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Abstract. Soil microbes play a crucial role in the carbon (C)
cycle; however, they have been overlooked in predicting the
terrestrial C cycle. We applied a microbial-explicit Earth sys-
tem model – the Community Land Model-Microbe (CLM-
Microbe) – to investigate the dynamics of soil microbes dur-
ing 1901 to 2016. The CLM-Microbe model was able to re-
produce the variations of gross (GPP) and net (NPP) primary
productivity, heterotrophic (HR) and soil (SR) respiration,
microbial (MBC) biomass C in fungi (FBC) and bacteria
(BBC) in the top 30 cm and 1 m, and dissolved (DOC) and
soil organic C (SOC) in the top 30 cm and 1 m during 1901–
2016. During the study period, simulated C variables in-
creased by approximately 12 PgC yr−1 for HR, 25 PgC yr−1

for SR, 1.0 PgC for FBC and 0.4 PgC for BBC in 0–30 cm,
and 1.2 PgC for FBC and 0.7 PgC for BBC in 0–1 m. In-
creases in microbial C fluxes and pools were widely found,
particularly at high latitudes and in equatorial regions, but we
also observed their decreases in some grids. Overall, the area-
weighted averages of HR, SR, FBC, and BBC in the top 1 m
were significantly correlated with those of soil moisture and
soil temperature in the top 1 m. These results suggested that
microbial C fluxes and pools were jointly governed by veg-
etation C input and soil temperature and moisture. Our sim-
ulations revealed the spatial and temporal patterns of micro-
bial C fluxes and pools in response to environmental change,
laying the foundation for an improved understanding of soil
microbial roles in the global terrestrial C cycle.

1 Introduction

The atmospheric concentration of carbon dioxide (CO2) has
been drastically increased due to fossil fuel combustion and
land-use change since the Industrial Revolution (IPCC, 2001,
2013; Lal, 2004, 2008). The radiative forcing caused by the
CO2 enrichment in the atmosphere has led to an increase
in the global surface temperature, known as climate warm-
ing (IPCC, 2001). The increases of atmospheric CO2 and
induced warming climate have induced cascading environ-
mental issues and impacted the carbon (C) cycle (Matson et
al., 2002; Meeran et al., 2021; Soong et al., 2021).

Previous studies have assessed the effects of climate
change on the global C cycle using Earth system models
(ESMs) (Bonan et al., 2019; Todd-Brown et al., 2013). For
example, Bonan et al. (2019) compared vegetation produc-
tivity, heterotrophic respiration, and vegetation and soil C
stocks in the Community Land Model (CLM) forced by
two climate reconstructions (CRUNCEPv7 and GSWP3v1)
(Dirmeyer et al., 2006; Viovy, 2018). These models, how-
ever, were developed with an implicit representation of mi-
crobial processes, assuming that respired CO2 is proportional
to the soil C stock and leaving unspecified the role of mi-
crobes in decomposition processes. Given the critical role
of soil microorganisms in soil biogeochemical processes and
their sensitivity to environmental changes, explicit incorpo-
ration of soil microbial respiration and activities in decom-
position processes into ESMs is essential to improve the pre-
diction of global C cycling (He et al., 2021a; Wang et al.,
2015, 2017; Wieder et al., 2013). Recently, researchers have

Published by Copernicus Publications on behalf of the European Geosciences Union.



2314 L. He et al.: Modeling microbial carbon fluxes and stocks in global soils

applied microbial-explicit models in investigating responses
of global C cycle to environmental change. For example,
Wieder et al. (2015) examined the responses of soil, vege-
tation, and litter C pools to environmental change using the
MIMICS model. Wang et al. (2017) also investigated the im-
pacts of environmental change on enzymes, soil, and micro-
bial biomass C pools using the TRIPLEX-MICROBE model.
However, the validation of microbial biomass at coarse scales
(e.g., global or biome levels) may introduce uncertainties
in the model, particularly in soil microbial biomass and
microbe-mediated processes, which can further affect the
predicted soil C cycle in those models.

Fungi and bacteria, the two major soil microbial groups,
respond differently to environmental change, and differences
in their physiological traits concerning biogeochemical pro-
cesses have been incorporated into the CLM-Microbe model
(He et al., 2021a, b). For example, fungi decrease more
than bacteria under N fertilization (Demoling et al., 2008),
whereas fungi are less sensitive than bacteria to water stress
(Manzoni et al., 2012). Therefore, validating fungal and bac-
terial biomass in the CLM-Microbe model at the grid level
instead of coarse comparisons at global or biome levels may
reduce uncertainties in model predictions. Changes in fungal
and bacterial abundance can primarily affect terrestrial C cy-
cling considering their distinct roles in biogeochemical pro-
cesses such as the decomposition of organic materials (Bai-
ley et al., 2002; Boer et al., 2005; Hršelová et al., 1999). Pre-
dicting changes in the spatial pattern of fungi and bacteria
at the global scale and identifying their controls are essential
for understanding the impacts of environmental changes on
the global terrestrial C cycle.

To fill the gaps, we investigated the effects of environmen-
tal change on the global C cycle using the CLM-Microbe
model. The CLM-Microbe model, mechanistically represent-
ing microbial mechanisms of soil C cycling and differentiat-
ing the physiology of two major microbial functional groups
(i.e., fungi and bacteria), provides a feasible way to investi-
gate the effects of environmental change on soil C cycling
mediated by soil microbes and reveal the roles of differ-
ent kingdoms of microbes on C cycling (He et al., 2021a).
In this study, we aimed to investigate the effects of envi-
ronmental change on the soil microbial C fluxes and pools
from 1901 to 2016. We first evaluated the performance of
the CLM-Microbe model in reproducing soil, vegetation, and
microbial C variables, including gross (GPP) and net (NPP)
primary productivity, fungal (FBC) and bacterial (BBC)
biomass C in the top 30 cm and 1 m, heterotrophic (HR) and
soil (SR) respiration, and dissolved organic C (DOC) and soil
organic C (SOC) in the top 30 cm and 1 m. Then, we inves-
tigated the effects of environmental change on the temporal
trend of microbial C fluxes and stocks including HR, SR,
and FBC and BBC in the top 30 cm and top 1 m from 1901
to 2016. Finally, we investigated spatial patterns and external
environmental controls of changes in those fluxes and pools
from 1901 to 2016.

2 Materials and methods

2.1 Model representation of fungal and bacterial
biomass

The CLM-Microbe model was built on the model frame-
work developed by Xu et al. (2014) and the default CLM4.5
(hereafter CLM4.5) (Koven et al., 2013). It has been cou-
pled with a microbial functional group-based methane mod-
ule (Wang et al., 2019, 2022; Xu et al., 2015). Also, it has
been applied to reproduce fungal and bacterial biomass dy-
namics and investigate fungal and bacterial macroecology
and microbial seasonality impacts on soil C emission in nat-
ural ecosystems (He et al., 2021a, b, 2023). Taken together,
the CLM-Microbe model has unique modules of microbe-
mediated decomposition cascades and microbial functional
group-mediated methane cycle, with other biogeochemical,
thermal, and hydrological processes the same as the CLM4.5.
The CLM-Microbe model classifies litter into three pools,
i.e., litter 1 (labile), litter 2 (cellulose), and litter 3 (lignin),
and soil organic matter (SOM), materials left during later
stages of organic C decay, into four pools, i.e., SOM 1, SOM
2, SOM 3, and SOM 4 (low–high recalcitrance). The three
litter pools and four SOM pools differ in base decomposi-
tion rate (τ ), with turnover times of litter pools ranging from
20 h to 71 d and turnover times of SOM pools ranging from
14 d to 27 years (Fig. S1). Coarse woody debris (CWD) is
fragmented, decomposed, and gradually transferred into lit-
ter pools and further from litter to SOM pools (Thornton et
al., 2007; Koven et al., 2013). In addition to eight C pools
(three litter, four SOM, and CWD pools) in the CLM4.5,
we introduced dissolved organic matter (DOM) and fungal
and bacterial biomass pools in the CLM-Microbe model.
The code for the CLM-Microbe model has been archived
at GitHub since 2015. The model version used in this study
was checked out on 1 May 2021 and was archived at Xu et
al. (2022). More details about the CLM-Microbe model can
be found in our previous publications about the model devel-
opment and model applications (Xu et al., 2014; Wang et al.,
2019; He et al., 2021a, b; Wang et al., 2022; Zuo et al., 2022;
He et al., 2023).

