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Abstract. The response of the global climate–carbon-cycle
system to anthropogenic perturbations happens differently at
different timescales. The unravelling of the memory structure
underlying this timescale dependence is a major challenge in
climate research. Recently the widely applied α–β–γ frame-
work proposed by Friedlingstein et al. (2003) to quantify
climate–carbon-cycle feedbacks has been generalized to ac-
count also for such internal memory. By means of this gener-
alized framework, we investigate the timescale dependence
of the airborne fraction for a set of Earth system models
that participated in CMIP5 (Coupled Model Intercomparison
Project Phase 5). The analysis is based on published simula-
tion data from C4MIP-type (Coupled Climate–Carbon Cycle
Model Intercomparison) experiments with these models. In-
dependently of the considered scenario, the proposed gener-
alization describes at global scale the reaction of the climate–
carbon system to sufficiently weak perturbations. One pre-
diction from this theory is how the timescale-resolved air-
borne fraction depends on the underlying feedbacks between
climate and the carbon cycle. These feedbacks are expressed
as timescale-resolved functions depending solely on ana-
logues of the α, β, and γ sensitivities, introduced in the
generalized framework as linear response functions. In this
way a feedback-dependent quantity (airborne fraction) is pre-
dicted from feedback-independent quantities (the sensitiv-
ities). This is the key relation underlying our study. As a
preparatory step, we demonstrate the predictive power of the
generalized framework exemplarily for simulations with the

Max Planck Institute (MPI) Earth System Model. The whole
approach turns out to be valid for perturbations of up to an
about 100 ppm CO2 rise above the pre-industrial level; be-
yond this value the response becomes non-linear. By means
of the generalized framework we then derive the timescale
dependence of the airborne fraction from the underlying
climate–carbon-cycle feedbacks for an ensemble of CMIP5
models. Our analysis reveals that for all studied CMIP5 mod-
els (1) the total climate–carbon-cycle feedback is negative
at all investigated timescales, (2) the airborne fraction gen-
erally decreases for increasing timescales, and (3) the land
biogeochemical feedback dominates the model spread in the
airborne fraction at all these timescales. Qualitatively similar
results were previously found by employing the original α–
β–γ framework to particular perturbation scenarios, but our
study demonstrates that, although obtained from particular
scenario simulations, they are characteristics of the coupled
climate–carbon-cycle system as such, valid at all considered
timescales. These more general conclusions are obtained by
accounting for the internal memory of the system as encoded
in the generalized sensitivities, which in contrast to the orig-
inal α, β, and γ are scenario-independent.
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1 Introduction

The global carbon cycle plays a key role in determining
the sensitivity of Earth’s climate to anthropogenic emissions
from fossil-fuel burning, cement production, and land-use
change. The increase in atmospheric CO2 concentrations
driven by those emissions is considered the main radiative
forcing driving climate change (see e.g. Gulev et al., 2021,
Fig. 2.10). But to infer the resulting changes in atmospheric
CO2 it is not sufficient to consider anthropogenic emissions
alone; also the response of the global carbon cycle to these
emissions must be taken into account. In reaction to rising
emissions, land and ocean store increasing amounts of car-
bon, on average 56 % of emissions, a number that stayed sur-
prisingly constant over the last 6 decades (Canadell et al.,
2021, Fig. 5.7). This storage fraction strongly depends on
environmental conditions: in years with a positive phase of
the El Niño–Southern Oscillation (ENSO) it can be as low
as 20 %, while in negative phases it may rise up to 75 %
(Canadell et al., 2021, Fig. 5.7). One must thus suspect that
with rising atmospheric CO2 the resulting climate change
will affect this fraction of emissions stored away with po-
tentially large consequences for the amount of anthropogenic
CO2 remaining in the atmosphere. In this way, the carbon cy-
cle may either slow or accelerate climatic changes resulting
from anthropogenic emissions. Understanding the dynam-
ics of this cycle, and in particular how it responds to per-
turbations from emissions and interferes with climate, thus
constitutes an essential step in advancing climate research
(Marotzke et al., 2017).

To gain insight into this combined dynamics of carbon cy-
cle and climate, one must in particular study climate–carbon-
cycle feedbacks. Such feedbacks arise from the already men-
tioned reaction of the global carbon cycle to a change in
atmospheric CO2 that may amplify or counteract the initial
change. For example, a rise in CO2 concentrations caused by
fossil-fuel emissions drives CO2 into the ocean by increasing
the difference between the CO2 partial pressure in the atmo-
sphere and that in surface waters (Takahashi et al., 2009).
This flux of CO2 into the ocean reduces the initial increase in
atmospheric CO2. On the other hand, increasing atmospheric
CO2 leads by the greenhouse effect to a rise in air tempera-
tures. The warmer climate, in turn, leads to an acceleration
of soil microbial activity and thereby to an increase in soil
respiration rates (Raich and Potter, 1995). The resulting en-
hanced land CO2 flux into the atmosphere leads to even more
CO2 in the atmosphere so that the initial increase in atmo-
spheric CO2 is amplified. In principle, the global response
of the whole carbon cycle to emissions may be quantified by
summing the contributions from all such feedback mecha-
nisms.

Depending on the speed at which the various feedbacks
unfold, climate change may develop differently. Generally,
the dynamics of the coupled climate–carbon-cycle system
arising in response to perturbations depends on the spectrum

of internal timescales of the various processes involved in
the response. For instance, the speed at which global climate
is warming in reaction to anthropogenic emissions depends
largely on the rate at which the oceans can take up heat, and
this rate – actually an inverse timescale – is determined by
the temporal characteristics of the internal ocean dynamics,
like the rate of mixing between upper and deep ocean and
the speed at which heat is re-distributed by ocean currents.
Similar remarks apply to the uptake and re-distribution of
CO2 by the oceans. An indication of the involved timescales
is obtained by noting that most of the carbon taken up by
the ocean since pre-industrial times still resides in its up-
per layers (74 % in the top 700 m; Frölicher et al., 2015).
For land, the temporal characteristics of the response of the
carbon cycle to rising CO2 is determined by the turnover
times of the various biogeochemical processes by which CO2
is sequestered and once more decomposed in the various
ecosystems. It is well known that in particular our incomplete
knowledge of the internal timescales of the land carbon cycle
is severely limiting our ability to predict the development of
the land carbon sink (Todd-Brown et al., 2013; Friend et al.,
2014; Exbrayat et al., 2014; Koven et al., 2015; He et al.,
2016; Yan et al., 2017; Zhou et al., 2018). To improve the
understanding of the dynamics of coupled climate–carbon-
cycle system one thus needs to investigate together with the
feedbacks also the issue of internal timescales.

Concerning the analysis of feedbacks, a large step forward
was the seminal work by Friedlingstein et al. (2003), who
proposed a mathematical framework to quantify their contri-
butions to the response. The basic idea underlying their α–
β–γ framework is that at global scale one can identify two
types of climate–carbon-cycle feedback: a “biogeochemical
feedback”, which arises through the direct effect of changes
in atmospheric CO2 concentrations on global carbon stocks,
and a “radiative feedback”, which affects the carbon cy-
cle indirectly from the change in climate that arises from
the radiative forcing of CO2 perturbations. Key elements
of this framework to quantify the two types of feedback
– also known as carbon-concentration and carbon–climate
feedback (Arora et al., 2013) – are the β and γ sensitiv-
ities that, respectively, characterize the response of stored
land and/or ocean carbon to changes in CO2 and in climate.
As in studies of the physical system by means of “pattern
scaling” (e.g. Mitchell, 2003), climate is in this framework
collectively represented by the single quantity temperature
– whose sensitivity to CO2 perturbations is quantified by
α. The framework of Friedlingstein et al. (2003) led to im-
portant insights into the role of climate–carbon-cycle feed-
backs for climate change and stimulated a vast amount of
research in the field (Friedlingstein et al., 2006; Gregory
et al., 2009; Arneth et al., 2010; Zickfeld et al., 2011; Boer
and Arora, 2013; Arora et al., 2013; Schwinger et al., 2014;
Friedlingstein et al., 2014; Friedlingstein, 2015; Adloff et al.,
2018; Williams et al., 2019; Goodwin et al., 2019; Jones and
Friedlingstein, 2020).
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Quantitative results on the size of global climate–carbon-
cycle feedbacks were particularly obtained as part of the
Coupled Climate–Carbon Cycle Model Intercomparison
(C4MIP) project (Friedlingstein et al., 2013–2016; Arora
et al., 2020) from Earth system simulations tailored for the
application of the α–β–γ framework. In terms of radiative
forcing, when raising atmospheric CO2 at a fixed rate of 1 %
per year from its pre-industrial value to 4 times this value,
the negative biogeochemical feedback is more than 4 times
stronger than the positive radiative feedback (Canadell et al.,
2021). This results in a net land and ocean carbon seques-
tration over the whole simulation period of between 33 %
and 50 % across the participating models (Arora et al., 2020).
Most of the spread in these numbers arises from differences
in the representation of land carbon cycling in the various
models, in particular from the internal timescales assumed
for the turnover of vegetation and soils (Arora et al., 2020).

The size of these feedbacks depends on the considered
timescale (e.g. Enting, 2022). In the original α–β–γ frame-
work, this timescale dependence shows up only implicitly
(see discussion in Sect. 2), so results from this framework
are specific to the considered perturbation scenario (Gre-
gory et al., 2009; Torres Mendonça et al., 2021b). This limi-
tation is overcome by the recently proposed generalization
of the α–β–γ framework (Heimann, 2014; Rubino et al.,
2016; Enting and Clisby, 2019; Enting, 2022) that instead ex-
plicitly quantifies the timescale dependence of the climate–
carbon-cycle feedbacks independently of the scenario. Here
generalized sensitivities α, β, and γ are introduced as time-
dependent linear response functions, where the term “linear”
indicates that they specify the response only to linear order
in a Volterra expansion of the response into the perturbation
(see Torres Mendonça et al., 2021b); practically this means
that this approach applies only as long as the perturbations
are sufficiently weak. As will be discussed below, in princi-
ple this generalization gives – at a globally aggregated level
– a complete description of the linear dynamics of the cou-
pled climate and carbon cycle in terms of the responses and
feedbacks at different timescales.

In the present study we employ this generalized frame-
work to study the role of feedbacks and their timescale de-
pendence for airborne fraction. Airborne fraction is classi-
cally defined as the fraction of emitted CO2 that stays in the
atmosphere after accounting for the induced land and ocean
uptake. Accordingly, airborne fraction quantifies the amount
of emissions that effectively contributes to climatic change
and is therefore a key quantity of climate research (Oeschger
and Heimann, 1983). It is closely related to the climate–
carbon-cycle feedbacks because, as discussed above, the re-
duction in atmospheric CO2 caused by ocean and land uptake
depends itself on the changes in atmospheric CO2 induced
by the emissions. Because of its importance, much effort has
been put into quantifying and investigating the airborne frac-
tion (e.g. Canadell et al., 2007; Raupach et al., 2008; Archer
et al., 2009; Gregory et al., 2009; Gloor et al., 2010; Jones

et al., 2013; Le Quéré et al., 2009; Raupach et al., 2014;
Bennedsen et al., 2019). The remarkable constancy of the
airborne fraction over the last decades – a consequence of
the above-mentioned constancy of the land and ocean car-
bon storage fraction – indicates that land and ocean uptake
has not saturated yet, so their response is still linear. But as
with the original α, β, and γ sensitivities, this classical def-
inition of airborne fraction also neglects that its value must
depend on the internal timescales at which the land and ocean
carbon cycles react to emissions (see e.g. Enting, 2007). Ad-
dressing this timescale dependence, Raupach (2013) argues
that the observed constancy of the airborne fraction is actu-
ally only a reflection of the linearity of the response of land
and ocean carbon reservoirs together with the exponential na-
ture of the historical rise in anthropogenic emissions. Thus,
as anthropogenic emissions cease to behave exponentially –
for instance as a consequence of a cut in emissions – the air-
borne fraction is expected to deviate from its historical value.
Hence, as in the case of the feedbacks quantified by the α–
β–γ framework, the airborne fraction in its standard defini-
tion cannot be seen as an invariant property of the carbon
cycle alone but only as a metric that depends on the con-
sidered perturbation scenario. This is different when tackling
airborne fraction by means of the generalized α–β–γ frame-
work. As demonstrated by Rubino et al. (2016) and Enting
and Clisby (2019) when studying the pre-historical and his-
torical development of airborne fraction, by such an approach
not only α, β, and γ but also airborne fraction can be gen-
eralized to a dynamic quantity that describes the response of
the coupled climate–carbon system to emissions at its vari-
ous internal timescales for any sufficiently weak perturbation
scenario and is thus a true property of the coupled climate–
carbon system itself.

To gain further insight into the timescale dependence of
the airborne fraction and in particular how this timescale
dependence emerges from the underlying feedbacks, in the
present study we analyse by means of the generalized α–β–
γ framework published simulations of different Earth sys-
tem models. More precisely, we analyse C4MIP-type sim-
ulation results from models participating in the fifth phase
of the Coupled Model Intercomparison Project (CMIP5; see
Taylor et al., 2012). These C4MIP-type simulations were de-
signed to separately quantify the biogeochemical and radia-
tive feedbacks from the original α, β, and γ values. We use
these simulations to obtain for the respective models the lin-
ear response functions of the generalized framework neces-
sary to study the timescale dependence of airborne fraction.
For their robust recovery, we employ the response function
identification method that we developed for this purpose in
Torres Mendonça et al. (2021a).

Most of our present study relies on a single theoretical re-
sult of the generalized α–β–γ framework, namely the rela-
tion expressing the timescale-resolved airborne fraction ex-
clusively by the underlying feedbacks (see Eq. 15 below).
In this formula the feedbacks are represented by timescale-
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dependent functions that in turn are fully determined by the
generalized α, β, and γ sensitivities. By this relation the
generalized framework makes a strong claim, namely that
airborne fraction (a quantity fully determined by feedbacks)
can be predicted from the generalized sensitivities (quantities
that are independent of feedbacks). The validity of this rela-
tion fully relies on the assumption that at climate timescales
the overall feedback is dominated by the pair of biogeochem-
ical and radiative feedbacks, which with respect to the latter
includes the assumption that near-surface temperature is a
good measure to represent also all other climate aspects, in
particular those related to the eminently important hydrolog-
ical cycle. As a consequence, in order to employ this rela-
tion in our study to derive the timescale dependence of air-
borne fraction via the underlying feedbacks from the gener-
alized sensitivities, we first demonstrate the predictive power
of this relation when applied to Earth system simulations. We
will do this exemplarily for the Max Planck Institute Earth
System Model (MPI-ESM) by performing additional simula-
tions not available for the other CMIP5 models. This demon-
stration is also interesting on its own because so far theoret-
ical inferences from the generalized α–β–γ framework have
not been tested, although this is a prerequisite for its faithful
application.

Overall, our analysis of the simulation results from the
considered set of CMIP5 models will show that one can un-
derstand the dynamics of the airborne fraction from the be-
haviour of the climate–carbon-cycle feedbacks and that it is
possible to pinpoint the particular feedback that dominates
the observed model spread in the airborne fraction at dif-
ferent timescales. Moreover, it will become clear that by
applying the generalized α–β–γ such results are scenario-
independent, although they are obtained from simulations
performed for particular scenarios.

The outline of the paper is as follows. In the next section
we introduce the generalized α–β–γ framework that under-
lies our whole analysis. Then we demonstrate in Sect. 3 its
predictive power exemplarily for MPI-ESM. This part of the
study serves also a second methodological purpose: here we
develop and test through the example of MPI-ESM all the
necessary numerical details to derive from simulation data
via the generalized sensitivities α, β, and γ the timescale-
resolved airborne fraction also for other models in the subse-
quent Sect. 4. This section then contains the main part of our
study where we investigate the timescale dependence of air-
borne fraction and the underlying feedbacks for an ensemble
of CMIP5 models. In the final Sects. 5, 6, and 7 we summa-
rize and discuss our results. To keep the paper more read-
able, the extensive technical parts of our investigations are
presented in the appendices.

2 Generalized α–β–γ framework

To prepare for our investigation of the timescale dependence
of the airborne fraction and the underlying feedbacks, we in-
troduce here the generalized α–β–γ framework (Heimann,
2014; Rubino et al., 2016; Enting and Clisby, 2019; Enting,
2022).

To introduce this framework, we start from the carbon bal-
ance equation that couples the different subsystems of the
global carbon cycle:

1CA(t)=

t∫
0

E(s)ds−1CL(t)−1CO(t), (1)

where1CA,1CL, and1CO are the differences in global car-
bon content in the atmosphere, land, and ocean with respect
to pre-industrial times (formally denoted here and below as
t = 0 in all equations), andE(t) is the time-dependent flux of
(anthropogenic) carbon emissions. Following the framework
of Friedlingstein et al. (2003), the land and ocean carbon
changes in Eq. (1) are assumed to depend only on the atmo-
spheric CO2 concentration (driving the biogeochemical re-
sponse) and on temperature (driving the radiative response).
Considering these changes as separate responses to CO2 and
temperature perturbations, they can for the weak perturba-
tions assumed here be approximated as the linear term of a
Volterra expansion around the pre-industrial state (see Tor-
res Mendonça et al., 2021b) and thus must also combine lin-
early for this order of approximation to give

1CL(t)=

t∫
0

χ
(L)
β (t − s)1c(s)ds

+

t∫
0

χ (L)γ (t − s)1TL(s)ds, (2)

1CO(t)=

t∫
0

χ
(O)
β (t − s)1c(s)ds

+

t∫
0

χ (O)γ (t − s)1TO(s)ds. (3)

Here 1c and 1T are the changes in CO2 concentration and
in land (L) and ocean (O) global mean near-surface air tem-
perature with respect to the pre-industrial state, while χ (L)β ,

χ
(L)
γ , χ (O)β , and χ (O)γ are the linear response functions that

generalize the land and ocean sensitivities β(L), γ (L), β(O),
and γ (O) of the original α–β–γ framework. Additionally, the
temperature can in the same way be understood as a response
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to weak CO2 perturbations:

1TL(t)=

t∫
0

χ (L)α (t − s)1c(s)ds, (4)

1TO(t)=

t∫
0

χ (O)α (t − s)1c(s)ds, (5)

where χ (L)α and χ (O)α are the linear response functions that
generalize the land and ocean sensitivities α(L) and α(O). Fol-
lowing Torres Mendonça et al. (2021b), the response func-
tions that generalize the α, β, and γ sensitivities are referred
to as generalized sensitivities.

