 % and 70 % of the variability in 8k (Fig. 5a and
b). The unexplained 30 % or 40 % in 8k variance evidenced
that the ratio SIFy over FyieldLIF strongly varies and depends
on several factors, including canopy structure, sun geome-
try, and illumination conditions. Therefore, this suggests that
mechanistic models that used NIRv to approximate the prod-
uct of fAPAR and fesc are simplistic and do no fully account
for the complex interactions between incident radiation and
canopy structure, notably due to the distribution of light and
shaded leaves at the top and inside of the forest canopy.

5 Conclusions

In this work, the simultaneous and continuous active and pas-
sive measurements of chlorophyll fluorescence at the canopy
scale in a sessile oak mature forest allowed us to analyze the
diurnal cycles of key variables, including SIF, SIFy , NIRv,
and FyieldLIF. A novel remote sensing indicator, 8k , the ra-
tio between SIFy and FyieldLIF, which is also theoretically
the product of fAPAR and fesc, was introduced. On the one
hand, the relationship between SIFy and FyieldLIF was evalu-
ated, and on the other hand, the relation between NIRv and
8k was examined at daily and seasonal scales. Further, sev-
eral random forest models with reflectances, SIF, and sun an-
gles as inputs were also used to not only predict FyieldLIF and
8k , but also to provide sensitivity analysis and interpretation
of the model outputs.

The results showed that the SIF signal is highly impacted
by the canopy structure and the sun–canopy geometry ef-
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fects, as evidenced by the weak correlations found between
SIFy and FyieldLIF at diurnal timescale using instantaneous
measurements. However, SIFy captured the seasonal dy-
namics of FyieldLIF by explaining 58 % of the variations in
FyieldLIF. The results also revealed that NIRv and reflectance
at near-infrared (R-NIR) are good proxies of 8k at the di-
urnal timescale, while their correlations diverged at the sea-
sonal scale.

Based on random forest models, the combination of re-
flectance, chlorophyll fluorescence, and sun geometry (SZA
and SAA) allow us to predict FyieldLIF and 8k at the diurnal
timescale under clear-sky conditions. For instance, the RF
models were able to explain 86 %–90 % of FyieldLIF variabil-
ity, and 60 %–70 % of8k variations were explained. Further-
more, the data also revealed that adding SIF or SIFy as pre-
dictors did not improve much the model performance com-
pared to the reflectance-based model. But the predictor im-
portance estimates showed that SIF and SIFy provide useful
and impactful information in determining FyieldLIF. This re-
sult indicates that even at high temporal resolution the con-
tribution of SIF or SIFy is important compared to each re-
flectance band individually, but the combined effect of re-
flectance bands could mitigate or hide the use of SIF as veg-
etation functioning proxy.

Overall, this study provides insights into understanding the
complex and difficult relationship that exists between passive
SIF and active chlorophyll fluorescence, as well as into the
use of remote sensing data that are readily accessible at the
satellite scale (spectral reflectance at 10 nm resolution, sun
geometry, and chlorophyll fluorescence) to predict FyieldLIF
and 8k at the canopy scale.

Code and data availability. The computer codes (MATLAB and
Python) used in this study are available upon request from the cor-
responding author.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-21-1259-2024-supplement.

Author contributions. Conceptualization: all co-authors; methodol-
ogy: HB, GH, YG, KS; instrument design and development: YG,
AO, GL, GH; software: HB and GH; validation: HB; formal analy-
sis: HB; investigation: HB; resources: HB, GH, YG, KS; data cura-
tion: HB and GH; writing (original draft preparation): HB; writing
(reviewing and editing): all co-authors; visualization: HB; supervi-
sion: KS, YG, GH, GL; project administration: YG and KS; funding
acquisition: YG and KS. All authors have read and agreed to the fi-
nal version of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We warmly thank Daniel Berveiller, Nicolas
Delpierre, Alexandre Morfin, and Clotilde Pérot-Guillaume for their
participation on data acquisition and management at Barbeau forest
site.

