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Abstract. Soil water availability is an essential prerequi-
site for vegetation functioning. Vegetation takes up water
from varying soil depths depending on the characteristics
of its rooting system and soil moisture availability across
depth. The depth of vegetation water uptake is largely un-
known across large spatial scales as a consequence of sparse
ground measurements. At the same time, emerging satellite-
derived observations of vegetation functioning, surface soil
moisture, and terrestrial water storage present an opportu-
nity to assess the depth of vegetation water uptake globally.
In this study, we characterize vegetation functioning through
the near-infrared reflectance of vegetation (NIRv) and com-
pare its relation to (i) near-surface soil moisture from the
ESA’s Climate Change Initiative (CCI) and (ii) total water
storage from the Gravity Recovery and Climate Experiment
(GRACE) mission at a monthly timescale during the grow-
ing season. The relationships are quantified through partial
correlations to mitigate the influence of confounding factors
such as energy- and other water-related variables. We find
that vegetation functioning is generally more strongly related
to near-surface soil moisture, particularly in semi-arid re-
gions and areas with low tree cover. In contrast, in regions

with high tree cover and in arid regions, the correlation with
terrestrial water storage is comparable to or even higher than
that of near-surface soil moisture, indicating that trees can
and do make use of their deeper rooting systems to access
deeper soil moisture, similar to vegetation in arid regions.
At the same time, we note that this comparison is hampered
by different noise levels in these satellite data streams. In
line with this, an attribution analysis that examines the rel-
ative importance of soil water storage for vegetation reveals
that they are controlled by (i) water availability influenced
by the climate and (ii) vegetation type reflecting adaptation
of the ecosystems to local water resources. Next to varia-
tions in space, the vegetation water uptake depth also varies
in time. During dry periods, the relative importance of ter-
restrial water storage increases, highlighting the relevance of
deeper water resources during rain-scarce periods. Overall,
the synergistic exploitation of state-of-the-art satellite data
products to disentangle the relevance of near-surface vs. ter-
restrial water storage for vegetation functioning can inform
the representation of vegetation–water interactions in land
surface models to support more accurate climate change pro-
jections.
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1 Introduction

The regulation of water, energy, and biogeochemical cy-
cling between land and atmosphere is primarily dependent
on vegetation. In addition, global vegetation provides es-
sential ecosystem services such as food production and up-
take of some of the anthropogenic carbon dioxide emissions
(Keenan and Williams, 2018). Vegetation growth depends on
nutrient, water, and energy availability. As a result, at a global
scale, there are regions with energy- or water-limited vegeta-
tion functioning (Orth, 2021). In energy-limited regions, the
functioning of vegetation is controlled by radiation and tem-
perature, as it often lacks sunny and warm conditions but has
ample soil moisture. In contrast, soil moisture becomes criti-
cal for vegetation growth in water-limited regions. Plant pho-
tosynthesis involves opening the stomata for the uptake of
CO2, while at the same time water is lost through transpira-
tion. However, in water-limited conditions, plants can reduce
the stomatal opening to avoid water loss, leading to a de-
crease in photosynthesis. Hence, variations in soil moisture
are likely to affect vegetation functioning in water-limited
conditions. Moreover, climate change has led to an expanded
water limitation on vegetation (Denissen et al., 2022) and
increased vegetation sensitivity to soil moisture (Li et al.,
2022). For these reasons, it is essential to better understand
the dependence of vegetation functioning on soil moisture to
comprehend its coping mechanisms during drought to predict
the future of global water, energy, and carbon cycles.

Plants extract water from varying soil depths based on the
positioning of their roots and the availability of soil mois-
ture and nutrients. In general, the plant water uptake depth
further differs spatially across different climate regimes and
vegetation types and temporally between seasons. Vegeta-
tion in arid regions is more susceptible to fluctuations in
near-surface soil moisture compared to vegetation in humid
regions (Xie et al., 2019). Grasses, which generally have
shorter roots than trees and shrubs, are more reliant on near-
surface moisture than deeper moisture (Schenk and Jackson,
2002). Further, root water uptake profiles vary within individ-
ual plant types according to above-ground biomass and age,
with larger and older trees having deeper roots capable of ex-
tracting water from deeper soil layers (Schenk and Jackson,
2002; Tao et al., 2021). Additionally, within similar climate
regimes, plant water uptake varies across topographic posi-
tions. Upland and lowland roots tend to be shallower, making
vegetation more reliant on near-surface soil moisture, while
roots go deeper in steep terrain between these landscapes to
access both surface and deep moisture (Fan et al., 2017).

Although spatial variations in plant water uptake depths
across vegetation types and climate regimes and temporal
shift during dry months are widely studied at the point scale,
inadequate deep-soil moisture records pose a major obstacle
to the study of vegetation root water uptake at a global scale.
Microwave remote sensing allows us to infer near-surface
soil moisture dynamics globally. While microwaves pene-

trate only the top few centimeters and do not cover the entire
soil moisture profile, they represent larger depths of mois-
ture variation, providing valuable insights into at least some
of the root zone soil moisture (Feldman et al., 2023). Land
surface models provide an alternative source of global soil
moisture data across depths, but they are subject to uncer-
tainties arising from meteorological data; inaccurate knowl-
edge of soil and vegetation characteristics; and the repre-
sentation of complex processes such as photosynthesis, in-
filtration, and evaporation (Koster et al., 2009; Seneviratne
et al., 2010). Hence, some studies have employed reanalysis-
based soil moisture estimates to investigate the relationship
between vegetation and soil moisture at the global scale (Li et
al., 2021; Miguez-Macho and Fan, 2021), but those are likely
to be impacted by model assumptions affecting soil mois-
ture dynamics, particularly for deeper layers where fewer
observational constraints are available. Thus, studying veg-
etation interactions with the entire water column, including
near-surface and deep-soil moisture, at a global scale using
an exclusively observation-based dataset is imperative to en-
hance the understanding of the relevance of near-surface and
deep-soil moisture for vegetation functioning.