As discussed above, atmospheric CO2 depends not only
on the emissions perturbing the system but also on the re-
sponses of land and ocean CO2 exchanges induced by them.
How land and ocean carbon and thus also the exchange fluxes
react to such perturbations is characterized by the general-
ized sensitivities just introduced. With their help, a compact
equation relating the change in atmospheric carbon content
to the perturbing emissions including all feedbacks is ob-
tained by employing the last two equations to eliminate tem-
perature in Eqs. (2) and (3), inserting these into the carbon
balance Eq. (1) and using the known relation CA(t)= kc(t),
k = 2.12 Pg C ppm−1 (CO2) (Ciais et al., 2013, p. 417), be-
tween atmospheric CO2 concentration and carbon content.
After applying a Laplace transform to the resulting integro-
differential equation one obtains

1C̃A(p)=
Ẽ(p)

p
−

[
χ̃
(L)
β (p)+ χ̃ (L)γ (p)χ̃ (L)α (p)

+χ̃
(O)
β (p)+ χ̃ (O)γ (p)χ̃ (O)α (p)

]1C̃A(p)

k
, (6)

where the tilde denotes Laplace-transformed quantities. Ap-
plying the Laplace transform has the technical advantage that
linear integral equations turn into linear algebraic equations
for the transformed quantities that are much easier to handle
– e.g. one can directly solve the last equation for 1C̃A(p)

(see Eq. 7 below). The other, somewhat challenging con-
sequence is that the interpretation of Laplace-transformed
quantities is less intuitive because they are not functions of
time but of the rates p, whose inverses 1/p should be under-
stood as timescales. Similar Laplace-transformed equations
were derived in Enting (2007), Rubino et al. (2016), and Ent-
ing and Clisby (2019).

In the absence of feedbacks the atmospheric change in
carbon content 1C̃A(p) would be fully determined by the
cumulated emissions Ẽ(p)/p (this is the Laplace transform
of
∫
E(s)ds, E(t=1850)=0) in Eq. (6). Thus the feedbacks

enter by the second right-hand-side term. This additional
contribution to 1C̃A(p) that depends on the response it-
self characterizes the total climate–carbon-cycle feedback

(Roe, 2009). This gets even clearer by rewriting Eq. (6) anal-
ogously to the feedback equations of the original α–β–γ
framework (Roe, 2009; Gregory et al., 2009; Adloff et al.,
2018): setting

1C̃A(p)=:
1

1− f̃ (p)
Ẽ(p)

p
(7)

with

f̃ (p) := f̃
(L)
β (p)+ f̃ (L)γ α (p)+ f̃

(O)
β (p)+ f̃ (O)γ α (p), (8)

one obtains from Eq. (6) by term-wise identification

f̃
(L)
β (p)=−

χ̃
(L)
β (p)

k
, f̃ (L)γ α (p)=−

χ̃
(L)
γ (p)χ̃

(L)
α (p)

k
, (9)

f̃
(O)
β (p)=−

χ̃
(O)
β (p)

k
, f̃ (O)γ α (p)=−

χ̃
(O)
γ (p)χ̃

(O)
α (p)

k
. (10)

In this way the full information on how atmospheric carbon
1C̃A(p) (and thus atmospheric CO2) responds to a trajec-
tory of emissions Ẽ(p) is contained in the function f̃ (p),
which we call, following the terminology of Roe (2009) and
Adloff et al. (2018), the total feedback function. As also ex-
plained there, from the point of view of feedback analysis
1/(1−f̃ (p)) is the gain of the system: depending on whether
1/(1− f̃ (p)) is larger or smaller than 1, the inclusion of the
feedbacks amplifies or dampens the response of atmospheric
CO2 in comparison to a reference system that would sim-
ply store the cumulated emissions without reaction in land
and ocean fluxes1. In other words, depending on whether
1/(1− f̃ (p)) is larger or smaller than 1, the inclusion of the
feedbacks results in CO2 fluxes into or out of the atmosphere
in addition to the emissions.

The total feedback function f̃ (p) is defined in Eq. (8)
as the sum of the feedback functions f̃ (L)β (p), f̃ (L)γ α (p),

f̃
(O)
β (p), and f̃

(O)
γ α (p). These functions quantify for land

and ocean the biogeochemical
(
f̃
(L)
β and f̃ (O)β

)
and the ra-

diative
(
f̃
(L)
γ α and f̃ (O)γ α

)
feedback, also known as carbon-

concentration and carbon–climate feedback (Arora et al.,
2013). The feedback functions, in turn, are determined from
the generalized sensitivities via Eqs. (9) and (10).

Concerning the timescale dependence it is important to
note that in Eq. (6) all terms depend on the same rate p,

1Note that our reference system is different from that used in
Friedlingstein et al. (2003) to quantify the feedbacks. While for
our reference system atmospheric CO2 is fully determined by CO2
emissions without any response in the land and ocean carbon fluxes,
their reference system includes in addition the biogeochemical re-
sponse so that they quantify the radiative feedback alone. Therefore
our Eq. (8) differs from their Eq. (9) not only because we investigate
a generalization of their framework but also because of the different
reference system. This difference is also discussed in Gregory et al.
(2009).
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which means that at each timescale 1/p the response in at-
mospheric carbon to the forcing by emissions is fully deter-
mined by the properties of the system at that very timescale
alone. This independent behaviour at different timescales is a
consequence of the assumption that the forcing is sufficiently
weak so that the system behaviour is already well approxi-
mated by the linear term in the Volterra expansions of the re-
sponse in the perturbations (Eqs. 2 to 5) when Laplace trans-
formed; taking the Volterra expansion to higher order would
introduce terms involving mixed timescales (see e.g. Schet-
zen, 2010, Eqs. 2.1, 2.2).

Such independent behaviour is also the reason for the
identical structure of the Laplace-transformed formulas of
the generalized α–β–γ framework and those of the original
framework in the time domain (Heimann, 2014), which gets
obvious by comparing the relation between atmospheric car-
bon and emissions (Eqs. 7–10) with its analogue from the
original framework (Gregory et al., 2009; Adloff et al., 2018;
Jones and Friedlingstein, 2020):

1CA(t)=
1

1− f (t)

t∫
0

E(s)ds

with f (t)=−
1
k

(
βL(t)+βO(t)+ γL(t)αL(t)

+ γO(t)αO(t)
)
, (11)

where the t argument emphasizes the time dependence of α,
β, and γ (Adloff et al., 2018). But despite this striking sim-
ilarity, these are fundamentally different formulations: while
Eq. (11) is a diagnostic way of writing the response of at-
mospheric carbon to emissions by means of sensitivities that
generally differ for different scenarios, Eqs. (7)–(10) predict
this response for any (weak) emissions scenario by means
of unique system properties – the generalized sensitivities,
which are completely independent of the scenario. It is this
predictive power that we test in the next section (see more
below).

Note also that the timescale dependence of feedbacks can-
not be obtained from the original α–β–γ framework, even
if one computes the α, β, and γ sensitivities underlying its
feedback quantification as time-dependent quantities α(t),
β(t), and γ (t) as above. To understand this one must real-
ize that, in contrast to the original α–β–γ framework where
feedbacks are quantified for a particular scenario, in the gen-
eralized framework feedback strengths are internal proper-
ties of the climate–carbon system, consistent with the view-
point that these strengths depend only on internal system
characteristics (such as the sensitivity of soil microbial ac-
tivity to changes in temperature or the sensitivity of plant
photosynthesis to changes in CO2 concentrations). If one un-
derstands feedbacks in this way, it gets clear that by calcu-
lating the time-dependent α(t), β(t), and γ (t) sensitivities
and combining them to quantify feedbacks one is obtaining
only implicit information on the timescale-dependent feed-

back strengths because the combined values of these sensi-
tivities reflect not internal system feedbacks alone but also
the external forcing scenario (e.g. Gregory et al., 2009; Boer
and Arora, 2013; Arora et al., 2013; Torres Mendonça et al.,
2021b). Accordingly, from the time dependence of those sen-
sitivities one cannot infer the timescale dependence of the
feedback strengths. In the generalized framework contribu-
tions from forcing and feedback are disentangled so that the
timescale dependence of the climate–carbon-cycle feedbacks
is instead explicitly quantified. This more general quantifica-
tion of feedback strengths, which arises when considering the
internal memory of the climate–carbon system, may be even
more clearly understood by noting that the α, β, and γ sensi-
tivities can be predicted by their generalized counterparts for
any weak perturbation scenario (see Sect. 4.1).

Our main topic in this study is the timescale dependence
of the airborne fraction. As explained in the following, by
the generalized framework this timescale dependence can be
fully traced back to that of the feedback functions. In its stan-
dard definition (e.g. Oeschger and Heimann, 1983; Raupach,
2013), the airborne fraction AF(t) is specified by

dCA

dt
= AF(t)E(t), (12)

where the left-hand side is the rate at which emitted carbon
accumulates in the atmosphere. Airborne fraction obtained
its name because this accumulation rate can also be viewed
as the fraction of the emitted carbon flux that remains air-
borne. As already discussed in the Introduction, despite its
constancy over the last decades, AF(t) cannot be seen as a
property of the climate–carbon system itself but only as a
metric dependent on the emissions scenario E(t). But fol-
lowing an analogous strategy as for the α, β, and γ sensi-
tivities, a scenario-independent generalized airborne fraction
– denoted by A(t) – can be obtained by expanding dCA/dt
in a Volterra series up to linear order in the emissions E(t)
around the pre-industrial state (dCA/dt = 0). Following Ent-
ing (2007), the standard definition (12) of airborne fraction
thereby generalizes to

dCA

dt
=

t∫
0

A(t − s)E(s)ds. (13)

Compared to Eq. (12), this generalized response formula ac-
counts not only for the effect of emissions at time instant t but
also for their effect during their whole past history. Accord-
ingly, Eq. (13) accounts for the memory of the carbon cy-
cle, and having introduced the generalized airborne fraction
A(t) as the kernel of the linear term of a Volterra expansion
about the pre-industrial state, A(t) is for weak perturbations
a property of the system itself independent of the emissions
scenario E(t). This generalized airborne fraction is a gener-
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alization not only of the standard airborne fraction AF(t) but
also of the cumulative airborne fraction2 CAF(t).

To relate the generalized airborne fraction to the feed-
backs, Eq. (13) is first Laplace transformed. Using then
dCA/dt = d1CA/dt and noting that a standard property of
the Laplace transform L of the time derivative of 1CA is
that L{d1CA/dt} = pL{1CA(t)} for limt→0+1CA(t)= 0
(where “+” indicates the one-sided limit of t approaching
zero from positive t values), one obtains

1C̃A(p)= Ã(p)
Ẽ(p)

p
. (14)

By comparing this with Eq. (7), one finds that the generalized
airborne fraction is identical to what was above called gain:

Ã(p)=
1

1− f̃ (p)
. (15)

This is the key relation underlying our study. It demonstrates
that at each timescale the generalized airborne fraction is
fully determined by the values of the total feedback function
f̃ (p) at that very timescale 1/p. An analogous relation was
obtained by Gregory et al. (2009) and Jones and Friedling-
stein (2020) employing the original α–β–γ framework and
by Rubino et al. (2016) and Enting and Clisby (2019) in this
generalized form.

To follow our subsequent investigation of airborne fraction
it is important to note that the generalized α–β–γ framework
is more than only a way to describe the coupled climate–
carbon system at global scale: actually it is a theory about this
system with predictive power. Basic to this whole framework
is the generalization of the original α, β, and γ sensitivities to
response functions. Already by this first step some predictive
power is gained because once these generalized sensitivities
are known, the response to any sufficiently weak CO2 per-
turbation scenario can be predicted (Torres Mendonça et al.,
2021b). But more important for the present study is another
type of predictive power of the generalized framework that
arises by describing the climate–carbon system in terms of
assumed key feedbacks: by Eq. (15) the airborne fraction is
via Eqs. (8) to (10) fully determined by the generalized sen-
sitivities χ̃α , χ̃β , and χ̃γ . These characterize the responses of
subsystems to specific perturbations and have at first sight
nothing to do with feedbacks. The feedbacks come about
only by their combined action as described by the general-
ized framework. This is particularly obvious when consid-
ering the airborne fraction: as explained in the Introduction,
this quantity embodies by its very nature the effect of all the
ruling feedbacks. Hence, our key Eq. (15) predicts a quantity

2This follows by deriving Eq. (14) as described in the main text
and then inverting it to obtain 1CA(t)=

∫ t
0A(t − s)

∫ s
0E(s

′)ds′ds.
This can be viewed as a generalization of the equation defining
the cumulative airborne fraction 1CA(t)=: CAF(t)

∫ t
0E(s)ds (e.g.

Raupach, 2013) by accounting for the effect of the whole past his-
tory of cumulative emissions.

shaped by feedbacks – the airborne fraction – from quantities
that are independent of feedbacks – the generalized sensitiv-
ities. Thereby naturally the question arises of how good such
a prediction will be. This question will be answered in the
next section exemplarily for simulations performed with the
MPI-ESM. Finding a good predictability will justify deriving
the airborne fraction by Eq. (15) merely from the knowledge
of the generalized sensitivities also for other CMIP5 Earth
system models in the main part of this study.

3 Predictive power of the generalized α–β–γ
framework

The present section prepares for the main investigation of our
study (next section). This involves two issues. The first was
already shortly addressed at the end of the previous section,
namely that we have to demonstrate the predictive power of
Eq. (15) before we can reliably use it to calculate the gen-
eralized airborne fraction Ã(p). We demonstrate this by first
determining Ã(p) directly by its definition (13) from simu-
lated atmospheric CO2 and then comparing it with its pre-
diction obtained from Eq. (15) via the generalized sensitivi-
ties χ̃α , χ̃β , and χ̃γ . While the sensitivities necessary for the
prediction can in principle be calculated for all considered
CMIP5 models from published simulation results (see tech-
nical issues below), to obtain Ã(p) directly from simulated
atmospheric CO2 one needs additional simulations. There-
fore we restrict our demonstration to MPI-ESM for which we
perform these additional simulations. It should be noted that
this demonstration is also interesting on its own because the
validity of inferences from the generalized framework has so
far never been demonstrated. For conciseness, in the follow-
ing we call the airborne fraction computed by application of
its definition (13) from simulated atmospheric CO2 the true
airborne fraction, while the airborne fraction calculated via
Eq. (15) of the generalized framework from simulated gen-
eralized sensitivities the predicted airborne fraction.

The second preparatory issue tackled in this section con-
cerns the technical aspects of the calculation of the general-
ized sensitivities from simulation data. As explained in Tor-
res Mendonça et al. (2021a), this calculation is generally not
trivial. There are two main complications.

i. Noise. The problem of deriving response functions such
as the generalized sensitivities from perturbation exper-
iments data is mathematically “ill-posed”. In practice
this means that by trying to solve it by classical numer-
ical methods one obtains sensitivities corrupted by the
noise in the data.

ii. Non-linearities. The generalized framework is a linear
approach. Therefore, when recovering the generalized
sensitivities, one has to make sure that the response data
are not contaminated by strong non-linear contributions
that would otherwise hinder the recovery.
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To derive the generalized sensitivities we employ our
recently developed response function identification (RFI)
method (Torres Mendonça et al., 2021a, b). This method re-
covers the generalized sensitivity from a single realization
of an arbitrary perturbation experiment. In particular the RFI
method addresses complication (i): it filters out the noise in
the recovered generalized sensitivity by means of Tikhonov–
Phillips regularization (Phillips, 1962; Tikhonov, 1963), with
the regularization parameter determined via the discrepancy
principle (Morozov, 1966) from an estimate of the noise level
in the data (obtained from the associated control simulation).

To address complication (ii), we employ following Tor-
res Mendonça et al. (2021b) two additional procedures: first,
we pre-transform the data by different techniques to try to ac-
count for known non-linearities in the response for which we
want to derive the generalized sensitivity (e.g. the response of
land carbon to changes in CO2 concentrations characterized
by χ (L)β (t) – first term in Eq. 2); second, by means of ad-
ditional perturbation experiments we estimate the maximum
perturbation strength limiting the extent of the linear regime
of that response. By accounting for known non-linearities in
the response, the first procedure allows one to take data at
higher perturbation strengths and thus higher signal-to-noise
ratio, which leads to a better recovery of the generalized sen-
sitivity. Therefore another technical aspect of the present sec-
tion is to determine for each generalized sensitivity the pre-
processing technique that gives the best recovery. The second
procedure assures that the taken data contain no strong non-
linearities that could hinder the recovery. This second proce-
dure serves also a different purpose: to estimate the range of
perturbation strengths for which the generalized framework
as a whole is applicable. Since this range is generally differ-
ent for the different involved responses (i.e. for each term on
the right-hand side of Eqs. 2–5), the linear regime of the gen-
eralized framework as a whole is determined by the small-
est of the maximum perturbation strengths limiting the linear
regime of those responses separately. Since for employing
these procedures additional experiments are needed, we re-
strict our analysis to the MPI-ESM – for which we perform
those experiments – and assume in the next section that the
pre-processing techniques and ranges of linearity identified
for MPI-ESM apply also to other CMIP5 models.

