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Abstract. The assessment of cropland carbon and nitro-
gen (C and N) balances plays a key role in identifying
cost-effective mitigation measures to combat climate change
and reduce environmental pollution. In this paper, a bio-
geochemical modelling approach is adopted to assess all
C and N fluxes in a regional cropland ecosystem of Thes-
saly, Greece. Additionally, the estimation and quantifica-
tion of the modelling uncertainty in the regional inventory
are realized through the propagation of parameter distribu-
tions through the model, leading to result distributions for
modelling estimations. The model was applied to a regional
dataset of approximately 1000 polygons, deploying model
initializations and crop rotations for the five major crop
cultivations and for a time span of 8 years. The full sta-
tistical analysis on modelling results (including the uncer-
tainty ranges given as ± values) yields for the C balance
carbon input fluxes into the soil of 12.4± 1.4 t C ha−1 yr−1

and output fluxes of 11.9± 1.3 t C ha−1 yr−1, with a result-
ing average carbon sequestration of 0.5± 0.3 t C ha−1 yr−1.
The averaged N influx was 212.3± 9.1 kg N ha−1 yr−1, while
outfluxes of 198.3± 11.2 kg N ha−1 yr−1 were estimated
on average. The net N accumulation into the soil nitro-
gen pools was estimated to be 14.0± 2.1 kg N ha−1 yr−1.
The N outflux consists of gaseous N fluxes com-
posed of N2O emissions of 2.6± 0.8 kg N2O–N ha−1 yr−1,
NO emissions of 3.2± 1.5 kg NO–N ha−1 yr−1, N2 emis-

sions of 15.5± 7.0 kg N2–N ha−1 yr−1 and NH3 emis-
sions of 34.0± 6.7 kg NH3–N ha−1 yr−1, as well as aquatic
N fluxes (only nitrate leaching into surface waters) of
14.1± 4.5 kg NO3–N ha−1 yr−1 and N fluxes of N re-
moved from the fields in yields, straw and feed of
128.8± 8.5 kg N ha−1 yr−1.

1 Introduction

Food security and agricultural productivity depend, to a ma-
jor extend, on the applied nitrogen (N) fertilizers (Klatt et
al., 2015). Worldwide, the N fertilizer use for the years 1960
to 2005 increased from 30× 106 to 154× 106 t (IFADATA,
2015). In Europe, the increase in yields of arable land and
grassland systems was 45 %–70 % from 1950 (European Fer-
tilizer Manufacturers Association, 2009) due to the intensifi-
cation of agricultural production systems. Excessive use of N
fertilizers, though beneficially affecting the yield, could have
a harmful impact on the environment, e.g. increased gaseous
emissions and aquatic fluxes of nitrous oxide (N2O) to the
atmosphere and leaching of nitrate (NO3) into waterbodies
(Erisman et al., 2011; Galloway et al., 2013; Kim et al., 2015)

N2O poses a twofold environmental threat. On the one
hand, it is a strong greenhouse gas with a warming poten-
tial that is 300 times greater (in a 100-year time period)
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than carbon dioxide (CO2), and on the other hand, it is a
major driver of ozone depletion in the stratosphere (Rav-
ishankara et al., 2009). Fertilizer use aimed at an increase
in agricultural production is the most crucial anthropogenic
source of atmospheric N2O, which, at present, contributes
approximately 45 % of the total anthropogenic N2O emis-
sions on a global scale (Jones et al., 2014). Because of global
population growth and, thus, growing food demand (God-
fray et al., 2010), fertilizer use will probably increase. Con-
sequently, the predictions of the current business-as-usual
scenarios show doubled anthropogenic N2O emissions by
the year 2050 (Davidson and Kanter, 2014). The European
countries have recently set up bilateral agreements in or-
der to reduce N2O emissions from cultivated croplands (EU-
Commission, 2014). Similarly, the European Nitrates Direc-
tive (EU-Commission, 2019; Musacchio et al., 2020) aims
to reduce NO3 leaching to waterbodies to avoid an increase
in both eutrophication (Camargo and Alonso, 2006) and
drinking-water pollution. Because of the hazardous N2O and
NO3 effects, it is necessary to evaluate agricultural systems
in terms of their profitability and productivity and in terms of
their impacts on the environment.

The N2O and NO3 production and consumption in agricul-
tural lands are regulated, to a large extent, by N plant uptake
and, also, by the microbial processes of denitrification and
nitrification (Butterbach-Bahl et al., 2013). The factors con-
trolling both the microbial metabolism and plant N uptake
are (a) soil conditions (Butterbach-Bahl et al., 2013) and (b)
cultivation management practices, e.g. crop rotation, fertiliz-
ing amount and timing, and ploughing (Smith et al., 2008).

In order to reach a minimization of the environmental foot-
print of agricultural production while securing global food
security (Garnett et al., 2013), it is mandatory to tighten the N
cycling of intensified agricultural systems, e.g. by harmoniz-
ing the N demand of crops with soil N availability by means
of N fertilization.

Full nitrogen balance inventories provide a comprehensive
description of the different N input and output fluxes within
an arable system to the scientific community, farmers and
policymakers. The assessment of the N balance is essential
to optimize nitrogen use and production and to minimize en-
vironmental impacts and pollution. In particular, policymak-
ing and regulatory bodies require accurate and robust infor-
mation on all different nitrogen fluxes to develop effective
strategies in agricultural N management. Until now, our de-
scriptions of N cycling in arable land have lacked observa-
tions of the full N balance as only a few studies have tried
to quantify the total N balance of agricultural systems, e.g.
the study by Zistl-Schlingmann et al. (2020) using stable iso-
tope techniques or the study by Schroeck et al. (2019) using
process-based modelling.

A recent opinion paper by a large group of leading sci-
entists in the field of process-based ecosystem modelling,
Grosz et al. (2023), identified the lack of knowledge of the
full N balance and the fact “the scarcity of complete mod-

eled N balances in the literature stems from the reluctance of
the scientific community to support the publication of unval-
idated modeled results, especially given that the simulation
results of these neglected N pools and fluxes may be unreal-
istic”. It is further noted that “This self-censorship of authors
has resulted in a missed opportunity to share knowledge and
improve our understanding of modelled processes”.

Grosz et al. (2023) conclude that “including the entire
N balance and related parameters should become standard
when publishing the results of N model studies”. Grosz et
al. (2023) emphasize that this would allow us to assess the
robustness of modelled N fluxes and full N balances and to il-
lustrate the diversity and uncertainty of the different process-
based modelling approaches, e.g. modelling denitrification
processes in soils.

In this analysis, the process-based bio-geochemical model
LandscapeDNDC (Haas et al., 2013) was applied to the agri-
cultural cropland systems in the region of Thessaly (Greece).
The objective of our study was threefold.

We assess and report the cropland C and N balances, in-
cluding all associated fluxes such as CO2, N2O and NH3
emissions; NO3 leaching; and the soil carbon stock changes
as demanded by Grosz et al. (2023).

We increase the robustness and trustworthiness of the bal-
ance modelling by assessing and quantifying the modelling
uncertainty of the simulated C and N balances and flux esti-
mations, as requested before by the IPCC (IPCC, 2019).

We present a regional uncertainty assessment methodol-
ogy for C and N cycling to advance the balance modelling
by propagating 500 joint parameter and input data distribu-
tions through the model (each representing a full regional C
and N balance inventory simulation), yielding regional result
distributions for any modelling estimations.