Financial support. This ongoing PhD work is jointly funded by
the “Centre National d’Études Spatiales” (CNES) and ACRI-ST
(Toulouse, France) (contract CNES-ACRI-ST-Ecole polytechnique-
CNRS no. 3425). This work was also supported by CNES
through the VELIF project focused on the FLEX mission (con-
tract nos. 4500073234 and 4500073501), The “Program National
de Télédétection Spatiales” (PNTS) across the C-FLEX project and
EIT Climate-KIC project via the Agriculture Resilience, Inclusive,
and Sustainable Enterprise (ARISE) project (EIT 190733).

Review statement. This paper was edited by Xi Yang and reviewed
by two anonymous referees.

References

Aasen, H., Van Wittenberghe, S., Sabater Medina, N., Damm,
A., Goulas, Y., Wieneke, S., Hueni, A., Malenovský, Z.,
Alonso, L., Pacheco-Labrador, J., Cendrero-Mateo, M. P.,
Tomelleri, E., Burkart, A., Cogliati, S., Rascher, U., and Mac
Arthur, A.: Sun-Induced Chlorophyll Fluorescence II: Review
of Passive Measurement Setups, Protocols, and Their Appli-
cation at the Leaf to Canopy Level, Remote Sens., 11, 927,
https://doi.org/10.3390/rs11080927, 2019.

Badgley, G., Field, C. B., and Berry, J. A.: Canopy near-infrared
reflectance and terrestrial photosynthesis, Sci. Adv., 3, e1602244,
https://doi.org/10.1126/sciadv.1602244, 2017.

Baker, N. R.: Chlorophyll Fluorescence: A Probe of Pho-
tosynthesis In Vivo, Ann. Rev. Plant Biol., 59, 89–113,
https://doi.org/10.1146/annurev.arplant.59.032607.092759,
2008.

Balde, H., Hmimina, G., Goulas, Y., Latouche, G., and Soudani,
K.: Synergy between TROPOMI sun-induced chlorophyll fluo-
rescence and MODIS spectral reflectance for understanding the
dynamics of gross primary productivity at Integrated Carbon Ob-
servatory System (ICOS) ecosystem flux sites, Biogeosciences,
20, 1473–1490, https://doi.org/10.5194/bg-20-1473-2023, 2023.

Biriukova, K., Pacheco-Labrador, J., Migliavacca, M., Mahecha, M.
D., Gonzalez-Cascon, R., Martín, M. P., and Rossini, M.: Perfor-
mance of Singular Spectrum Analysis in Separating Seasonal and
Fast Physiological Dynamics of Solar-Induced Chlorophyll Flu-
orescence and PRI Optical Signals, J. Geophys. Res.-Biogeo.,
126, e2020JG006158, https://doi.org/10.1029/2020JG006158,
2021.

https://doi.org/10.5194/bg-21-1259-2024 Biogeosciences, 21, 1259–1276, 2024

https://doi.org/10.5194/bg-21-1259-2024-supplement
https://doi.org/10.3390/rs11080927
https://doi.org/10.1126/sciadv.1602244
https://doi.org/10.1146/annurev.arplant.59.032607.092759
https://doi.org/10.5194/bg-20-1473-2023
https://doi.org/10.1029/2020JG006158


1274 H. Balde et al.: Data-based investigation of the effects of canopy structure

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Campbell, P., Huemmrich, K., Middleton, E., Ward, L., Julitta, T.,
Daughtry, C., Burkart, A., Russ, A., and Kustas, W.: Diurnal
and Seasonal Variations in Chlorophyll Fluorescence Associated
with Photosynthesis at Leaf and Canopy Scales, Remote Sens.,
11, 488, https://doi.org/10.3390/rs11050488, 2019.