In the CLM-Microbe model, fungal and bacterial
biomasses are the balance between C assimilation (C flow
from the decomposition of SOM, DOM, and litter) and C loss
through microbial lysis and microbial respiration. Specifi-
cally, fungi and bacteria receive C through the transitions
from litter, DOM, and SOM pools; fungi and bacteria lose
C through the transitions from fungal and bacterial biomass
pools to DOM and SOM pools and the atmosphere. The con-
ceptual diagram of the CLM-Microbe model and major pa-
rameters are in Fig. S1 and Table S1, respectively.

The decomposition rates of SOM, DOM, and litter are
controlled by both their potential decomposition rates and en-
vironmental conditions. The decomposition processes in the
CLM-Microbe model are defined following the below equa-
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tions:

DC = k× rdepth× rTsoil × rwater× rO2 (1)

rdepth = exp(−
z

zτ
) (2)

rTsoil =Q

Tsoil, j−Tref
10

10 (3)

rwater =
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log(ϕmin/ϕj )
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1 for ϕj > ϕmax

(4)

rO2 = fr × (1− finun)×max
(
O2unsat , O2min

)
+ finun×max

(
O2sat , O2min

)
, (5)

where DC is the rate of substrate (e.g., SOM, DOM, and lit-
ter) breakdown (in per day); k is the potential decomposition
rate (in per day); rO2 represents the environmental modifier
determined by soil oxygen concentration (unitless); rdepth is
the environmental modifier determined by soil depth (unit-
less); rwater is environmental modifier determined by soil
moisture (unitless); rTsoil means the environmental modifier
determined by soil temperature (unitless); zmeans soil depth
(in m); zτ is the e-folding depth for decomposition (in m);
Tsoil, j is soil temperature at layer j (in kelvin); Tref is the
reference temperature for decomposition (in kelvin), which
is set as a kelvin temperature equals to 25 °C; Q10 indicates
the temperature dependence of decomposition, which is the
ratio of the rate at a specific temperature to that at 10 °C lower
(unitless); 9j is the soil water potential in layer j (in MPa);
9min is a lower limit for soil water potential control on de-
composition rate (set to −10 MPa); rwater will be set as 0 if
9j is lower than 9min (in MPa); 9max is the upper limit for
soil water potential control on decomposition, which equals
to the saturated soil matric potential; rwater will be set as
1 if 9j is higher than 9max; wsoil, j means soil water con-
tent in layer j (in MPa); fr is the rooting fraction by soil
depth (unitless); finun means the fraction of inundated area
(unitless); O2unsat represents the oxygen available to that de-
manded by roots and aerobic microbes in unsaturated area
(unitless); O2min denotes the ratio between minimum anaero-
bic decomposition rate and potential aerobic decomposition
rate in soil (set to 0.2) (unitless); O2sat represents the oxygen
available to that demanded by roots and aerobic microbes in
saturated area (unitless); rO2 will be set as 1 in oxic condi-
tions, while it will be estimated as the weighted average of
oxygen stress in saturated and unsaturated areas in anoxic
conditions (unitless).

Carbon use efficiency (CUE) of soil microbes for assimi-
lating three litter pools in the CLM-Microbe model is deter-
mined following the equation in Sinsabaugh et al. (2013). In
addition, CUE is reported to vary with temperature, show-
ing a coefficient of −0.012 with increasing temperature (De-
vêvre and Horwáth, 2000). Therefore, we assumed that CUE
decreased compared with the ambient thermal regime of mi-
crobes’ habitats following the equation as below (Xu et al.,

2014):

CUE= (CUEmax−CUET × (T − TCUEref))× (MC :N/SC :N)
0.6, (6)

where CUE is carbon use efficiency, which is defined as the
growth-to-assimilation ratio for soil microbes; CUEmax is the
maximum value of C use efficiency; CUET is the coefficient
indicating the dependence of C use efficiency on tempera-
ture; TCUEref is the reference temperature of C use efficiency,
which is defined as 15 °C in the CLM-Microbe model;MC :N
means the C : N ratio of soil microbial biomass, which is de-
fined as 8 in the CLM-Microbe model; SC :N represents C : N
ratio of the substrate (e.g., litter).

The C flow from litter and SOM pools to soil microbes will
be partitioned by fungal and bacterial biomass pools based
on the C : N ratio of fungal and bacterial biomass. The frac-
tion factor quantifying bacteria C gain from litter and SOM
is calculated based on the weighted average of assimilation
efficiency of fungi and bacteria following the equation as be-
low:

f b =
(BC :N/SC :N)

0.6

(FC :N/SC :N)
0.6
+ (FC :N/SC :N)

0.6

ff = 1− f b, (7)

where f b is the fraction of C flowing into bacteria; ff is the
fraction of C flowing into fungi; BC :N means the C : N ratio
of BBC; FC :N means the C : N ratio of FBC; SC :N represents
C : N ratio of substrates (e.g., litter and SOM).

Fungi and bacteria have different turnover times; hence,
different lysis rate constants were adopted for fungi and bac-
teria in the CLM-Microbe model (He et al., 2021a). In addi-
tion, bacterial and fungal growth is highly sensitive to envi-
ronmental conditions, such as soil moisture and temperature.
As a result, in the CLM-Microbe model, fungal and bacte-
rial biomass lysis is represented as the interactive effects of
their lysis rate constants and environmental factors, i.e., rO2 ,
rwater, rTsoil , and rdepth, as described above. Microbial respira-
tion is widely affected by multiple abiotic and biotic factors,
such as substrate concentration and availability, soil mois-
ture, and soil temperature (Gomez-Casanovas et al., 2012;
Zhang et al., 2013). Therefore, in the CLM-Microbe model,
fungal and bacterial respirations are represented as the inter-
active effects of substrates (i.e., DOM, SOM, and litter), en-
vironmental factors (i.e., rO2 , rwater, and rTsoil ), and fraction
factors quantifying C being respired by fungi and bacteria in
transitions (Table S1). Fungal and bacterial biomass turnover
and microbial respiration are defined following below equa-
tions:

L= kM × rdepth× rTsoil × rwater× rO2 (8)
R =DC× fresp, (9)

where L denotes the lysis rate of fungal and bacterial
biomass (in per day); kM is the potential turnover rate of
fungal (kfungi) or bacterial (kbacteria) biomass (in per day); R
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represents the microbial respiration rate (in per day); fresp is
the fraction factor defining the proportion of C released as
respiration during decomposition (unitless).

The CLM-Microbe model treats N in the same framework
as CLM4.5; it fully coupled C and nitrogen (N) dynamics
in land components. Net N mineralization, the inorganic N
supply in the soil for plant uptake, is heavily dependent on
microbial immobilization of N. Microbial immobilization of
N during decomposition steps depends on C : N ratio of or-
ganic materials for decomposition, the C : N ratio of fungal
and bacterial biomass, and microbial CUE. The sum of po-
tential immobilization over all immobilization in the biogeo-
chemistry cascade is used to estimate microbial demand of
mineral N. For each time step, such microbial mineral N de-
mand is in competition with the total plant N demand of all
plant functional types (PFTs) on a soil column. Once this
competition has been resolved, actual immobilization is cal-
culated as a proportion of potential immobilization, with the
same proportion applied to all immobilization steps (Thorn-
ton et al., 2007). Remaining plant N demand summed over
all PFTs indicates the demand-based competition between
plants and microbes for soil mineral N resource on a col-
umn. Unmet plant N demand results in C supply surplus,
which is translated back to the direct downregulation of pho-
tosynthetic rate and the reduction of GPP. Unmet plant N de-
mand can also indirectly induce the reduced allocation to new
growth on light capture in plants. Such consequences imply
impacts of N limitation exerted by microbial competition for
mineral N on plants, which can in turn affect soil microbial
community through subsequent inputs of organic matter of
various qualities.