2 Material and methods

2.1 Model description

LandscapeDNDC is a modular, process-based ecosystem
model for simulating the bio-geochemical change in C and
N in cropland, forest and grassland systems at both the site
scale and regional scale. The modules combined are about
plant growth, micro-meteorology, water cycling, physico-
chemical plant and microbial C and N cycling, and the ex-
change processes of the atmosphere and hydrosphere of ter-
restrial ecosystems. LandscapeDNDC is a generality of the
plant development and soil biogeochemistry of the agricul-
tural DNDC and Forest-DNDC (Li, 2000). There has been a
successful application of earlier model versions in a num-
ber of studies, e.g. for water balance (Grote et al., 2009;
Holst et al., 2010), for plant growth (Cameron et al., 2013;
Werner et al., 2012), for NO3 leaching (Thomas et al., 2016;
Kim et al., 2015), and for soil respiration and gas emission
traces (Chirinda et al., 2011; Kraus et al., 2014; Molina-
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Herrera et al., 2015). For the initialization of LandscapeD-
NDC, physical and chemical site-specific soil profile infor-
mation is used (specified for different soil depths): soil or-
ganic carbon (SOC) and nitrogen (SON) content, soil texture
(clay, sand and silt content), the plant growth and soil biogeo-
chemistry, bulk density, pH value, saturated hydraulic con-
ductivity, field capacity, and wilting point. Daily or hourly
climate data of air temperature (max, min and average), N
deposition, precipitation and atmospheric CO2 concentration
are used in LandscapeDNDC in combination with agricul-
tural management practices; e.g. crop planting and harvest-
ing, fertilization (synthetic and organic), or feed cutting and
tilling are used to drive LandscapeDNDC simulations. Re-
garding fertilization management, three types of mineral fer-
tilizers, namely urea, compound fertilizers based on NH4 and
NO3, and organic amendments (i.e. green manure, farmyard
manure, slurry, straw, bean cake and compost), are currently
considered. The growth of crops and grasses is similar to the
DNDC approach using two major parameters that describe
seasonal plant development (cumulative-temperature degree
days) and maximum reachable biomass under optimum con-
ditions (Li, 2000), with daily growth limitations due to water
and nutrient availability considered. Model parameters de-
scribing soil and vegetation characteristics are obtained from
an external parameter library. In LandscapeDNDC, the pa-
rameterization of the main cultivated commodity crops in
Europe is performed using default parameter sets represent-
ing an average plant type, while process parameter values for
micro-meteorology, water cycle and bio-geochemical pro-
cesses were obtained from previous validation studies (e.g.
Molina-Herrera et al., 2016; Klatt et al., 2015; Rahn et al.,
2012), proving that the LandscapeDNDC model could be
universally applicable to similar conditions.

For all simulations in the current study, site-specific crop
parameterizations were derived in a preceding analysis of
various site-scale simulations and validations of yield char-
acteristics across the region. An overview of the crops culti-
vated at the different study sites and detailed information on
the specific crop rotations used to simulate crop growth are
provided in Table S2 in the Supplement.

2.2 Case study description and input data

The region of Thessaly is located in central Greece, cov-
ering a total area of 14 000 km2, where 5000 km2 is low-
land and approximately 2300 and 6500 km2 are semi-
mountainous and mountainous land respectively. The plain
of Thessaly is considered to be among the largest agricul-
tural lands of the country (Kalivas et al., 2001), accounting
for almost 410 000 ha, of which about 370 000 ha is arable
land, where almost 80 % is covered by annual crops, and
10 % is covered by perennial crops (ELSTAT: https://www.
statistics.gr/el/statistics/-/publication/SPG06/2012, last ac-
cess: March 2017, 2021.). The crop or plant production of

the region is around 14.2 % (ELSTAT, 2012) of the total pro-
duction of the country (second in Greece).

Soil input data for the region were available from the Eu-
ropean project NitroEurope IP (Sutton et al., 2013) based on
the European Soil Database (ESDB, 2004) containing soil
type and soil profile descriptions of bulk density, SOC con-
tent, texture (sand, silt clay), pH value, stone fraction, satu-
rated hydraulic conductivity, wilting point and water-holding
capacity for various soil strata (Cameron et al., 2013). A re-
gional soil dataset for the area of interest contained about
1500 spatial polygons, out of which approximately 1000 cov-
ered the cultivated cropland that was finally simulated. The
climate data for the regional simulations were derived at
polygon level from gridded ERA5 climate data for Greece.

2.3 Agricultural management and model input data
processing

The total cultivated area and the yields for the years 2010 to
2016, as used in the current analysis, were obtained from the
Hellenic Statistical Authority (ELSTAT). Moreover, data as-
sociated with the animal capital for the indicated years were
also provided (ELSTAT) in order to estimate the annual ma-
nure production in the region; however, no data are avail-
able on whether the manure is used in croplands and, if this
is the case, how much of it is used. For the water manage-
ment, the percentage of irrigated and non-irrigated land (es-
timated to be almost 50 % for each case) was also given (EL-
STAT), while indicative sets of irrigation management data
were acquired through the River Basin Management Plans
of the Special Secretariat for Water – Ministry of Environ-
ment, Energy and Climate Change (YPEKA, Portmann et al.,
2010). The irrigation water volumes were estimated based on
the crop needs and the minimum and maximum quantities
necessary (according to the literature) while using upscaling
tools to obtain the regional values. The fertilization datasets
were provided by the Fertilizer Producers and Merchandiser
Association (FPMA) for recent years (2010–2016) and are
equated to the national-scale annually consumed quantities
scaled down to a regional level based on crop patterns in
Thessaly’s cultivated land.

In this study, the five main crops of maize, wheat, clover,
cotton and barley were considered, covering the majority of
the cultivated arable land in the region (over 95 %), while
the remaining cropland was included, acquiring the final cor-
rected land–crop coverage. In Table 1, the resulting crop ro-
tation scenarios (R1–R5) are presented for the evaluation pe-
riod of 2012–2016. Note that each rotation sequence (R1–
R5) is shifted in time such that, for each year, each crop ap-
pears in one rotation. Based on the crop cover contribution
in each simulated year, the crop rotation contribution factors
were estimated and are summarized in Table 2. The manage-
ment practices were based on the general agricultural prac-
tices applied in the region and on information provided by
farmers.
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Table 1. Summary of the crop rotation scenarios (R1–R5) for the
region of Thessaly. The crop abbreviations corn, wiwh, clover, cott
and wbar refer to maize (food corn and silage maize), winter wheat,
clover (legume feed crops such as alfalfa or vetch), cotton and win-
ter barley respectively.

Year R1 R2 R3 R4 R5

2012 clover cotton wbar corn wiwh
2013 cotton wbar corn wiwh clover
2014 wbar corn wiwh clover cotton
2015 corn wiwh clover cotton wbar
2016 wiwh clover cotton wbar corn

Table 2. Crop cultivation area contribution per year to the aggrega-
tion of the five rotations; data constant across the region of Thessaly.

Crop rotation contribution (%)

Year R1 R2 R3 R4 R5

2012 0.15 0.15 0.45 0.11 0.14
2013 0.13 0.29 0.09 0.10 0.39
2014 0.29 0.13 0.10 0.35 0.12
2015 0.15 0.11 0.43 0.16 0.16
2016 0.10 0.36 0.14 0.14 0.25

2.4 Uncertainty analysis

As stated in the IPCC 2006 guidelines, updated in 2019,
the assessment of uncertainty is considered to be a major
and crucial or mandatory component when compiling re-
gional or national GHG emission inventories (Larocque et
al., 2008). The difference in terms of the scale at which the
model is used results in divergent errors in the C and N dy-
namic predictions across different climate zones and scales.
Thus, uncertainty analysis is a crucial step towards a higher-
quality decision-making process. The sources of uncertainty
can vary and are related to (a) the initial conditions (starting
values), (b) the drivers (e.g. climate and crop management
data), (c) the conceptual model uncertainty and (d) the pa-
rameter uncertainty of the various processes (Refsgaard et
al., 2007; Wang and Chen, 2012).

Santabárbara (2019) performed a Bayesian model calibra-
tion and uncertainty analysis using a Monte Carlo Markov
chain (MCMC) approach targeting uncertainties associated
with the data (bulk density, SOC, pH, clay content) of the
initial soil conditions, drivers (cropland management such as
fertilization or manure rates and timing, harvest and seeding
timing, tillage timing) and bio-geochemical process parame-
terizations.

In order to identify the most sensitive process parame-
ters with a reduced number of model simulations, the Morris
method (Morris, 1991) obtains a hierarchy of parameter in-
fluences on a given output (gaseous N fluxes) and evaluates
whether or not a non-linearity exists. Morris (1991) proposed

that this order can be assessed through the statistical analysis
of the changes in the model output that are produced by the
one-step-at-a-time changes in n number of proposed param-
eters. Incremental steps in the number of parameters lead to
the identification of parameters having substantial influence
over the concerned results without neglecting that some ef-
fects could cancel each other out (Saltelli et al., 2000), lead-
ing to the identification of the 24 most sensitive process pa-
rameters (Myrgiotis et al., 2018b; Houska et al., 2017).

