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S1 Trend correction GOME-2A SIF over northern China

To assess the stability of GOME-2A SIF (SIFTER v2) over north-central China, we used SIF time series over the nearby
Gobi Desert (95.5-105.5° E, 40.5-44° N). Figure S1 shows the monthly GOME-2A SIF over the Gobi Desert from 2007 to
2018. The colors indicate the respective level-1 processor version over time. Over the early period, 2007-2013, a gradual trend
is noticed from around 2011. The striking positive shift in baseline SIF levels from July 2013 relates to the smaller range
in viewing zenith angle (< 35°) following the swath reduction on 15 July 2013. From June 2014, the higher baseline trend
appears to be broken for a period of 5-6 months. Figure S2 shows a similar structural break occurring over Sahara and 30—40°
N ocean SIF pixels. The timing of the sudden drop in SIF signal coincides with the change of level-1 processor version 5.3
to 6.0 (18-05-2014) (Fig. S1), and thus suggests a significant influence of these changes on SIF. For our analysis, we solely
use the GOME-2A data from the pre-2013 period to control the record’s stability. Reprocessing the SIFTER v2 SIF data using
level-1 data based on the recent processor version 6.3 that covers the entire data record will eliminate the uncertainty related to
level-1 processor changes throughout the data record.
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Figure S1. Monthly SIF retrieved from GOME-2A measurements as a function of time over the Gobi Desert (95.5-105.5 °E, 40.5-44 °N).
The colored blocks indicate the used level-1 processor version (v5.3, v6.0, v6.1 and v6.2) over time. The record can be seen as coming from
two different sensors, with the early and late period differentiated by timing of the swath reduction at 15-06-2013. The early period and late
period are, respectively, indicated by the blue and red dotted blocks.
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Figure S2. Monthly SIF retrieved from GOME-2A measurements as a function of time over the ocean (30 to 40° N) and the Sahara Desert
(-8° W to 29° E, 15 to 30° N) over the late sensor period after the swath reduction at 15-06-2013. The colored blocks indicate the used

level-1 processor version (v5.3, v6.0, v6.1 and v6.2) over time.

To correct for the noticed gradual trend over the early period, a multiplicative correction factor is applied. Gerlein-Safdi
et al. (2020) used latitudinal average SIF to obtain multiplicative correction factors to correct for GOME-2A SIF over northern
China (30—40° N). However, the SIF dynamics over the 30-40° N latitudinal band differ strongly over longitude: with higher
SIF values over the west and lower over the east (e.g. north-central China). Furthermore, SIF cells that cover vegetational areas
could represent the imprint of climatic variation and thus cause biases within the correction factor. The average of SIF over the
Gobi desert (free of vegetation) area is expected to stay stable over time and not to be influenced by factors such as climatic
fluctuation.

The year-specific correction factor is determined over the Gobi Desert area and corrects for the deviation in yearly SIF at
year t with respect to the yearly SIF average over 2007 to 2012 the period of the reference spectra used in the SIFTER v2

retrieval. Therefore, the corrected SIF, F¢ ;) (¢), over cell i and year ¢ is calculated as:

FGobi

FGobi 00712 (%)

Fei(t) = Fi(?) (1)

where Fgobico7-12) Tepresents the 2007-2012 average of SIF over the Gobi Desert and Fipi (t) the averaged SIF over the Gobi
Desert in year t. Yearly SIF over the Gobi Desert is used to determine the correction to limit the uncertainty coming from the
low signal levels over the area. Correction values deviate between 0.85 and 1.12. Figure S3 shows the correlation between
FluxSat GPP with uncorrected and corrected GOME-2A SIF over our study region in China.
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Figure S3. (a) Correlation between FluxSat GPP and SIF and (b) correlation between FluxSat GPP and corrected SIF over the China ROI
area (104.5°-112° E, 31°-38° N). The data points present SIF and GPP between 2007 and 2012 and over the summer period (June—August).

S2 Relationships between TROPOMI SIF and GPP over Eucalyptus forest

The SIF-GPP relationship over Eucalyptus forest was obtained using TROPOMI SIF observations and GPP estimates from the
eddy-covariance flux site in Tumbarumba (AU-TUM: 35.66° N, 148.15° E). We also used FluxSat GPP to infer an alternative
SIF-GPP relationship over the Eucalyptus forest at Tumbarumba. To account for the smaller footprint of the eddy-covariance
measurements, typically in the range of 100-1000 m, we selected TROPOMI SIF observations within a distance of 7 km of
their center from the Tumbarumba site. The 0.05° x0.05° FluxSat GPP cells, 8 in total, were selected to match the coverage of
the selected TROPOMI SIF observations covering the flux tower.

SIF and the FluxSat GPP data have been co-sampled such that observations correspond to the same dates. The temporal
co-sampling of SIF and GPP is of importance due to the (mostly) clear-sky bias of SIF observations from satellites, while GPP
is measured under various conditions. Previous studies (e.g. Yang et al., 2015) shown different correlations between SIF and
GPP under direct and diffuse light conditions. Therefore, it should be noted that the obtained relationship between SIF and
GPP is specific for mostly clear-sky (direct light) conditions.

We inferred the empirical relationships from fitting instantaneous (TROPOMI overpass-time) SIF and daily-aggregated GPP
data. In contrast to strategies using daily-corrected SIF for the analysis (Zhang et al., 2018; Turner et al., 2021), we chose here
to use instantaneous SIF because the SIF signal in our region of interest is of low magnitude and the daily-correction would
decrease the magnitude even further. Furthermore, the use of instantaneous SIF observations avoid simplified assumptions
regarding the scaling of SIF with the amount of sunlight available for photosynthesis.