2.2 Representation of fungal- and bacterial-mediated
processes by column

In the CLM-Microbe model, land surface heterogeneity was
represented using a hierarchical data structure, which is
adapted from CLM4.5. Each land grid cell can contain mul-
tiple land units (e.g., glacier, lake, wetland, urban, vege-
tated land, and cropland), and each land unit can be further
divided into multiple soil/snow columns. On the vegetated
land units, multiple (up to 16) PFTs distinct in physiology
and structure from different climate zones (e.g., needleleaf–
evergreen-tree–boreal vs. needleleaf–deciduous-tree–boreal,
broadleaf–evergreen-tree–tropical vs. broadleaf–deciduous-
tree–tropical, and c3–arctic-grass vs. c3-non-arctic-grass)
can occupy space on the column. All vegetation fluxes and
state variables were defined at the PFT level, while soil fluxes
and state variables were defined at the column level.

In the CLM4.5 and early versions of the CLM-Microbe
model (before January 2021), parameters related to soil pro-
cesses, such as decomposition, were assumed to be homoge-
nous across data structure levels. Our previous work sug-
gested the differences in microbial processes among biomes
(He et al., 2021a); the implicitly accounted sub-grid micro-

bial processes may introduce uncertainties in estimating soil
and microbial fluxes and state variables. Since soil flux and
state variables in the CLM-Microbe model are defined at the
column level, we represented the heterogeneity of microbe-
mediated processes by column. Each PFT shares similar
physical, phylogenetic, and phenological characteristics; we
thus assigned the parameter set of microbial properties by
PFT. Furthermore, we determined the microbial properties of
each column by the relative weight of PFTs occupied on the
column, with the parameter set of the most dominant PFT
adopted to represent the microbial and soil processes (e.g.,
fungal and bacterial biomass turnover rate, DOM degrada-
tion rate, and fungal and bacterial C assimilation proportion
from SOM, litter, and DOM) on the column.

2.3 Model forcing data

The forcing data for the CLM-Microbe model include me-
teorological variables such as air temperature, relative hu-
midity, incoming solar radiation, longwave radiation, pre-
cipitation rate, surface pressure, and surface winds. In this
study, we used the CRUNCEP dataset to force the CLM-
Microbe model, which has been widely used to force the
CLM. The CRUNCEP dataset is a combination of two ex-
isting datasets, i.e., the Climate Research Center time-series
(CRU TS) dataset of 0.5°× 0.5° at a monthly scale and
the National Centers for Environmental Prediction (NCEP)
reanalysis dataset of 2.5°× 2.5° at 6-hourly scale. In the
CRUNCEP dataset, the diurnal and daily variations of vari-
ables such as the air temperature, precipitation, humidity,
solar radiation, surface pressure, downward longwave ra-
diation, and wind speed were derived from NCEP dataset,
while their monthly means are bias corrected by the CRU TS
dataset. This study used the CRUNCEP dataset version 7,
with a spatial resolution of 0.5°× 0.5°, spanning from 1901
to 2016, to drive the model simulation (Viovy, 2018).

In addition to the meteorological data, we forced the CLM-
Microbe model using time-varying CO2 concentration, N de-
position, and aerosol concentration to estimate the C cycle
change in the last century, provided by the National Center
for Atmospheric Research (NCAR) for forcing the CLM of-
fline simulations. Atmospheric N deposition during 1849–
2006 with a spatial resolution of 1.25° longitude× 0.9° lat-
itude was applied for all simulations. The CO2 concentra-
tions remained fixed at 1850 levels (284.7 ppm) for accel-
erated decomposition and final runs followed by transient
historical (1849–2006) changes in the transient run. The
aerosol concentration in accelerated decomposition and fi-
nal runs for offline simulation was prescribed at 1850 level,
while aerosol concentration with a spatial resolution of 1.25°
longitude× 0.9° latitude during 1765–2005 was used in the
transient simulation. The transient land use and land cover
change during the historical period is based on the dataset
of the UNH Transient Land Use and Land Cover Change
Dataset Version 1 (LUHa.v1), covering the period of 1850–
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2005, which was produced by University of New Hamp-
shire research group (Louise Chini, George Hurtt, Steve Frol-
king; https://luh.umd.edu/readme_LUHa_v1.shtml, last ac-
cess: 10 April 2018).

2.4 Model implementation

The model implementation was carried out in three stages,
with the spatial resolution of the simulations being 2.5° lon-
gitude× 1.9° latitude. First, we ran the accelerated decom-
position spinup to allow the system to reach its steady state
(Koven et al., 2013; Thornton and Rosenbloom, 2005). We
set the model simulations to 1200 years for the acceler-
ated decomposition phase to reach the steady state (Fig. S2).
Then, we ran a final spinup of 100 years to ensure the
system was ready for transient simulations during 1850–
2016. For the model years of 1850–1900 in transient sim-
ulations, we cycled atmospheric forcing during 1901–1910
of the CRUNCEP dataset version 7 to force the model.
Then, we used the atmospheric data during 1901 to 2016
of the CRUNCEP dataset version 7 to drive the simula-
tion between 1901 and 2016. The CLM-Microbe model
was initially parameterized for fungal and bacterial medi-
ated processes using time-series data of fungal and bacterial
biomass carbon, HR, and SR by biome. The initial setting
for microbial parameters by PFT was adopted from He et
al. (2021a) and He et al. (2021b). Specifically, we assigned
the same microbial parameters for PFTs found in a biome
as their initial setting since our previous parameterizations
for microbial processes were biome-specific. For example,
broadleaf–evergreen-tree–tropical and broadleaf–deciduous-
tree–tropical, belonging to the biome of tropical/subtropical
forests, parameter set for tropical/subtropical forests biome,
were applied for PFTs of broadleaf–evergreen-tree–tropical
and broadleaf–deciduous-tree–tropical in initial simulations.

2.5 Validation data

Several datasets were employed in this study for model val-
idation. To produce realistic soil conditions in the CLM-
Microbe model at the grid level, we used datasets of SOC
in the top 1 m soil profile from the Harmonized World Soil
Database (HWSD) at 0.05° spatial resolution archived at Oak
Ridge National Laboratory (Wieder, 2014) and SOC in the
top 30 cm from the Global Soil Organic C Map (GSOCmap)
version 1.5 at a spatial resolution of 1 km provided by Food
and Agriculture Organization of the United Nations (FAO,
2018) to validate the SOC in the top 1 m and 30 cm of the
CLM-Microbe model, respectively. To guarantee the reason-
ability of vegetation productivity, GPP and NPP of MODIS
gridded datasets with a spatial resolution of 30 s during
2000–2015 were used to compare with the simulated GPP
and NPP, respectively (Zhao et al., 2005). To reproduce the
soil C emission flux, SR and HR from Global Gridded 1 km
Annual Soil Respiration Database (SRDB) version 3 avail-

able at Oak Ridge National Laboratory were used to validate
SR and HR, respectively (Warner et al., 2019). For FBC and
BBC in the top 30 cm, the dataset of FBC and BBC with a
resolution of 0.5° obtained from He et al. (2020) was used to
validate FBC and BBC in the top 30 cm in the CLM-Microbe
model, respectively. Microbial biomass C (MBC), the sum
of FBC and BBC, in the top 1 m of the CLM-Microbe model
outputs was compared with Xu et al. (2013) for accuracy. The
DOC in 0–30 cm and 0–1 m with a resolution of 0.5° derived
from Guo et al. (2020) was compared with that in the top
30 cm and 1 m, respectively, from the CLM-Microbe output
for validation. More details about the datasets used for vali-
dation can be found in Table S4. Ten-year (2000–2009) av-
erages of simulated soil, vegetation, and microbial variables
from the CLM-Microbe output were calculated to compare
with those from observed datasets previously described.