Chang, C. Y., Wen, J., Han, J., Kira, O., LeVonne, J., Melko-
nian, J., Riha, S. J., Skovira, J., Ng, S., Gu, L., Wood, J.
D., Näthe, P., and Sun, Y.: Unpacking the drivers of diur-
nal dynamics of sun-induced chlorophyll fluorescence (SIF):
Canopy structure, plant physiology, instrument configuration
and retrieval methods, Remote Sens. Environ., 265, 112672,
https://doi.org/10.1016/j.rse.2021.112672, 2021.

Cogliati, S., Verhoef, W., Kraft, S., Sabater, N., Alonso, L.,
Vicent, J., Moreno, J., Drusch, M., and Colombo, R.: Re-
trieval of sun-induced fluorescence using advanced spec-
tral fitting methods, Remote Sens. Environ., 169, 344–357,
https://doi.org/10.1016/j.rse.2015.08.022, 2015.

Damm, A., Guanter, L., Paul-Limoges, E., van der Tol, C.,
Hueni, A., Buchmann, N., Eugster, W., Ammann, C., and
Schaepman, M. E.: Far-red sun-induced chlorophyll fluores-
cence shows ecosystem-specific relationships to gross pri-
mary production: An assessment based on observational and
modeling approaches, Remote Sens. Environ., 166, 91–105,
https://doi.org/10.1016/j.rse.2015.06.004, 2015.

Daumard, F., Goulas, Y., Champagne, S., Fournier, A., Ounis, A.,
Olioso, A., and Moya, I.: Continuous Monitoring of Canopy
Level Sun-Induced Chlorophyll Fluorescence During the Growth
of a Sorghum Field, IEEE Trans. Geosci. Remote Sens., 50,
4292–4300, https://doi.org/10.1109/TGRS.2012.2193131, 2012.

De Cannière, S., Vereecken, H., Defourny, P., and Jonard,
F.: Remote Sensing of Instantaneous Drought Stress at
Canopy Level Using Sun-Induced Chlorophyll Fluores-
cence and Canopy Reflectance, Remote Sens., 14, 2642,
https://doi.org/10.3390/rs14112642, 2022.

Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A.,
Zhang, Y., Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li,
J., and Moya, I.: Canopy structure explains the relation-
ship between photosynthesis and sun-induced chlorophyll flu-
orescence in crops, Remote Sens. Environ., 241, 111733,
https://doi.org/10.1016/j.rse.2020.111733, 2020.

Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migli-
avacca, M., Zhang, Y., Tagliabue, G., Guan, K., Rossini, M.,
Goulas, Y., Zeng, Y., Frankenberg, C., and Berry, J. A.: NIRVP:
A robust structural proxy for sun-induced chlorophyll fluores-
cence and photosynthesis across scales, Remote Sens. Environ.,
268, 112763, https://doi.org/10.1016/j.rse.2021.112763, 2022.

Delpierre, N., Berveiller, D., Granda, E., and Dufrêne, E.: Wood
phenology, not carbon input, controls the interannual variabil-
ity of wood growth in a temperate oak forest, New Phytol., 210,
459–470, https://doi.org/10.1111/nph.13771, 2016.

Drusch, M., Moreno, J., Del Bello, U., Franco, R., Goulas, Y.,
Huth, A., Kraft, S., Middleton, E. M., Miglietta, F., Mohammed,
G., Nedbal, L., Rascher, U., Schuttemeyer, D., and Verhoef, W.:
The FLuorescence EXplorer Mission Concept – ESA’s Earth Ex-
plorer 8, IEEE Trans. Geosci. Remote Sens., 55, 1273–1284,
https://doi.org/10.1109/TGRS.2016.2621820, 2017.

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi,
S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze,
A., and Yokota, T.: New global observations of the terres-
trial carbon cycle from GOSAT: Patterns of plant fluorescence
with gross primary productivity: CHLOROPHYLL FLUORES-
CENCE FROM SPACE, Geophys. Res. Lett., 38, L17706,
https://doi.org/10.1029/2011GL048738, 2011.