To demonstrate the predictive power of the generalized
framework, all these technical issues must be tackled before
we can invoke Eq. (15) to reliably compute the predicted
airborne fraction. We tackle them by following the proce-
dures given in Torres Mendonça et al. (2021b). Since these
technical parts of our study reveal no further scientific in-
sight, we have relegated their rather lengthy description to
Appendix A. The obtained results concerning the size of the
linear regime and the best pre-processing technique are sum-
marized in Table A2.

3.1 Determining the true airborne fraction from
simulated atmospheric CO2

As explained above, to demonstrate that indeed the
timescale-resolved airborne fraction Ã(p) is reliably pre-
dicted by Eq. (15) of the generalized framework, we compare
it with the true airborne fraction calculated by application of
its defining Eq. (13). This section explains how to obtain this
true airborne fraction from a simulation with prognostic at-
mospheric CO2, i.e. from an emission-driven simulation.

From given time series for atmospheric carbon content
CA(t) and emissionsE(t) one could in principle obtain Ã(p)
by solving the defining Eq. (13) by means of our RFI method
for A(t) followed by a Laplace transform. But to proceed in
this way one had first to calculate dCA/dt from CA(t) (com-
pare Eq. 13), which introduces numerical noise that deterio-
rates the quality of recovery of A(t) (Torres Mendonça et al.,
2021a). Therefore we proceed differently. To linear order a
Volterra expansion of CA into the perturbing emissions gives

1CA(t)=

t∫
0

χζ (t − s)E(s)ds, (16)

which defines another response function3 χζ (t). A Laplace
transform then gives (Enting, 1990)

1C̃A(p)= χ̃ζ (p)Ẽ(p). (17)

Note that, in contrast to Eq. (14), no p factor shows up in
Eq. (17). This is essentially because Eq. (13), from which
Eq. (14) is obtained, has on the left-hand side the time deriva-
tive of the left-hand side of Eq. (16) (from which Eq. 17 is
obtained), and the Laplace transform of this time derivative
is p1C̃A(p) (see text introducing Eq. 14).

By comparing now Eq. (17) with the Laplace-transformed
definition of the generalized airborne fraction (14), one thus
obtains (as also noted by Enting and Clisby, 2019)

Ã(p)= pχ̃ζ (p). (18)

By these considerations, the true airborne fraction Ã(p)
can be determined from emission-driven simulations in three
steps: first, solve Eq. (16) by our RFI method for χζ (t) using
simulation data for 1CA(t) and E(t) (no numerical deriva-
tive needed). Second, Laplace-transform the recovered χζ (t)
to obtain χ̃ζ (p). Finally, apply Eq. (18) to determine Ã(p)
from χ̃ζ (p).

For our demonstration of predictive power we performed
impulse-type emission-driven experiments with MPI-ESM
and obtained Ã(p) from the resulting simulation data follow-
ing these three steps (see Appendices B and C for details).
The resulting true Ã(p) is plotted in Fig. 1.

3We thank the reviewer Ian Enting for making us aware that
χζ (t) has been widely studied in connection with the so-called
“global warming potential” (see e.g. Joos et al., 2013).
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3.2 Determining the predicted airborne fraction from
generalized α–β–γ sensitivities

The second step towards the demonstration of the predic-
tive power of the generalized framework is to calculate the
predicted airborne fraction by application of Eq. (15) from
the generalized sensitivities. For a proper comparison with
the true airborne fraction from above, this predicted airborne
fraction is obtained from simulations with the same model
(MPI-ESM) as the true airborne fraction although from dif-
ferent simulation experiments.

To predict airborne fraction via the total feedback func-
tion f̃ (p) from Eq. (15) one needs to know the general-
ized sensitivities (see Eqs. 8 to 10). These we obtain from
two standard C4MIP-type experiments performed with MPI-
ESM that are published in the international CMIP5 reposi-
tory (see Appendix A for details). These C4MIP-type simu-
lations were tailored for separate determination of the α, β,
and γ sensitivities of the original framework (Taylor et al.,
2012; Arora et al., 2013) but are similarly suited for separate
determination of their generalized counterparts (Torres Men-
donça et al., 2021b). In both of the experiments atmospheric
CO2 concentration is prescribed to rise from its pre-industrial
level by 1 % per year, but for separate identification of the dif-
ferent sensitivities this rising CO2 is made to act differently
in the two simulations: in the radiatively coupled (“rad”) sim-
ulation the CO2 rise affects only the atmospheric radiation
code, while in the biogeochemically coupled (“bgc”) simu-
lation the rise in CO2 affects only biogeochemical processes
(ocean pCO2, leaf CO2); in both simulations for the respec-
tive other aspect CO2 stays at its pre-industrial level.

To determine the generalized sensitivities from the simula-
tion data we once more invoke our RFI method (Torres Men-
donça et al., 2021a, b). In the bgc simulation, climate change
is largely suppressed so that the changes in ocean and land
carbon are to first order determined only by the rising CO2.
The rather small change in land temperature in this simu-
lation arises by various indirect effects, among them by a
reduction in transpiration cooling because of the closing of
plant stomata under higher CO2 (Arora et al., 2013). Ignor-
ing this comparably small temperature rise, one can assume
1T = 0 in Eqs. (2) and (3) so that only the integrals over the
rising CO2 remain in these equations. These are the equa-
tions that we solve by means of the RFI method for the ocean
and land χβ(t) sensitivities using the data for the rising CO2
and the stored land and ocean carbon from the bgc simula-
tion. The generalized α and γ sensitivities are obtained from
the rad simulation. In this simulation the effect of rising CO2
on the carbon chemistry is missing; i.e. stored land carbon
and ocean carbon change only because of changing climate,
collectively represented by temperature in the α–β–γ frame-
work. Hence in Eqs. (2) and (3) one can now drop the inte-
grals over rising CO2 so that only the integrals over rising
temperature remain; these reduced equations are then solved
by the RFI method for the ocean and land χγ (t) under the in-

tegral. Finally, because the α sensitivities measure the direct
response of rising CO2 via its greenhouse effect on land and
ocean temperatures, these sensitivities are determined from
the rad simulation as well. The respective equations to be
solved for the χα(t) sensitivities are (4) and (5). Note that
the sensitivities need not be derived from bgc and rad simula-
tions: also either of these two together with a “fully coupled”
experiment – where both the radiation and the biogeochem-
ical code are affected by CO2 changes – suffices (see e.g.
Arora et al., 2020).

Actually, as already explained in the introduction to this
section, to obtain linear response functions reliably by the
RFI method, additional preparatory effort is needed concern-
ing selection of a pre-processing technique and checks as-
suring that the underlying linearity assumption is valid for
the simulation data used. For those purposes we performed
additional rad and bgc simulations with MPI-ESM for a va-
riety of different CO2 forcing scenarios (see Table A1 in Ap-
pendix A). Based on this preparatory analysis we then obtain
the generalized sensitivities of MPI-ESM in the time domain
(see Appendix A).

The final steps to obtain the generalized airborne fraction
as predicted by Eq. (15) from the generalized framework are
to Laplace-transform the obtained generalized sensitivities
(done analytically; see Torres Mendonça et al., 2021a), cal-
culate from Eqs. (8)–(10) the total feedback function f (p),
and then finally obtain through our key Eq. (15) the predicted
timescale-resolved airborne fraction. The result is seen in
Fig. 1.

Please note that the way of deriving here the predicted gen-
eralized airborne fraction for MPI-ESM is exactly how we
derive it also for the other CMIP5 models in the next section,
except that the additional preparatory analysis and checks
cannot be performed because of the lack of the necessary
additional simulations. Accordingly, we will assume that the
size of the linear regime obtained for MPI-ESM applies also
to these other models and will pre-process also their data by
the technique identified to be best for MPI-ESM (see sum-
mary of linear regime and best pre-processing technique for
each sensitivity in Table A2).

3.3 Demonstration of predictive power by comparing
predicted with true airborne fraction

So far in this section, the generalized airborne fraction Ã(p)
has been derived for MPI-ESM in two ways: first directly
from simulated atmospheric CO2 (“true” airborne fraction)
and then by employing Eq. (15) of the generalized frame-
work (“predicted” airborne fraction). The results are plot-
ted in Fig. 1. The two curves differ by up to around 5 %
for timescales below 5 years but match well for the longer
timescales up to 100 years4 (mean difference less than 1 %).
To judge from the closeness of the two curves how well air-

4Note that for our analysis we calculated Ã(p) only up to a
timescale of 100 years because of the restricted size of the linear
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borne fraction is predicted one should note that their coinci-
dence for 1/p→ 0 is not a hint for good predictive power but
merely a hint of the reliability of the numerics by which the
curves were obtained: from carbon conservation it follows
that χζ (0)= 1 (see Appendix B) so that

lim
p→∞

Ã(p)
(18)
= lim

p→∞
pχ̃ζ (p)= lim

t→0+
χζ (t)= 1, (19)

where the second equality follows from the initial value
theorem of Laplace transforms (e.g. Beerends et al., 2003,
p. 292). Hence the two curves match at short timescales for
theoretical reasons and not because of the quality of the
prediction. More insight into the behaviour of Ã(p) will
be given in Sect. 4 when discussing its dependence on the
climate–carbon-cycle feedbacks calculated for the CMIP5
models.

The discrepancy between the two estimates of the airborne
fraction observed at timescales shorter than 5 years is ex-
pected from two types of error that might have affected the
results. The first type affects the predicted airborne fraction
and arises from the ill-posedness of the deconvolution prob-
lem that must be solved to derive the generalized sensitivities
employed in Eq. (15). This ill-posedness obscures informa-
tion at short timescales and therefore deteriorates the recov-
ery of the sensitivities at those scales (see Torres Mendonça
et al., 2021a). The second type of error affects the true air-
borne fraction and arises from the fact that χζ (t), from which
then Ã(p) was derived via Eq. (18), was not obtained from a
perfect impulse experiment (see details in Appendix B). Al-
though we derived χζ (t) in Appendix B enforcing its known
value χζ (t = 0)= 1 as a numerical constraint to partially ac-
count for this error, the recovery of χζ (t) at short timescales
might still not be fully correct. Despite these discrepancies,
as timescales lower towards 1/p = 0.01 years the agreement
improves once more, in line with the theoretical expectation
discussed above.

Overall, the close agreement between the two estimates of
the airborne fraction demonstrates the predictive power of the
generalized α–β–γ framework: since Ã(p) encodes all in-
formation needed to predict atmospheric carbon response to

regime: Ã(p) can be predicted only until those timescales where
the recovery of the generalized sensitivities is reliable; a reliable re-
covery, in turn, can only be obtained when the underlying data are
unaffected by strong non-linearities that appear at larger perturba-
tion strengths (Torres Mendonça et al., 2021a). Most restrictive in
this respect is χβ (t), whose recovery had for this reason to be based
on only the first few decades of available simulation data (70 years
for land and 50 years for ocean; see Table A2). Nevertheless, ex-
perience with MPI-ESM in Torres Mendonça et al. (2021b, Fig. 8a
and b) and in Appendix A2 (Fig. A1e) suggests that the recovery
of generalized sensitivities can be relied upon even for timescales
longer than those involved in their recovery – even for the whole
140 years of available data. But since we have not tested this for
models other than MPI-ESM, we decided to consider our recovery
of Ã(p) reliable only up to a 100-year timescale.

Figure 1. Quality of agreement between the true generalized air-
borne fraction (Eq. 18; see Sect. 3.1) and the generalized airborne
fraction predicted by invoking Eq. (15) of the generalized α–β–γ
framework (see Sect. 3.2). Technically, both curves were obtained
by means of our RFI method from MPI simulation experiment data.
But while the “predicted” curve is based on the generalized sensitiv-
ities derived from the usual pair of rad and bgc 1 % simulations us-
ing prescribed atmospheric CO2 (concentration-driven), the “true”
curve is based on data from impulse experiments performed with in-
teractive CO2 (emission-driven; see the detailed description in Ap-
pendix B). Note that the airborne fraction A plotted here differs
from the standard airborne fraction AF (compare defining Eqs. 13
and 12) in that it is a scenario-independent generalization of it that
predicts the response of atmospheric carbon accumulation rate to
any weak emissions scenario (as demonstrated by Eqs. 13 in the
time domain and 14 in the timescale domain). The maximum dis-
crepancy between the two curves is around 5 % (1-year timescale).
At timescales longer than 5 years, the average discrepancy is smaller
than 1 %. The overall close agreement shows that the generalized
α–β–γ framework gives – at least for MPI-ESM – a reasonable and
scenario-independent description of the linear dynamics of the cou-
pled climate–carbon system at global scale.

any (weak) emission scenario – accounting for all climate–
carbon-cycle feedbacks – this close agreement shows that,
at least for MPI-ESM, the generalized framework correctly
predicts at global scale the linear dynamics of the coupled
climate–carbon system. In addition, because the two curves
were obtained from very different simulations, their agree-
ment adds confidence that the numerical methods employed
can be trusted. These two results suggest that the general-
ized framework and our numerical methods are appropriate
to confidently predict the airborne fraction and the underly-
ing climate–carbon-cycle feedbacks by Eq. (15) of the gener-
alized framework from the concentration-driven CMIP5 ex-
periments, as we do in the next section.
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4 Timescale dependence of climate–carbon-cycle
feedbacks and airborne fraction for weak
perturbations in CMIP5 models

In the present section we extend our analysis of the timescale
dependence of airborne fraction to the set of CMIP5 mod-
els listed in Table 1. In particular we study the importance
of the different climate–carbon feedbacks for this timescale
dependence.

The whole investigation is based on the calculation of the
generalized airborne fraction by means of Eq. (15), whose
power to predict airborne fraction from the generalized sen-
sitivities has been demonstrated exemplarily for MPI-ESM in
the previous section. As part of this demonstration, methods
to derive the necessary generalized sensitivities from MPI-
ESM standard C4MIP simulations had to be developed (see
Appendix A). They are applied here to calculate also for
those other CMIP5 models the generalized sensitivities from
published 1 % bgc and 1 % rad simulation data.

4.1 Generalized sensitivities of CMIP5 models

In this subsection we present our results for the generalized
sensitivities of the considered CMIP5 models. The robust-
ness of the recovered sensitivities depends on the quality
of the data (Torres Mendonça et al., 2021a, b) and on how
appropriate it is to apply the numerical techniques selected
in Appendix A for MPI-ESM to the other CMIP5 models
as well. In principle this robustness should be examined for
these other CMIP5 models by means of additional simula-
tions, as was done for the MPI-ESM in Torres Mendonça
et al. (2021b) and in Appendix A. But such simulations are
not available. Nevertheless to get an idea of the quality of the
recovered generalized sensitivities we use them to predict the
time dependence of the standard α, β, and γ sensitivities for
published 1 % simulations and compare them with their val-
ues obtained directly from the simulation data.

We start by discussing the identified generalized sensitivi-
ties. In Fig. 2 we show the ocean sensitivities in the first row
and the land sensitivities in the second row. Figure 2a and d
show the χ (O)β (t) and χ (L)β (t) sensitivities. The plotted verti-
cal lines indicate the end of that part of the time series that
is used to derive the sensitivities according to the techniques
summarized in Table A2. As seen, these two sensitivities are
for almost all models positive at all times analysed. This is
because an increase in atmospheric CO2 concentrations re-
sults in an increase in land and ocean carbon stocks: for land
this positive response is a consequence of the CO2 fertiliza-
tion effect, which increases plant productivity and vegeta-
tion growth, while in the oceans it is a consequence of the
increase in the difference between atmospheric and oceanic
CO2 partial pressure, leading to a positive input flux of CO2
into the ocean (Arora et al., 2013; Friedlingstein et al., 2006).
The surprising negative values of χ (L)β (t) for the HadGEM2-
ES after 70 years are most likely a consequence of non-

linearities in the response of this model: by the very nature
of the biogeochemical response it can be shown that χ (L)β (t)

should decrease monotonically to zero (see Torres Mendonça
et al., 2021b, Appendix C), so the negative values must be an
artefact of the numerical recovery caused either by the non-
linearity of the response being stronger than expected from
MPI-ESM or by deterioration from noise (Torres Mendonça
et al., 2021a). Noting that the order of magnitude of the es-
timated signal-to-noise ratio in the HadGEM2-ES response
is equal to or larger than that in the response of the other
models (not shown), the negative values are most likely not
caused by noise but are related to non-linearities. This result
suggests that to reliably derive χ (L)β (t) for this model and
to minimize the influence of non-linearities, one should take
data until a perturbation strength smaller than that assumed
following our investigation with MPI-ESM (Appendix A).

There is a close agreement between the obtained general-
ized ocean sensitivities χ (O)β (t) in Fig. 2a: in most models

χ
(O)
β (t) decays rapidly at a similar pace in the first years.

Such overall agreement is in contrast to the results for the
land sensitivities χ (L)β (t) in Fig. 2d, which spread largely

for the different models. In particular the χ (L)β (t) sensitivi-
ties behave differently for the NorESM1-ME and CESM1-
BGC models, which have very small values at all times. This
behaviour may be explained by noting that these models ac-
count for the coupling between the nitrogen and carbon cy-
cles, which reduces the strength of CO2 fertilization because
of nitrogen limitation (Zaehle et al., 2010; Arora et al., 2013).
Excluding NorESM1-ME and CESM1-BGC, χ (L)β (t) for the
other models agrees better at shorter than at longer times.