To assess the efficacy of the CLM-Microbe model, the
available soil and vegetation variables from the CLM4.5, in-
cluding GPP, NPP, HR, SR, and SOC in the top 30 cm and
1 m, were adopted for comparison. The simulation results
during 1850–2014 were forced using CRUNCEP dataset ver-
sion 7, with environmental changing factors, including N de-
position and rising CO2, considered in the historical simu-
lation. The GPP, NPP, HR, SR, and SOC in the top 30 cm
and 1 m were from CLM land-only release, provided by Cli-
mate Data Gateway at the National Center for Atmospheric
Research (NCAR). All variables were at a resolution of 0.9°
latitude× 1.25° longitude. The temporal resolutions differed
among variables, with GPP, NPP, SR, and HR being saved
on a monthly scale, while SOC in 0–30 cm and 0–1 m was
saved on a yearly scale. Ten-year (2000–2009) averages of
the CLM4.5-simulated GPP, NPP, HR, SR, and SOC (0–
30 cm and 0–1 m) were calculated to represent the long-term
soil and vegetation status and for comparison with observed
variables.

Since observational datasets and model simulations are of
different resolutions and 0.5° is the most widely used, we
used the function of linint2 in NCAR Command Language
to interpolate those datasets and model outputs from their
original resolutions to 0.5°. To make the maps comparable,
we used the nibble and extracted by mask functions provided
by ArcGIS version 10.2 (ESRI, Redlands, California, USA)
to make all maps consistent in geographical boundary and
missing values.

2.6 Model parameterization

Although most processes in the CLM-Microbe model were
adapted from the CLM4.5, the modification of microbe-
mediated decomposition cascades and microbial functional
group-mediated methane cycle may reduce the applicabil-
ity of default parameters in the CLM4.5. Therefore, we per-
formed the parameterization against observational data of
FBC and BBC in He et al. (2021a) and HR and SR in He
et al. (2021b), with at least two sites in each biome (one
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for calibration and the rest for validation). Before the pa-
rameterization, we guaranteed reasonable soil and vegetation
conditions by comparing the simulated NPP and SOC with
observational data. To calibrate the DOC simulated in the
model, we collected reported observational data from pre-
vious publications. When selecting the data, we ensured that
observational DOC in the top 30 cm and 1 m was from natu-
ral biomes, and each biome included at least two sites (Ta-
bles S2–3). We calibrated the DOC in the top 30 cm and
1 m by plotting the simulated DOC in the top 30 cm and 1 m
against observational data, and we found good performance
of the CLM-Microbe in reproducing the observed DOC in
both top 30 cm (R2

= 0.6, P<0.0001) and 1 m (R2
= 0.6,

P<0.0001) (Fig. S3).
Despite the good performance of the CLM-Microbe model

in the calibration phase using observational data at the site
scale, minor parameter adjustments were necessary to cap-
ture variations at the global scale. We optimized the model
parameters related to plant, soil, and microbial processes
based on SOC in the top 30 cm from the GSOC map and
in the top 1 m from the HWSD dataset, vegetation GPP and
NPP from MODIS, SR and HR from SRDB, FBC and BBC
(0–30 cm) in He et al. (2020), MBC in Xu et al. (2013), and
DOC (0–30 cm and 0–1 m) in Guo et al. (2020). We pri-
marily focused on parameters related to plant photosynthesis
(e.g., flnr) and e-folding factor for decomposition (e.g., de-
comp_depth_efolding) to match the reported GPP, NPP, and
SOC in the top 0–30 cm and 1 m. To calibrate the model to
fit the observed FBC, BBC, and DOC, we adjusted param-
eters related to soil microbial (k_fungi and k_bacteria) and
DOC (k_dom) turnover, microbial C assimilation efficiency
(m_rf_s1m, m_ rf_ s2m, m_rf_s3m, and m_rf_s4m), the pro-
portion of C being released as respiration (m_batm_f and m_
fatm_f), plant C allocation (froot_leaf), and the N concen-
tration of plant tissues (leafcn and frootcn) to optimize the
model simulations of FBC, BBC, MBC, DOC, SR, and HR.

2.7 Model evaluation

To evaluate the model performance in capturing the spatial
variation in soil and vegetation variables, we compared GPP,
NPP, HR, SR, FBC, and BBC in the top 30 cm, MBC (0–
1 m) and DOC and SOC (0–30 cm and 0–1 m) reported by the
observational datasets and simulated averages of these vari-
ables during 2000–2009. Due to the non-normality of those
variables, Spearman’s rank correlation was used to evalu-
ate the overall model performance for those variables. The
Spearman’s rank correlation coefficient (rs), measuring the
strength and direction of association between two ranked
variables, was calculated following the equation as below:

rs =
cov(R (x),R (y) )

σR(x)σR(y)
, (10)

where rs is the Spearman’s rank correlation coefficient; R(x)
means the rankings of variable x; R(y) indicates the rank-

ings of variable y; cov(R(x), R(y)) is the covariance of R(x)
and R(y); σ(R(x) and σR(y) are the standard deviations of the
rankings of variable x and y, respectively.

2.8 Statistical analysis

Due to the non-normality of simulated and observed GPP,
NPP, HR, SR, FBC, and BBC in the top 30 cm, MBC (0–
1 m), and DOC and SOC (0–30 cm and 0–1 m), we exam-
ined the agreement between variables simulated by the CLM-
Microbe model or CLM4.5 during 2000–2009 and corre-
sponding observed values at the grid level using Spearman’s
rank-order correlation. Such analyses were conducted using
the function of cor.test with a method of spearman in “stats”
package in R (R Core Team, 2013). The differences in soil,
vegetation, litter, and microbial variables between decadal
averages of 1901–1910 and 2007–2016 were examined us-
ing an independent t test, conducted with the function of
t.test in “stats” package in R (R Core Team, 2013) by conti-
nents and with the function of ttest in NCAR Command Lan-
guage (https://www.ncl.ucar.edu, last access: 10 April 2018)
by grid.

To identify external environmental controls of soil, vegeta-
tion, litter, and microbial variables, we examined the correla-
tions between vegetation productivity and mean annual tem-
perature (MAT) and precipitation (MAP) and correlations of
soil temperature (ST) and moisture (SM) with soil, litter,
and microbial variables with respect to their area-weighted
averages at the grid level from 1901 to 2016. Considering
the consistent but stronger environmental influence on soil
and microbial variables in the top 30 cm than in the top 1 m,
only correlations between external environmental factors and
soil and microbial variables in the top 1 m were assessed
for whether an association exists. The correlations between
external environmental factors (e.g., MAP, MAT, SM, and
ST) and annual averages of GPP, NPP, HR, SR, VegC, FBC,
BBC, DOC, SOC, and litter C (LitC) in the top 1 m at the
global level during 1901 to 2016 were estimated using the
Pearson’s correlation. These statistical analyses above were
performed, and relevant figures (Figs. 1–4 and 8) were plot-
ted using “graphics” (R Core Team, 2013) and “ggcorrplot”
(Kassambara and Kassambara, 2019) packages in R.

To estimate the changing rate of GPP, NPP, HR, SR, FBC,
and BBC in the top 30 cm, FBC, BBC, DOC, LitC, and SOC
in the top 1 m, and VegC during 1901 to 2016, we conducted
linear regression models for these variables with time at the
grid level, with the changing rate indicated by the slope of
the regression model. In addition, correlations between envi-
ronmental factors (e.g., MAT, MAP, ST, and SM) and veg-
etation, soil, litter, and microbial variables including GPP,
NPP, HR, SR, VegC, FBC, BBC, DOC, SOC, and LitC in
the top 1 m at the grid level were estimated using Pearson’s
correlation. Such statistical analyses were performed using
NCAR Command Language (https://www.ncl.ucar.edu, last
access: 10 April 2018). Relevant figures (Figs. 5–7 and 9)
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were produced using MATLAB version 2021b (The Math-
Works, Inc.).