Gao, S., Huete, A., Kobayashi, H., Doody, T. M., Liu, W.,
Wang, Y., Zhang, Y., and Lu, X.: Simulation of solar-
induced chlorophyll fluorescence in a heterogeneous for-
est using 3-D radiative transfer modelling and airborne Li-
DAR, ISPRS J. Photogramm. Remote Sens., 191, 1–17,
https://doi.org/10.1016/j.isprsjprs.2022.07.004, 2022.

Goulas, Y., Fournier, A., Daumard, F., Champagne, S., Ounis,
A., Marloie, O., and Moya, I.: Gross Primary Production of
a Wheat Canopy Relates Stronger to Far Red Than to Red
Solar-Induced Chlorophyll Fluorescence, Remote Sens., 9, 97,
https://doi.org/10.3390/rs9010097, 2017.

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry,
J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee,
J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-
Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti,
A., Baker, J. M., and Griffis, T. J.: Global and time-
resolved monitoring of crop photosynthesis with chlorophyll
fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–E1333,
https://doi.org/10.1073/pnas.1320008111, 2014.

He, L., Magney, T., Dutta, D., Yin, Y., Köhler, P., Gross-
mann, K., Stutz, J., Dold, C., Hatfield, J., Guan, K.,
Peng, B., and Frankenberg, C.: From the Ground to Space:
Using Solar-Induced Chlorophyll Fluorescence to Estimate
Crop Productivity, Geophys. Res. Lett., 47, e2020GL087474,
https://doi.org/10.1029/2020GL087474, 2020.

Jonard, F., De Cannière, S., Brüggemann, N., Gentine, P., Short Gi-
anotti, D. J., Lobet, G., Miralles, D. G., Montzka, C., Pagán,
B. R., Rascher, U., and Vereecken, H.: Value of sun-induced
chlorophyll fluorescence for quantifying hydrological states and
fluxes: Current status and challenges, Agr. Forest Meteorol., 291,
108088, https://doi.org/10.1016/j.agrformet.2020.108088, 2020.

Li, X. and Xiao, J.: TROPOMI observations allow for
robust exploration of the relationship between solar-
induced chlorophyll fluorescence and terrestrial gross pri-
mary production, Remote Sens. Environ., 268, 112748,
https://doi.org/10.1016/j.rse.2021.112748, 2022.

Li, Z., Zhang, Q., Li, J., Yang, X., Wu, Y., Zhang, Z., Wang, S.,
Wang, H., and Zhang, Y.: Solar-induced chlorophyll fluorescence
and its link to canopy photosynthesis in maize from continu-
ous ground measurements, Remote Sens. Environ., 236, 111420,
https://doi.org/10.1016/j.rse.2019.111420, 2020.

Lin, J., Shen, Q., Wu, J., Zhao, W., and Liu, L.: Assessing
the Potential of Downscaled Far Red Solar-Induced Chloro-
phyll Fluorescence from the Canopy to Leaf Level for
Drought Monitoring in Winter Wheat, Remote Sens., 14, 1357,
https://doi.org/10.3390/rs14061357, 2022.

Liu, Y., Chen, J. M., He, L., Zhang, Z., Wang, R., Rogers, C., Fan,
W., de Oliveira, G., and Xie, X.: Non-linearity between gross pri-
mary productivity and far-red solar-induced chlorophyll fluores-
cence emitted from canopies of major biomes, Remote Sens. En-
viron., 271, 112896, https://doi.org/10.1016/j.rse.2022.112896,
2022.