Figure 2b and e present the results for the χ (O)γ (t) and
χ
(L)
γ (t) sensitivities. Both generalized sensitivities are nega-

tive for all times. This is because globally the land and ocean
lose carbon to the atmosphere when only the climatic effect
of CO2 is taken into account. As clarified by Arora et al.
(2013), this loss is explained by noting that rising tempera-
tures over land result in an increase in heterotrophic soil res-
piration and almost everywhere to a decrease in net primary
production (NPP), while over the oceans rising temperatures
result primarily in a decrease in CO2 solubility and thus de-
gassing.

In contrast to χ
(O)
β (t), for χ (O)γ (t) the model spread is

large over the whole time range (compare Fig. 2a and b).
Particularly different is the behaviour of the sensitivities for
MIROC-ESM and GFDL-ESM2M: while for all other mod-
els the magnitude of χ (O)γ (t) decreases rapidly in the first
years, for these two models only a slow decrease resulting
from strong contributions of long timescales in the general-
ized sensitivities (not shown) is observed. In fact the decrease
is so slow that it looks as if they had constant values through-
out the whole time range, but this is a misimpression induced
by the scale of the plot.
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Table 1. CMIP5 data considered in this study. For a description of the experiments please see Table A1.

Model 1 % rad (esmFdbk1) 1 % bgc (esmFixClim1) Pre-industrial (piControl) 1 % fully coupled
(1pctCO2)

BCC-CSM1-1 Wu and Xin (2015b) Wu and Xin (2015c) Wu and Xin (2015d) Wu and Xin (2015a)
CESM1-BGC Lindsay (2013b) Lindsay (2013c) Lindsay (2013d) Lindsay (2013a)
GFDL-ESM2M Dunne et al. (2014a) Dunne et al. (2014b) Dunne et al. (2014c) Dunne et al. (2014d)
HadGEM2-ES Liddicoat et al. (2014a) Liddicoat et al. (2014b) Jones et al. (2014) Webb et al. (2014)
IPSL-CM5A-LR IPSL (2011) IPSL (2011) IPSL (2011) Caubel et al. (2016)
MIROC-ESM Kindly provided by Kindly provided by JAMSTEC et al. (2015b) JAMSTEC et al. (2015a)

Tomohiro Hajima Tomohiro Hajima
MPI-ESM-LR Torres Mendonca et al. (2023) Torres Mendonca et al. (2023) Torres Mendonca et al. (2023) Giorgetta et al. (2012)
NorESM1-ME Tjiputra et al. (2012a) Tjiputra et al. (2012b) Bentsen et al. (2011) Tjiputra et al. (2012c)

Figure 2. Generalized sensitivities (see definition in Eqs. 2–5) in CMIP5 models. All sensitivities were derived employing the RFI (response
function identification) method (Torres Mendonça et al., 2021a) using the techniques selected in Appendix A (see summary Table A2). The
inset in panel (f) shows the ratio of temperature sensitivities χ (L)α (t)/χ

(O)
α (t), with the shaded area indicating the likely range of 1.4–1.7

for the ratio of land to ocean temperature (obtained for CMIP6 but consistent with CMIP5 estimates; Lee et al., 2021, Sect. 4.5.1.1.1; see
discussion in text for more details). Changes with respect to pre-industrial equilibrium state were taken as 1x = x− x0, where x0 is the
mean value from the control simulation. Exceptions to this were 1TL and 1TO for MIROC-ESM: in the 1 % simulations from this model
temperatures do not start at the level of pre-industrial equilibrium, so in this case we defined 1T = T − T 0 with T 0

:= T (0). The vertical
lines in panels (a) and (d) indicate the time series length that was taken to derive the sensitivities; for the other plots the full time series was
used.

The magnitude of χ (L)γ (t) is – at least at short times –
much larger than that of χ (O)γ (t) for almost all models ex-
cept for NorESM1-ME and CESM1-BGC. As explained by
Arora et al. (2013), in these two models the coupling be-
tween the nitrogen and carbon cycles weakens not only
the biogeochemical but also the radiative response because
temperature-driven nitrogen remineralization enhances plant
productivity, which counteracts the parallel carbon loss from

the enhanced soil respiration in the warmer climate (see also
Melillo et al., 2002; Thornton et al., 2009). Analogously to
χ
(O)
γ (t) in MIROC-ESM and GFDL-ESM2M, because of

strong contributions from long timescales, the generalized
sensitivity χ (L)γ (t) decays in the two other models NorESM1-
ME and CESM1-BGC so slowly (see Fig. 2e) that it seems
as if it had a constant value throughout the time series, which
is also only a misimpression due to the scale. Overall there
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is a better model agreement for χ (L)γ (t) at long rather than at
short times.

Finally, Fig. 2c and f present the results for the χ (O)α (t)

and χ
(L)
α (t) sensitivities that characterize the response of

ocean and land temperature to atmospheric CO2 perturba-
tions. For both χ (O)α (t) and χ (L)α (t) there is a relatively good
agreement among models. A larger spread is nevertheless
found for values at short times, for which the recovery is
less robust due to ill-posedness of the deconvolution prob-
lem that must be solved to recover the generalized sensi-
tivities (Torres Mendonça et al., 2021a). We note also that
the values of both sensitivities are closely related: this is ex-
pected from the well-known fact that by various mechanisms
the ratio 1TL/1TO =: a of land to ocean temperature is
around 1.4–1.7 (Lee et al., 2021, Sect. 4.5.1.1.1; Eyring et al.,
2021, Fig. 3.2b). By their definition in the Laplace domain
χ̃
(O)
α (p)=1T̃O(p)/1c̃(p) and χ̃ (L)α (p)=1T̃L(p)/1c̃(p),

it follows that χ̃ (L)α (p)= a1T̃O(p)/1c̃(p)= aχ̃
(O)
α (p) so

that these two generalized sensitivities should differ by about
that factor. Interestingly, this is indeed seen for most models
(see inset in Fig. 2f) but only for the first decades – over the
last years a large spread arises.

We now turn to the analysis of the plausibility of the re-
covered generalized sensitivities by means of the prediction
of the original α, β, and γ sensitivities for standard C4MIP
1 % simulations. For this analysis we first employ the recov-
ered generalized sensitivities to predict the original α, β, and
γ sensitivities and then compare the results to the actual α, β,
and γ sensitivities obtained directly from data. That the orig-
inal α, β, and γ sensitivities can in principle be predicted
from the generalized sensitivities may be seen by noting that

β(X)(t) :=
1C

bgc
X (t)

1c(t)
=

1
1c(t)

t∫
0

χ
(X)
β (t − s)1c(s)ds, (20)

γ (X)(t) : =
1Crad

X (t)

1T rad
X (t)

=
1

1T rad
X (t)

t∫
0

χ (X)γ (t − s)

1T rad
X (s)ds, (21)

α(X)(t) :=
1T rad

X (t)

1c(t)
=

1
1c(t)

t∫
0

χ (X)α (t − s)1c(s)ds, (22)

where X stands for land (L) or ocean (O), the superscripts
“bgc” and “rad” indicate data taken from bgc and rad sim-
ulations (see Table A1), and quantities pre-fixed by 1 stand
for a difference with respect to pre-industrial times. The first
equalities are the definitions of the standard α, β, and γ sen-
sitivities (Friedlingstein et al., 2003). The second equalities
are obtained by inserting Eqs. (2)–(5) while accounting for
the specific setup of the bgc and rad simulations: to a good
approximation (Friedlingstein et al., 2003) temperature re-
mains unchanged in the bgc simulations, while the CO2 rise
acts only via climate on land and ocean carbon storage in the

rad simulations. In the following analysis we compare the
prediction from the generalized sensitivities (second equali-
ties) to the actual α, β, and γ values computed by their defi-
nition directly from the simulation data (first equalities). The
whole comparison is performed for the 1 % rad and the 1 %
bgc simulations (Table A1).

The results of these calculations are shown in Fig. 3. We
plot the α, β, and γ sensitivities as a function of time for
the first 30 years of the 1 % simulations so that CO2 forc-
ing strengths are within the estimated linear regime of the
generalized framework (around 94 ppm; see Appendix A).
Because of natural climate variability there is some uncer-
tainty in the choice of the values of pre-industrial temper-
ature and carbon stocks needed to calculate the differences
1TX(t) and 1CX(t) in the definitions of the sensitivities
(see Eqs. 20–22). In Fig. 3 we used the variability from the
associated control simulations to estimate the resulting un-
certainty range for the data-derived sensitivities (shaded area
in the figures) – details are found in Appendix E. As seen
in the figure, for γ (t) the uncertainty range sometimes gets
extremely large; this happens when the 1TX(t) found in the
denominator comes close to zero (see Eq. E5). In principle,
such an uncertainty from initial values enters also the denom-
inator of the predicted γ sensitivities, but we do not display
this to keep the figures simple, and the interpretation of this
comparison would not change.

The results for MPI-ESM-LR can be considered a refer-
ence for the achievable agreement between data-derived and
predicted sensitivities because for MPI-ESM-LR the gener-
alized sensitivities were obtained in a quality-controlled way
by means of additional simulations (see Appendix A) not
available for the other models. In view of this achievable
agreement, the predicted α and γ sensitivities excellently
match for all models the respective data-derived sensitivities,
judged by noting that the predicted sensitivities stay within
the amplitude range of inter-annual variability that is by prin-
ciple not predictable by the linear response methods em-
ployed here because they predict the ensemble mean instead
of the individual system development (see the discussion in
Torres Mendonça et al., 2021a). In contrast, for all models the
predicted β(O)(t) is – for times longer than 15 years – sys-
tematically too high. Additionally, the predicted β(L)(t) has
a slope and/or offset that systematically differs from those of
the respective data-derived β(L)(t).

Such systematic deviations in β(O)(t) and β(L)(t) are
largely a result of the effect of non-linearities in the respec-
tive carbon responses 1Cbgc

X (t): in fact, if the predicted sen-
sitivities are calculated by using not the untransformed forc-
ing 1c(t) under the integral in Eq. (20) but rather the trans-
formed forcings cPI ln(c(t)/cPI) and 1NPP(t) – these are
used in the derivation of the generalized sensitivities χ (X)β

to account for non-linearities (see Appendices A2 and A5) –
the quality of agreement for β(O)(t) and β(L)(t) considerably
improves (not shown). We nevertheless chose to perform the
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predictions with the untransformed forcing1c(t) to conform
with the standard formulation of the generalized framework
(compare Eqs. 2–5). Despite the encountered deviations in
β(X)(t), in all cases the magnitude and tendency of the pre-
dicted sensitivities match those of the data-derived sensitivi-
ties.

Overall, we consider the results of this comparison as suf-
ficiently convincing to add confidence to the validity of the
recovered generalized sensitivities (Fig. 2) that underlie the
predicted α, β, and γ sensitivities in Fig. 3. We note also
that the predicted sensitivities, in contrast to the often noisy
data-derived sensitivities, are typically well defined because,
as mentioned above, the generalized sensitivities predict the
response not in noisy individual realizations but in a smooth
ensemble mean. Nevertheless, it should be kept in mind that
this comparison is a mere plausibility check because essen-
tially the same data used to predict the α, β, and γ sensitivi-
ties were also used to derive the generalized sensitivities.

4.2 Additivity of responses

Before the main question of this study on the role of feed-
backs for airborne fraction can finally be addressed in the
next section, another preparatory step is necessary. Key to
investigate this question will be Eq. (15) from the general-
ized framework to predict the generalized airborne fraction
via the feedback functions from the generalized sensitivities
as already explained in Sect. 3.2. In applying this relation to
the data from the different CMIP5 models one must realize
that the accuracy of such predictions depends on two aspects:
(1) the quality of the numerical recovery of the generalized
sensitivities (see previous subsection) and (2) the validity of
the assumption underlying the generalized framework that
for weak perturbations the carbon response to CO2 is deter-
mined by the sum of the biogeochemical and radiative re-
sponses; this assumption of additivity is implicit to Eqs. (2)–
(3), where the first term represents the biogeochemical re-
sponse and the second (after insertion of Eqs. 4–5) the radia-
tive response. Ideally, for each model one should fully check
these two aspects with the aid of additional simulations, as
we did for the MPI-ESM in Torres Mendonça et al. (2021b)
and in Appendix A. Unfortunately, such additional simula-
tions are at present not available for other models, so a full
check is not possible. Nevertheless, since all CMIP5 models
provide in addition to the 1 % rad and bgc simulations also
a 1 % fully coupled simulation (a 1 % simulation where both
the biogeochemical and the radiative effects of CO2 are ac-
tive), one can at least check whether the biogeochemical and
radiative responses are indeed additive for a certain range of
perturbation strengths. The rationale underlying this check is
that the 1 % rad and bgc simulations separately give the val-
ues for the two right-hand-side terms in Eqs. (2)–(3), while
the 1 % fully coupled simulation gives the left-hand sides.

To check additivity, we plot in Fig. 4 for each of these
models the response in carbon storage for land, ocean, and

global (land plus ocean) carbon from the 1 % fully coupled
experiment along with the sum of the responses from the 1 %
bgc and 1 % rad experiments. If additivity holds for a cer-
tain range of perturbation strengths, then within this range
these two curves (1 % fully coupled and the sum of 1 % bgc
and 1 % rad) must agree. As seen, for all models there is in-
deed agreement at least within the estimated range of lin-
earity (94 ppm CO2 rise; see Appendix A) for land, ocean,
and global carbon stock changes, with larger discrepancies
for land and global carbon in MIROC-ESM and NorESM1-
ME. For those two models, the generalized framework may
not fully describe the linear dynamics of the system in the
fully coupled setup. But overall, within the linear regime one
may say that the biogeochemical and radiative responses are
approximately additive in the CMIP5 models. This result, to-
gether with the evidence for the overall plausibility of the
generalized sensitivities obtained in the last subsection, gives
some confidence that our numerical methods and the frame-
work as a whole are describing in reasonable approximation
the linear dynamics of the carbon cycle in these models.

4.3 Climate–carbon-cycle feedbacks and airborne
fraction

In this section we tackle the main question of our study,
namely how the climate–carbon-cycle feedbacks shape the
timescale dependence of the generalized airborne fraction.
From here on we take for granted that by the methods pre-
sented in the previous sections Eq. (15) indeed reliably pre-
dicts the generalized airborne fraction for the considered
CMIP5 models. We thus proceed to estimate the feedbacks
and the airborne fraction for each model via Eqs. (9), (10),
and (15). The results are shown in Fig. 5.

In Fig. 5a, one sees that for almost all CMIP5 models
the timescale-dependent airborne fraction decreases as the
timescale 1/p increases, all starting at 1 for short timescales
and spreading from 0.56 to 0.75 at a timescale of 10 years and
from 0.26 to 0.5 at a timescale of 100 years. The only excep-
tion is HadGEM2-ES, whose timescale-dependent airborne
fraction once more increases at long timescales, which, as
will be seen below, is related to a reduction in the magnitude
of its land biogeochemical feedback. That the airborne frac-
tion has a value of 1 at short timescales is not a property of
the models but follows from its definition (compare Eq. 19).
But this is not so for the decrease in airborne fraction at long
timescales: as will become clear below this behaviour is a
consequence of the biogeochemical feedback being stronger
than the radiative feedback in the considered CMIP5 mod-
els, so this decrease is presumably a genuine property of the
Earth system.

How the airborne fraction changes in the timescale do-
main is determined by the climate–carbon-cycle feedbacks.
As seen in Fig. 5b, for 1/p→ 0 all feedback functions ap-
proach zero, which in view of Eq. (15) is consistent with
Ã(p)→ 1 for the airborne fraction. Besides the mathemat-
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Figure 3. The α, β, and γ sensitivities calculated directly via first equalities of Eqs. (20)–(22) from the simulation data (dashed lines) and
predicted via second equalities of Eqs. (20)–(22) from the generalized sensitivities (solid lines). The plots are restricted to the first 3 decades
of the simulations (equivalent to about 94 ppm CO2 rise), where all responses are expected to be linear (see Table A2). Uncertainty ranges
are calculated taking into account uncertainty in the choice of the initial value (see Appendix E).

ical reasons explained in connection with Eq. (19), this be-
haviour can intuitively be understood by noting that at short
timescales the ocean and land carbon cycles have not yet re-
acted to emissions, so at these scales Ã(p)→ 1 and thus at-
mospheric CO2 simply follows emissions (Eq. 14). To under-
stand how the airborne fraction behaves as the timescale in-
creases, one must look at the behaviour of the separate feed-
back functions. For longer timescales, the feedback func-
tions f̃ (L)γ α and f̃

(O)
γ α that quantify the radiative feedbacks

become increasingly positive, while the feedback functions
f̃
(L)
β and f̃ (O)β that quantify the biogeochemical feedbacks

become in general increasingly negative. The sign of these
feedbacks is in agreement with current process understand-
ing (Friedlingstein et al., 2006; Gregory et al., 2009; Arora
et al., 2013, 2020). But that these feedbacks are either posi-
tive or negative for all timescales is a non-trivial result that
could not be obtained by the original α–β–γ framework be-
cause there the timescale-dependent feedback strengths show
up only combined with the external forcing that enters the
quantification by the underlying α, β, and γ sensitivities (see
discussion in Sect. 2). The observed uniformity of the sign of
the feedbacks is explained by the fact that almost all gener-
alized sensitivities in Fig. 2 are either always negative or al-
ways positive: since the feedback functions are proportional

either to the Laplace transform of χβ or to the product of
the Laplace transforms of χγ and χα (Eqs. 9 and 10), one
sees following the lines of the argument for Ã(p)≥ 0 in Ap-
pendix D that by the positivity or negativity of these response
functions in time also their Laplace transforms and the as-
sociated feedback functions must have a unique sign at all
timescales. Interestingly, for increasing timescales in almost
all models – except for the HadGEM2-ES at long timescales
– the sum (land plus ocean) of the biogeochemical feedbacks
becomes increasingly larger than the sum of the radiative
feedbacks. As a result, in all these models the total feed-
back function f̃ (p) gets increasingly negative (not shown)
and by Eq. (15) the airborne fraction always decreases. In the
HadGEM2-ES, at long timescales the magnitude of the land
biogeochemical feedback starts to decrease, thereby reduc-
ing the magnitude of the (negative) total feedback function
and as a consequence increasing the airborne fraction.