3 Results

3.1 Model validation and comparison with the CLM4.5

The CLM-Microbe produced comparable results with most
observed data and performed comparably to or slightly bet-
ter than the CLM4.5 with respect to the global C budget (Ta-
ble 1), latitudinal trend (Figs. 1 and S4), and individual grid
(Figs. 2 and S5). The CLM-Microbe model and the CLM4.5
overestimated the GPP by 15.7 % and 7.3 %, respectively
(Table 1). However, NPP simulated by the CLM-Microbe
model and the CLM4.5 was overestimated by 1.3 % and un-
derestimated by 8.1 %, respectively. Similarly, SR was over-
estimated in the CLM-Microbe (15.6 %) and the CLM4.5
(4.0 %) models. HR in the CLM-Microbe and CLM4.5 mod-
els was overestimated by 1.7 % and underestimated by 4.4 %,
respectively. Both the CLM-Microbe model and the CLM4.5
underestimated SOC (0–30 cm) by 8.5 % and 22.4 %, respec-
tively, while SOC (0–1 m) in the CLM-Microbe model and
the CLM4.5 was overestimated by 32.4 % and underesti-
mated by 21.4 %, respectively. The FBC, BBC, MBC, and
DOC, only available in the CLM-Microbe model, were bet-
ter predicted in the top 30 cm than 1 m. The simulated FBC,
BBC, and DOC in the top 30 cm were underestimated by
3.3 % and overestimated by 26.7 % and 24.9 %, respectively,
while MBC and DOC in the top 1 m were overestimated by
69.5 % and 75.0 %, respectively.

The CLM-Microbe model can reasonably reproduce the
latitudinal trends of vegetation, soil, and microbial variables,
with the model performance varied among variables and
along soil depth (Fig. 1). The latitudinal trends of both GPP
and NPP in the CLM-Microbe model agreed with observed
data with a slight overestimation at northern latitudes and
in equatorial regions, but NPP was slightly underestimated
in the Southern Hemisphere (Fig. 1a and b). Both HR and
SR simulated by the CLM-Microbe model agreed well with
observed data in the Southern Hemisphere but were overes-
timated in equatorial regions and at mid-high latitudes and
underestimated at low latitudes in the Northern Hemisphere
(Fig. 1c and d). Similar latitudinal trends of HR and SR were
also observed in the CLM4.5 simulation (Fig. S4c and d).
Soil C pools showed similar latitudinal patterns across soil
depths (Fig. 1e–k). Specifically, DOC (0–30 cm and 0–1 m)
was overestimated in equatorial regions but underestimated
in northern temperate regions (Fig. 1e–f). Meanwhile, the
CLM-Microbe model overestimated SOC (0–30 cm and 0–
1 m) in equatorial and northern high-latitude regions but un-
derestimated in northern mid-latitude regions (Fig. 1g and h).
As opposed to the CLM-Microbe model, the CLM4.5 consis-
tently underestimated SOC (0–30 cm and 0–1 m) along lati-
tudes, except for SOC (0–1 m) at latitudes of > 60° N. Sim-

ilarly, both FBC and BBC in the top 30 cm were overesti-
mated in equatorial regions and at northern high latitudes but
underestimated in northern mid-latitude regions (Fig. 1i and
j). Overall, FBC (0–30 cm) at southern latitudes was well
predicted by the CLM-Microbe model, but BBC (0–30 cm)
in that region was underestimated, while MBC (0–1 m) was
overestimated across latitudinal gradients (Fig. 1k).

At the grid scale, the simulated values of vegetation,
soil, and microbial variables with the CLM-Microbe model
were significantly consistent with the observational results
(P<0.05; Fig. 2). The CLM4.5 also indicated significant
consistency between simulated and observed vegetation and
soil variables (P<0.05; Fig. 2). Overall, the CLM-Microbe
model and CLM4.5 performed well at simulating GPP and
NPP compared to simulating soil and/or microbial variables.
The simulated GPP (rs = 0.91) and NPP (rs = 0.86) with
the CLM-Microbe model were significantly and positively
related to their observed values (Fig. 2a and b). The GPP
(rs = 0.88) and NPP (rs = 0.82) in the CLM4.5 were also
significantly and positively associated with observed values
(Fig. S5a and b). The SR tended to be better predicted than
HR in both the CLM-Microbe model (rs = 0.70 for SR vs.
rs = 0.68 for HR) and the CLM4.5 (rs = 0.68 for SR vs. rs =
0.64 for HR) (Fig. 2c and d and Fig. S5c and d). The DOC in
0–1 m (rs = 0.36) was slightly better reproduced than in 0–
30 cm (rs = 0.34) in the CLM-Microbe model (Fig. 2e and f),
while both the CLM-Microbe model (rs = 0.68 for 0–30 cm
vs. rs = 0.63 for 0–1 m) and CLM4.5 (rs = 0.63 for 0–30 cm
vs. rs = 0.59 for 0–1 m) performed better at simulating SOC
in the top 30 cm than in the top 1 m (Figs. 2g and h, S5e and
f). Similarly, the CLM-Microbe model performed better in
simulating FBC and BBC in the top 30 cm than MBC in the
top 1 m (rs = 0.43) (Fig. 2i–k). In addition, BBC (rs = 0.53)
was better reproduced than FBC (rs = 0.46) in the top 30 cm.

3.2 Carbon fluxes and pools associated with soil
microbes

The HR and SR displayed increasing trends from 1901 to
2016 (Fig. 3a–b), with different magnitudes among variables.
By 2016, the increase of SR (25 PgC yr−1) was about twice
that of HR (12 PgC yr−1). Their increasing rates showed vari-
ations with time. We observed a relatively modest increase in
HR and SR during 1901–1980, whereas their increases were
more rapid from 1981–2016. In addition, microbial C pools
increased from 1901 to 2016 despite the year-to-year vari-
ability (Fig. 3c–f). The FBC and BBC in the top 30 cm and
FBC and BBC in the top 1 m increased by about 1.0, 0.4,
1.2, and 0.7 PgC, respectively, from 1901 to 2016. However,
the temporal trends of those variables varied during 1901 to
2016. The FBC (0-30 cm and 0–1 m) decreased from 1901–
1940 and increased after 1940 (Fig. 3c–d). The BBC (0–
30 cm and 0–1 m) exhibited little change during 1901–1940
but increased rapidly during 1941–2016 (Fig. 3e–f).
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Table 1. Annual flux of GPP, NPP, HR, and SR and carbon stocks of FBC in the top 30 cm, BBC in the top 30 cm, MBC (0–1 m), DOC in the
top 30 cm, SOC in the top 30 cm, and SOC in the top 1 m by observed datasets and by simulations of the CLM-Microbe model and CLM4.5
at the global scale.

Variables Unit Global estimation

Observed CLM-Microbe CLM4.5

GPP PgC yr−1 111.94 129.53 120.13
NPP 55.76 56.49 51.26
SR 86.34 99.80 89.79
HR 49.01 49.84 46.87

FBC (0–30 cm) PgC 13.57 13.12 NA
BBC (0–30 cm) 3.29 4.17 NA
MBC (0–1 m) 23.70 40.18 NA
DOC (0–30 cm) 7.16 8.94 NA
DOC (0–1 m) 12.90 22.57 NA
SOC (0–30 cm) 661.71 605.27 513.40
SOC (0–1 m) 1231.99 1630.90 967.87

GPP: gross primary productivity; NPP: net primary productivity; HR: heterotrophic respiration;
SR: soil respiration; DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal
biomass carbon; BBC: bacterial biomass carbon; MBC: microbial biomass carbon. NA: not
available. The SOC (0–1 m) data are from the Harmonized World Soil Database (HWSD,
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247, last access: 10 April 2018); the SOC
(0–30 cm) data are from the Global Soil Organic Carbon Map (GSOCmap) version 1.5; GPP and
NPP data are from MODIS gridded datasets (http://files.ntsg.umt.edu/data/NTSG_Products/, last
access: 10 April 2018); the SR and HR data are from Global Gridded 1 km Annual Soil
Respiration Database (SRDB) version 3
(https://daac.ornl.gov/CMS/guides/CMS_Global_Soil_Respiration.html, last access:
10 April 2018); the FBC and BBC in the top 30 cm are from He et al. (2020); MBC (0–1 m) is
compared with Xu et al. (2013); the DOC (0–30 cm and 0–1 m) is derived from Guo et al.
(2020). Output of the CLM-Microbe model during 2000–2009 (decadal average) is used to
compare with observational data.

3.3 Spatial pattern of microbial carbon fluxes and
stocks

Compared with 1901–1910, HR and SR increased across lat-
itudinal gradients in 2007–2016 (Fig. 4a–b). However, the
magnitude of the increase differed among latitudinal gradi-
ents. Specifically, increases in HR and SR were larger and
more prominent at northern latitudes and equatorial regions
than at southern latitudes. Similar to C fluxes, microbial C
pools increased across latitudinal gradients from 1901–1910
to 2007–2016 (Fig. 4c–f). Overall, FBC and BBC in the top
30 cm and top 1 m showed a small but different extent of in-
crease across latitudinal gradients. Specifically, the increases
were more prominent at northern high latitudes and equato-
rial regions than at other latitudes.