The Gravity Recovery and Climate Experiment (GRACE)
satellite mission, launched in 2002, provides total water stor-
age (TWS) anomaly observations at the global scale. The
TWS captures not only soil water but also snow and ice,
canopy water, surface water, and groundwater. Its depth of
representation is therefore difficult to physically quantify,
and that is why we study TWS anomalies. Nevertheless, they
seem to be related to variations in overall water availability
(near-surface and deep-soil moisture) for vegetation (Yang et
al., 2014). The interannual carbon dioxide growth rate in the
atmosphere, for example, has been found to be well corre-
lated with the TWS anomalies at a global scale, indicating
the relevance of the total water column for vegetation func-
tioning (Humphrey et al., 2018). In this study, we assume that
TWS anomalies can be used to estimate the variation in over-
all water availability (near-surface and deep-soil moisture)
for vegetation under (i) snow-free conditions and assuming
that (ii) water storage variations in lakes or groundwater are
negligible at the monthly timescale and (iii) canopy water
storage is much smaller than soil water storage and hence
also negligible (Zheng and Jia, 2020; Stocker et al., 2023).
While soil moisture fluctuations represent the largest varia-
tion in TWS (Rodell and Famiglietti, 2001), it is essential to
note that certain regions exhibit notable short-term fluctua-
tions in lake water and groundwater due to human manage-
ment (Strassberg et al., 2007; Cooley et al., 2021).

This study focuses on understanding the relevance of
near-surface soil moisture vs. total water storage for vege-
tation functioning at a global scale using observation-based
datasets, thereby inferring vegetation’s large-scale water up-
take depth from observation-based datasets. For this pur-
pose, we utilize TWS and near-surface soil moisture and
correlate them with vegetation functioning, represented by
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the near-infrared reflectance of vegetation (NIRv). In par-
ticular, we analyze the following questions: (1) what is the
relevance of near-surface soil moisture vs. terrestrial water
storage for vegetation functioning? (2) How does the impor-
tance of near-surface soil moisture vs. terrestrial water stor-
age change during dry months? (3) How do climatic, vege-
tation, and topographic characteristics explain the variability
in the relevance of near-surface vs. terrestrial water storage
for vegetation functioning?

2 Data and methodology

2.1 Data

2.1.1 Vegetation functioning

In our study, vegetation functioning is characterized by satel-
lite measurements of near-infrared reflectance of vegetation
(NIRv) and solar-induced fluorescence (SIF) (Table 1). NIRv
is the product of near-infrared reflectance and the normal-
ized difference vegetation index (NDVI) and represents the
vegetation structure and vegetation greenness (Badgley et al.,
2017). The NIRv data are available at a high spatial resolu-
tion of 0.05°, and the original 16 d data were aggregated to
the monthly NIRv data. SIF is directly related to the photo-
synthetic activity of plants because the excess energy from
sunlight, which triggers the light reaction during photosyn-
thesis, is dissipated by leaf as chlorophyll fluorescence (Mo-
hammed et al., 2019). SIF data are derived from the Global
Ozone Monitoring Experiment (GOME-2), because GOME-
2 provides relatively reliable data over a long period (2007–
2018). The 0.5° spatial and 16 d temporal resolution SIF data
are processed into monthly data as described by Köhler et al.
(2015).

The high spatial resolution of NIRv allows for a detailed
study of the correlation of vegetation functioning with soil
water availability. Therefore, we performed the main anal-
yses using NIRv data. However, SIF is more sensitive to
drought stress than NIRv (Qiu et al., 2022). Therefore, we
perform additional analyses with SIF to show that the rela-
tionships hold for a different and more direct indicator of
vegetation functioning.

2.1.2 Soil water storage

This study includes two different measures of soil water
availability. Near-surface soil moisture (SSM) provides an
estimate of water availability in the top layer of the soil,
while the terrestrial water storage (TWS) anomaly provides
an estimate of the overall water column of the soil. The
SSM data are derived from the ESA Climate Change Initia-
tive (CCI), which combines active and passive satellite mi-
crowave measurements to provide reliable estimates of SSM
(Dorigo et al., 2017). The ESA CCI soil moisture data, at a
daily temporal resolution, were aggregated to a monthly tem-

poral resolution. The TWS anomaly data are derived from
the GRACE mission, which measures changes in the Earth’s
gravity field (Landerer and Swenson, 2012). Here, we use
the NASA Jet Propulsion Laboratory (JPL) Mascon product
of TWS anomalies which is available at a 0.5° spatial resolu-
tion and monthly temporal resolution (Watkins et al., 2015).

2.1.3 Meteorological data

Climate variables employed include monthly air temper-
ature (Ta), 2 m dew point temperature (Td), precipitation
(P ), and net radiation (Rn) from the ERA5 reanalysis prod-
ucts at a 0.25° spatial resolution. The vapor pressure deficit
(VPD) is calculated from Ta and Td. Further, the aridity
index is calculated from the ratio between the long-term
mean Rn (mmyr−1) (1MJm−2 d−1

= 0.408 mmd−1) and P

(mmyr−1) for each grid cell (Budyko, 1974). We opted for
this formulation as it offers a direct estimation of aridity
and water (energy) constraints on vegetation. This eliminates
the necessity of navigating through various formulations uti-
lized for calculating potential evapotranspiration. However,
we conducted additional validations of our results using the
Global Aridity Index dataset (Zomer et al., 2022) based
on the FAO Penman–Monteith Reference Evapotranspiration
equation. The use of the Global Aridity Index did not change
the results of our study (Sect. 3.4). In addition, the mean and
standard deviation of the climate variables are calculated and
incorporated into the attribution analysis (Sect. 2.2.3).