Biogeosciences, 21, 1259–1276, 2024 https://doi.org/10.5194/bg-21-1259-2024

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs11050488
https://doi.org/10.1016/j.rse.2021.112672
https://doi.org/10.1016/j.rse.2015.08.022
https://doi.org/10.1016/j.rse.2015.06.004
https://doi.org/10.1109/TGRS.2012.2193131
https://doi.org/10.3390/rs14112642
https://doi.org/10.1016/j.rse.2020.111733
https://doi.org/10.1016/j.rse.2021.112763
https://doi.org/10.1111/nph.13771
https://doi.org/10.1109/TGRS.2016.2621820
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1016/j.isprsjprs.2022.07.004
https://doi.org/10.3390/rs9010097
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1029/2020GL087474
https://doi.org/10.1016/j.agrformet.2020.108088
https://doi.org/10.1016/j.rse.2021.112748
https://doi.org/10.1016/j.rse.2019.111420
https://doi.org/10.3390/rs14061357
https://doi.org/10.1016/j.rse.2022.112896


H. Balde et al.: Data-based investigation of the effects of canopy structure 1275

Loayza, H., Moya, I., Quiroz, R., Ounis, A., and Goulas, Y.: Active
and passive chlorophyll fluorescence measurements at canopy
level on potato crops. Evidence of similitude of diurnal cycles
of apparent fluorescence yields, Photos. Res., 155, 271–288,
https://doi.org/10.1007/s11120-022-00995-8, 2023.

Lopez Gonzalez, M. d. l. L.: Seguimiento del estrés hí-
drico en la vid mediante técnicas de fluorescencia de
la clorofila y otros métodos ópticos, Thesis, Universi-
dad de Castilla-La-Mancha, Albacete, https://ruidera.uclm.
es/items/38a54238-b996-4d8f-8076-ada1630f4073 (last access:
9 March 2024), 2015.

Lu, X., Liu, Z., Zhao, F., and Tang, J.: Comparison of total emitted
solar-induced chlorophyll fluorescence (SIF) and top-of-canopy
(TOC) SIF in estimating photosynthesis, Remote Sens. Environ.,
251, 112083, https://doi.org/10.1016/j.rse.2020.112083, 2020.

Magney, T. S., Frankenberg, C., Fisher, J. B., Sun, Y., North, G. B.,
Davis, T. S., Kornfeld, A., and Siebke, K.: Connecting active to
passive fluorescence with photosynthesis: a method for evaluat-
ing remote sensing measurements of Chl fluorescence, New Phy-
tol., 215, 1594–1608, https://doi.org/10.1111/nph.14662, 2017.

Maysonnave, J., Delpierre, N., François, C., Jourdan, M., Cor-
nut, I., Bazot, S., Vincent, G., Morfin, A., and Berveiller, D.:
Contribution of deep soil layers to the transpiration of a tem-
perate deciduous forest: quantification and implications for the
modelling of productivity, Ecology, bioRxiv 2022.02.14.480025,
https://doi.org/10.1101/2022.02.14.480025, 2022.

Mengistu, A. G., Mengistu Tsidu, G., Koren, G., Kooreman, M.
L., Boersma, K. F., Tagesson, T., Ardö, J., Nouvellon, Y.,
and Peters, W.: Sun-induced fluorescence and near-infrared re-
flectance of vegetation track the seasonal dynamics of gross pri-
mary production over Africa, Biogeosciences, 18, 2843–2857,
https://doi.org/10.5194/bg-18-2843-2021, 2021.

Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher,
U., Colombo, R., and Moreno, J.: Remote sensing of
solar-induced chlorophyll fluorescence: Review of methods
and applications, Remote Sens. Environ., 113, 2037–2051,
https://doi.org/10.1016/j.rse.2009.05.003, 2009.

Miao, G., Guan, K., Suyker, A. E., Yang, X., Arkebauer, T.
J., Walter-Shea, E. A., Kimm, H., Hmimina, G. Y., Ga-
mon, J. A., Franz, T. E., Frankenberg, C., Berry, J. A.,
and Wu, G.: Varying Contributions of Drivers to the Rela-
tionship Between Canopy Photosynthesis and Far-Red Sun-
Induced Fluorescence for Two Maize Sites at Different Tem-
poral Scales, J. Geophys. Res.-Biogeo., 125, e2019JG005051,
https://doi.org/10.1029/2019JG005051, 2020.