Across the globe, HR and SR showed similar spatial pat-
terns, and increases in most grids across the globe were sta-
tistically significant (P<0.05; Fig. 5a, b, d, and e). Corre-
spondingly, we observed positive relative change in most ar-
eas from 1901–1910 to 2007–2016 (Fig. 5c and f). However,
we also observed decreases in HR and SR in the grids of
South Asia. The HR and SR displayed similar spatial pat-
terns of changing rates (Fig. 9). At the global scale, FBC and
BBC in the top 30 cm and 1 m showed similar spatial pat-
terns and widely increased from 1901–1910 to 2007–2016

(Fig. 6a and b, d and e, g and h, and j and k). Correspond-
ingly, we observed positive relative changes in FBC and BBC
in the top 30 cm and 1 m in those regions from 1901–1910 to
2007–2016 (Fig. 6c, f, i, and l).

Consistent with the spatial patterns of absolute and rel-
ative changes, we widely observed significant and posi-
tive changing rates of HR and SR from 1901 to 2016
(Fig. 7a–b; P<0.05). However, we also found significant
negative changing rates of HR and SR in grids of South Asia
(P<0.05). Similarly, increasing temporal trends of FBC and
BBC in the top 30 cm and 1 m were widely observed across
the globe (Fig. 7c–f). However, we also observed decreases
of those variables in South Asia (Figs. 5–7). In addition, we
observed decreases of FBC and BBC in the top 30 cm and
1 m in grids of central North America (Figs. 6 and 7c–f).

3.4 External environmental controls on C cycling

The area-weighted average of HR, SR, and FBC and BBC in
the top 1 m were significantly correlated with that of ST and
SM in the top 1 m (P<0.05; Fig. 8). However, the strengths
of correlations depended on both environmental controls (ST
and SM in the top 1 m) and variables (HR, SR, and FBC and
BBC in the top 1 m). For example, correlations of HR and SR
with ST and SM in the top 1 m were of the same magnitude,
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Figure 1. Latitudinal comparison between observed (black line) and the CLM-Microbe-simulated (red line) (a) GPP, (b) NPP, (c) HR, (d)
SR, and (e) DOC in the top 30 cm, (f) DOC in the top 1 m, (g) SOC in the top 30 cm, (h) SOC in the top 1 m, (i) FBC in the top 30 cm, (j) BBC
in the top 30 cm, and (k) MBC (0–1 m). GPP: gross primary productivity; NPP: net primary productivity; HR: heterotrophic respiration; SR:
soil respiration; DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal biomass carbon; BBC: bacterial biomass carbon;
MBC: microbial biomass carbon.

while the FBC and BBC were more strongly correlated with
ST than with SM in the top 1 m.

Across the globe, microbial carbon fluxes and stocks were
more widely and positively correlated with ST than with SM
in the top 1 m (Fig. 9). Correlations of ST (0–1 m) with HR
and SR were similar in spatial patterns. We widely observed
significant positive correlations of HR and SR with ST (0–
1 m) (P<0.05; Fig. 9a and c). On the other hand, negative
correlations of HR and SR with ST (0–1 m) were found in
South Asia, southeast North America, central North Amer-
ica, central Africa, and central and northern Australia/Ocea-
nia. Correlations of FBC and BBC in the top 1 m displayed
similar spatial patterns. We found significant and positive
correlations of FBC and BBC with ST in the top 1 m in most
grids across the globe (P<0.05; Fig. 9b, d, f, and h). How-
ever, we also found some grids with negative correlations in
central North America, Europe, Asia, South America, Africa,
and Australia/Oceania. Correlations of HR, SR, and FBC and

BBC in the top 1 m were similar in spatial patterns, with sig-
nificant and positive correlations widely observed (P<0.05).
But we also observed negative correlations at middle and low
latitudes in North America, Europe, and Asia, the east coast
of South America and Africa, and southern Australia/Ocea-
nia.

4 Discussion

4.1 Comparison with previous studies

The latitudinal trends and grid-level distribution of GPP,
NPP, HR, SR, FBC, and BBC in the top 30 cm and FBC,
BBC, DOC, and SOC in the top 1 m were well-reproduced
in the CLM-Microbe model (Figs. 1 and 2). The CLM-
Microbe model performed better than or comparable to the
CLM4.5 in simulating the spatial distribution of vegetation,
soil, and microbial variables (Figs. 2 and S5). In line with
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Figure 2. Grid-by-grid comparison between observed and the CLM-Microbe-simulated (a) GPP, (b) NPP, (c) HR, (d) SR, and (e) DOC in
the top 30 cm, (f) DOC in the top 1 m, (g) SOC in the top 30 cm, (h) SOC in the top 1 m, (i) FBC in the top 30 cm, (j) BBC in the top
30 cm, and (k) MBC (0–1 m). Red lines are 1 : 1 line. GPP: gross primary productivity; NPP: net primary productivity; HR: heterotrophic
respiration; SR: soil respiration; DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal biomass carbon; BBC: bacterial
biomass carbon; MBC: microbial biomass carbon.

our results, multiple models captured the spatial variation
of GPP, NPP, HR, and SR (Delire et al., 2020; Kim et al.,
2019; Wiltshire et al., 2021; Zheng et al., 2020). Wieder et
al. (2015) reported a high spatial correlation (r = 0.46) of
SOC (0–1 m) between MIMICS outputs and HWSD. In ad-
dition, Wang et al. (2017) observed the high consistency in
SOC (0–1 m) (R2

= 0.96; P<0.01) between the TRIPLEX-
MICROBE model and HWSD by vegetation type. Huang et
al. (2021) also found good performance of the ORCHIMIC
v2.0 in reproducing SOC by comparing the simulated val-
ues with multiple SOC datasets. The well-developed plant
physiology and environmental controls in the model may ex-
plain their good performance in simulating vegetation and
soil processes (Flato, 2011; Mathieu and O’Neill, 2008).
However, the latitudinal trends and grid-level distribution of
DOC, SOC, and MBC (sum of FBC and BBC) in the top 1 m
were relatively worse reproduced than those in the top 30 cm
(panels e–k of Figs. 1 and 2, panels e–f of Figs. S4 and S5),
indicating that the vertical distribution of processes related to
decomposition, microbial turnover, and plant C input needs
further improvements. Although parameters classifying the

active decomposition depth and biological function to per-
turbation were defined in the CLM-Microbe model, the grad-
ual change of microbial turnover and activity defined along
the soil profile may need to be improved in future models
(Preusser et al., 2019; Zhu et al., 2021). In addition, processes
or parameters related to the active layer for decomposition
and perturbation caused by biological (e.g., nematode) and
abiotic (e.g., drying and rewetting) activities can cause un-
certainties in the vertical distribution of C cycle, which needs
further efforts and attention in model development (Ettema
and Wardle, 2002; Gabet et al., 2003; Kuzyakov and Blago-
datskaya, 2015; Schimel, 2018).