In the mean over all models, the land biogeochemical feed-
back is at all timescales longer than the ocean biogeochemi-
cal feedback: at a timescale of 10 years, it is 1.4 times larger,
and at a timescale of 100 years, it is 1.8 times larger. The
picture is qualitatively similar for the radiative feedback: at a
timescale of 10 years, the land feedback is, despite its small
value of 0.03, orders of magnitude larger than the almost ab-

https://doi.org/10.5194/bg-21-1923-2024 Biogeosciences, 21, 1923–1960, 2024



1938 G. L. Torres Mendonça et al.: Timescale dependence of airborne fraction

Figure 4. Check of the additivity of the biogeochemical and radiative carbon responses in CMIP5 models that underlies the generalized
α–β–γ -framework (compare Eqs. 2–3). Plotted are the sum of the responses from the 1 % bgc and 1 % rad experiments (dashed lines) and
the response from the 1 % fully coupled experiment (solid lines) for land (green), ocean (blue), and global carbon (land plus ocean; black).
Note that in contrast to all other simulations, for GFDL-ESM2M the prescribed atmospheric CO2 increase by 1 % per year does not last for
the full 140 years but only for the first 70 years, from which CO2 is kept at the level reached. This explains the peculiar vertical behaviour at
the end of the time series in panel (c); while CO2 is held constant (note the reduced CO2 scale), carbon stocks continue accumulating on land
and in the ocean. This figure confirms that additivity holds approximately within the estimated linear regime of 94 ppm (see Appendix A) for
all models. For more details see text.

sent ocean feedback, and at a timescale of 100 years, the land
feedback is 7.4 times larger than its ocean counterpart. Ag-
gregating land and ocean, the mean of the biogeochemical
feedback is 22 times larger than the radiative feedback at a
timescale of 10 years and 5.6 times larger at a timescale of
100 years. These results are in particular at short timescales
in contrast to previous estimates (Gregory et al., 2009; Arora
et al., 2013) using Friedlingstein’s framework, which sug-
gested that the biogeochemical feedback is about 4 times
larger than the radiative feedback. One must note though that
our and previous estimates are not entirely comparable: while

previous estimates were made for a particular scenario, our
estimate is valid for any scenario. In addition, here only the
linear regime is considered, so the saturation of the land and
ocean carbon sinks (which reduces the values of β(L) and
β(O) when higher perturbation strengths are considered) is
not taken into account.

By Fig. 5b the model spread is for the land feedbacks
much larger than that for the ocean feedbacks, as expected
from previous studies (Gregory et al., 2009; Arora et al.,
2013; Friedlingstein et al., 2014). Because of the non-linear
relationship between Ã(p) and the feedback functions (see
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Figure 5. Airborne fraction and climate–carbon-cycle feedbacks in
CMIP5 models as derived by the generalized framework (Eqs. 15,
9, and 10). The numbers in panel (b) indicate the model mean and
standard deviation for each feedback function at 10-year and 100-
year timescales. Note that the generalized airborne fraction and all
feedback functions are dimensionless.

Eq. 15), it is not immediately clear how the model spread in
the feedbacks propagates to the airborne fraction. Assuming
small, independent spreads, this propagation may be com-
puted as

σ 2
A(p)≈ Ã

4(p)
(
σ 2
f
(L)
β

(p)+ σ 2
f
(L)
γ α

(p)+ σ 2
f
(O)
β

(p)

+ σ 2
f
(O)
γ α

(p)
)
, (23)

where σ 2 denotes the spread (variance) for each quantity.
This follows by expanding Ã(p) around the mean into the
feedback functions, assuming small spreads in the functions
so that only linear terms are kept, and then calculating the
variance of the result assuming independent spreads so that
covariance terms are ignored (Roe, 2009; Barlow, 1989,
p. 55). Figure 6a shows the terms on the right-hand side

of Eq. (23), the resulting approximation of σ 2
Ã
(p) (sum of

those terms), and the true spread in the airborne fraction.
As seen, the true variance in the airborne fraction follows
closely the component arising from the land biogeochemi-
cal feedback, with a slightly larger discrepancy at timescales
above 30 years, indicating that on longer timescales other
feedbacks’ spread becomes relatively more important. This
indicates that most of the model spread in the airborne frac-
tion arises from the spread in the land biogeochemical feed-
back. This result agrees with that obtained in a recent study
(Jones and Friedlingstein, 2020) that also evaluated how
the model spread in the airborne fraction is affected by the
spread in the climate–carbon-cycle feedbacks but employing
Friedlingstein’s original framework for the analysis.

An even clearer view about the impact of the different
feedbacks on the airborne fraction may be gained by artifi-
cially changing the values of these feedbacks to study hypo-
thetical situations and then evaluating the resulting change
in the airborne fraction. For instance, one can illustrate how
strongly the model spread in the airborne fraction depends
on the spread in the land biogeochemical feedback by recal-
culating the statistics of the airborne fraction taking f̃ (L)β for
all models equal to its model mean. As shown in Fig. 6b,
it turns out that if the exact values of only this feedback
function were known and equal to the model mean (with
all other feedback spreads remaining the same), the spread
in the airborne fraction would reduce by about 82 % at a
timescale of 10 years and 61 % at a timescale of 100 years.
This once more makes obvious that the main reason for the
model spread in the airborne fraction is the large spread in
the land biogeochemical feedback.

5 Conclusions

The dynamics of the global carbon cycle can be understood
in terms of feedbacks arising via the land and ocean car-
bon cycle when atmospheric CO2 is perturbed. To disentan-
gle and separately quantify those feedbacks, Friedlingstein
et al. (2003) developed the α–β–γ framework. Although this
framework gives insight into the main effects of atmospheric
CO2 perturbations in the global carbon cycle, by not account-
ing for the internal timescales of the system, the resulting
quantification of feedbacks is valid only for a particular per-
turbation scenario and time period. Such limitations are over-
come by employing the recently proposed generalization of
this framework (Heimann, 2014; Rubino et al., 2016; Enting
and Clisby, 2019; Enting, 2022). By assuming weak pertur-
bations and accounting for the memory of the carbon cycle,
the generalized α–β–γ framework quantifies feedbacks inde-
pendently of the perturbation scenario at different timescales.
As a result of the generalization, this framework gives in
principle a complete description of the linear dynamics of the
global carbon cycle in terms of the underlying feedbacks. But
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Figure 6. Analysis of model spread of feedback functions and their influence on the airborne fraction. (a) Spread (variance) of airborne
fraction and decomposition in terms of the feedback contributions according to Eq. (23); (b) airborne fraction (averaged over all models)
and its model spread (standard deviation) as shown in Fig. 5a (unchanged) and airborne fraction and the model spread that one would obtain
if the feedback function f̃ (L)β was for all models equal to the model mean. Percentages in (b) indicate the reduction in the airborne fraction
model spread compared to the true spread at 10- and 100-year timescales. See text for more details.

so far its applicability to study the dynamics of the climate–
carbon system had not been systematically investigated.

Here, we employed this generalized framework to study
the timescale dependence of the climate–carbon-cycle feed-
backs and the associated airborne fraction for an ensemble
of CMIP5 models. In Sect. 3, we have shown for the exam-
ple of MPI-ESM that the generalized sensitivities identified
from concentration-driven simulations correctly predict via
Eqs. (7)–(8) and (15) the generalized airborne fraction de-
rived from emission-driven simulations. This demonstrates
that the generalized α–β–γ framework has indeed predictive
power.

Based on experience with MPI-ESM, we quantified in
Sect. 4 the timescale-dependent airborne fraction and feed-
backs for various other CMIP5 models. As can be seen from
Eq. (14), the timescale-dependent airborne fraction quanti-
fies the fraction of emissions staying in the atmosphere at
a particular timescale. At short timescales this fraction is
known to be 1; i.e. atmospheric carbon simply follows emis-
sions because feedbacks that could change it need sufficient
time to react. We found that for almost all models, the air-
borne fraction strictly decreases towards long timescales.
This decrease is slow: even at a timescale of 100 years the
airborne fraction has dropped down only to values ranging
from 0.26 to 0.5, meaning that even a century after CO2 emis-
sions happened a considerable amount is still airborne, which
is consistent with results from impulse experiments (Archer
et al., 2009).

Considering global carbon, in the model mean the biogeo-
chemical feedback was found to be 22 times larger than the
radiative feedback at a 10-year timescale and 5.6 times larger
at a 100-year timescale. This result suggests that at least
over shorter timescales the difference between these feed-
backs may be even greater than previously thought (Gregory
et al., 2009; Arora et al., 2013). Nevertheless, one must note

that here only the linear perturbation regime is considered,
so a possible saturation of the land and ocean carbon sinks
at high CO2 (that would reduce the values of β(L) and β(O)

compared to the case where no saturation is present) is not
reached.

The influence of the model spread of the different feed-
backs on the airborne fraction was also investigated. It was
found that the spread in the airborne fraction arises mostly
from the spread in the land biogeochemical feedback, espe-
cially for timescales below 30 years. By considering the hy-
pothetical case where this particular feedback would be equal
to the model mean, we found that the spread in the airborne
fraction would decrease by 82 % at a 10-year timescale and
by 61 % at a 100-year timescale, which demonstrates even
more clearly that it is indeed the land biogeochemical feed-
back that causes the spread in airborne fraction between the
different models.

6 Discussion

While the generalized framework was shown here to reason-
ably describe the linear dynamics of the global carbon cycle
in MPI-ESM, the results obtained for the other CMIP5 mod-
els depend on two basic assumptions. The first is that the gen-
eralized sensitivities in the CMIP5 models are recoverable
with sufficient quality by the same numerical approaches that
were appropriate to recover the sensitivities in MPI-ESM.
This involves the assumption that for all other considered
CMIP5 models the linear perturbation regime is of similar
extent to that found for MPI-ESM for the different response
variables invoked to recover the sensitivities. This might not
be the case – and is probably not for χ (L)β in the HadGEM2-
ES (see discussion of Fig. 2d). The second basic assumption
is that the generalized framework itself correctly describes
the dynamics of the global carbon cycle in those models. This
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involves the assumption that the biogeochemical and radia-
tive responses are additive – which was confirmed to a good
degree of approximation within the linear regime (see Fig. 4)
– but also that the whole carbon cycle dynamics can be de-
scribed in terms of the responses to atmospheric CO2 and
temperature alone (see Eqs. 2–5). Ideally, each of these as-
sumptions should be carefully investigated for each model
separately by aid of additional simulations, similarly to what
was done here for the case of MPI-ESM.

With these cautionary remarks in mind, our conclusion
that the spread in the airborne fraction arises mostly from
the spread in the land biogeochemical feedback corrobo-
rates the recent finding by Jones and Friedlingstein (2020),
who performed a similar analysis employing Friedlingstein’s
original α–β–γ framework. This agreement adds confidence
to the results obtained here and suggests that research on
climate–carbon-cycle feedbacks should focus especially on
understanding the land biogeochemical feedback, since it is
the largest source of model uncertainty in the airborne frac-
tion in our and in their analysis. But additionally, the con-
clusion drawn here is valid not only for the particular per-
turbation scenario underlying the CMIP5 protocol but for all
scenarios within the linear regime. To this extent, this study
at least partially answers the question raised by Jones and
Friedlingstein (2020) about the behaviour of climate–carbon-
cycle feedbacks in scenarios with different characteristics: as
long as we stay within the linear regime, there is no need for
calculating separate feedback metrics for the different sce-
narios; the feedback functions of the generalized framework
describe this behaviour for all scenarios at once.

Estimates of the timescale-resolved airborne fraction, by
means of Eq. (18), and of timescale-dependent generalized
sensitivities had already been attempted (Enting, 2007, 2022;
Rubino et al., 2016; Enting and Clisby, 2019). These at-
tempts, focused on the observed carbon cycle, were based
on ad hoc assumptions on the internal memory in terms of
the analytical structure of the underlying response functions
and values of internal timescales. Such assumptions could
be circumvented in the present study by employing our RFI
method (Torres Mendonça et al., 2021a, b) that instead de-
rives the internal timescale spectra of the system by fully ac-
counting for the ill-posedness of the underlying inverse prob-
lem. But it should be noted that our approach is tailored to
simulation data, and whether it may be applicable to obser-
vation data needs to be seen. One of the involved challenges
for such an application is that our setting here is limited to
an idealized case where CO2 is the only forcing, while in
observations one would have to account for further perturba-
tions such as non-CO2 greenhouse gases, land use change,
and aerosols.

As explained in Sect. 2, the timescale-resolved airborne
fraction can be understood as a generalization of the air-
borne fraction in its standard definition (defined as a ratio
of atmospheric CO2 fluxes to emission fluxes; see Eq. 12).
It is well known that the near-constancy of the value of the

standard airborne fraction is a result of the linearity of re-
sponse in combination with the exponential character of the
increase in historic emissions (Raupach, 2013). Accordingly,
once emissions get non-exponential – as it must be if fu-
ture emissions are significantly reduced – the standard air-
borne fraction must deviate from its constant value (Raupach,
2013). Thus, standard airborne fraction cannot be seen as an
invariant property of the climate–carbon system. In contrast,
the generalized airborne fraction investigated here describes
the response of atmospheric CO2 to any emissions scenario
and is therefore indeed an invariant property of the system.
As such, the generalized airborne fraction may be employed
to predict the standard airborne fraction by Eq. (13) for any
emissions scenario as long as emissions are sufficiently weak
(see Appendix F for an exemplary demonstration). This is
the case, for example, for emission scenarios with low or
even negative future emissions, as investigated in Jones et al.
(2016). For such scenarios the generalized airborne fraction
– once it has been determined for one or more models – could
be used as an emulator to see without expensive Earth sys-
tem simulations how atmospheric CO2 develops; and a sim-
ilar approach could be applied to changes in the land and
ocean carbon reservoirs by determining the appropriate re-
sponse functions.

7 Outlook

Besides investigating the timescale dependence of airborne
fraction, our study also demonstrated for MPI-ESM the pre-
dictive power of the generalized framework (see Sect. 3).
This demonstration indicates that this framework may be
invoked also to tackle other problems involving time-
dependent components of the climate–carbon system. Di-
rectly related to the airborne fraction is the transient climate
response to cumulative emissions (TCRE), which quantifies
the change in global mean temperature in response to cumu-
lative emissions (Ciais et al., 2013). As recognized by Gre-
gory et al. (2009) and Jones and Friedlingstein (2020), the
TCRE can be investigated using the standard climate–carbon
feedback framework by means of airborne fraction and the
global temperature sensitivity to CO2. We believe this ex-
tends to the generalized framework investigated here – note
that although we take separate temperature sensitivities for
land and ocean, sensitivities defined for a single global tem-
perature can be easily obtained from them (see Appendix G).
Jones and Friedlingstein (2020) in particular quantified the
contribution of the spread in each sensitivity in Friedling-
stein’s framework to the spread in TCRE, finding in their
multi-model ensemble that the spread in the β(L) sensitiv-
ity has the second largest contribution, smaller only than
that from the spread in the α sensitivity (see their Fig. 4).
It would be interesting to check this finding in the gener-
alized framework employed here, where the additional com-
plications arising from the scenario dependence of Friedling-
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stein’s framework are absent. Further, the generalized frame-
work could be used to study how the TCRE is determined by
contributions from the different climate–carbon-cycle feed-
backs at different timescales. Such analysis could lead to a
better understanding of the dynamics behind this metric.

Furthermore, the generalized framework may be invoked
to investigate the contribution of the different feedbacks to
committed climate change, where one is interested in under-
standing the behaviour of the system once atmospheric CO2
stabilizes or emissions cease (Wetherald et al., 2001; Meehl
et al., 2005; Wigley, 2005; Plattner et al., 2008; Maurit-
sen and Pincus, 2017; MacDougall et al., 2020). Also, since
the generalized framework gives a consistent formalism for
quantifying climate–carbon-cycle feedbacks, it may be pos-
sible to apply it to study climate–carbon-cycle feedbacks and
physical climate feedbacks in a consistent unified framework
(Gregory et al., 2009; Williams et al., 2019; Goodwin et al.,
2019).

One aspect emphasized throughout this study is that the
generalized framework is valid only for weak perturbations.
In fact, we have found in application to the MPI-ESM that
the linear regime extends only up to about 100 ppm atmo-
spheric CO2 increase beyond the pre-industrial level, i.e. up
to a value of about 380 ppm. This perturbation level was
reached already around 2005 (Dlugokencky and Tans, 2023),
so this linear framework cannot be employed to study future
climate change. But gaining understanding of the large-scale
dynamics and the underlying memory structure of the cou-
pled climate–carbon-cycle system should be easier in the lin-
ear regime where complications from non-linearities that are
expected to get increasingly important during future climate
change are absent. Given the promising results obtained here
and the potential applications outlined above, we believe that
the generalized framework is thus the right tool for such in-
vestigations. But in principle the Volterra expansion under-
lying the generalized framework can be extended beyond the
linear term (Ruelle, 1998; Lucarini, 2009), so one could also
think of a non-linear generalized feedback formalism appli-
cable to near-future climate change (Roe, 2009). For such a
research program it would be useful to have simulations with
a better signal-to-noise ratio to recover the response func-
tions. In the present study we used published 1 % simula-
tions from C4MIP, but as we showed in Torres Mendonça
et al. (2021a, b) simulations forced by a step-function CO2
rise would be more suitable for their recovery. Therefore it
could be an idea for a future C4MIP protocol to switch to
such simulations.