2.1.4 Vegetation, soil, and topography data

To evaluate the resulting correlation of vegetation func-
tioning and water storage with respect to vegetation
characteristics, we employ the tree-cover fraction data
from the Advanced Very High Resolution Radiome-
ter (AVHRR) Vegetation Continuous Fields product
(VCF5KYR, https://lpdaac.usgs.gov/products/vcf5kyrv001/,
last access: 11 March 2024) (Hansen and Song, 2018).
For this purpose, the mean tree-cover fraction for the years
between 2007 and 2016 is calculated.

Topographical variables such as elevation and slope are in-
corporated along with other meteorological variables to de-
termine the relative contribution of different variables to the
correlation between vegetation functioning and water stor-
age. Topographic data at a 5 km resolution were downloaded
from the EarthEnv project. These data are calculated based
on the 250 m Global Multi-resolution Terrain Elevation Data
(GMTED2010) and compared against the 90 m Shuttle Radar
Topography Mission (SRTM4.1dev) dataset. The data were
resampled to a coarser resolution of 5 km using various ag-
gregation techniques, details of which are in Amatulli et al.
(2018). Furthermore, for each grid cell, the fraction of sand
and clay in the soil (Reynolds et al., 2000) along with the
percentage of irrigated area (Siebert et al., 2015) were con-
sidered in the attribution analysis.
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Table 1. Table summarizing all the datasets.

Datasets Variables Source Spatial Temporal Temporal References
resolution resolution coverage

Vegetation
functioning

Near-infrared
reflectance of
vegetation (NIRv)

MODIS/MOD13C1
v061

0.05° 16 daily 2000–present (Badgley et al., 2017)

Solar-induced
chlorophyll
fluorescence (SIF)

GOME-2 0.5° 16 daily 2007–2018 (Köhler et al., 2015)

Soil water
storage

Near-surface soil
moisture (SSM)

ESA-CCI v04.4 0.25° Daily 1978–2022 (Dorigo et al., 2017)

Total water storage
(TWS) anomalies

GRACE 0.5° Monthly 2002–present (Landerer and
Swenson, 2012)

Meteorological Air temperature (Ta) ERA-5 0.25° Hourly 1940–present (Hersbach et al., 2020)

Precipitation (P )

Net radiation (Rn)

Dew point
temperature (Td)

Climatological Aridity index Global Aridity Index
and Potential
Evapotranspiration
Database Version 3

30 arcsec Static 1970–2000 (Zomer et al., 2022)

Vegetation and
land-cover
class

Tree-cover fraction VFC5KYR 0.05° 1982–2016 (Hansen and Song, 2018)

Land-cover data ESA-CCI 300 m Yearly 1992–2018 (ESA, 2017)

Topographical Elevation EarthEnv 1 km Static (Amatulli et al., 2018)

data Slope

Soil data Fraction of sand FAO 0.05° Static (Reynolds et al., 2000)

Fraction of clay

Irrigation Percentage of
irrigated area

HID 5 arcmin Yearly 1990–2005 (Siebert et al., 2015)

2.2 Methodology

2.2.1 Data pre-processing

A flowchart of the data pre-processing and analyses is pre-
sented in Fig. S1 in the Supplement. The time period of the
analysis is from 2007 to 2018, constrained by the concurrent
availability of all involved datasets. All the analyses were
performed at a monthly temporal resolution and at a 0.05°
spatial resolution (for NIRv) and at a 0.5° spatial resolution
(for SIF). The SSM and TWS data were initially available
at a 0.25 and 0.5° resolution but were disaggregated or ag-
gregated to 0.05 or 0.5° depending on the spatial resolution
of the analysis performed, based on the assumption that the
soil water storage anomalies are representative over larger
areas. Also, the meteorological data and vegetation, soil, and

topographic data were resampled into the same resolution.
After aggregating all the datasets to a 0.05° resolution, the
monthly anomalies were calculated by subtracting the long-
term mean monthly cycle and by removing linear trends. A
SIF threshold was applied in each grid cell to filter out non-
growing-season data. For this purpose, we filtered out all the
months from 2007–2018 when the mean monthly SIF value
was below the threshold of 0.2 mWm−2 sr−1 nm−1. We ap-
ply an additional temperature threshold (Ta > 5 °C) to re-
move the months with frozen soil and snow cover, similar
to the method in Li et al. (2021). Last, all months with miss-
ing soil water storage or vegetation functioning records were
excluded.
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2.2.2 Calculating the relevance of near-surface soil
moisture (SSM) and terrestrial water storage
(TWS) for vegetation functioning