We estimated global annual averages of 129.5, 56.5, 99.8,
and 49.8 PgC yr−1 for GPP, NPP, HR, and SR, respectively
(Table 1). Consistent with our results, previous studies re-
ported similar values of GPP, NPP, HR, and SR (Cramer et
al., 1999; Hashimoto et al., 2015; Huang et al., 2020; Lu et
al., 2021; Nemani et al., 2003; Zhao et al., 2017; Zheng et al.,
2020). The consistent simulations and reasonable estimations
of GPP, NPP, HR, and SR across models may indicate the
convergent plant physiology among models and well-defined
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Figure 3. Evolution of annual carbon flux of area-weighted (a) HR
and (b) SR and carbon stock of (c) FBC in the top 30 cm, (d) FBC
in the top 1 m, (e) BBC in the top 30 cm, and (f) BBC in the top 1 m
simulated by the CLM-Microbe model since 1901. The baseline
was the 10-year average of corresponding variables during 1901–
1910. HR: heterotrophic respiration; SR: soil respiration; FBC: fun-
gal biomass carbon; BBC: bacterial biomass carbon; MBC: micro-
bial biomass carbon.

soil and microbial processes in the CLM-Microbe model. In
addition, compared with observed data, the CLM-Microbe
model produced more consistent NPP and HR but overes-
timated GPP and SR (Table 1). The overestimation of GPP
and SR may be due to the lower ecosystem-scale CUE in
the CLM-Microbe model. The vegetation physiology module
in the CLM-Microbe model is adapted from CLM4.5. The
ecosystem-scale CUEs between the CLM-Microbe model
(0.44) and CLM4.5 (0.43) were comparable but lower than in
MODIS (0.5). Correspondingly, we observed a higher con-
tribution of roots to total SR in the CLM-Microbe model
(0.5) and the CLM4.5 (0.48) than in the observed SRDB
dataset (0.43). Therefore, the well-simulated NPP and HR
but higher predicted GPP and SR in the CLM-Microbe model
were attributed to the low ecosystem-scale CUE. Increasing
ecosystem-scale CUE in the CLM-Microbe model will im-

Figure 4. Latitudinal gradients of the CLM-Microbe model simu-
lated 10-year averages of (a) HR, (b) SR, and (c) FBC in the top
30 cm, (d) FBC in the top 1 m, (e) BBC in the top 30 cm, and (f)
BBC in the top 1 m during 1901–1910 and 2007–2016. HR: het-
erotrophic respiration; SR: soil respiration; FBC: fungal biomass
carbon; BBC: bacterial biomass carbon; MBC: microbial biomass
carbon.

prove the modeling performance of GPP and SR in model
development.

The CLM-Microbe model can reasonably predict FBC,
BBC, and DOC in the top 30 cm well globally, indicat-
ing the well-represented microbial processes in surface soils
(Table 1). However, MBC and DOC in the top 1 m were
vastly overestimated, with MBC and DOC in the top 1 m
overestimated by 69.5 % and 75.0 %, respectively. Inconsis-
tent with our results, previous studies suggested the under-
estimation of MBC (0–1 m) in their models. For example,
Wang et al. (2017) estimated the global MBC as 21 PgC in
the TRIPLEX-MICROBE model. Wieder et al. (2015) sug-
gested the steady-state MBC (0–1 m) of 16.3 Pg in the MIM-
ICS. The relatively poor performance of the CLM-Microbe
model in simulating DOC and MBC in the top 1 m and
the discrepancy in simulated MBC (0–1 m) among studies
may result from three aspects. First, the hydrologically ac-
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Figure 5. Spatial distributions of decadal averages of (a–b) HR and (d–e) SR during (a, d) 1901–1910 and (b, e) 2007–2016 and relative
changes in (c) HR and (f) SR by 2007–2016 relative to 1901–1910. HR: heterotrophic respiration; SR: soil respiration. Black dot in each grid
indicates significant changes (P<0.05).

tive layer in the CLM-Microbe model may not be sufficient
to define soil microbial processes along soil profiles. We ob-
served better performance of the CLM-Microbe model in
simulating FBC, BBC, and DOC in the top 30 cm relative to
MBC and DOC in the top 1 m, indicating that the represen-
tation of microbial and soil processes along soil profiles may
need improvements. Second, the difference in calibration for
MBC may cause a discrepancy between studies. The SOC
in Wieder et al. (2015) was calibrated to observed data but
not MBC. Wang et al. (2017) calibrated the MBC (0–1 m) in
the TRIPLEX-MICROBE by vegetation types, while we cal-
ibrated both MBC and SOC in 0–30 cm and 0–1 m by grid
in the CLM-Microbe model. The differences in variables and
depths calibrated between studies can partly explain the dis-
crepancy. Third, the difference in simulated vegetation, lit-
ter, and soil C pools among studies can result in the discrep-
ancy. Vegetation C as litter and volatile organic compounds,
DOC, and SOC are the C source for microbial C assimilation
through decomposition (Fig. S1). Consequently, the overes-
timation of SOC and DOC can partly explain the overestima-
tion of MBC in the top 1 m (Table 1).

The CLM-Microbe model indicated an underestimation of
8.5 % for SOC (0–30 cm) and an overestimation of 32 % for
SOC (0–1 m) when comparing with observed data (Table 1).
Compared with the CLM4.5, the CLM-Microbe predicted
larger stocks of SOC (0–30 cm and 0–1 m). Previous stud-
ies suggest large variations in simulated SOC (0–1 m) among
models. For example, Todd-Brown et al. (2013) reported the
SOC (0–1 m) stock ranging from 510 to 3040 PgC among
11 CMIP5 ESMs. The TRIPLEX-MICROBE modeled the
global SOC (0–1 m) stock as 1195 PgC (Wang et al., 2017).
Wieder et al. (2015) documented the steady-state SOC pool

in the MIMICS as 1530 PgC. Delire et al. (2020) reported the
SOC (0-1 m) as 1611 and 1520 PgC in the new (ISBA_bgc6)
and old (ISBA_bgc5) versions, respectively, of ISBA-CTRIP.
Given the wide range (510 to 3040 PgC) of simulated SOC
(0–1 m) in models, the CLM-Microbe model thus predicted
reasonable SOC stocks.

4.2 Temporal trends of carbon fluxes and stocks of soil
microbes

The area-weighted average of HR and SR in the CLM-
Microbe model increased by 12 and 25 PgC yr−1, respec-
tively, from 1901 to 2016 (Fig. 3). Consistent with our find-
ings, Bonan et al. (2019) observed the increase of about
8 PgC yr−1 of HR from 1850 to 2014 in the CLM4.5.
The global increasing rate of SR was estimated as 0.04–
0.14 PgC yr−1 by Huang et al. (2020). The rising ST (0–1 m)
may explain the observed increase in HR considering the
positive relationship between ST (0–1 m) and HR (Figs. 8
and S6c). The increase in HR can partly explain the rising
SR from 1901 to 2016 given its critical contribution to SR.
In addition to HR, the increase in root respiration due to in-
creasing C availability and rising temperature accounted for
a crucial proportion of the SR increase (Bond-Lamberty and
Thomson, 2010; Hashimoto et al., 2015; Piñeiro et al., 2017;
Zhou et al., 2016). We observed increases of GPP and NPP
associated with environmental changes such as increasing
N deposition and rising CO2 concentration and temperature
(Dusenge et al., 2019; Piñeiro et al., 2017). Evidenced by in-
creasing VegC and LitC, indicating the C stock of vegetation
biomass and C loss of vegetation biomass, respectively, C in-
put from plants increased during the historical period at the
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Figure 6. Spatial distributions of decadal averages of (a–b) FBC in the top 30 cm, (d–e) FBC in the top 1 m, (g–h) BBC in the top 30 cm,
and (j–k) BBC in the top 1 m during (a, d, g, j) 1901–1910 and (b, e, h, k) 2007–2016 and relative changes in (c) FBC in the top 30 cm, (f)
FBC in the top 1 m, (i) BBC in the top 30 cm, and (l) BBC in the top 1 m by 2007–2016 relative to 1901–1910. FBC: fungal biomass carbon;
BBC: bacterial biomass carbon. Black dot in each grid indicates significant changes (P<0.05).

global scale (Fig. S8e–f). Therefore, increases in vegetation
C sequestration, together with rising ST and SM in the top
1 m, enhanced HR and SR in the last century.