Finally it may be noted that our study is an example for
the application of linear response theory – known from sta-
tistical mechanics (Kubo et al., 2012) – to a dissipative sys-
tem (Lucarini et al., 2014), namely to the global carbon cy-
cle. Recently it has been noted that the RFI method underly-
ing our recovery of the generalized sensitivities is limited in
scope because it assumes the absence of an imaginary part of
the eigenvalues of the evolution operator (Santos Gutiérrez

and Lucarini, 2022). In the case that some eigenvalues have
a non-zero imaginary part, the system contains internal os-
cillatory modes. But this is hardly believable to be true for
the carbon cycle at the timescales from 1 year up to a century
considered in the present study. While the intra-annual oscil-
lations seen, for example, in atmospheric CO2 are caused ex-
ternally by the effect of the seasonal changes in insolation on
climate and photosynthesis, ecological communities in the
ocean and on land may in principle be capable of oscilla-
tory behaviour in their population dynamics at multi-annual
scales (see e.g. Murray, 1993). But there is no evidence that
such processes may be relevant at global scale. In contrast
to the carbon cycle, the climate system is known to have in-
ternal oscillatory modes (e.g. ENSO and North Atlantic Os-
cillation). Currently it is unclear how one could account for
non-zero imaginary parts of the eigenvalues in the recovery
of linear response functions from data; the RFI method gains
part of its simplicity from the particular assumption of non-
complex eigenvalues. To this extent, the carbon cycle seems
to be that part of the Earth system to which linear response
theory may be applied most easily.

Appendix A: Calculation of generalized sensitivities for
the MPI-ESM

This appendix complements the results from Torres Men-
donça et al. (2021b) to derive for the MPI-ESM all general-
ized sensitivities. The results from this appendix are needed
for (i) testing the predictive power of the generalized α–β–
γ framework in Sect. 3, (ii) identifying the best data pre-
processing techniques to optimally recover the generalized
sensitivities for the investigation of the feedbacks and of air-
borne fraction in CMIP5 models in Sect. 4, and (iii) obtaining
an estimate of the linear regime for which the generalized α–
β–γ framework is valid.

Since the land carbon sensitivities χ (L)β and χ (L)γ were al-
ready derived in Torres Mendonça et al. (2021b), here we
derive the remaining generalized sensitivities for ocean car-
bon and land and ocean temperature χ (O)β , χ (O)γ , χ (L)α , and

χ
(O)
α (see Sect. 2). We recover these sensitivities by the RFI

method (Torres Mendonça et al., 2021a) using data taken
from standard C4MIP 1 % experiments (see Table A1). To
obtain the generalized sensitivities with the best possible
quality and also estimate the linear regime for which the gen-
eralized α–β–γ framework is valid, following Torres Men-
donça et al. (2021b) we proceed in three steps:

1. Select a technique to pre-transform the data to account
for known non-linearities in the response. Accounting
for these non-linearities allows for recovering the gen-
eralized sensitivity from experiments with higher per-
turbation strengths and thus higher signal-to-noise ratio,
which improves the quality of the results.
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2. Determine the maximum forcing strength for which no
strong non-linearities are present in the response. This
gives the best trade-off between signal-to-noise ratio
and non-linearity for a particular pre-transformed re-
sponse data, thereby further improving the quality of the
recovery.

3. Calculate the linear regime of the response, i.e. the
range of forcing strengths for which the generalized sen-
sitivity can be used to predict the response of the system.
By analysing this linear regime for all generalized sen-
sitivities we will be able to determine the overall linear
regime for which the generalized α–β–γ framework as
a whole can predict the dynamics of the coupled global
carbon cycle accounting for all climate–carbon-cycle
feedbacks.

The final result of this analysis is summarized in Table A2
in Sect. A6. The results for the best pre-transformation tech-
nique and maximum forcing strength for the recovery of the
MPI-ESM sensitivities are used to derive the generalized sen-
sitivities for all CMIP5 models in Sect. 4.

A1 Procedure to analyse the recovery of the
generalized sensitivities

To perform the analysis described in the three steps above we
employ a simple procedure introduced in Torres Mendonça
et al. (2021b). The idea behind the procedure can be under-
stood as follows. First, using the RFI method (Torres Men-
donça et al., 2021a), we recover the generalized sensitivity
taking pre-transformed data from increasingly longer time
periods of the 1 % experiment. For each time period, we em-
ploy the recovered generalized sensitivity to predict the re-
sponse of additional 0.5 % and 0.75 % experiments covering
that same time period (for a description of the experiments
see Table A1). Then, we measure the quality of the recovery
of the generalized sensitivity by the quality of the prediction
of the responses for these additional simulations. The quality
of the prediction is quantified by the (dimensionless) predic-
tion error:

εk :=
||1Y k −χ ?1f k||

||1Y k||
, (A1)

where χ ?1f k gives the predicted values, ? stands in short
for the convolution operation, 1Y k and 1f k are the re-
sponse and the perturbation in experiment “k”, and χ is the
response function recovered from the 1 % experiment. Be-
cause in the 1 % experiment the perturbation strength in-
creases with time, also the signal-to-noise ratio of the data in-
creases. On the other hand, higher perturbation strengths in-
crease non-linearities. This results in the following trade-off:
while a higher signal-to-noise ratio results in a recovery with
better quality, larger non-linearities deteriorate the quality of
the recovery. From this trade-off, by analysing the prediction

error (A1) for different perturbation strengths of the 1 % ex-
periment and also for different data pre-transformation tech-
niques, one can (1) select the best pre-transformation tech-
nique for the recovery of the response function, (2) deter-
mine the maximum forcing strength for which the response
function can be optimally recovered, and (3) estimate the lin-
ear regime of the response. For a more detailed description of
this procedure please refer to Torres Mendonça et al. (2021b).

A2 Generalized sensitivity χ (O)
β

Pre-transformation techniques to recover χ (O)
β

Similarly to Torres Mendonça et al. (2021b), we recover
χ
(O)
β (t) employing the RFI method in combination with two

techniques. The first technique consists of simply taking
1c(t) as perturbation and deriving χ (O)β (t) from

1C
bgc
O (t)=

t∫
0

χ
(O)
β (t − s)1c(s)ds, (A2)

where1Cbgc
O (t) is the ocean carbon response in the bgc setup

(see Table A1). Because we directly take1c(t) for the recov-
ery, we call this the no-transform technique.

Since Eq. (A2) is the equation employed in the generalized
framework to describe the ocean biogeochemical response
(compare Eq. 3), from this no-transform technique we will
also obtain an estimate of the range of CO2 perturbation
strengths for which this response can be considered linear.
This estimate is needed to address the question of what the
linear regime is for which the generalized α–β–γ framework
is valid in the MPI-ESM.

In the second technique, we consider the logarithm of c as
perturbation and derive χ (O)β (t) from

1C
bgc
O (t)=

t∫
0

χ
(O)
β,ln(t − s)cPI ln

c(s)

cPI
ds, (A3)

where cPI is the pre-industrial value for atmospheric CO2.
Because we take instead of c its logarithm, we call this the
log-transform technique.

This log-transform technique is inspired by the fact that
non-linearities in the ocean carbon uptake come mainly from
the dissolution of CO2 in ocean surface water (see e.g. Joos
and Bruno, 1996). Because with accumulation of CO2 in
upper layers of the ocean the ability for further uptake of
CO2 decreases (Hooß et al., 2001), we use a logarithmic rep-
resentation for the perturbation to try to explicitly describe
the non-linearity between CO2 concentration and the carbon
flux into the ocean. As explained in Torres Mendonça et al.
(2021b, Eqs. (16), (18), and (19) in Sect. 4.1), employing
Eq. (A3) has the advantage that χ (O)β,ln(t)= χ

(O)
β (t); i.e. by

deriving χ (O)β,ln(t) from Eq. (A3) one obtains also the desired

χ
(O)
β (t).
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Table A1. C4MIP-type experiments considered in this appendix, following Torres Mendonça et al. (2021a, b). Acronyms “rad” and “bgc”
refer to standard CMIP model setups used to calculate the climate–carbon-cycle sensitivities. In the rad (radiatively coupled) setup, only the
radiation code of the model is affected by changes in atmospheric CO2. This setup is used to calculate χγ and χα . In the bgc (biogeochemi-
cally coupled) setup, only the biogeochemistry of the model is affected by changes in atmospheric CO2. This setup is used to calculate χβ .
In the 1 % fully coupled experiment (used in Appendix F and also for Fig. 4) both the radiation and the biogeochemistry code of the model
are affected by changes in CO2. The standard CMIP experiments’ names are set in brackets.

Type Forcing Description

Percent

0.5 % rad

CO2 is increased from its pre-industrial value at the specified percent rate per year.

0.5 % bgc
0.75 % rad
0.75 % bgc
1 % rad (esmFdbk1)
1 % bgc (esmFixClim1)
1 % fully coupled (1pctCO2)
1.5 % rad
1.5 % bgc
2 % rad
2 % bgc

Step

1.1× CO2 rad

CO2 is abruptly increased from its pre-industrial value by the specified factor.
1.1× CO2 bgc
2× CO2 rad
2× CO2bgc

Control
pre-industrial CO2 is held fixed at its pre-industrial value.
(piControl)

For both techniques χ (O)β (t) is derived enforcing mono-
tonicity by the RFI algorithm (see Fig. 1 in Torres Mendonça
et al., 2021a).

Recovery of χ (O)
β

and linear regime of the
biogeochemical response of ocean carbon

Using the pre-transformation techniques described above, in
the following we recover the generalized sensitivity χ (O)β and
evaluate the quality of the results.

We start by deriving χ (O)β (t) from Eq. (A2) (no-transform
technique) taking data from the 1 % bgc experiment. Follow-
ing the procedure described in Sect. A1, we employ Eq. (A2)
to predict the response from the 0.5 % and 0.75 % bgc ex-
periments (see Table A1). Figure A1a shows the resulting
prediction error (see Eq. A1) for the increasing time period
of the data used to obtain χ (O)β (t) – note that on the x axis the
CO2 forcing strength in the 1 % bgc experiment at the end of
the period is used. Similarly to the biogeochemical response
of land carbon in Torres Mendonça et al. (2021b), minima
are found for final forcing strengths below 100 ppm (about
94 ppm for the 0.75 % and 58 ppm for the 0.5 % bgc exper-
iments), indicating the presence of strong non-linearities for
forcing strengths above this value. Because both minima are
“flat”, i.e. the error does not change substantially for val-
ues around the minima, we take as an estimate of the linear
regime forcing the strengths below the highest minimum –
about 94 ppm in the 0.75 % curve.

To try to improve the quality of the recovery, χ (O)β (t) was
derived as well using the log-transform technique (Eq. A3).
To see whether the quality of the recovery indeed improves,
one must check if Eq. (A3) indeed accounts for some of
the non-linearities in the response. If this is the case, then
Eq. (A3) should predict the 0.5 % and 0.75 % bgc responses
better than Eq. (A2). To check this, we recovered χ (O)β (t) by
this log-transform technique and then employed the recov-
ered χ (O)β (t) in Eq. (A3) to predict these responses. The re-
sulting prediction error is shown in Fig. A1b. Overall the er-
ror is substantially smaller than in Fig. A1a. Minima are still
found but now at values between 100 and 200 ppm and with
smaller optimal errors. In contrast to Fig. A1a, after the min-
ima the error increases only slightly for increasing final forc-
ing strength. Therefore, Eq. (A3) seems to indeed account for
some of the non-linearities in the response. Hence, with this
approach one can derive χ (O)β (t) taking data from the 1 %
bgc experiment until larger perturbation strengths and there-
fore higher signal-to-noise ratios than with the no-transform
technique, making it in principle possible to recover χ (O)β (t)

with better quality.
But despite the overall reduction in the prediction error,

Fig. A1b still shows a slightly increasing trend in the predic-
tion error after the minima, indicating the presence of pos-
sibly non-negligible non-linearities in the response. There-
fore we check whether the log-transform technique indeed
gives a better recovery for χ (O)β (t) by comparing the recov-
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Figure A1. Generalized sensitivity χ (O)β (t) and prediction of responses from additional experiments. (a) Prediction error A1 for χ (O)β (t)

derived with the no-transform technique employing Eq. (A2) for prediction. (b) Prediction error (A1) for χ (O)β (t) derived with the log-

transform employing Eq. A3 for prediction. (c) Response function χ (O)β (t) recovered with the no-transform technique at optimal forcing
strength (1c), log-transform at optimal forcing strength (ln(c), opt. forcing strength), and log-transform at maximal forcing strength (ln(c),
max forcing strength). (d) Prediction of additional experiments taking the “best” recovery of χ (O)β (t) (using the log-transform at optimal

forcing strength) employed in Eq. (A2). (e) Prediction of additional experiments taking the “best” recovery of χ (O)β (t) (using the log-
transform at optimal forcing strength) employed in Eq. (A3). Continuous lines are predictions and dashed lines are simulated responses from
the MPI-ESM. Dots indicate the maximum value for which responses are predictable by Eq. (A2) according to the estimate of the linear
regime (see text). For better visibility of the regions within the linear regime in (c), the responses are shown only for the first 30 years.

ery from this technique with that from the no-transform tech-
nique. Figure A1c shows the response function recovered
with each technique taking data from the 1 % bgc experi-
ment until the optimal final forcing strength (we take 94 ppm
or 30 years of the 1 % bgc experiment for the no-transform
technique and 138 ppm or 50 years of the 1 % bgc experi-
ment for the log-transform technique; the values correspond

to the minima found in the 0.75 % curve, respectively, in
Figs. A1a and b) and the response function recovered with
the log-transform technique but taking data until the maxi-
mal final forcing strength in the 1 % bgc experiment, i.e. the
whole time series (since for those forcing strengths the error
in Fig. A1b is still small). As seen, all recovered response
functions are very similar. This similarity is most likely due
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to the combination of an overall high signal-to-noise ratio of
the ocean biogeochemical response (as indicated by the small
errors even at small perturbation strengths in panels a and b)
and only small contributions from non-linearities when em-
ploying the log-transform technique. This suggests that for
the MPI-ESM χ

(O)
β (t) can be equally well recovered by ei-

ther of the two techniques. Despite this result, we selected the
log-transform technique for deriving χ (O)β (t) in Sects. 3 and 4
because this technique accounts for non-linearities that may
cause a more significant error in the recovery for other mod-
els. But because panel (b) indicates that non-negligible non-
linearities may still remain in the response even when em-
ploying this log-transform (because of the slightly increasing
trend), we choose conservatively to take data only until the
optimal forcing strength (138 ppm or 50 years of the 1 % bgc
experiment) and not the full time series. As suggested by the
small differences between the recoveries for the optimal and
maximal forcing strengths in panel (c), taking data only until
this optimal forcing strength does not significantly hinder the
recovery of timescales on the order of the length of the full
time series.

To obtain evidence that the recovered χ (O)β (t) indeed char-
acterizes the biogeochemical response of the ocean carbon
of the MPI-ESM to any temporal development of sufficiently
weak atmospheric CO2 perturbations, we show how well it
predicts the model response for additional CO2 perturbation
experiments (see Table A1). The prediction is performed by
convoluting the recovery of χ (O)β (t) selected above with the
different CO2 perturbation scenarios first via Eq. (A2), which
is the equation employed in the generalized framework (com-
pare with Eq. 3 in Sect. 2), and then via Eq. (A3) to see if
by this equation the prediction is indeed further improved
for all experiments. The result for the first case is shown in
Fig. A1d. To better visualize the linear regime region where
the approximation works, we show only the first 30 years.
The responses for the 1.5 % and 2 % bgc experiments are
marked with dots where the forcing strength exceeds 94 ppm,
the maximal forcing strength corresponding to the linear
regime estimated from Fig. A1a. As seen, the recovered
χ
(O)
β (t) predicts almost perfectly the response from experi-

ments whose forcing strengths are within the linear regime
estimate, i.e. the 0.5 %, 0.75 %, and 1.1× CO2 bgc experi-
ments. It also predicts with reasonable quality of agreement
the response from the 1.5 % and 2 % bgc experiments for
forcing strengths within the estimated linear regime. As forc-
ing strengths exceed the linear regime, the prediction starts
to deviate from the model response. Likewise, the prediction
fails for the whole 2× CO2 bgc response because its forcing
strength is larger than the linear regime estimate throughout
the whole experiment. These results therefore suggest that
χ
(O)
β (t) indeed characterizes the biogeochemical response of

ocean carbon for any temporal development of atmospheric
CO2, as long as its strength is within the linear regime.

Figure A1e shows the prediction employing Eq. (A3). As
seen, now the predictive power of χ (O)β (t) improves consider-

ably, extending to the whole time series for all experiments.
Some discrepancies are nevertheless encountered, especially
for the last years of the 2× CO2 bgc response. Such discrep-
ancies are probably related to the relatively limited amount
of information that data from 1 % experiments provide to re-
cover response functions, as observed for the land carbon in
Torres Mendonça et al. (2021b).