Morozumi, T., Kato, T., Kobayashi, H., Sakai, Y., Tsujimoto, K.,
Nakashima, N., Buareal, K., Lan, W., and Ninomiya, H.: Row
orientation influences the diurnal cycle of solar-induced chloro-
phyll fluorescence emission from wheat canopy, as demonstrated
by radiative transfer modeling, Agr. Forest Meteorol., 339,
109576, https://doi.org/10.1016/j.agrformet.2023.109576, 2023.

Moya, I., Loayza, H., López, M. L., Quiroz, R., Ounis, A., and
Goulas, Y.: Canopy chlorophyll fluorescence applied to stress de-
tection using an easy-to-build micro-lidar, Photosynth. Res., 142,
1–15, https://doi.org/10.1007/s11120-019-00642-9, 2019.

Nichol, C. J., Drolet, G., Porcar-Castell, A., Wade, T., Sabater,
N., Middleton, E. M., MacLellan, C., Levula, J., Mam-
marella, I., Vesala, T., and Atherton, J.: Diurnal and Sea-
sonal Solar Induced Chlorophyll Fluorescence and Photosyn-

thesis in a Boreal Scots Pine Canopy, Remote Sens., 11, 273,
https://doi.org/10.3390/rs11030273, 2019.

Ounis, A., Evain, S., Flexas, J., Tosti, S., and Moya, I.:
Adaptation of a PAM-fluorometer for remote sensing of
chlorophyll fluorescence, Photosyn. Res., 68, 113–120,
https://doi.org/10.1023/A:1011843131298, 2001.

Ounis, A., Bach, J., Mahjoub, A., Daumard, F., Moya, I.,
and Goulas, Y.: Combined use of LIDAR and hyperspec-
tral measurements for remote sensing of fluorescence and
vertical profile of canopies, Rev. Teledetec., 87, 87–94,
https://doi.org/10.4995/raet.2015.3982, 2016.

Paul-Limoges, E., Damm, A., Hueni, A., Liebisch, F., Eugster,
W., Schaepman, M. E., and Buchmann, N.: Effect of envi-
ronmental conditions on sun-induced fluorescence in a mixed
forest and a cropland, Remote Sens. Environ., 219, 310–323,
https://doi.org/10.1016/j.rse.2018.10.018, 2018.

Porcar-Castell, A., Tyystjärvi, E., Atherton, J., van der Tol, C.,
Flexas, J., Pfündel, E. E., Moreno, J., Frankenberg, C., and Berry,
J. A.: Linking chlorophyll a fluorescence to photosynthesis for
remote sensing applications: mechanisms and challenges, J. Exp.
Bot., 65, 4065–4095, https://doi.org/10.1093/jxb/eru191, 2014.

Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S.,
Colombo, R., Damm, A., Drusch, M., Guanter, L., Hanus,
J., Hyvärinen, T., Julitta, T., Jussila, J., Kataja, K., Kokkalis,
P., Kraft, S., Kraska, T., Matveeva, M., Moreno, J., Muller,
O., Panigada, C., Pikl, M., Pinto, F., Prey, L., Pude, R.,
Rossini, M., Schickling, A., Schurr, U., Schüttemeyer, D.,
Verrelst, J., and Zemek, F.: Sun-induced fluorescence – a
new probe of photosynthesis: First maps from the imaging
spectrometer HyPlant, Glob. Change Biol., 21, 4673–4684,
https://doi.org/10.1111/gcb.13017, 2015.

Soudani, K., Hmimina, G., Dufrêne, E., Berveiller, D., Delpierre,
N., Ourcival, J.-M., Rambal, S., and Joffre, R.: Relationships be-
tween photochemical reflectance index and light-use efficiency
in deciduous and evergreen broadleaf forests, Remote Sens.
Environ., 144, 73–84, https://doi.org/10.1016/j.rse.2014.01.017,
2014.