We calculated the Spearman correlation between vegetation
functioning (NIRv) and soil water storage (SSM and TWS)
for each grid cell during growing-season months when obser-
vations for at least 40 months were available. To derive par-
tial correlation estimates between NIRv and water storage,
we employed a bootstrapping approach (resampling with
replacement from the original data) within each grid cell,
with 1000 repetitions to compute bootstrap means and confi-
dence intervals. The cutoff of 40 months was implemented to
guarantee a substantial number of observations for growing-
season months in each grid cell. This consideration assumes
that the minimum number of growing-season months varies
from 3 to 4 months per year globally. In addition to soil
moisture, air temperature (Ta) and net radiation (Rn) also af-
fect vegetation functioning. Moreover, SSM (soil moisture)
and TWS (total water storage) demonstrate a notable corre-
lation, as illustrated in Fig. S2 in the Supplement, signify-
ing the presence of mutual information. To exclusively ex-
amine the individual impact of each water storage variable
on vegetation functioning and disentangle mutual informa-
tion from other water variables, we accounted for confound-
ing effects. This entailed computing the partial correlation
between NIRv and water storage (SSM or TWS), while con-
trolling for Ta, Rn, and the other water storage variable (TWS
or SSM). Since we focus on understanding the role of soil
moisture in vegetation functioning, which is primarily crit-
ical in water-limited conditions, we removed the grid cells
with negative partial correlations from our analysis. Such
negative partial correlations may hint at vegetation’s con-
verse effect on soil moisture (when increasing vegetation ac-
tivity depletes the soil moisture), and a negative correlation
could occur in the grid cells where water limits vegetation
productivity through oxygen limitation (Ohta et al., 2014).
Also, note that the predominant energy limitation of the veg-
etation prevents the evaluation of the relevance of soil mois-
ture vs. terrestrial water storage, as partial correlations will
become insignificant when temperature or radiation mainly
controls vegetation functioning.

It is important to note that we chose not to apply a sig-
nificance criterion in analyzing the partial correlation be-
tween NIRv and water storage. When controlling for both
water storage (TWS or SSM) and energy variables (Ta and
Rn) in the partial correlation (NIRv∼SSM or TWS), a lim-
ited number of grid cells demonstrate significant correlation
globally, given the high correlation between SSM and TWS
(Fig. S2). This poses challenges in drawing global infer-
ences about vegetation water uptake. However, our overar-
ching goal is to discern variations in the partial correlation of
NIRv with water storage across differing climate–vegetation
gradients and to discern how it changes from the growing
season to dry months, rather than to confirm specific statis-

tical thresholds. For this, we want to maintain a sufficient
number of grid cells necessary to make global inferences.
However, to ensure that our results are not affected by the
significance criterion, we conducted additional analyses con-
sidering only grid cells with a significant partial correlation
(although a very small number compared to the total num-
ber of grid cells available for each aridity index–tree cover
fraction, AI-TC, class globally), as described in Sect. 3.4.

The impact of all the pre-processing steps on the number
of grid cells included in this study is illustrated in Fig. S3 in
the Supplement. Generally, our filtering procedures enable
us to concentrate primarily on water-limited regions, as they
effectively remove a substantial number of grid cells from
wet regions globally.

To analyze how the importance of SSM and TWS changes
during dry months, we specifically selected the months char-
acterized by the lowest 10 % of SSM for each grid cell,
representing the driest conditions within the growing-season
months. The partial correlations between NIRv and water
storage, r(NIRv∼SSM) and r(NIRv∼TWS), were calcu-
lated separately for dry months. To focus on the vegetation
response to a similar extent of dryness spatially, only grid
cells with more than 100 monthly observations were consid-
ered for the dry-month analysis. In addition, only the grid
cells which had positive partial correlation in growing-season
months were included in the dry-month analysis.

After computing the partial correlations, we grouped the
grid cells by aridity and tree-cover classes, which allowed
us to analyze the evolution of correlations and the differ-
ence between the partial correlation across aridity–tree-cover
classes. Afterwards, we again employed a full bootstrapping
methodology with 1000 repetitions to compute the boot-
strap means and confidence interval for each aridity–tree-
cover class with a sufficient number of observations for both
growing-season and dry months. Moreover, to test the robust-
ness of the results, we did additional partial correlation analy-
ses, in which we correlated SIF (instead of NIRv) with SSM
and TWS. The analyses with SIF were performed at a spa-
tial resolution of 0.5°, the resolution at which SIF data were
available.

2.2.3 Attribution analysis

We used a random forest model to understand the spatial
variability in the relevance of SSM vs. TWS for NIRv. A
random forest is a nonparametric-based regression algorithm
that does not require any statistical assumptions regarding
the predictor and target variables, which makes it particularly
useful for detecting nonlinear relationships (Breiman, 2001).
Given the potential nonlinear impact of various factors (cli-
mate, soil types, and vegetation) on the relationship between
moisture storage and vegetation functioning, this study em-
ployed the random forest method to assess the relative con-
tributions of these variables.
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In our study, 15 predictors were included in the random
forest model based on their potential physical relevance to
the target variable, which is the difference in correlation be-
tween SSM and TWS with NIRv in growing-season months.
These predictors included the mean and standard deviation
of climate variables (Ta, Rn, P , and VPD), the aridity index,
topographical variables (elevation and slope), a vegetation
variable (tree cover), soil-related variables (fraction of clay
and sand), and the percentage of irrigated areas for each grid
cell. We calculated the mean and standard deviation of the
climate variables only during the growing-season months,
as determined in the subsequent partial correlation analysis.
Furthermore, only the grid cells exhibiting positive partial
correlation between NIRv and SSM and NIRv and TWS dur-
ing growing-season months were included in the random for-
est analysis. To train the random forest model, we used the
xgboost package in R (Chen and Guestrin, 2016).

We further incorporate SHapley Additive exPlanations
(SHAP) values to interpret the predictions of the random for-
est model (Lundberg et al., 2020). The SHAP value for a fea-
ture is the average difference in prediction of the model when
that feature is included compared to when it is excluded, over
all possible combinations of features. By calculating SHAP
values for each feature in the model, we identified which fea-
tures were most important in explaining the spatial variabil-
ity in the relevance of SSM vs. TWS. To calculate the SHAP
values, we employed the SHAPforxgboost package in R.