Despite these discrepancies, overall Fig. A1d and e show
that the recovered χ (O)β (t) predicts the response from differ-
ent experiments with reasonable quality up to certain per-
turbation strengths. Equation (A3) – employed for the pre-
diction in Fig. A1e – demonstrates successful prediction of
the response of the model up to higher perturbation strengths
than Eq. (A2). Therefore, Eq. (A3) is probably more appro-
priate when the aim is to predict the separate biogeochemical
response of the model to prescribed atmospheric CO2 per-
turbations. On the other hand, Eq. (A2) is the equation em-
ployed in the generalized α–β–γ framework (first term on
the right-hand side of Eq. 3). Therefore, when estimating the
linear regime for the application of the generalized α–β–γ
framework one has to consider for the ocean biogeochemical
response the estimate obtained from Eq. (A2), i.e. the linear
regime estimate indicated in panel (a).

The conclusions from this subsection therefore suggest
that the best pre-transformation technique to derive χ (O)β (t)

is the log-transform technique (Eq. A3), taking data until
138 ppm or 50 years of the 1 % bgc experiment, which cor-
responds to the first minimum for the prediction error in
Fig. A1b. In addition, the linear regime for the ocean bio-
geochemical response in the generalized α–β–γ framework
(first term on the right-hand side of Eq. 3) is about 94 ppm,
as estimated from Fig. A1a.

A3 Generalized sensitivity χ (O)γ

Technique to recover χ (O)γ

In this subsection we recover χ (O)γ (t). Since, as will be seen,
no strong non-linearities are present in the response, χ (O)γ (t)

is well recovered without any pre-transformations from

1Crad
O (t)=

t∫
0

χ (O)γ (t − s)1TO(s)ds, (A4)

where1Crad
O (t) is the ocean carbon response in the rad setup.

Because the quality of the recovery depends on the quality of
the estimate of the noise in the data, and this estimate may
be improved by enforcing monotonicity (see Torres Men-
donça et al., 2021a), we assume that χ (O)γ is monotonic and
recover it enforcing monotonicity by the RFI method. An in-
dication of the quality of the recovery will be obtained below
by checking how well the recovered χ (O)γ predicts the model
response in different perturbation experiments.
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Recovery of χ (O)γ and linear regime of the radiative
response of ocean carbon

We start by recovering χ (O)γ (t) from the 1 % rad experiment.
To evaluate the quality of the recovery, following the pro-
cedure from Sect. A1 we employed the recovered χ (O)γ (t)

in Eq. (A4) to predict the 0.5 % and 0.75 % rad responses.
The prediction error is plotted in Fig. A2a as a function of
the final forcing strength in the 1 % rad experiment. As seen,
the error decreases with increasing final forcing strength, in-
dicating that no strong non-linearities are present in the re-
sponse. As a result, the response can be considered linear for
the whole range of forcing strengths in the 1 % rad experi-
ment (temperatures up to around 4 K). Hence we choose to
recover χ (O)γ (t) for the investigation in the main text by tak-
ing data from the full 1 % rad experiment.

The resulting χ (O)γ (t) recovered in this way is shown in
Fig. A2b. The negativity of χ (O)γ (t) reflects the fact that as
temperatures rise, globally the ocean loses carbon to the
atmosphere. This is consistent with the results shown in
Fig. A2c, which shows the model responses from the dif-
ferent rad experiments and the prediction from the recov-
ered χ (O)γ (t). Because in these experiments only the radia-
tive effect of CO2 is active (while the biogeochemical effect
is switched off), temperatures rise, leading to the mentioned
global loss of ocean carbon to the atmosphere reflected by
the negative responses. The quality of agreement between
the model responses and the predictions from χ

(O)
γ (t) sug-

gests that indeed the recovered χ (O)γ (t) characterizes the ra-
diative response of ocean carbon not only for the few per-
turbation experiments considered here but to any temporal
development of weak CO2 perturbations and is therefore a
true property of the MPI-ESM itself.

In summary, since the response can be considered lin-
ear over the whole 1 % rad experiment, we chose to derive
χ
(O)
γ (t) in Sects. 3 and 4 from Eq. (A4) taking data from the

full experiment.

A4 Generalized sensitivities χ (L)α and χ (O)α

Pre-transformation techniques to recover χ (L)α and χ (O)α

Following Sect. A2 we recover χ (L)α (t) and χ (O)α (t) by em-
ploying two different techniques. In the first technique we
recover the sensitivities from Eqs. (4) and (5), i.e. without
any pre-transformation. From this first technique we will also
obtain an estimate of the linear regime for the temperature re-
sponses as described in the generalized α–β–γ framework.

Because CO2 radiative forcing is known to increase log-
arithmically with atmospheric CO2 concentration (Myhre
et al., 1998), we also derive χ (L)α (t) and χ (O)α (t) using a log-

Figure A2. Generalized sensitivity χ (O)γ (t) and prediction of re-
sponses from additional experiments. (a) Prediction error (A1) em-
ploying the recovered χ (O)γ (t) in Eq. (A4). (b) Recovered response

function χ (O)γ (t). (c) Prediction of additional experiments employ-

ing the recovered χ (O)γ (t) in Eq. (A4). Continuous lines are predic-
tions and dashed lines are simulated responses from the MPI-ESM.
For more details see text.
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arithmic pre-transformation:

1TL(t)=

t∫
0

χ
(L)
α,ln(t − s)cPI ln

c(s)

cPI
ds, (A5)

1TO(t)=

t∫
0

χ
(O)
α,ln(t − s)cPI ln

c(s)

cPI
ds. (A6)

As explained in Torres Mendonça et al. (2021b, Sect. 4), the
resulting χ (L)α,ln(t)= χ

(L)
α (t) and χ (O)α,ln(t)= χ

(O)
α (t).

Recovery of χ (L)α , χ (O)α , and linear regime of temperature
responses

We start by recovering χ (L)α (t) and χ (O)α (t) without any pre-
transformation (Eqs. 4 and 5) taking data from the 1 % rad
experiment. As in the previous subsections, to evaluate the
quality of the recoveries we employed them once more in
Eqs. (4) and (5) to predict the responses from the 0.5 % and
0.75 % rad experiments. The prediction error is plotted in
Figs. A3a and A4a. As seen, in both figures the error de-
creases until about 279 ppm, presenting after that in Fig. A3a
a clear increase and in Fig. A4a a slight decrease followed by
an increase for the 0.5 % rad response and an approximately
constant behaviour for the 0.75 % rad response. Therefore
we conservatively estimate the linear regime as perturbation
strengths below 279 ppm for both land and ocean tempera-
ture responses.

To assess whether the log-transform technique (Eqs. A5
and A6) indeed improves the recovery of χ

(L)
α (t) and

χ
(O)
α (t), analogously to Sect. A2 we check whether Eqs. (A5)

and (A6) indeed account for non-linearities in the response.
If this is the case, then Eqs. (A5) and (A6) should pre-
dict the 0.5 % and 0.75 % rad responses better than Eqs. (4)
and (5). To evaluate this, we recovered χ (L)α (t) and χ (O)α (t)

from Eqs. (A5) and (A6) taking data once more from the 1 %
rad experiment and then employed the recovered response
functions in Eqs. (A5) and (A6) to predict the 0.5 % and
0.75 % rad responses. The resulting prediction error is shown
in Figs. A3b and A4b. As seen in both figures, now the pre-
diction error clearly decreases for increasing final forcing
strength, indicating that no strong non-linearities are present
in the response. This clear decreasing trend in the predic-
tion error indicates that the log-transform technique (Eqs. A5
and A6) is indeed more appropriate to recover χ (L)α (t) and
χ
(O)
α (t).
Therefore in Figs. A3c and A4c we show the response

functions recovered with the log-transform technique. Plot-
ted are recoveries by the RFI method both enforcing and
not enforcing monotonicity. As seen, the recoveries obtained
without enforcing monotonicity are approximately mono-
tonic, so differences between the two types of recovery
are small. Hence in the next sections we choose to derive
χ
(L)
α (t) and χ (O)α (t) employing the log-transform and enforc-

ing monotonicity by the RFI method. As already mentioned
above (see also Torres Mendonça et al., 2021a), the advan-
tage of enforcing monotonicity is that one may improve the
noise level estimate used in the RFI method and thereby im-
prove the quality of the recovery.

To obtain evidence that the recovered χ (L)α (t) and χ (O)α (t)

indeed characterize the land and ocean temperature re-
sponses to any temporal development of weak CO2 pertur-
bations, we show how well they predict additional experi-
ments. Following Sect. A2 we first show the predictive power
of χ (L)α (t) and χ (O)α (t) when employed in Eqs. (4) and (5),
i.e. without pre-transformations. In Figs. A3d and A4d we
plot the predictions by Eqs. (4) and (5) taking the recover-
ies selected above (log-transform technique enforcing mono-
tonicity). The responses for the 0.75 %, 1.5 %, and 2 % rad
experiments are marked with dots where the forcing strength
exceeds 279 ppm – the maximal forcing strength correspond-
ing to the linear regime estimated from Figs. A3a and A4a.
As seen, the recovered response functions predict the model
responses with some overestimation but still with reasonable
quality of agreement5 for forcing strengths within the esti-
mated linear regime, i.e. for the entire 1.1× CO2 and 0.5 %
rad experiments and for the 0.75 %, 1.5 %, and 2 % rad ex-
periments for values preceding the dots. For these three lat-
ter experiments predictions start to strongly deviate from the
responses as forcing strengths exceed the estimated linear
regime. Likewise, the predictions fail basically for the whole
2× CO2 rad response because its forcing strength is larger
than the linear regime estimate throughout the whole experi-
ment.

As expected from the known logarithmic relationship be-
tween radiative forcing and CO2 concentration, the predic-
tive power of χ (L)α (t) and χ (O)α (t) improves when employing
Eqs. (A5) and (A6) instead of Eqs. (4) and (5) (see Figs. A3e
and A4e). Almost all responses are well predicted for the
whole time series. The exceptions are the last years of the
1.5 % and 2 % rad responses, which indicates a deviation
from linearity for those levels of perturbation strength.

As in Sect. A2, overall the prediction results suggest that
indeed the recovered response functions characterize the
land and ocean temperature responses to any temporal de-
velopment of atmospheric CO2 up to certain perturbation
strengths. While Eqs. (A5) and (A6) are more appropriate
when the aim is simply to predict model responses because of
their extended predictive power, Eqs. (4) and (5) are the equa-
tions actually employed in the generalized α–β–γ frame-
work, so for the application of the framework one must con-
sider the linear regime of the temperature responses esti-
mated from Figs. A3a and A4a.

5Note that linear response functions characterize only the en-
semble average of the response (see Torres Mendonça et al., 2021a,
Sect. 2), so they cannot predict high-frequency temperature varia-
tions arising from the internal variability in the system.
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Figure A3. Generalized sensitivity χ (O)α (t) and prediction of responses from additional experiments. (a) Prediction error A1 for χ (O)α (t) de-
rived with the no-transform technique employing Eq. (5) for prediction. (b) Prediction error (A1) for χ (O)α (t) derived with the log-transform
employing Eq. (A6) for prediction. (c) Response function χ (O)α (t) recovered with the log-transform both enforcing and not enforcing mono-
tonicity. (d) Prediction of additional experiments taking the “best” recovery of χ (O)α (t) (using the log-transform enforcing monotonicity)
employed in Eq. (5). (e) Prediction of additional experiments taking the “best” recovery of χ (O)α (t) (using the log-transform enforcing mono-
tonicity) employed in Eq. (A6). Thick lines are predictions and thin lines are responses from the MPI-ESM. Dots indicate the maximum
value for which responses are predictable by Eq. (5) according to the estimate of the linear regime. For more details see text.

In summary, the conclusions from this subsection suggest
that the best approach to derive χ (L)α (t) and χ (O)α (t) is the
log-transform technique (Eqs. A5 and A6), taking data from
the full 1 % rad experiment. The linear regime for the land
and ocean temperature responses in the generalized α–β–
γ framework (Eqs. 5 and 4) is about 279 ppm, as estimated
from Figs. A3a and A4a.

A5 Selection of techniques to recover χ (L)γ (t) and
χ
(L)
β
(t)

To recover χ (L)γ (t) and χ (L)β (t) we use the conclusions from
Torres Mendonça et al. (2021b). Because the radiative re-
sponse of land carbon can be considered linear for the whole
range of perturbation strengths in the 1 % rad experiment
(Torres Mendonça et al., 2021b, Sect. 3), χ (L)γ (t) is derived
taking data without any pre-transformation from the full 1 %
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Figure A4. Generalized sensitivity χ (L)α (t) and prediction of responses from additional experiments. (a) Prediction error (A1) for χ (L)α (t) de-
rived with the no-transform technique employing Eq. (4) for prediction. (b) Prediction error (A1) for χ (L)α (t) derived with the log-transform
employing Eq. (A5) for prediction. (c) Response function χ (L)α (t) recovered with the log-transform both enforcing and not enforcing mono-
tonicity. (d) Prediction of additional experiments taking the “best” recovery of χ (L)α (t) (using the log-transform enforcing monotonicity)
employed in Eq. (4). (e) Prediction of additional experiments taking the “best” recovery of χ (L)α (t) (using the log-transform enforcing mono-
tonicity) employed in Eq. (A5). Thick lines are predictions and thin lines are responses from the MPI-ESM. Dots indicate the maximum
value for which responses are predictable by Eq. (4) according to the estimate of the linear regime. For more details see text.

rad experiment by employing

1Crad
L (t)=

t∫
0

χ (L)γ (t − s)1TL(s)ds, (A7)

where 1Crad
L (t) is the land carbon response in the rad setup.

Because the obtained χ (L)γ (t) is monotonic (without enforc-
ing monotonicity), we assume monotonicity when deriving
χ
(L)
γ (t) for all other CMIP5 models so that all generalized

sensitivities are derived enforcing monotonicity by the RFI

method (as mentioned above and explained in Sect. 3.5 of
Torres Mendonça et al., 2021a, this assumption may further
improve the quality of the recovery).

To derive χ (L)β (t), conclusions from Sect. 4 of Torres Men-
donça et al. (2021b) suggest that the best approach is the
NPP-transform technique analysed there: first derive the re-
sponse function χNPP(t) from

1C
bgc
L (t)=

t∫
0

χNPP(t − s)1NPP(s)ds, (A8)
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Table A2. Techniques identified to derive the generalized sensitivities in Sects. 3 and 4 and the linear regime of the responses in the general-
ized framework according to the analyses from Torres Mendonça et al. (2021b) and Appendix A. The column “Pre-transformation technique”
refers to the data pre-transformation that led to the best recovery of the generalized sensitivity. The column “Data length for best technique”
refers to the length of the time series from the 1 % experiment after transformation by the referred technique that was taken to derive the
generalized sensitivity with the best trade-off between signal-to-noise ratio and non-linearities. The column “Linear regime” refers to the
range of forcing strengths for which the response characterized by a particular generalized sensitivity in the generalized framework can be
considered linear (i.e. the linear regime for each term on the right-hand side of Eqs. 2–5). All generalized sensitivities were derived enforcing
monotonicity by the RFI algorithm (Torres Mendonça et al., 2021a).

Sensitivity Pre-transformation Equation Data length for Linear regime Reference
technique best technique

χ
(L)
β NPP-transform (A8) and (A9) 70 years 94 ppm Torres Mendonça et al. (2021b)

χ
(L)
γ No-transform (A7) 140 years at least 6 K Torres Mendonça et al. (2021b)
χ
(L)
α Log-transform (A5) 140 years 279 ppm This study
χ
(O)
β Log-transform (A3) 50 years 94 ppm This study

χ
(O)
γ No-transform (A4) 140 years at least 4 K This study
χ
(O)
α Log-transform (A6) 140 years 279 ppm This study

Overall linear regime for the generalized α–β–γ framework: 94 ppm.

and then transform the obtained χNPP(t) into the desired
χ
(L)
β (t) via

χ
(L)
β (t)= χNPP(t)

∂NPP
∂c

∣∣∣
c=cPI

, (A9)

where cPI is the pre-industrial value for atmospheric CO2.
Because the prediction error plot for χNPP(t) presents min-
ima (see Fig. 6c in Torres Mendonça et al., 2021b), follow-
ing the reasoning from Sect. A2 we choose conservatively to
take data only until the first minimum, which corresponds to
279 ppm or 70 years of the 1 % bgc experiment.

A6 Summary of best techniques for recovery of the
generalized sensitivities

With the results presented in the preceding subsections we
can now summarize the best techniques identified to recover
the generalized sensitivities for our study. A general sum-
mary of the identified techniques is given in Table A2. The
table indicates which is (1) the best pre-transformation tech-
nique to derive each generalized sensitivity, (2) the respective
equation used for the derivation, (3) the optimal time series
length taken for recovery using the best pre-transformation
technique, and (4) the linear regime of the respective re-
sponse in the generalized α–β–γ framework (i.e. the linear
regime for each term on the right-hand side of Eqs. 2–5).

Because the linear regime for the biogeochemical response
of land and ocean carbon is restricted to forcing strengths
even smaller than that for temperature responses (4) and (5)
– and obviously also smaller than that for the radiative re-
sponses of land and ocean carbon, which are linear for the
whole 1 % rad experiment, as seen in Torres Mendonça et al.
(2021b) and Sect. A3 – the applicability of the generalized

α–β–γ framework as a whole is limited by the linear regime
of the biogeochemical responses, which is estimated as forc-
ing strengths up to about 94 ppm.

With this subsection we complete the recovery of all gen-
eralized sensitivities for the MPI-ESM. The approaches se-
lected here are employed to recover the generalized sensitiv-
ities for all CMIP5 models in the main text.