2.5 Metropolis – Hastings algorithm

The Markov Chain Monte carlo (MCMC) Metropolis–
Hastings algorithm results in numerous parameter sets that
approximate the posterior joint parameter distribution by per-
forming a random walk through the space of joint parameter
values. This probability evaluation of the data obtained from
each step leads to the update of the initial uniform parame-
ter distributions. Bayes’ formula relating conditional proba-
bilities may become a powerful and practical computational
tool when combined with Markov chain processes and Monte
Carlo methods or the so-called Markov Chain Monte carlo
(MCMC) approach. A Markov chain is a special type of dis-
crete stochastic process wherein the probability of an event
depends only on the event that immediately precedes it. Inte-
grating parameters (θ ) and observation data (D) into Bayes’
rule results in the following formula:

P (θ |D)=
P (D|θ) ·P(θ)

P (D)
, (1)

where P (D|θ), the probability of the data, is used to ob-
tain the probability of these parameters updated by the data,
P (θ |D), where the evidence is computed as

P (D)=

∫
likelihood · prior · dθ, (2)

where P (D) can be numerically approximated with the
aforementioned MCMC method (Robert and Casella, 2011).

The method uses prior knowledge concerning the sources
of the model uncertainty to obtain a narrowed posterior dis-
tribution for each one of the sources. By propagating the pa-
rameter distributions through the model, the overall uncer-
tainty in the model results can be quantified.

In a previous study by Santabárbara (2019), an extensive
sensitivity analysis on all soil bio-geochemical process pa-
rameters, soil initial data and arable management data was
performed, identifying the 24 most sensitive process param-
eters (listed in the Supplement), the most sensitive soil ini-
tial data (soil profile data on bulk density, soil organic car-
bon content and pH value) and the most sensitive manage-
ment information (fertilization and manure N rates, tilling
depth) in relation to aquatic and gaseous N fluxes from arable
soils. This was depicted in the MCMC simulation through
sampling a combination of 24 parameter values, 3 values
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of soil initial data and 3 items of management informa-
tion. The sampling of the soil initial data and the manage-
ment data was performed as perturbations to the existing
data. For each quantity, a perturbation was sampled indi-
vidually and applied to all corresponding values in the soil
profile or to all years in the management description. The
MCMC simulation performed by Santabárbara (2019) sim-
ulated more than 100 000 iterations for various arable sites
until the MCMC simulation converged towards a stable com-
bined posterior distribution of parameter values and soil and
management input data perturbations. In the current anal-
ysis, we have sampled 500 joint parameter and input data
perturbation sets from the posterior distributions reported by
Santabárbara (2019), and we deployed them in simulations
(propagation through the model) for the regional inventory,
leading to 500 inventory simulations. Afterwards, a statisti-
cal analysis was applied to estimate the updated regional and
temporal result distributions.

2.6 Statistical methods and data aggregation

2.6.1 Regional result aggregation

One full regional inventory simulation consists of 10 indi-
vidual inventory simulations: five different crop rotations for
irrigated conditions and five different crop rotations for rain-
fed conditions were simulated in parallel (see Sect. 2.3). The
results of the crop rotations were aggregated according to the
crop shares per year (see Table 2), accounting for all the ef-
fects of the different crops cultivated in the region under irri-
gated and rain-fed conditions. The final inventory simulation
results were obtained by considering irrigated versus rain-fed
water management. The final inventory contains simulation
results aggregated to area-weighted yearly means across the
total simulation domain, accounting for the cropland area of
each polygon.

2.6.2 Uncertainty quantification and statistical analysis

A regional aggregation was performed for all 500 uncertainty
simulations. All the uncertainty results were finally reported
via statistical measures evaluating the 500 regional uncer-
tainty simulation runs reporting mean values, standard de-
viations, medians, and the 25th and 75th interquartile ranges
(IQRs, Q25 to Q75).

3 Results analysis and evaluation

The simulation time span was from 2009 to 2016, while the
years 2009–2011 were used as spin-up to get all soil C and N
pools into equilibrium after the initialization. Therefore, re-
ported simulation results are limited to the years 2012–2016.
The assessment of the regional C and N balances (CB and
NB) were obtained and, as a consequence of the uncertainty
quantification, resulted in distributions; they were therefore

Table 3. Simulated and observed yields and feed production (t dry
matter ha−1) in the region of Thessaly. All results are based on sta-
tistical aggregation across all polygons, rotations and years and,
finally, across all 500 UA (uncertainty analysis) inventory simula-
tions. The observed values of dry matter (DM) are provided by the
Hellenic Statistical Authority.

Simulated crop yield and feed Observed
distributions (t dry matter ha−1) (t dry matter ha−1)

Crops Median Mean SD Mean

Cotton 3.5 3.3 0.8 3.3
Clover 9.8 9.6 0.6 8.4
Wheat 3.9 3.6 0.9 3.4
Barley 4.7 4.5 1.0 3.3
Maize∗ 10.2 9.9 1.4 12.0

∗ Observation data for maize did not distinguish between food corn and
silage maize.

reported by statistical measures such as the mean and/or me-
dian or interquartile ranges of the uncertainty ensemble.

3.1 Regional yield simulations and validation

The evaluation of the model performance in estimating the
NB and CB components was analysed based on the compari-
son of the simulated yield values with the observed yield data
provided by the Hellenic Statistical Authority (ELSTAT), av-
eraged for the total simulated period.

Crop yields and feed production

For model validation, datasets of crop yields from the Hel-
lenic Statistical Authority (ELSTAT) were used. Table 3
summarizes the aggregated regional crop yields for all the
simulated years and the respective mean, median and stan-
dard deviation values that resulted from the statistical analy-
sis of the simulation results together with the observed yield
and feed production provided by the Hellenic Statistical Au-
thority (ELSTAT). Simulated yields consist of the cotton
bolls of cotton; the clover feed, which is the total cut and
harvested aboveground biomass; the grain yield of wheat and
barley; and the grain ear and the stems of maize. Based on the
observations, maize appears to be the dominant crop, with
an average yield of 12 t ha−1, followed by clover products at
8.4 t ha−1. The rest of the three crop yields appear to be of
the same order of magnitude from 3.3 up to 3.4 t ha−1.

Additionally, the simulated average yield of cotton was
estimated to be 3.3± 0.8 t DM ha−1, the simulated average
yield of wheat was estimated to be 3.6± 0.9 t DM ha−1,
the simulated average yield of barley was estimated to be
4.5± 1 t DM ha−1, and the simulated average yield of maize
was estimated to be 9.9± 1.4 t DM ha−1. As for the feed, the
clover was estimated to be 9.6± 0.6 t DM ha−1. The aver-
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Figure 1. Simulated crop yield uncertainties across the evaluation
time span of 2012–2016 for (a) irrigated and (b) rain-fed condi-
tions. Horizontal lines indicate the median, mean, maximum and
minimum values of the distributions.

age nitrogen use efficiency (NUE) across time and space is
63.29 %.

Figure 1 presents the uncertainties of the simulated crop
yield across the whole evaluation time span of 2012–2016 in
both irrigated and rain-fed conditions. As shown, corn shows
a much more narrow distribution with a higher median for the
irrigated scenario compared to the rain feed. On the contrary,
winter barley has a wider distribution and a slightly higher
median for the irrigated scenario and, also, a wider extreme
value variation. As for cotton, the distribution appears to be
bimodal for the rain-fed scenario, in which the median is also
lower than the one in the irrigated scenario. In addition, the
extreme value variation is wider in the latter case. Finally,
for the example of winter wheat, the irrigated and rain-fed
scenarios reach the same results.

3.2 Regional carbon and nitrogen balance

3.2.1 Carbon balance (CB)

For the CB, Fig. 2 presents average C input fluxes into the
soil of 12.4± 1.4 t C ha−1 yr−1 (with an interquartile range
(IQR) (from Q25 to Q75) of 12.1 to 13.2 t C ha−1 yr−1) and
output fluxes of 11.9± 1.3 t C ha−1 yr−1 (with an IQR from
11.6 to 12.7 t C ha−1 yr−1). The resulting carbon sequestra-
tion was estimated to be 0.5± 0.3 t C ha−1 yr−1, with an IQR
from 0.4 to 0.7 t C ha−1 yr−1 (data summarized in Table 4).