3 Results and discussion

3.1 Coupling of vegetation functioning with surface soil
moisture and total water storage in the growing
season

The partial correlation of NIRv with near-surface soil mois-
ture varies globally during growing-season months (Fig. 1a).
NIRv demonstrates stronger correlation with near-surface
soil moisture within semi-arid climates, such as central North
America, South America, regions in southern Africa, and
Australia. The correlation is stronger in southern Europe and
the Mediterranean region compared to central and north-
ern Europe. The correlation gradient from the hot-and-dry
Mediterranean region to wet-and-cold northern Europe cor-
responds to the gradient from water-limited ecosystems to
energy-limited ecosystems obtained in other studies (Denis-
sen et al., 2022; Teuling et al., 2009).

The global correlation of NIRv with TWS follows a simi-
lar pattern as with SSM (Fig. 1b) in growing-season months.
The correlation of NIRv with TWS is higher in drier central
North America and Australia compared to other regions. The
similarities in the correlation of NIRv with SSM and TWS
are expected because the monthly anomalies of SSM and
TWS are highly correlated during growing-season months in
most of our study area (Fig. S2).

The differences between the partial correlation of NIRv
with SSM and TWS (Fig. 1c) indicate that NIRv corre-
lates more strongly with TWS in western North America,
southern Europe, and arid regions of Australia compared
to other regions globally during growing-season months. In
South America and southern Africa, however, NIRv shows a
stronger correlation with SSM. To ensure that the observed
patterns of difference in partial correlation between SSM and
TWS are not artifacts arising from the computation of dif-
ferences based on mean partial correlation, we compared
the 95 % confidence intervals obtained through bootstrap-
ping. Our results indicate that, for the majority of the con-
sidered grid cells, the entire confidence interval of the cor-
relation NIRv∼TWS falls outside the bounds of the corre-
lation NIRv∼SSM, which indicates that the correlation dif-
ferences are significant, thus enhancing the robustness of and
confidence in our findings (Fig. S4 in the Supplement). Fur-
thermore, even if we control for the effect of soil water stor-
age (SSM or TWS) when computing partial correlation to
discern the relative importance for vegetation, it should be
noted that the varying noise levels inherent in these datasets
might impact our results.

Next, we analyze the partial correlation between NIRv
and soil water storage across different aridity and tree-cover-
fraction classes during growing-season months. For this, we
group the grid cells into different aridity and tree-cover-
fraction classes and then apply bootstrapping to compute
mean partial correlation and the 95 % confidence interval for
each class with more than 1000 grid cells. We find that the
partial correlation of NIRv with SSM (Fig. 2a) increases with
increasing aridity, for aridity index values 0–4. This can be
attributed to the intensification of water stress on vegetation
under increasingly arid conditions, resulting in a stronger
correlation between NIRv and SSM. However, for a further
increase in AI values (4–8), the strength of the correlation
between NIRv and SSM declines. This is due to low soil
moisture availability and low temporal variability under ex-
tremely arid conditions (Fig. S5 in the Supplement). The pat-
tern of increasing correlation along the aridity index is also
observed in the partial correlation between NIRv and TWS
(Fig. 2b).

Furthermore, the correlation of NIRv with SSM decreases
for higher tree-cover fractions (Fig. 2a). However, such a
gradient along the tree-cover fraction is less pronounced in
the partial correlation of NIRv with TWS (Fig. 2b). Overall,
this shows that the coupling of vegetation functioning with
SSM is generally higher for non-forested areas compared to
forested areas, while this gradient is less pronounced in the
case of TWS.

Although the difference in inherent noise levels associated
with SSM and TWS impacts partial correlation analysis, we
can compare the evolution of the gradient along tree cover
or aridity index and assert how the relevance of SSM and
TWS changes with varying tree cover or aridity index, as-
suming that the noise levels are similar across varying AI-TC

Biogeosciences, 21, 1533–1547, 2024 https://doi.org/10.5194/bg-21-1533-2024



P. Khanal et al.: Relevance of soil water depth for vegetation 1539

Figure 1. Coupling strength between vegetation functioning (NIRv) and (a) near-surface soil moisture (SSM) and (b) total water storage
(TWS) during the growing-season months. The color bar denotes the mean partial correlation for each grid cell, computed from the par-
tial correlations across individual bootstrapping samples. Monthly anomalies of all variables are used to calculate the partial correlation.
(c) Difference between (a) and (b). The purple color in (c) indicates the greater partial correlation of NIRv with SSM compared to the partial
correlation of NIRv with TWS, while the orange color indicates the opposite. Grid cells with positive relationships for both correlations
in (a) and (b) are shown in (c) with blueish and orange colors. Light grey color indicates negative partial correlations between NIRv and
water storage. The absence of color within the land boundaries signifies inadequate observational data for precise computation of the partial
correlation. Each inset in the respective map illustrates the probability distribution function (pdf) of the correlations.
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Figure 2. Summarizing the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) terrestrial
water storage (TWS) in the growing-season months across climate (aridity index) and vegetation regimes (fraction of tree cover). Panel
(c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid cells for each aridity–tree-cover class.
Aridity–tree-cover classes containing fewer than 1000 grid cells are shown in grey. The color bar denotes the mean partial correlation for each
class, computed using bootstrapping. The stars in figure (c) signify that the 95 % confidence interval (lower and upper) shares a consistent
sign (+/−) in the difference in partial correlation. Only grid cells with positive partial correlation are considered.