Appendix B: Calculation of the timescale-dependent
airborne fraction from emission-driven simulations

In this appendix we explain in detail how we derived the
airborne fraction Ã(p) from emission-driven simulations for
the demonstration of Sect. 3. For the derivation we followed
the three steps described in Sect. 3.1.

In the first step, we recovered χζ (t) taking data from
an impulse-emission experiment. In this experiment, start-
ing from a standard pre-industrial control run (see “esmCon-
trol” in Taylor et al., 2012), we perturbed the system by a
small impulse in emissions of 100 Pg C yr−1 (as in Joos et al.,
2013) during the first year. Therefore we name this experi-
ment Impulse100. The advantage of using data from this type
of experiment is that the impulse response is from a practi-
cal point of view directly the desired linear response func-
tion χζ (t), so errors from the ill-posedness of Eq. (16) (Tor-
res Mendonça et al., 2021a) can be avoided. Nevertheless, the
disadvantage is that the small impulse perturbation strength
leads to a response with poor signal-to-noise ratio, which de-
teriorates the recovery of χζ (t). Therefore, instead of taking
data from only one realization of the experiment, we per-
formed an ensemble of five realizations with initial condi-
tions taken 100 years apart from one another (as in Lembo
et al., 2020) and then took the data from the ensemble av-
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Figure B1. Response function χζ (t) recovered from impulse-emission experiment Impulse100. (a) Impulse response and fit by χζ (t);
(b) χζ (t) recovered with and without enforcing the constraint χζ (0)= 1; (c) prediction of different experiments employing the recovered
χζ (t) in Eq. (16). For more details see text.

erage of the response. This procedure is in agreement with
linear response theory because strictly the linear response
function characterizes only the ensemble average of the re-
sponse (e.g. Torres Mendonça et al., 2021a). Taking the data
from the ensemble average we employed the RFI method
to recover χζ (t). Although in principle a special method is
not needed to recover χζ (t) because the impulse response is
directly the linear response function, by employing the RFI
method we obtain not only χζ (t) but also the spectrum of
internal timescales of the response (Torres Mendonça et al.,
2021a), from which the Laplace transform χ̃ζ (p) in Eq. (18)
can be analytically calculated.

The resulting impulse response after taking the ensem-
ble average and the fit by the recovered χζ (t) are shown in
Fig. B1a. One sees that the experiment is not a perfect im-
pulse experiment because the impulse extends even beyond
the first year. This may be related to internal interpolations
in the model when computing the emissions within the time
interval of 1 year. Such a problem leads to an error in the
estimation of χζ (0), which must be 1 by conservation of
mass: for an impulse in emissions E(t)= aδ(t), it must be
that at t = 0 the impulse response 1cδ(0)= aχζ (0)= a be-
cause land carbon and ocean carbon have no time to react;
hence χζ (0)= 1. To avoid this error, we recalculated χζ (t)
using the same regularization parameter obtained from the
RFI method but employing a Lagrange multiplier to account
for this constraint (see Appendix C). The result for both re-
coveries is shown in Fig. B1b. The response functions are
almost identical except for χζ (0), which is corrected by en-
forcing the constraint χζ (0)= 1.

To make sure that the impulse response is within the linear
regime and therefore that the recovery of χζ (t) is not spoiled
by non-linearities, in line with the procedure in Sect. A, we
check the quality of the recovered χζ (t) by employing it to
predict additional emission-driven experiments via Eq. (16).
For the additional experiments we chose step-emission ex-
periments where starting from the control run the system
is perturbed by abrupt, constant emissions of 1.43, 2.86,
and 5.71 Pg C yr−1, which by the end of the simulation re-

sult in cumulative emissions of 200, 400, and 800 Pg C. For
this reason we name these experiments Step200, Step400, and
Step800, respectively. The quality of the prediction is shown
in Fig. B1c. As seen, the obtained χζ (t) can predict almost all
responses with reasonable accuracy for the whole time series.
The only exception is over the last years of the Step800 exper-
iment. The discrepancy encountered there is nevertheless in
agreement with results from Torres Mendonça et al. (2021b)
and from Appendix A that show that strong non-linear con-
tributions to the biogeochemical response of land and ocean
carbon start to arise at about 94 ppm. As a consequence, the
identified discrepancy is not a result of non-linearities spoil-
ing the recovery of χζ (t) but rather a result of non-linearities
that arise in the response of the Step800 experiment, which
can therefore not be completely predicted by χζ (t).

Hence, overall these results suggest that the recovery of
χζ (t) is not spoiled by non-linearities and is thus a good can-
didate to be used to compute the airborne fraction. Therefore
χζ (t)was Laplace-transformed and the airborne fraction was
finally derived by applying Eq. (18).

Further evidence of the reliability of our numerics is ob-
tained by examining the agreement of the resulting airborne
fraction (Fig. 1) with theoretical expectations: Ã(p) indeed
converges to 1 for 1/p→ 0, as expected by Eq. (19), and
0≤ Ã(p)≤ 1 for all timescales 1/p, as expected by the con-
siderations of Appendix D.

Appendix C: Calculation of χζ (t) enforcing the
constraint χζ (0)= 1

This appendix complements Appendix B to show how χζ (t)

is calculated by the RFI method enforcing in addition the
theoretically exact relation χζ (0)= 1. The RFI method re-
covers a response function χ(t) employing the Tikhonov–
Phillips regularization, with the regularization parameter λ
determined from an estimate of the noise in the data (Tor-
res Mendonça et al., 2021a). But the RFI method does not
account for the desired constraint χζ (0)= 1. Therefore to de-
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rive χζ (t) enforcing this constraint we proceed in two steps.
First, we derive χζ (t) by the RFI method without the con-
straint, obtaining thereby the value of λ. Then, we use the
obtained λ to derive χζ (t) employing the same regulariza-
tion procedure from the RFI method but accounting in addi-
tion for the constraint χζ (0)= 1 by the method of Lagrange
multipliers (Sundaram et al., 1996; Selesnick, 2013).

After obtaining λ by the RFI method in the first step, the
derivation of χζ (t) in the second step proceeds as follows.
As in the RFI method, we assume χζ (t) to be given by

χζ (t)=

∞∫
−∞

q(τ)e−t/τdlog10τ, (C1)

where q(τ) is the spectrum of internal timescales. By plug-
ging Eq. (C1) into Eq. (16) and prescribing a distribution of
timescales τ , the problem of finding χζ (t) boils down to find-
ing the spectrum q(τ). Once q(τ) is derived, χζ (t) follows
from Eq. (C1). For more details please refer to Torres Men-
donça et al. (2021a).

To understand how the constraint can be enforced, one has
to consider

χζ (0)=

∞∫
−∞

q(τ)dlog10τ. (C2)

Equation (C2) can be discretized using the prescribed dis-
tribution of timescales equally spaced at a logarithmic scale
between maximum and minimum values τmax and τmin (Tor-
res Mendonça et al., 2021a). This discretization gives

χζ (0)≈1log10τ

M−1∑
j=0

qj , (C3)

where M is the number of qj terms and 1log10τ :=

(log10τmax− log10τmin)/M is the spacing between the
timescales. Following Torres Mendonça et al. (2021a,
Sect. 4.2), we take M = 30, τmin = 0.1, and τmax = 105. Us-
ing Eq. (C3) one can write the desired constraint χζ (0)= 1
in a discrete formulation as

Cq = 1, (C4)

where C is the row matrix C := [1,1, . . .,1]1log10τ .
Knowing how to discretely account for the desired con-

straint the spectrum q can now be derived. The procedure
consists of minimizing the standard cost function employed
in the Tikhonov–Phillips regularization (see e.g. Hansen,
2010, p. 60), which is also done in the RFI method but now
subject to the constraint (C4); i.e.

min
qλ

(
||1Y −Aqλ||

2
+ λ||qλ||

2
)

with Cqλ = 1, (C5)

where || · || denotes the Euclidean norm, qλ is the spectrum
vector recovered by regularization, 1Y is the response data

vector, A is the matrix obtained after discretization (Tor-
res Mendonça et al., 2021a, Sect. 3.2), and λ is the regular-
ization parameter. The solution to Eq. (C5) can be obtained
by the method of Lagrange multipliers (Selesnick, 2013). We
first define the Lagrangian:

L(qλ,µ) := ||1Y −Aqλ||
2
+λ||qλ||

2
+µ

(
Cqλ− 1

)
, (C6)

where µ is the Lagrange multiplier. Taking ∂L/∂qλ = 0 and
∂L/∂µ= 0 and solving the resulting system for qλ leads to

qλ= (A
T A+ λI)−1(AT1Y −CT [C(AT A+ λI)−1CT ]−1

[C(ATA+ λI)−1AT1Y − 1]), (C7)

where I is the identity matrix. Since λ was already obtained
in the first step, Eq. (C7) gives a discrete approximation to
the spectrum q(τ). Plugging this spectrum in a discrete form
of Eq. (C1) (for discretization details see Torres Mendonça
et al., 2021a, Appendix B), we obtain χζ (t).

Appendix D: Non-negative and monotonically
decreasing χζ (t) implies 0≤ Ã(p)≤ 1

The response function χζ (t) defined by Eq. (16) is in terms
of Laplace transforms closely related to the generalized air-
borne fraction Ã(p) defined by Eq. (18). In this appendix
it is shown that if χζ (t) is non-negative and monotonically
decreasing for all times t (as suggested by the results in
Appendix B), then 0≤ Ã(p)≤ 1 for all timescales 1/p,
as claimed in Appendix B. This follows from the separate
proofs of the two inequalities involved in this claim:

– Show χζ (t)≥ 0⇒ Ã(p)≥ 0: by Eq. (18) one immedi-
ately finds

Ã(p)= p

∞∫
0

χζ (t)e
−ptdt ≥ 0, (D1)

where for the inequality χζ (t)≥ 0 was used.

– Show dχζ (t)/dt ≤ 0⇒ Ã(p)≤ 1: as a prerequisite for
this proof one needs to know that

Ã(p)= χ̃ ′ζ (p)+ 1, (D2)

where the apostrophe notation is used for time deriva-
tives. This relation follows by (i) noting that by the
general rules of Laplace transforms χ̃ ′ζ (p)= pχ̃ζ (p)−
χζ (0), (ii) using χζ (0)= 1 (see Appendix B), and
(iii) inserting Ã(p)= pχ̃ζ (p) (see Eq. 18). The rest of
the proof is obtained from noting that

χ̃ ′ζ (p)=

∞∫
0

χ ′ζ (t)e
−ptdt ≤ 0 (D3)

because χ ′ζ (t)≤ 0 is assumed. Using this in Eq. (D2)
completes the proof.
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Appendix E: Calculation of uncertainty range in α–β–γ
sensitivities

When calculating the α–β–γ sensitivities in Fig. 3, we take
into account the uncertainty in the choice of the initial values
in Eqs. (20)–(22):

β(X)(t) :=
1C

bgc
X (t)

1c(t)
:=
C

bgc
X (t)−C0

X

c(t)− c0 , (E1)

γ (X)(t) :=
1Crad

X (t)

1T rad
X (t)

:=
Crad
X (t)−C0

X

T rad
X (t)− T 0

X

, (E2)

α(X)(t) :=
1T rad

X (t)

1c(t)
:=
T rad
X (t)− T 0

X

c(t)− c0 , (E3)

where the initial values C0
X, T 0

X, and c0 are taken as the mean
from the control simulation with uncertainty (standard devia-
tion) σC0

X
, σT 0

X
, and σc0 = 0 (because in the considered simu-

lations atmospheric CO2 is prescribed). Assuming small, in-
dependent uncertainties, they propagate to the sensitivities,
following Barlow (1989):

σβ(X)(t)=±
1

1c(t)
σC0

X
, (E4)

σγ (X)(t)=±
1

1T rad
X (t)

√√√√(1Crad
X (t)σT 0

X

1T rad
X (t)

)2

+ σ 2
C0
X

, (E5)

σα(X)(t)=±
1

1c(t)
σT 0

X
. (E6)

Appendix F: Predicting standard airborne fraction
AF(t) from the generalized airborne fraction A(t)

In the present appendix we demonstrate exemplarily for
MPI-ESM that from the generalized airborne fraction A(t)
one can indeed predict, for sufficiently weak emissions,
the airborne fraction in its standard definition AF(t), as
claimed in Sect. 6. For this demonstration we take data
from two perturbation experiments performed with the MPI-
ESM: the Step400 experiment – an emission-driven experi-
ment where starting from the control run a constant amount
of 2.86 Pg C yr−1 is emitted every year until cumulative
emissions reach 400 Pg C (see Appendix B) – and the 1 %
fully coupled experiment – a concentration-driven experi-
ment where starting from the control run the atmospheric
CO2 concentration is increased by 1 % every year (see Ta-
ble A1). The demonstration is carried out by first comput-
ing the true standard airborne fraction AF(t) via its defini-
tion (12) and then comparing it with its prediction obtained
from the generalized airborne fraction A(t) via Eqs. (13)
and (12).

To compute the true standard airborne fraction AF(t) we
directly evaluate the defining Eq. (12) by using dCA/dt and
E(t) as obtained from the two experiments. The accumula-

tion rate dCA/dt is for both experiments numerically calcu-
lated from the atmospheric carbon content CA(t). Concern-
ing the emissions E(t), since in the Step400 experiment they
are prescribed, for this experiment we take them as constant
and equal to 2.86 Pg C yr−1. For the 1 % fully coupled exper-
iment the situation is different: here atmospheric CO2 con-
centrations – not emissions – are prescribed; therefore for
this experiment we infer the emissions that would be needed
to produce the respective changes in atmospheric CO2 from
the evolution of carbon content in the atmosphere, land, and
ocean via the carbon balance Eq. (1). Results for the true
AF(t) are shown in Fig. F1.

To predict now the standard airborne fraction AF(t) from
the generalized airborne fractionA(t)we proceed as follows.
First we compute A(t) by Laplace inverting relation (D2) so
that

A(t)= δ(t)+
dχζ
dt
, (F1)

where χζ (t)was already obtained in Appendix B and we take
for the numerics the Kronecker delta δi instead of δ(t). We
then plug the resulting A(t) and the emissions E(t) – ob-
tained as described above – into Eq. (13) to calculate dCA/dt .
The standard airborne fraction AF(t) is then finally predicted
by plugging the resulting dCA/dt , once more together with
the emissions E(t), now into Eq. (12).

The results are compared in Fig. F1. As seen in Fig. F1a,
because in the Step400 experiment atmospheric CO2 changes
are below our estimated linear regime of 94 ppm (see Ta-
ble A2), there the predicted standard airborne fraction fits
the true standard airborne fraction over the whole simula-
tion period. The large variability in the true airborne fraction
arises from the ill-posedness (e.g. Torres Mendonça et al.,
2021a) of the numerical differentiation needed to compute
dCA/dt , which substantially amplifies the noise from the al-
ready noisy response of CA(t) that results from the small
emissions forcing strength of this experiment.

Such large variability in AF(t) is not present in the 1 %
fully coupled experiment, as shown by Fig. F1b. Here, the
larger signal-to-noise ratio of dCA/dt allows for a better
quality of fit of the prediction from the generalized airborne
fraction. But since in this experiment changes in atmospheric
CO2 get larger than our linear regime estimate, the prediction
works only for that first part of the time series where atmo-
spheric CO2 concentrations are sufficiently small.
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Figure F1. Prediction of standard airborne fraction AF(t) from generalized airborne fraction A(t) for the (a) Step400 experiment and (b) 1 %
fully coupled experiment. Vertical dashed line in (b) indicates the estimated linear regime of 94 ppm (Table A2). For more details see text.

Appendix G: Transforming sensitivities defined for
separate land and ocean temperatures to sensitivities
defined for a single global temperature

In this appendix we show how from α and γ sensitivities
defined using separate land and ocean temperatures one can
compute their analogues defined by means of a single global
temperature, as claimed in the Outlook (Sect. 7). Global tem-
perature in a model is obtained by

1T =

∑
iAi1Ti∑
iAi

=

∑
i∈LAi1Ti +

∑
i∈OAi1Ti∑

i∈LAi +
∑
i∈OAi

=

∑
i∈LAi1Ti∑
i∈LAi

∑
i∈LAi∑
iAi

+

∑
i∈OAi1Ti∑
i∈OAi

∑
i∈OAi∑
iAi

=:1TLFL+1TOFO, (G1)

where Ai and 1Ti are the area and temperature of grid box
i, i ∈ L and i ∈ O indicate sum over grid boxes on land and
ocean, 1TL and 1TO are land and ocean temperatures, and
FL and FO are the fractions of global area occupied by land
and ocean.

Using a single global temperature, α is defined by

1T = α1c. (G2)

Using separate land and ocean temperatures one defines

1TL = αL1c, (G3)
1TO = αO1c. (G4)

Plugging Eqs. (G1), (G3), and (G4) into (G2) gives

α = αLFL+αOFO. (G5)

Taking a single global temperature, γ is defined by

1Crad
X = γX1T, (G6)

where X denotes the carbon response over land (L) or ocean
(O).

Using separate land and ocean temperatures, γ can be de-
fined by

1Crad
X = γ

∗

X1TX. (G7)

Inserting Eqs. (G3), (G4), (G6), and (G1) into (G7) gives

γX =
γ ∗XαX

FLαL+FOαO
. (G8)

Since the Laplace-transformed formulation of the general-
ized framework is completely analogous to that of the orig-
inal α–β–γ framework, Eqs. (G5) and (G8) extend straight-
forwardly to the respective generalized sensitivities:

χ̃α = χ̃
(L)
α FL+ χ̃

(O)
α FO, (G9)

χ̃ (X)γ =
χ̃
(X,∗)
γ χ̃

(X)
α

FLχ̃
(L)
α +FOχ̃

(O)
α

. (G10)
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