The input fluxes consist of annual gross primary produc-
tivity (GPP) of 11.7± 1.4 t C ha−1 yr−1, with an IQR from
11.4 to 12.4 t C ha−1 yr−1, and the carbon in manure ap-
plied to soils is estimated to be 0.7± 0.001 t C ha−1 yr−1

(see Table 4). This compares, on the other hand, to res-
pirative carbon fluxes from the soil to the atmosphere
(TER) of 8.5± 1.1 t C ha−1 yr−1, with an IQR from 8.2
to 9.1 t C ha−1 yr−1, and carbon fluxes via exported crop
yields and feed (including all straws and removed crop
residues) of 3.4± 0.3 t C ha−1 yr−1, with an IQR from 3.4
to 3.6 t C ha−1 yr−1. The aggregation of the carbon fluxes
to the regional level of approximately 360 000 ha of crop-
land results in 4.25± 0.20 t C yr−1 in terms of GPP and
0.25± 0.01 M t C yr−1 of carbon influx via organic fer-

tilizers compared to 3.08± 2.97 M t C yr−1 of TER and
1.24± 0.05 M t C yr−1 of carbon exports via crop yields
and feed production, leading to a net carbon sequestra-
tion of 0.5± 0.3 M t C ha−1 yr−1, with an IQR from 0.4 to
0.7 M t C ha−1 yr−1 (M t C indicates million tonnes of car-
bon).

3.2.2 Nitrogen balance (NB)

In Fig. 3, the assessment of the distribution of the NB
with the in- and outfluxes is presented. The averaged nitro-
gen influx (represented by the uncertainty ensemble mean)
per hectare was estimated to be 212.3± 9.1 kg N ha−1 yr−1,
with an IQR from 203.3 to 220.0 kg N ha−1 yr−1, while
nitrogen outfluxes were estimated, on average, to be
198.3± 11.2 kg N ha−1 yr−1, with an IQR from 191.4 to
204.0 kg N ha−1 yr−1 (Fig. 3), leading to a net N accumu-
lation in the soil of 14.0± 2.1 kg N ha−1 yr−1, with an IQR
from 11.9 to 16.0 kg N ha−1 yr1.

The N influx was composed of the input of synthetic fer-
tilizer of 80.2± 4.8 kg N ha−1 yr−1 (IQR 76.6 to 82.7) and
the input of organic fertilizer of 80.2± 3.6 kg N ha−1 yr−1

(IQR from 77.5 to 82.7), followed by the biological
nitrogen fixation (BNF) via legumes, estimated to be
45.6± 4.3 kg N ha−1 yr−1 (IQR from 43.7 to 47.7), and ni-
trogen deposition of 6.3± 0.8 kg N ha−1 yr−1 (IQR from 6.0
to 6.8). Thus, almost 75 % of the nitrogen input influx is re-
lated to the fertilization (mineral and organic), whilst the mi-
nor part that corresponds to nitrogen fixation and deposition
approximates to 25 %.

The N outflux consist of gaseous N fluxes of
55.4± 8.8 kg N ha−1 yr−1 (IQR from 48.9 to 61.6); aquatic
N fluxes (only nitrate leaching into surface waters was
considered) of 14.1± 4.5 kg N ha−1 yr−1 (IQR from 11.0 to
17.0); and N fluxes of N removed in yields, straw and feed
of 128.8± 8.5 kg N ha−1 yr−1 (IQR of 125.2 to 131.7) (see
Fig. 4 and Table 5). Based on the aforementioned results, all
gaseous and aquatic N fluxes correspond to about 28 % and
7 % of the N output flux respectively, while the far-largest
N output flux was N removed in yields, straw and feed,
representing almost 65 % of the N outflux (Fig. 4).

The simulated gaseous fluxes were composed of N2O
emissions estimated to be 2.6± 0.8 kg N2O–N ha−1 yr−1

(IQR from 2.1 to 3.1), NO emissions of 3.2± 1.5 kg NO–
N ha−1 yr−1 (IQR from 2.0 to 4.1), N2 emissions of
15.5± 7.0 kg N2–N ha−1 yr−1 (IQR range from 9.9 to 20.7)
and NH3 emissions of 34.0± 6.7 kg NH3–N ha−1 yr−1 (IQR
from 29.3 to 36.9). Ammonia volatilization represents the
largest share (61.48 %) of gaseous N losses, with the high-
est densities in the emission distribution between approxi-
mately 25 and 35 kg N ha−1, followed by di-nitrogen losses
(28.03 %) of gaseous N losses, with a much wider emission
variability in the distribution, followed by NO3 (5.79 %) and
N2O (4.7 %). Figure 5 shows the overall NB in a waterfall di-
agram adding up cumulatively all in- and outfluxes, illustrat-
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Figure 2. Carbon balance for cropland cultivation for the region of Thessaly: (a) averaged carbon balance (in t C ha−1), (b) total carbon
balance of cropland soils (in mio. t C) and (c) averaged fluxes across the region and the years 2012–2016. Positive change indicates soil C
sequestration.

Table 4. Carbon balance (per hectare) assessment and uncertainty analysis of the of cropland cultivation in the region of Thessaly, Greece.
The 1 mean; 2 standard deviation; 3 median; 4 Q25, 25th quartile; and 5 Q75, 75th quartile are applied across the 500 values for the quantities
in this table. 6 C inputs as the sum of the absolute values of all the input fluxes of the 500 simulations. 7 C outputs as the sum of the absolute
values of all the output fluxes of the 500 simulations. 8 SOC changes as the difference between the input and output fluxes of each of the 500
simulations. Note that the underlying arable management or crop rotations include the ploughing-in of a perennial feed crop leading to large
C inputs to the soil.

Mean1 SD2 Median3 Q254 Q755

(t C ha−1 yr−1) (t C ha−1 yr−1) (t C ha−1 yr−1) (t C ha−1 yr−1) (t C ha−1 yr−1)

C inputs6 12.4 1.4 12.7 12.1 13.2
C outputs7 11.9 1.3 12.2 11.6 12.7
SOC changes8 0.5 0.3 0.5 0.4 0.7

Input fluxes

GPP 11.7 1.4 12.0 11.4 12.4
C in manure 0.7 0.0 0.7 0.7 0.7

Output fluxes

TER 8.5 1.1 8.7 8.2 9.1
Biomass export 3.4 0.3 3.5 3.4 3.6

Figure 3. Nitrogen balance for cropland cultivation for the re-
gion of Thessaly: (a) total NB (in k t N) and (b) averaged NB (in
kg N ha−1). Data are averaged for the years 2012-2016. Horizontal
lines indicate the mean (red), median, and minimum and maximum
of the distribution.

ing the uncertainty distribution of each flux contribution. The
waterfall diagram illustrates the overall outcome of the NB,
an N accumulation into the soil as the difference between all
outfluxes minus all influxes.

The nitrate-leaching mean estimate was
14.1± 4.5 kg NO3–N ha−1 yr−1 (IQR from 11.0 to 17.0)
with a bell-shaped distribution.

Total yield and biomass (straw and feed) N export
fluxes were 62.4± 4.4 kg N ha−1 yr−1, with uncertainty
ranges from 59.9 to 65.1, consisting of yield N exports
(grains and cotton balls) of 30.3± 1.7 kg N ha−1 yr−1 (IQR
from 29.6 to 30.9) and straw and feed N exports of
36.1± 6.0 kg N ha−1 yr−1 (IQR from 34.9 to 37.6). The re-
sult distributions for yield N are notably bell shaped; for feed
biomass N, they are very moderately bell shaped and well
distributed within the bounds; and for straw N, they are very
sharp within a comparably small interval.

Figure 5 illustrates the cumulative nitrogen fluxes of which
the NB is composed as a waterfall diagram considering the
mean of each component. The NB results in a net N sink of
13.8 kg N ha−1 yr−1 (see result distribution in Fig. 6) for the
region, corresponding to an annual carbon sequestration of
approximately 0.5 t C ha−1 yr−1 (as depicted in Fig. 2b) (see
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Table 5. Nitrogen balance (per hectare). Summary of the assessment and uncertainty analysis of the NB fluxes (per hectare) of cropland
cultivation in the region of Thessaly, Greece. 1 N inputs as the sum of the absolute values of all input fluxes of the 500 simulations. 2 N
outputs as the sum of the absolute values of all the output fluxes of the 500 simulations. 3 N stock changes as the difference between the
input and output fluxes of each of the 500 simulations. 4 Gaseous emissions are the sum of N2O, NO, N2 and NH3 fluxes. 5 Aquatic flux is
nitrate leaching (NO−3 ).