classes. Taking this into account, we find that NIRv correlates
more strongly with near-surface soil moisture than with ter-
restrial water storage in semi-arid regions with low tree cover
(Fig. 2c), suggesting that vegetation preferentially takes up
water from SSM whenever available to meet its transpiration
demand. This might be due to lower energy expenditure of
root water uptake, abundant nutrients, and reduced chance of
root waterlogging in the near-surface soil moisture (Feldman
et al., 2023; Schenk and Jackson, 2002; Tao et al., 2021).
Conversely, the correlation between NIRv and TWS in arid
areas (AI 4–8) and in regions with a high fraction of tree
cover is equivalent to or greater than that of SSM, suggesting
that trees can utilize their extensive root systems to access
deeper soil moisture, as was also observed in arid vegetation.
This is consistent with previous studies reporting that vegeta-
tion dependence on sub-surface soil moisture is higher in arid
and seasonal-arid climates (Miguez-Macho and Fan, 2021).
However, in certain regions with higher tree cover in humid
areas, specifically with an AI of 0.5–1, such conclusions can-
not be confidently drawn statistically. The reason is that the
confidence intervals for the difference in partial correlation
of NIRv with SSM and TWS fluctuate between positive val-
ues (indicating greater relevance of SSM) and negative val-
ues (indicating greater relevance of TWS) (Fig. 2c).

Note that while our analysis focuses on regions with water-
controlled vegetation as denoted by positive correlations be-
tween NIRv and the soil water storage considered, some
of these grid cells are located in comparatively wet climate
regimes with aridity index values between 0 and 1 (Fig. 2).
This highlights the relevance of non-climatic factors such
as soil and vegetation type or topography in determining
vegetation–water relationships, in addition to the climate
regime. Next to this, in Fig. 2c it seems that the relevance
of terrestrial water storage is comparatively higher in wet-

climate (aridity 0.5–1) than in transitional-climate regimes
(aridity 1–2) as shown by the smaller correlation differences.
This, however, is probably not the case and might simply be
a reflection of the reduced variability in surface soil moisture
(Fig. S5).

3.2 Coupling of vegetation functioning with surface soil
moisture and total water storage in dry months

The correlation between NIRv and soil water storage in-
creases during dry months (Fig. 3a and b) compared to
growing-season months (Fig. 2a and b). This increase is con-
sistent for both SSM and TWS and across all tree-cover frac-
tions and aridity classes. This is because the water limitation
on vegetation increases in dry months and so does the veg-
etation’s sensitivity to moisture. During the dry months, the
correlation with near-surface soil moisture tends to rise, but
the correlation with terrestrial water storage increases even
more significantly (Fig. 3c). This indicates the relevance of
deeper water resources during periods of scarce rainfall. The
partial correlation maps (Fig. S6 in the Supplement) also re-
veal that NIRv’s correlation with TWS increases more than
its correlation with SSM for most grid cells.

During dry months, the number of analyzed grid cells
(Fig. 3) is lower compared to all growing-season months
(Fig. 2). We performed a reanalysis of the correlation pat-
terns within aridity–tree-cover classes by selecting only those
grid cells that displayed a positive partial correlation between
NIRv and soil water storage during both the dry months and
the growing-season months. The results demonstrate that the
previously observed patterns remain valid, thereby eliminat-
ing the impact of the differing numbers of grid cells analyzed
(Fig. S7 in the Supplement).
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Figure 3. Summarizing the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) terrestrial
water storage (TWS) in the driest 10 % of months in each grid cell across climate (aridity index) and vegetation regimes (fraction of tree
cover). Panel (c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid cells for each aridity–
tree-cover class. Aridity–tree-cover classes containing fewer than 500 grid cells are shown in grey. The color bar denotes the mean partial
correlation for each class, computed using bootstrapping. The stars in figure (c) signify that the 95 % confidence interval (lower and upper)
shares a consistent sign (+/−) in the difference in partial correlation. Only grid cells with positive partial correlation are considered.

3.3 Climate, vegetation, and topographic controls on
the relevance of surface soil moisture vs. total water
storage on vegetation

We use a random forest model to understand the spatial vari-
ability in the relevance of SSM versus TWS for NIRv. The
model was trained with 15 climatic, vegetation, and topo-
graphic predictors against the target variable, which is the
difference in the partial correlations of NIRv with SSM and
TWS during growing-season months (R2

= 0.59; see meth-
ods Sect. 2.2.3). The mean absolute SHAP value plot shows
that the tree-cover and the climate variables (mean and stan-
dard deviation of Ta) are the most important variables to ex-
plain the spatial variability in the relative importance of SSM
vs. TWS for vegetation functioning (Fig. 4a). This overall
highlights that the relative importance of SSM vs. TWS for
vegetation is broadly controlled by vegetation type, reflect-
ing the local adaptation of ecosystem and climate influencing
water availability (Stocker et al., 2023).

Tree-cover fraction is an important factor in determining
the relevance of SSM and TWS for vegetation functioning
(Fig. 4b). Regions with high tree cover are more dependent
on TWS, as trees generally have deeper root systems that
allow them to adjust water uptake between different depths
(Tao et al., 2021). Grasslands, on the other hand, have shal-
low roots that are more susceptible to surface soil moisture
variations (Yang et al., 2014).

Similarly, the relative importance of SSM and TWS
varies nonlinearly with the mean growing-season tempera-
ture (Fig. 4d). TWS tends to be more important for vegetation
functioning in areas with low (below approximately 20 °C) or
high (above 27 °C) growing-season temperatures, while SSM
has greater importance in regions with moderate growing-
season air temperatures. One possible explanation for this
trend is that high temperatures induce a strong atmospheric

water demand that dries near-surface soil layers, which leads
vegetation to increase water extraction from deep soil. This
observation is further underscored by the analogous pattern
observed in the SHAP dependence plot for VPD, which ac-
centuates atmospheric water demand (Fig. S8b in the Supple-
ment). In contrast, SSM is more available during growing-
season months in regions characterized by moderate tem-
peratures. We hypothesize that the regions that experience
relatively cold growing-season temperatures exhibit stronger
temperature and weather variability that may contribute to
longer dry periods and, thus, emphasize the importance of
deeper soil moisture for vegetation functioning. However, it
should be noted that our findings regarding the relevance of
TWS at high temperatures must be interpreted with caution
due to the exclusion of most tropical forest regions from our
analysis (Fig. S9 in the Supplement). As a result, most warm
regions are dry, and there are only a few hot and wet regions
included in our training data.