Soudani, K., Delpierre, N., Berveiller, D., Hmimina, G., Pon-
tailler, J.-Y., Seureau, L., Vincent, G., and Dufrêne, É.: A sur-
vey of proximal methods for monitoring leaf phenology in
temperate deciduous forests, Biogeosciences, 18, 3391–3408,
https://doi.org/10.5194/bg-18-3391-2021, 2021.

Sun, Y., Gu, L., Wen, J., van der Tol, C., Porcar-Castell, A.,
Joiner, J., Chang, C. Y., Magney, T., Wang, L., Hu, L., Rascher,
U., Zarco-Tejada, P., Barrett, C. B., Lai, J., Han, J., and
Luo, Z.: From remotely sensed solar-induced chlorophyll flu-
orescence to ecosystem structure, function, and service: Part
I – Harnessing theory, Glob. Change Biol., 29, 2926–2952,
https://doi.org/10.1111/gcb.16634, 2023a.

Sun, Y., Wen, J., Gu, L., Joiner, J., Chang, C. Y., van der Tol,
C., Porcar-Castell, A., Magney, T., Wang, L., Hu, L., Rascher,
U., Zarco-Tejada, P., Barrett, C. B., Lai, J., Han, J., and
Luo, Z.: From remotely-sensed solar-induced chlorophyll flu-
orescence to ecosystem structure, function, and service: Part
II – Harnessing data, Glob. Change Biol., 29, 2893–2925,
https://doi.org/10.1111/gcb.16646, 2023b.

Ustin, S. L. and Middleton, E. M.: Current and near-term advances
in Earth observation for ecological applications, Ecol. Process.,
10, 1–57, https://doi.org/10.1186/s13717-020-00255-4, 2021.

https://doi.org/10.5194/bg-21-1259-2024 Biogeosciences, 21, 1259–1276, 2024

https://doi.org/10.1007/s11120-022-00995-8
https://ruidera.uclm.es/items/38a54238-b996-4d8f-8076-ada1630f4073
https://ruidera.uclm.es/items/38a54238-b996-4d8f-8076-ada1630f4073
https://doi.org/10.1016/j.rse.2020.112083
https://doi.org/10.1111/nph.14662
https://doi.org/10.1101/2022.02.14.480025
https://doi.org/10.5194/bg-18-2843-2021
https://doi.org/10.1016/j.rse.2009.05.003
https://doi.org/10.1029/2019JG005051
https://doi.org/10.1016/j.agrformet.2023.109576
https://doi.org/10.1007/s11120-019-00642-9
https://doi.org/10.3390/rs11030273
https://doi.org/10.1023/A:1011843131298
https://doi.org/10.4995/raet.2015.3982
https://doi.org/10.1016/j.rse.2018.10.018
https://doi.org/10.1093/jxb/eru191
https://doi.org/10.1111/gcb.13017
https://doi.org/10.1016/j.rse.2014.01.017
https://doi.org/10.5194/bg-18-3391-2021
https://doi.org/10.1111/gcb.16634
https://doi.org/10.1111/gcb.16646
https://doi.org/10.1186/s13717-020-00255-4


1276 H. Balde et al.: Data-based investigation of the effects of canopy structure

Verma, M., Schimel, D., Evans, B., Frankenberg, C., Beringer,
J., Drewry, D. T., Magney, T., Marang, I., Hutley, L., Moore,
C., and Eldering, A.: Effect of environmental conditions on
the relationship between solar-induced fluorescence and gross
primary productivity at an OzFlux grassland site: OCO SIF,
MODIS, and GPP, J. Geophys. Res.-Biogeo., 122, 716–733,
https://doi.org/10.1002/2016JG003580, 2017.

Wang, N., Suomalainen, J., Bartholomeus, H., Kooistra, L.,
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