Mean SD Median Q25 Q75
(kg N ha−1 yr−1) (kg N ha−1 yr−1) (kg N ha−1 yr−1) (kg N ha−1 yr−1) (kg N ha−1 yr−1)

N inputs1 212.3 9.1 215.2 203.3 220.0
N outputs2 198.3 11.2 196.4 191.4 204.0
N stock changes3 13.8 2.1 13.7 14.5 12.5

Input fluxes

N deposition 6.3 0.8 6.8 6.0 6.8
Bio. N fixation 45.6 4.3 45.7 43.7 47.7
N in min fertilizer 80.2 4.8 81.3 76.6 82.7
N in organic fertilizer 80.2 3.6 80.9 77.5 82.7

Output fluxes

Gaseous emissions4 55.4 8.8 55.1 48.9 61.6
N2O 2.6 0.8 2.5 2.1 3.1
NO 3.2 1.5 2.9 2.0 4.1
N2 15.5 7.0 14.6 9.9 20.7
NH3 34.0 6.7 31.8 29.3 36.9

Aquatic fluxes5

NO3 leaching 14.1 4.5 13.6 11.0 17.0

Figure 4. Averaged annual nitrogen balance (inner ring of the pie
diagram) and their decomposition into the various components of
the N fluxes (outer ring of the pie diagram); all data are summarized
in Table 5.

also the annual dynamics of the topsoil (3 cm) soil organic
carbon and nitrogen distributions in Fig. 8).

Figures 7 and 8 show the dynamics of the annual distri-
bution of the gaseous and aquatic outfluxes, as well as the
dynamics of the annual distributions of the topsoil (30 cm)
soil organic carbon and nitrogen pools for the evaluation pe-
riod 2011–2016.

4 Discussion

In this study, following the recommendation of Grosz et
al. (2023), an assessment of the combined full C and N bal-
ances of a regional cropland agroecosystem is reported for
the first time using inventory simulations with a process-
based ecosystem model. The additional quantification of the
associated modelling uncertainty of the balance simulations
increases the trustworthiness of the study.

Up to present, process-based modelling studies have
mainly focused on single-site applications, e.g. Daycent (del
Grosso et al., 2005; Gurung et al., 2020), APSIM (Vogeler et
al., 2013), CERES-EGC (Gabrielle et al., 2006; Dambreville
et al., 2008; Heinen, 2006; Hénault et al., 2005), CERES-
Wheat (Mavromatis, 2016), DNDC (Li, 2000) and Land-
scapeDNDC (Haas et al., 2013; Zhang et al., 2015; Klatt et
al., 2015; Molina-Herrera et al., 2016). Fewer studies deploy
models on the regional to national scale (del Grosso et al.,
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Figure 5. Waterfall representation of the result distributions of the different nitrogen in- and outfluxes of the cropland cultivation in Thessaly.
Vertical lines in the distributions indicate mean values of the corresponding N flux. Red indicates gaseous outfluxes; blue indicates aquatic
fluxes; green indicates biomass yield and feed production outfluxes; and brown indicates indicates N influxes such as synthetic N fertilizer,
N manure, biological N fixation (BNF) and N deposition. The resulting N sink of the nitrogen balance (based on distribution means) is
−13.8 kg N ha−1 yr−1. A negative value indicates flux into the soil.

Figure 6. Distribution of the overall nitrogen balance of the
cropland cultivation in Thessaly: statistical analysis across all
500 individual NB results of the inventory simulations (mean
13.8 kg N ha−1 yr−1, median 13.7 kg N ha−1 yr−1) corresponding
to the carbon balance in Fig. 2.

2005; Klatt et al., 2015; Kim et al., 2015) or the continen-
tal to global scale (del Grosso et al., 2009; Thompson et al.,
2019; Franke et al., 2020; Smerald et al., 2022; Jägermeyr
et al., 2021). All of these studies are subject to criticism, as
stated by Grosz et al. (2023), as they are reporting, in general,
on only one specific component or only a few components of
the carbon or nitrogen cycles, such as soil carbon stocks or
N2O emissions, lacking any information on the full C and N
balance.

There are very few cases where an attempt at a regional
estimation of the NB has been made. The study by Schroeck
et al. (2019) is the only previous attempt fulfilling the re-

quirements of Grosz et al. (2023) in reporting on the full NB
for a large alpine watershed in the Austrian Alps, character-
ized by arable production in the low-lying areas and grass-
land in the mountains, using a process-based model. In ad-
dition, Lee et al. (2020) tried to estimate nitrogen balances
in Switzerland by alternating the cropping systems or man-
agement practices. There were also cases where the regional
NB was estimated with the use of nitrogen balance equations
(He et al., 2018). Recently, Zistl-Schlingmann et al. (2020)
assessed the full N balance of alpine grasslands using the
15N stable isotope techniques.

In order to achieve a more concrete and complete anal-
ysis of the CB and NB that could be used for future pol-
icy development, an uncertainty analysis is considered to be
necessary and mandatory. The IPCC guidelines demand UN-
FCCC (United Nations Framework Convention on Climate
Change) reporting of the uncertainty quantification of any
reported inventory study (IPCC, 2019). Recent publications
have reported the deployment of different methods to assess
and quantify the various sources of uncertainty in ecosystem
modelling. Klatt et al. (2015) published a study on the im-
pact of parameter uncertainty on N2O emissions and NO3
leaching at a regional scale. Houska et al. (2017) deployed
the GLUE method (generalized likelihood uncertainty esti-
mation) for the LandscapeDNDC model on a grassland site;
other studies such as Lehuger et al. (2009a), Li et al. (2015)
and Myrgiotis et al. (2018a) used the Bayesian model cali-
bration and uncertainty assessment approach, which has been
used in the current study as well.
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Figure 7. Annual dynamics of the uncertainty distributions of the gaseous (a–d) and aquatic (e) N outfluxes for the period 2011–2016.
Uncertainty bandwidth (blue band) is defined as the range between the Q25 and the Q75 quartiles; the green band (Q10 to Q90 interval)
indicates the variance of the fluxes, neglecting the outliers of the distribution.

Figure 8. Annual dynamics of the uncertainty distributions of the soil carbon (a) and soil organic nitrogen (b) and the corresponding dynamics
of the uncertainty distributions of the annual change rates of the total soil carbon and nitrogen pools (c, d) respectively.

4.1 Yield and feed production

LandscapeDNDC was validated in a study by Molina-
Herrera et al. (2016) on cropland and grassland sites across
Europe, showing good agreement in terms of reproducing ob-
served above ground biomass and yield estimates. Similar
model performance for the cultivation of commodity crops

was reported by Kasper et al. (2019), Klatt et al. (2015),
Molina-Herrera et al. (2017) and R. J. Petersen et al. (2021).

Lyra and Loukas (2021) used the REPIC model to estimate
the crop growth and/or yield production of several crops in
the Basin of Almyros, Thessaly. The simulated results were
approximately 11 t ha−1 clover, 3.3/3.5 t ha−1 cereals and/or
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wheat, 3.8 t ha−1 cotton, and 9 t ha−1 maize; these values
compare well to the results of our research, as shown in Ta-
ble 3. The simulated results presented in our study are in line
with the results by Voloudakis et al. (2015), simulating cotton
production in seven different areas of Greece through appli-
cation of the AquaCrop model. Similar results were reported
by Tsakmakis et al. (2019).