Not only the mean of the growing-season temperature, but
also its variability is crucial for explaining the significance of
SSM and TWS for vegetation functioning (Fig. 4c). Higher
temporal variability in temperature increases the importance
of TWS for vegetation. This is because atmospheric water
demand scales with temperature. Hence, higher variability in
temperature implies more peaks in related atmospheric water
demand, which is a stronger incentive for plants to access
deeper water storage that is more often available to meet the
vegetation’s transpiration demand.

Figure S8 illustrates the effect of the other six important
predictors on the model output. Apart from the climatolog-
ical parameters (mean P , mean VPD, variability in Rn, and
aridity index), elevation and slope explain part of the vari-
ability in the relevance of SSM vs. TWS for NIRv. Although
the reasons for the increasing relevance of TWS for vege-
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Figure 4. (a) Global feature importance based on the mean absolute magnitude of the SHAP values. The higher the mean SHAP values, the
greater the predictor’s relevance. (b–d) Evaluation of SHAP values (contributions to the correlation difference illustrated in Fig. 1c) against
predictor values for the three most relevant predictors: tree-cover fraction (TC), variability in temperature (sd Ta), and mean temperature
(mean Ta) during the growing-season months. The color indicates the density of data points. For plotting (b), (c), and (d), only a random
10 % sample of the whole dataset is utilized.

tation functioning at higher elevations remain unclear, they
may be due to the strong correlation of elevation with other
climatic variables such as Ta and P .

Several local studies identified other relevant factors that
determine root water uptake depth, such as forest stand age

and tree height, competition, root hydraulic architecture, and
tree species (Zhu et al., 2023; Quijano et al., 2012; Stahl et
al., 2013; Gessler et al., 2022; Liu et al., 2021). For exam-
ple, young trees more easily increase their root activity in the
shallow or deep soil dependent on soil moisture compared
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to mature trees (Zhu et al., 2023; Drake et al., 2011). These
variables were not included in our attribution analysis be-
cause they are not available at a global scale.

3.4 Robustness tests

In the aforementioned analysis, we included grid cells ex-
hibiting both positive partial correlations, whether significant
or non-significant. Upon further examination, we specifically
assessed the evolution of partial correlation between NIRv
and water storage, considering only grid cells with signif-
icant partial correlation (p < 0.05). The observed patterns
along the aridity–tree-cover gradient remained similar during
growing-season months. This suggests the robustness of our
results to the choice of the statistical significance criterion,
albeit with a substantial reduction in the number of globally
available grid cells when considering only significant partial
correlation (Fig. S10 in the Supplement).

Furthermore, to ensure that our results are robust to
variations in the threshold for solar-induced fluorescence
(SIF) used to define growing-season months, we con-
ducted additional analyses with a different SIF thresh-
old. Instead of filtering out all months from 2007–2018
when the mean monthly SIF value was below the thresh-
old of 0.2 mWm−2 sr−1nm−1, we utilized a threshold of
0.5 mWm−2 sr−1nm−1. Elevating the SIF threshold implies
the exclusion of additional months characterized by lower
vegetation activity for the partial correlation analysis. How-
ever, it is essential to note that this threshold does not seem
to affect the number of globally available grid cells dur-
ing growing-season months, and hence patterns along AI-
TC classes are similar. Instead, it specifically influences
the selection of dry months and hence the number of grid
cells available for the analysis during dry months. Never-
theless, even with the elevated SIF threshold for defining
growing-season months, the observed patterns along aridity–
tree-cover (AI-TC) classes remain largely consistent with the
results obtained in our main analyses (Fig. S11 in the Supple-
ment).

Although NIRv can largely reflect vegetation function-
ing (Badgley et al., 2017), we repeat our analysis with
SIF, which is an alternative, independent indicator for veg-
etation functioning and shows a near-linear relationship
with gross primary productivity at the ecosystem level
(Guanter et al., 2012). However, SIF is only available
at a coarse resolution of 0.5°. The partial correlations,
r(SIF∼SSM) and r(SIF∼TWS), largely agree with the pat-
tern of r(NIRv∼SSM) and r(NIRv∼TWS) across varying
aridity indices and tree-cover classes (Fig. S12 in the Sup-
plement). This suggests that our overall conclusion as to the
relevance of SSM or TWS for vegetation functioning is ro-
bust across different indicators of vegetation productivity.

Additionally, we tested whether our results are robust
when the aridity index is calculated based on the FAO
Penman–Monteith Reference Evapotranspiration equation,

for which we applied aridity classification based on Zomer et
al. (2007, 2008) guidelines. Our results confirm the findings
of Sect. 3.1 and Fig. 2, that as aridity increases, the correla-
tion of NIRv with near-surface soil moisture (SSM) and total
water storage (TWS) intensifies. Moreover, in hyper-arid re-
gions (AI < 0.03) the correlation with TWS surpasses that
with SSM (Fig. S13 in the Supplement). They also confirm
that regions with higher tree-cover (TC) fractions correlate
more strongly with TWS compared to with SSM. Thus, the
choice of aridity index formulation does not alter our main
conclusions.