Reduced major axis regression (RMA) was used to obtain the empirical relationships between SIF and GPP. The RMA
regression accounts for uncertainty in both the SIF observations and GPP data. The use of a linear regression is reasonable
following the implied linear relation of SIF-GPP during most daily conditions (Porcar-Castell et al., 2014) as well as the
enforced linearity due to integration of the over the canopy (Magney et al., 2020). The regression analysis of SIF vs GPP
clearly indicates the presence an intercept for the best fit (Fig. S5). Furthermore, the top-of-canopy SIF depends on the escape
ratio of the photons from the canopy and, theoretically, space-based SIF could approach to zero even if GPP is not 0.



Table S1. SIF-GPP relations using instantenous TROPOMI SIF and daily GPP from the OzFlux dataset and FluxSat over the Tumbarumba

flux tower. The OzFlux data represents the GPP estimates from the Tumbarumba tower. SIF is in units of mW m~2 sr~! nm~* and GPP in

gCm~ 2 day~ 1.

GPP source SIF-GPP SIF-GPP, no intercept
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Figure S4. Correlation in the period February 2018 — January 2019 between (a) TROPOMI SIF over the reference area and area that would
later burn down, and correlation in the period February 2018 — November 2019 between (b) TROPOMI SIF over the Tumbarumba flux tower
site (AU-TUM) and TROPOMI SIF over the reference area. Subplot (c) shows the correlation between FluxSat GPP over the Tumbarumba
site and the reference area.
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Figure S5. Correlation between (a) the TROPOMI SIF and daily GPP with flux tower and FluxSat GPP in black and blue, respectively, at
the Tumbarumba Flux tower site (AU-TUM) and (b) monthly aggregated daily GPP versus the monthly averaged GPP where accounted days
match SIF observations (collocated) at AU-TUM.
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Figure S6. Outline of the derivation of the loss in GPP over the burned area: SIF-based GPPs, inferred from SIF-GPP relationship using
eddy covariance data from the Tumbarumba OzFlux site and FluxSat GPP, and GPP directly from FluxSat GPP.

S2.1 Uncertainty Analysis

We address uncertainties in the SIF-based estimated GPP loss via uncertainty propagation following equation ??. Factors con-
sidered include (1) SIF-GPP representativeness to Nunnett-Timbarra, (2) SIF-GPP representativeness to the post-fire period,
and (3) detection of changes in TROPOMI SIF (ASIF). For the AGPPgyg (. estimation, we address the uncertainty in (4)
footprint differences between SIF observations and GPP estimates from the eddy-covariance flux tower.

1. Comparison of the ratio between FluxSat GPP and TROPOMI SIF obtained over the Tumbarumba tower and the
Nunnett-Timbarra area show the similarity of both regions, namely 7.44+1.00 and 7.7241.25 (¢C m~2 day—!)/(mW
m~2 sr~! nm~!). The ratios were computed from monthly SIF and GPP data over Feb. 2018 to Nov. 2019. The uncer-
tainty within the SIF-GPP relationship itself is on the order of 10-15 %.

2. To assess the uncertainty in ASIF detection, we examine monthly averaged TROPOMI SIF over the burned (B) and
reference (R) area. Monthly averaged SIFp and SIFy are 0.522 and 0.264 mW m~—2 sr~! nm~!, over Feb. 2019-Nov.
2019, respectively. Considering TROPOMTI’s single-measurement precision error of 0.4 mW m~2 sr~! nm~! (Kéhler
et al., 2018) and monthly pixel counts of 185 and 32 pixels over the reference and burned area, respectively, the error
estimation is 30 %.

3. We compare the FluxSat GPP to TROPOMI SIF ratio over the burned area during Feb.—Nov. in 2018 (pre-fire) and
2019 (post-fire) to assess the uncertainty in applying the SIF-GPP relationship to post-fire conditions. The ratio was
7.2340.97 (gC m~2 day~')/(mW m~2 sr—! nm~1!) for pre-fire and 6.3443.02 (¢C m~2 day~!)/(mW m~2 st~ nm~1)
for post-fire conditions, with the uncertainty in the post-fire ratio being approximately 50 %. Note that this analysis is
limited due to the brief period between the Nunnett-Timbarra fire and a subsequent wildfire impacting the study area.



70 4. MODIS NDVI data (500 m resolution) indicates negligible uncertainty in footprint size differences, probably due to the
extensive and uniform land cover around the Tumbarumba tower. Using MODIS pixels from 2009-2019 within (i) a 1
km and (ii) a 9 km radius from the tower, representing the eddy covariance footprint size and selected TROPOMI SIF
pixels/FluxSat GPP grid cells, NDVI values were 0.77£0.05 and 0.7740.04, respectively.

Adding these terms in quadrature, we estimate our estimates of SIF-based AGPP are associated with a relative uncertainty
75  of 60%.

S3 Climate variability in Northern China
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Figure S7. Temporal variability of climate variables (a) maximum temperature and (b) soil moisture, averaged over March—August and over
all 50 selected (reforested and deforested) cells in the Northern China case study. The maximum temperature and soil moisture data are
obtained from Mufioz Sabater (2019) and Dorigo et al. (2019), respectively, and were aggregated to a 0.5° x0.5° grid.
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