There are few cases in the literature concerning yield
simulations on a European level. Based on the yield
datasets of FAO and EUROSTAT, Ciais et al. (2010a)
estimated mean crop yields for the period 1990–1999
at the scale of EU-25 as 6.1 (FAO) and 5.3 (EURO-
STAT) t DM ha−1 yr−1 respectively, which corresponds well
to the results of our study. Haas et al. (2022) estimated
with a model ensemble mean for crop yields for EU-27 a
value of 4.41± 1.85 t DM ha−1 yr−1 for the period 1990–
1999. Lugato et al. (2018) estimated cropland yield pro-
jections of 4.34 t DM ha−1 yr−1 (mean), ranging from 3.69
to 4.90 t DM ha−1 yr−1, with the DayCent model for EU-
27, comparable to the 6.18 t DM ha−1 yr−1 average simulated
crop yields of this study. The simulated yields in the current
study vary from 3.3 to 9.9 t DM ha−1 yr−1 for the cases of
cotton and maize respectively.

Higher yield estimates for the region of Thessaly in this
study are certainly due to the inclusion of the legume feed
crops in the rotations. This argument is supported by a recent
meta-analysis by Lu (2020) that concluded that, on average,
yield increases of 5.0 % to 25 % can be expected for various
conditions if residues are completely returned to the field as
compared to no-residue-return systems. Similar results were
reported by Fuchs et al. (2020) and Barneze et al. (2020).

Following the recommendations of Grosz et al. (2023), our
study has reported transparently all the major C and N fluxes
of the region as simulated by the model. In our study, we have
not calibrated the model against any observations; therefore,
all simulation results will be discussed in comparison to other
modelling results available. Presently, there is only one com-
parable modelling study available in the literature reporting
and discussing the total N balance of a site or region, which
we have used to compare our N balance to.

4.2 Carbon and nitrogen balance

Full N balance

At present, the studies of Schroeck et al. (2019) and Lee
et al. (2020) are the only ones to be found on the Web of
Science when searching the keywords “nitrogen”, “balance”,
“process”, “based” and “modelling” simultaneously; these
studies report a compilation of the nitrogen balance and all
associated N fluxes for a site or region through applying a
process-based ecosystem model, as demanded by Gosz et
al. (2023).

Leip et al. (2011) reported the first nitrogen balance for
Europe following a mixed approach combining the CAPRI

(Common Agricultural Policy Regionalised Impact) model
(a global economic model for agriculture) with different ap-
proaches estimating various nitrogen fluxes in arable land
cultivation, but the approach lacks the explicit quantifica-
tion of the different gaseous N fluxes. The study of Schroeck
et al. (2019) overcame this hurdle and applied the process-
based ecosystem model LandscapeDNDC to estimate the full
regional nitrogen budgets, including all the fluxes of different
ecosystems (cropland, grassland and pastures) and climatic
zones, of a watershed in Austria. That has been the first at-
tempt at estimating and reporting all the N fluxes possible, as
demanded by Gosz et al. (2023).

The N balance estimate in Schroeck et al. (2019) for a
catchment in Austria and the N balance reported in our
study compare very well despite the inherent differences in
land management and N inputs. As highlighted by Grosz et
al. (2023), such intercomparisons demonstrate the different
model behaviours when applied to different ecosystem. In
our study, we see the partitioning of the N outfluxes from our
arable system in similar shares as reported by Schroeck et
al. (2019) for the arable land.

The N2O estimates in Schroeck et al. (2019) and in
the current study are of a comparable level. We estimated
N2O emissions of 2.6 kg N ha−1 yr−1, while Schroeck et
al. (2019) report 1.51 kg N ha−1 yr−1, which is about 40 %
lower. The NO fluxes differ significantly since we reported
a mean value of 3.2 kg NO–N ha−1 yr−1, while Schroeck
et al. (2019) reported 0.08 kg NO-N ha−1 yr−1. On the one
hand, this is related to some recent model advances which
were made during this study and which elevated the NO
production in LandscapeDNDC (Molina-Herrera et al.,
2017), and on the other hand, this is due to the high share of
organic N fertilization in our study fostering NO emissions.
Ammonia volatilization differs substantially between the two
studies – while our study reports 34 kg NH3–N ha−1 yr−1,
Schroeck et al. (2019) reported moderate emissions of
0.23 kg NH3–N ha−1 yr−1. The strong NH3 volatilization
in our study is mostly driven by the high pH values of
the soils in the region of Thessaly (pH values from 6.5 to
8.2, with a considerable spatial variation; Greek Soil Map:
https://iris.gov.gr/SoilServices/js/pdf/SOIL%20MAP%
20OF%20GREECE%20e-SOILBOOK.pdf, last access:
17 April 2019, 2015) and the comparably high manure in-
puts into the arable system in our study, while in the research
of Schroeck et al. (2019), the manure was preferably applied
only to the grassland systems, and mineral fertilizers were
applied to the arable land. Concerning the NO3, Schroeck
et al. (2019) reported a value of 45.3 kg NO3–N ha−1 yr−1,
which is 3 times higher than that estimated in this study
(14.1 kg N ha−1 yr−1) considering N inputs of approximately
160 and 212.3 kg N ha−1 yr−1 respectively. Even though
50 % of the arable land in our study was irrigated, the
resulting water percolation rates in our study were, by
far, lower than the percolation simulated in the study of
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Schroeck et al. (2019) as the Austrian pre-alpine catchment
received nearly double the annual precipitation.

The N balance modelling study of Lee et al. (2020) made
estimations of a national cropland N balance for Switzer-
land using an upscaling method based on process-based
site simulations with the DayCent model, distinguishing the
management information of the considered cropping sys-
tems, e.g. fertilizer rates, tillage or land cover change. The
study reported for conventional cultivations (averaged across
20 years) the yield-related N outfluxes, NO3 leaching and
gaseous N emissions, accounting for about 60 %, 36.1 % and
4.1 % respectively of the total N outputs. Lee et al. (2020)
did not report the different gaseous N fluxes even though
the DayCent model must have simulated all of them. Al-
though the yield-related N outflux is in accordance with our
result of 64.95 %, there seems to be a discrepancy in the re-
ported gaseous and aquatic N flux contributions as we re-
port 27.94 % for gaseous and 7.11 % for NO3 leaching in our
study. As demanded by Gosz et al (2023), we can elaborate
upon different preferences in simulated N outflux partition-
ing (36 % NO3 and 4 % gaseous losses for DayCent versus
7 % NO3 and 28 % gaseous losses for LandscapeDNDC) due
to the different simulation models and regionalization and
upscaling approaches, as well as the different soil, climatic
and management conditions included in the respective stud-
ies.

Velthof et al. (2009) used the MITTERA-EUROPE model
and method, based on the concoction of the GAINS and
CAPRI models, to estimate N fluxes of European soils on
a NUTS2 scale, making use of European datasets and liter-
ature coefficients, where the fertilizer application and man-
agement were similar to our methodology. The average N
input–output balance was calculated as 117 kg N ha−1 yr−1,
composed of manure at 49 kg N ha−1 yr−1, synthetic fer-
tilizer at 58 kg N ha−1 yr−1 (in the current study, for
both cases equating to 80.2 kg N ha−1 yr−1), biological ni-
trogen fixation at 2 kg N ha−1 yr−1 (our research indi-
cates 45.6 kg N ha−1 yr−1) and N deposition at 7 kg N ha−1

(current study indicates 6.3 kg N ha−1 yr−1). In contrast
to our study, the reported output fluxes are 8 kg NH3–
N ha−1 yr−1 for NH3, 2 kg N2O–N ha−1 yr−1 for N2O,
2 kg NOx–N ha−1 yr−1 for NOx , 51 kg N2–N ha−1 yr−1 for
N2 and 7 kg NO3–N ha−1 yr−1 for NO3 leaching, while the
results presented in our study are 34.0 kg NH3–N ha−1 yr−1

for NH3, 2.6 kg N2O–N ha−1 yr−1 for N2O, 3.2 kg NOx–
N ha−1 yr−1 for NOx , 15.5 kg N2–N ha−1 yr−1 for N2 and
14.1 kg NO3–N ha−1 yr−1 for NO3 leaching. Additionally,
the yield output is estimated as 48 kg N ha−1 yr−1. Again,
we see a different preference in N outflux partitioning for
large shares in gaseous N fluxes versus small NO3-leaching
shares; the difference compared to the results presented in
our study is related to the different input data used for initial-
ization and driving of the model based on regional statistics
and the use of a biogeochemical model versus emission fac-
tor approaches.