When analyzing partial correlations between total water
storage (TWS) and vegetation metrics (NIRv or SIF) at finer
resolutions (0.05° for NIRv or 0.5° for SIF), it is crucial to
acknowledge the potential emergence of significant spatial
autocorrelation. This is attributed to the fact that the actual
spatial resolution of the satellite signal underlying the TWS
data is 2–3°.

4 Summary and conclusions

In this study we compare the relevance of near-surface soil
moisture and of terrestrial water storage to vegetation func-
tioning across the globe. We find that vegetation preferen-
tially utilizes the water from shallow soil in semi-arid re-
gions and in regions with low tree cover, which is related to
the continuous availability of near-surface water and a lack
of deep rooting systems, respectively. The stronger correla-
tion of NIRv with SSM than with TWS is supported by site-
level studies that find higher root water uptake of surface soil
moisture (Brinkmann et al., 2019; Gessler et al., 2022; De-
seano Diaz et al., 2023; Kulmatiski and Beard, 2013) when
deeper water is also available. Some local studies however
find a higher root water uptake from deeper layers (Zhu et
al., 2023).

In contrast, in mostly forested regions and in relatively dry
climate regimes, the correlation with terrestrial water stor-
age is comparable or higher than with near-surface soil mois-
ture, indicating that trees and vegetation in arid regions use
their deep root systems to access deeper soil moisture. Point-
scale studies also found a different water uptake depth for
trees and grasses, for example, in savanna ecosystems (Kul-
matiski et al., 2010), and a different water uptake depth for
tree species (Kahmen et al., 2022). Liu et al. (2021) showed,
for example, that in a karst forest in southwest China, ever-
green species rely mostly on water sources from the 0–30 cm
layer, while deciduous species extract most water from the
30–70 cm layer.

We also find that vegetation’s preferential water uptake
depth changes over time. During particularly dry months,
the relative importance of terrestrial water storage is higher,
highlighting the importance of deep water resources during
periods of low soil water availability. This is in line with pre-
vious studies showing changes in vegetation’s water uptake
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depth during drought periods at small spatial scales, where
accessing water in deeper soil layers helps plants to alleviate
water stress and maintain transpiration (Migliavacca et al.,
2009; Tao et al., 2021).

Our global results are supported by site-scale studies that
find that during drought the deeper roots play a more ac-
tive role in water extraction (Stahl et al., 2013; Volkmann
et al., 2016; Tao et al., 2021). In some studies, however, the
increase in deep water uptake is only relative: the absolute
uptake of deep water does not increase, but the uptake of
shallow water decreases (Brinkmann et al., 2019; Gessler et
al., 2022; Rasmussen et al., 2020; Kühnhammer et al., 2023).
This means that the uptake of deeper soil layers cannot com-
pensate for the loss of water uptake from the dry topsoil.
Contrary to trees, grasses do not shift their uptake depth (De-
seano Diaz et al., 2023) or even extract water from the most
shallow soils (Prechsl et al., 2015; Kulmatiski and Beard,
2013).

Furthermore, we show that the spatial variability in the
importance of near-surface soil moisture vs. terrestrial water
storage for vegetation functioning is influenced by the frac-
tion of tree cover and mean and standard deviation of air tem-
perature. This emphasizes the role of climate in determining
shallow- vs. deep-soil water resources and the role of vege-
tation in adapting to different soil water availability patterns.

Vegetation functioning and soil water storage are generally
coupled in both directions; i.e., while soil moisture availabil-
ity affects vegetation functioning (positive coupling), this in
turn also affects soil moisture through transpiration (negative
coupling). As our study focuses on water-controlled vegeta-
tion, we only consider positive couplings and filter out grid
cells with negative correlations. Future research may con-
sider the relevance of soil moisture across depths for the neg-
ative coupling regions.

Overall, our analysis illustrates that satellite-based data
can be used for belowground analysis at large spatial scales,
thanks to the fact that satellite retrievals can assess soil wa-
ter storage dynamics across depths and because vegetation in
water-controlled areas can be used as an indicator of soil wa-
ter dynamics. Such novel ways to improve our understanding
of belowground water dynamics are necessary and valuable,
as in situ observations are scarce and of limited representa-
tiveness for larger areas, particularly given the typical spatial
heterogeneity of soils and vegetation. Our results can further
inform a better representation of belowground processes in
global models in order to support more accurate projections
of future changes in climate, water resources, and ecosystem
services.

Data availability. Monthly SIF data are available from https:
//www.gfz-potsdam.de/sektion/fernerkundung-und-geoinformatik/
projekte/global-monitoring-of-vegetation-fluorescence-globfluo/
daten (Köhler et al., 2015). NIRv was calculated from the red
and near-infrared reflectance obtained from the MOD13C1 v006

product (https://doi.org/10.5067/MODIS/MOD13C1.061, Didan,
2021). ESA-CCI soil moisture data can be accessed at http:
//catalogue.ceda.ac.uk/uuid/ff890589c21f4033803aa550f52c980c
(Dorigo et al., 2023), and Terrestrial Water Storage Anomaly data
can be accessed at https://doi.org/10.5067/TEMSC-3MJC6
(Wiese et al., 2018). The ERA5 climate variables are
available at https://doi.org/10.24381/cds.e2161bac (Muñoz
Sabater, 2019). Tree-cover fraction data are available
from the AVHRR vegetation continuous fields products
at https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001
(Hansen and Song, 2018), land-cover data are available at
https://www.esa-landcover-cci.org/ (ESA, 2017), and topographic
data are available at https://www.earthenv.org/topography (Am-
atulli et al., 2018). Similarly, the irrigation fraction data can be
accessed at https://doi.org/10.13019/M20599 (Siebert et al., 2015).
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