He et al. (2018) assessed the soil N balance for a time
span between 1984 to 2014 based on the N budget equa-
tions (N input – N output) using multiple coefficients from
the literature in order to estimate the nitrogen input and out-
put fluxes of six grouped regions in China. The used datasets
were acquired from national authorities and include crop-
ping land and yields, synthetic fertilizers, animal heads, soil
types, etc. The N synthetic fertilizer input is, on average,
182.4 kg N ha−1; the organic fertilizer is 97.3 kg N ha−1; N
fixation is estimated as 16.8 kg N ha−1; and the atmospheric
deposition is estimated as 22 kg N ha−1. Almost half of the
total averaged N output losses, 48.9 %, was attributed to crop
uptake, while the respective gaseous losses were 19.9 % for
N2, 17.3 % for volatilized NH3, 1.2 % for N2O and 0.7 % for
NO. As for the NO3 leaching, the share was 5.8 % of the total
output N fluxes. These reported N outflux proportions were
notably comparable to our study. The differences in the N
uptake data remain and are mainly due to the differences in
the crops and management.

As reported by the OECD (OECD, 2020), the net
averaged nitrogen balance of the area of our study is
11.6 kg N ha−1 yr−1 input to the soil, which corresponds very
well to the simulated mean nitrogen balance as an influx of
13.8 kg N ha−1 yr−1 (IQR 11.9 to 16.0) into the soil.

So far, the discussion of the presented N balance and N
outfluxes compares well to most of the available studies re-
porting N balances; however, one modelling study reported
different N outflux partitioning between gaseous and NO3-
leaching fluxes. For a more detailed intercomparison of the
overall quality of our C and N fluxes, we aim to compare our
results to various studies, addressing individual components
of the C and N balance and associated fluxes.

SOC stocks

Haas et al. (2022) reported results of a European inventory
simulation of soil carbon stocks and N2O emissions using a
model ensemble. The study was deployed in a baseline sim-
ulation across EU-27 with a similar residue management as
compared to our study, resulting in very stable carbon stock
dynamics over a long period (1950–2100). In this study, the
estimated carbon sequestration of 0.5 (UA mean and me-
dian)± 0.3 t C ha−1 yr−1 is mainly caused by the inclusion
of legume feed crops within the crop rotation, leading to in-
creased litter production and C input into the soil (K. Pe-
tersen et al., 2021; Fuchs et al., 2020; Barneze et al., 2020).
Haas et al. (2022) reported a management scenario with
100 % of the crop litter remaining on the field, leading to
averaged C sequestration rates of over 1 t C ha−1 yr−1 across
EU-27. As the residue management in this study is between
the baseline and buried scenario of Haas et al. (2022), our
results compare well to the results reported in that study.

Other modelling studies such as Lugato et al. (2014) re-
ported C sequestration rates for the conversion of cropland
into grassland ranging between 0.4 and 0.8 t C ha−1 yr−1.
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Lugato et al. (2014) reported averaged SOC change rates
for a cereal straw incorporation scenario for EU-27 of
0.1 t C ha−1 yr−1 (estimates from 2000–2020).

The SOC dynamics reported in this study show a stable
carbon dynamic in the soil within the simulation time span
(2009–2014) with only 3 years of model spin-up. The initial-
ization of the various carbon pools with the SOC data from
the soil database is balanced by the average litter production
of the deployed crop rotations. The SOC increase in 2015
and 2016 is due to climatic conditions and higher litter in-
puts simulated by the model.

N2O emissions

This study reported estimates of N2O emissions of
2.6± 0.8 kg N2O–N ha−1 yr−1 (IQR from 2.1 to 3.1) for a
mixed-crop and/or legume feed crop rotation, which were
well above the estimates resulting from IPCC tier-I direct-
emission factors; IPCC estimated 1.6 kg N2O–N ha−1 yr−1

when applying approximately 160 kg N ha−1 yr−1. The
higher N2O emission strength of the modelling is likely to
result from emission peaks after irrigation due to low anaer-
obicity (Grosz et al., 2023; Janz et al., 2022). Cayuela et
al. (2017) conducted a meta-analysis of the direct N2O emis-
sions for a number of cropping systems for a Mediterranean
climate, where the emission factors (EFs) were altered under
different fertilization and irrigation conditions. Higher fer-
tilization rates led to higher EFs (0.82 % less than the 1 %
of IPCC). Additionally, irrigated and intensively cultivated
crops had higher EFs than rain-fed crops (up to 0.91 % de-
pending on the irrigation method). The relatively high EF of
maize in this study could possibly be attributed to the irri-
gation without the application of water-saving methods and
the, on average, higher N application rates .

The LandscapeDNDC validation study of Molina-Herrera
et al. (2016) reported for the Italian site Borgo Cioffi
(Mediterranean climate; Ranucci et al. (2011)) annual N2O
emissions of 2.49 kg N2O–N ha−1 yr−1, while two sites in
southern France showed annual N2O emissions from 0.52
to 3.34 kg N2O–N ha−1 yr−1. The N2O emission estimates
of our study were higher than the results reported by Haas
et al. (2022) using a multi-model ensemble estimating av-
erage soil N2O emissions from European (EU-27) crop-
ping systems for the period 1980–1999 (1.46± 1.30 kg N2O–
N ha−1 yr−1) under conventional (baseline) management and
comparably average N input. Klatt et al. (2015) reported for a
regional inventory (Saxony, Germany) a mean N2O emission
of 1.43± 1.25 kg N2O–N ha−1 yr−1.

Overall, the reported N2O flux component of our study
compares well to the findings reported in the literature. As
criticized by Grosz et al. (2023), many studies only focus
on the performance of the models in simulating N2O emis-
sions, and these models were even calibrated for this purpose.
Without reporting all the other N fluxes from the models, this
focus on and calibration for only one quantity can easily lead

to inaccuracies with regard to other components of the N cy-
cle as they may not be checked for consistency (Janz et al.,
2022).

Nitrate leaching

This study reported average NO3-leaching fluxes (only ni-
trate leaching into surface waters) of 14.1± 4.5 kg NO3–
N ha−1 yr−1. Reported nitrate-leaching observations for the
region or Greece generally could not be found in the lit-
erature; de Vries et al. (2011) estimated the NO3 leaching
with the use of four different models, with varying values
from 5 to 40 kg NO3–N ha−1 yr−1 for the area of our study.
These high values could be explained by the fact that they
correspond to both groundwater and runoff. Molina-Herrera
et al. (2016) reported for the LandscapeDNDC validation
study cropland nitrate-leaching fluxes of approximately 7
to 88 kg NO3–N ha−1 yr−1. In addition, in the research of
Molina-Herrera et al. (2017), the described NO3-leaching
results varied from 13 to 8 kg NO3–N ha−1 yr−1, showing
higher values with regard to the precipitation and fertiga-
tion. The most comparable site, Borgo Cioffi, resulted in
a comparable annual NO3-leaching flux of 18.62 kg NO3–
N ha−1 yr−1.

Klatt et al. (2015) reported in an uncertainty assessment
for a regional inventory (Saxony, Germany) leaching rates
of 29.32± 9.97 kg NO3–N ha−1 yr−1 for a wheat–barley–
rapeseed rotation simulated by the LandscapeDNDC model.
The agricultural system and management regime are com-
parable; higher NO3-leaching rates were most likely due to
high N fertilization rates in combination with higher annual
precipitation in the region, leading to more intense perco-
lation and therefore to stronger leaching of available NO3,
while, in our study, the fertilization regime was more lean,
such that soil nutrient competition was higher, and available
nitrate was more likely to be immobilized by plant uptake.
Myrgiotis et al. (2019) reported in a similar assessment an
NO3-leaching factor (LF) mean of 14 % (± 7 %) for their re-
gion; in comparison, we report a mean NO3-leaching factor
of 7 %.

NO emissions

In the current study, the model-estimated NO emissions
were, on average, 3.2± 1.5 kg NO–N ha−1 yr−1. Butterbach-
Bahl et al. (2009) performed the very first European in-
ventory of soil NO emissions using a modified version
of DNDC, reporting low NO emission rates mostly be-
low 2 kg NO–N ha−1 yr−1. Molina-Herrera et al. (2017) re-
cently reported a full NO emission inventory for Saxony,
Germany, compiling annual NO emissions from agricultural
soils ranging from 0.19 to 6.7 kg NO–N ha−1 yr−1, as sim-
ulated by LandscapeDNDC. The study reported the model
performance in simulating soil NO emissions at more than
20 different sites. The study of Schroeck et al. (2019) re-
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ported for a regional inventory of arable soils in Austria,
as simulated by LandscapeDNDC, annual NO emissions of
1.0–1.5 kg NO–N ha−1 (for the year 2000), while empirical
approaches such as that of Stehfest and Bouwman (2006) es-
timated emissions of similar magnitude. Zhang et al. (2015)
reported in a model intercomparison and validation study (in-
cluding three ecosystem models) of NO and N2O fluxes con-
sistent simulation results for the LandscapeDNDC model,
with NO emission strengths of cropland soils between 1 and
3 kg NO–N ha−1 yr−1 across the sites.

NH3 emissions

Schroeck et al. (2019) stated that validation studies of NH3
volatilization for any biogeochemical model are very rarely
reported in the literature, mainly due to the complexity and a
lack of flux observations at high spatial and temporal resolu-
tions.

In our study, we estimate soil NH3 emissions of
34.0± 6.7 kg NH3–N ha−1 yr−1. High NH3 volatilization
and emission rates can be explained by the predominating
neutral to basal soil conditions (pH values of 7 and above) in
the study region, favouring the Henry NH4–NH3 equilibrium
towards higher NH3 gases and enabling ammonia to diffuse
out of the soil into the free atmosphere.

The IPCC emission factor (EF) method for NH3 volatiliza-
tion reports estimates of 20 % of N input into the soil being
volatilized as NH3. For our study, the IPCC methodology for
NH3 would lead to 32 kg NH3–N ha−1 yr−1, which is well in
line with the simulated result.

Sidiropoulos and Tsilingiridis (2009) estimated a national
livestock-originated NH3 emission corresponding to approx-
imately 22 kg ha−1 yr−1 for the region of Thessaly.

There is a number of national NH3 inventories which
could be considered to be detailed and well-studied, such as
the ones in Denmark, the Netherlands, Europe, the UK and
the US. In Denmark, Geels et al. (2012) used the DAMOS
model to estimate the Danish NH3 emissions (crop, grass
and manure manipulation); in the five regions under study,
the values ranged from a very small quantity to 17.4 kg NH3–
N ha−1 yr−1.

As discussed by Sutton et al. (2013), the majority of the
NH3 emissions come about as a result of agricultural pro-
duction and are considerably impacted by climate influence.
In the case of NH3 volatilization, it could almost double with
every 5 °C in temperature given certain complex thermody-
namic dissociation and solubility, whilst soil NH3 emission
is influenced by the available water quantity, allowing the
NHx dissolution and use by microbial organisms, which af-
terwards leads to decomposition.

4.3 Uncertainty analysis and quantification

Santabárbara (2019) used the MCMC algorithm to esti-
mate the joint parameter distribution of the fundamental bio-

geochemical process parameters in LandscapeDNDC when
simulating soil C and N fluxes. Propagating these joint pa-
rameter distributions through the model (by sampling 500
joint parameter distributions and performing inventory simu-
lations with each parameter set within the model) for estimat-
ing the regional C and N fluxes lead to various distributions
for any model result on a regional scale. Statistical analysis
calculating the mean, median and interquartile range (Q25 to
Q75) determines the best estimates and the uncertainty range
of any model output on a regional scale, demonstrating the
superiority of the method for assessing any ecosystem re-
sponse by modelling instead of reporting single results. This
is a novel approach that, to our knowledge, has not been re-
ported before in the literature for the full carbon and nitrogen
balance and has not been applied to regional simulations by
any process-based model.

In this study, the estimated UA mean and median of the
carbon sequestration of 0.5± 0.3 t C ha−1 yr−1 are associ-
ated with an uncertainty range from 0.4 to 0.7 t C ha−1 yr−1,
which compares well to the spatial uncertainty of C seques-
tration in the study of Haas et al. (2022). The approach used
in this study enabled us to assess the carbon and nitrogen bal-
ance of the Bayesian calibration method used by Lehuger et
al. (2009b) for the enhancement of the CERES-EGC model
parameterization (reduction of the a priori parameter dis-
tribution), as well as the quantification of the uncertainty
of the simulated N2O emissions at different sites. The esti-
mated fluxes of the different sites resulted in a range between
0.088 to 3.672 kg N2O–N ha−1 yr−1, with values of 0.066
to 0.115 kg N2O–N ha−1 yr−1 and 1.676 to 5.874 kg N2O–
N ha−1 yr−1 for the Q05 and Q95 quantiles respectively,
with an averaged value of 1.04 kg N2O–N ha−1 yr−1, which
is lower than the result of the current study but still of the
same order of magnitude.

Klatt et al. (2015) quantified a parameter-induced uncer-
tainty analysis at a regional scale by applying the same pro-
cess model for simulating N2O emission and NO3-leaching
inventories as that in our study. The region was represented
by 4000 polygons of arable land (Saxony, Germany) for crop
rotations of barley, wheat and rapeseed, with differing cli-
matic conditions. The results of Klatt et al. (2015) display
a likelihood range of 50 % (the IQR range between Q25
and Q75) for N2O emissions from 0.46 to 2.05 kg N2O–
N ha−1 yr−1, which is in good agreement with our results
of 2.1 to 3.1 kg N2O–N ha−1 yr−1. The average N2O emis-
sions are 1.43 kg N2O–N ha−1 yr−1, which is comparable
to the result of our study (mean: 2.6 kg N2O–N ha−1 yr−1,
median: 2.5 kg N2O–N ha−1 yr−1 across approximately 1000
polygons). As for leached NO3, Klatt et al. (2015) re-
ported mean leaching rates of 29 kg NO3–N ha−1 yr−1 (IQR
from 24.5 to 36.0), which is higher compared to the re-
sults of our study (mean: 14.1 kg NO3-N ha−1 yr−1, median:
13.6 kg NO3-N ha−1 yr−1) (IQR from 11 to 17). Despite the
difference in climatic and soil conditions, both uncertainty
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analysis studies reported similar regional estimates and un-
certainty ranges for N2O emissions and NO3 leaching.

Butterbach-Bahl et al. (2022) reported the influence of
management uncertainties on compiling national inventories
of CH4 and N2O emissions for various rice cultivation sys-
tems in Vietnam. The study applied a sampling technique that
varies model input data within a given range and analysed the
influence on the assessed CH4 and N2O emission strengths.
As the underlying cropland systems were fundamentally dif-
ferent, the assessed uncertainty ranges were comparable, and
the study supports our approach of focusing on uncertainty
ranges rather than single values.

5 Conclusions

In this research, we presented, for the first time, a regional in-
ventory of the full carbon and nitrogen balance, including all
sub-components of these fluxes simulated by a process-based
model. Additionally, the study has fulfilled the demand of al-
ways reporting the associated uncertainties for any modelling
results being published in literature. This supports the trust-
worthiness of the reported results for the C and N balances.

Comparing the modelled N balance with a similar ap-
proach that models the full N balance with all associated
fluxes for a catchment in pre-alpine Austria leads to the con-
clusion that partitioning the N outflux into the different N
flux components is more inherent to the LandscapeDNDC
model itself, as used in both studies, than it is induced by the
two very different agricultural and climatical systems. Nev-
ertheless, specific N outfluxes between the two studies show
large differences (e.g. NH3 volatilization), which is purely
caused by model processes due to different soil pH values.
Comparing to a less granular and detailed study of the N bal-
ance for Switzerland gives a first impression of the differ-
ences to be expected in modelling the arable N balance with
various different models. The discussion of such results will
become more lively and maybe controversial as soon as more
comparable studies using different models become available.

In addition, a full uncertainty analysis is presented based
on the Metropolis–Hastings algorithm, where a parameter
subset and input data perturbation were sampled and sim-
ulated, resulting in various probability density functions
(PDFs) for each one of the N and C balance fluxes, build-
ing a full uncertainty analysis of the modelled results. This
helps to build trustworthiness in modelling assessments and
estimates of the balances and of the model behaviour.

As demanded by the nitrogen-modelling community, all
of the above constitute the novelty of the conducted research
that could be seen as a prototype for analysing and reporting
N cycling in agro-ecosystems in the future.
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