The area-weighted FBC and BBC in 0–30 cm increased
by 1.0 and 0.4 PgC and those in 0–1 m increased by 1.2
and 0.7 PgC, respectively, from 1901 to 2016 in the CLM-
Microbe model (Fig. 3c–f). Soil microbes are sensitive to en-
vironmental change, and rising temperature was reported to
induce lower microbial biomass due to the negative impacts
of temperature on microbial biomass maintenance through
facilitating microbial turnover (Joergensen et al., 1990; He
and Xu, 2021). We observed an increasing trend of ST (0–
1 m) from 1901 to 2016 (Fig. S6c), indicating negative im-
pacts of temperature on FBC and BBC in 0–30 cm and 0–
1 m. In addition to temperature, microbial biomass is influ-
enced by substrate and water availability, with significant
and positive effects of SOC and MAP recorded on micro-
bial biomass (Chen et al., 2022). Litter, SOM, and DOC are

three C sources for soil microbes in the CLM-Microbe model
(“Materials and methods”; Fig. S1). We observed increases
of DOC (2.4 PgC), LitC (4 PgC), and SOC (34 PgC) in the
top 1 m from 1901 to 2016, indicating more C available for
soil fungi and bacteria during the historical period (Fig. S8c,
d, and f). In addition, MAP and SM (0–1 m) increased from
1901 to 2016 (Fig. S6b and d). Therefore, the increasing sub-
strates (DOC, LitC, and SOC) and soil water availability can
explain the increase in FBC and BBC in the CLM-Microbe
model.

The annual averages of microbial C fluxes (HR and SR)
and pools (FBC and BBC in the top 30 cm and 1 m) have
exhibited more rapid increases since 1980 (Fig. 3). Concur-
rently, we observed a more rapid increase in MAT, MAP, and
ST and SM in the top 1 m since 1980 (Fig. S6). In line with
this study, Cheng et al. (2017) analyzed SM simulations dur-
ing historical (1920–2005) and future (2006–2080) periods
in the CESM from CIMP5; they also found 1980 as a tran-
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Figure 7. Changing rates of the CLM-Microbe model simulated (a) HR, (b) SR, and (c) FBC in the top 30 cm, (d) FBC in the top 1 m,
(e) BBC in the top 30 cm, and (f) BBC in the top 1 m from 1901 to 2016. HR: heterotrophic respiration; SR: soil respiration; FBC: fungal
biomass carbon; BBC: bacterial biomass carbon. Black dot in each grid indicates significant regression (P<0.05).

sition for a subsequent increase of variation during 1920–
2005, indicating more rapid changes in SM after 1980. We
observed significant correlations of HR, SR, FBC (0–1 m),
and BBC (0–1 m) with ST and SM in the top 1 m (Fig. 8).
Therefore, more rapid increases in MAT, MAP, and ST and
SM in the top 1 m after 1980 may explain the more rapid
increases of such variables since 1980.

4.3 Changes in microbial carbon fluxes and stocks over
the space and their controls

The HR and SR showed an increase across latitudinal gradi-
ents and the globe in the study period (Figs. 4a and b and 5).
Consistent with our findings, Huang et al. (2020) observed a
globally significant increase in SR, particularly in boreal and
tropical regions (e.g., northern Asia, central South America,
and central and southern Africa), from 2000–2014. Bond-
Lamberty et al. (2018) also observed an increase in HR in
multiple biomes during 2000–2015. In addition, we observed

similar spatial patterns of increases (e.g., higher increases at
northern high latitudes and in equatorial regions) in HR and
SR with those of GPP and NPP (Fig. S10). These results in-
dicated that soil C fluxes largely depended on vegetation pro-
ductivity, which can enhance soil C fluxes due to high C al-
location to belowground (Pendall et al., 2004; Prescott et al.,
2020). In addition, soil C fluxes can be further increased due
to facilitated decomposition in a warming world (Noh et al.,
2017; Zhou et al., 2007). Temperature and water availability
have a profound influence on root respiration and HR (Bond-
Lamberty and Thomson, 2010; Hashimoto et al., 2015; Sins-
abaugh et al., 2016). We also found significant correlations
of HR and SR with ST and SM in the top 1 m (Fig. 9). The
increases in HR and SR can be explained by the increases
in SM and ST in the top 1 m, considering their significant
correlations (Fig. S6c and d). However, we also observed de-
creases in HR and SR in South Asia (Fig. 5). Vegetation C
fixation is the major C source for ecosystems; the decreases
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Figure 8. Heatmap showing Pearson’s correlation between the
CLM-Microbe model simulated microbial carbon fluxes and pools
(HR, SR, FBC in the top 1 m, and BBC in the top 1 m) and soil en-
vironments (SM and ST in the top 1 m) from 1901 to 2016. GPP:
gross primary productivity; NPP: net primary productivity; HR: het-
erotrophic respiration; SR: soil respiration; DOC: dissolved organic
carbon; SOC: soil organic carbon; FBC: fungal biomass carbon;
BBC: bacterial biomass carbon; VegC: vegetation carbon; LitC: lit-
ter carbon; MAT: mean annual temperature; MAP: mean annual
precipitation; ST: soil temperature; SM: soil moisture. Black aster-
isks indicate significant correlations (P<0.05).

of GPP and NPP in such regions can largely explain the de-
crease in HR and SR (Fig. S10).

The FBC and BBC in the top 30 cm and 1 m increased
across latitudes during 2007–2016 compared with 1901–
1910 (Fig. S4c–f). In addition, the FBC and BBC in the top
30 cm and 1 m widely increased across the globe (Figs. 6
and 7c–f). Vegetation is the major C source for soil microbes
in terrestrial ecosystems, determining the total amount of C
available for microbes by regulating microbial C assimilation
through SOC, DOC, and litter (Schimel, 1995; Vance and
Chapin, 2001; Xu et al., 2014). The spatial patterns of GPP
and NPP change could explain the wide increases of FBC
and BBC in the top 30 cm and 1 m in such areas, as well as
their larger increases at high latitudes and in equatorial re-
gions (Figs. S10 and S12a–b). However, we also found slight
decreases of FBC and BBC in the top 1 m in regions such as
southern Australia/Oceania (Figs. 6 and S7c–f). As a critical
C source for soil microbes in the CLM-Microbe model, the
decrease in DOC (0–1 m) may explain the widespread de-
crease in FBC and BBC of 30 cm and 1 m in southern Aus-
tralia/Oceania (Figs. S1, S11a–c, and S12c). Meanwhile, in
the top 1 m, FBC and BBC were negatively correlated with
ST and positively correlated to SM in southern Australia/O-
ceania (Fig. 9e–h). The increase in ST and SM in the top 1 m
can explain the decrease in FBC and BBC in 0–30 cm and
0–1 m in southern Australia/Oceania (Fig. S7c and d). In ad-
dition, we found decreases of FBC and BBC in the top 30 cm
and 1 m in South Asia and central North America (Figs. 6
and 7c–f). Since vegetation productivity is the primary C
source for terrestrial ecosystems, decreases in vegetation C

input as GPP and NPP can explain their decreases in South
Asia (Figs. S10 and S12a and b). In addition, microbial activ-
ities are affected by soil temperature and water availability.
We observed negative correlations of FBC and BBC in the
top 1 m with SM (0–1 m) in South Asia and with ST (0–1 m)
in central North America. Increases of SM (0–1 m) and ST
(0–1 m) in corresponding regions from 1901–1910 to 2007–
2016 may contribute to decreases in FBC and BBC in the top
30 cm and 1 m in such areas (Figs. 9e–h and S7c and d).

Correlations of microbial C fluxes (HR and SR) with SM
and ST in the top 1 m varied across space (Fig. 9a–d). Specifi-
cally, the association between respiration fluxes, HR and SR,
and soil climatic factors (ST and SM) in the top 1 m were
positive in the majority of land area (P<0.05; Fig. 9a–d) but
were negative in central North America and South America,
South Asia, central Africa, and central and northern Australi-
a/Oceania. Studies found positive effects of rising tempera-
ture and increasing water availability on microbial activities
(Nyberg and Hovenden, 2020; Tecon and Or, 2017); there-
fore, the widely increases of ST and SM in the top 1 m can
explain the increases of HR at the global scale (Fig. S7c and
d). In addition to soil moisture and temperature, HR is pos-
itively related to substrates and microbial biomass (Wei et
al., 2015). Therefore, the reduction in HR in South Asia can
be explained by decreases in DOC, LitC, SOC, FBC, and
BBC in the top 1 m, while decreasing SM (0–1 m) and ST (0–
1 m) may contribute to the reduced HR in central Africa and
central and northern Australia/Oceania, respectively (Figs. 6,
7c–f, S11–12, and S7c–d). Since HR contributed over 50 %
to SR, factors determining correlations of HR with SM and
ST in the top 1 m were expected to be responsible for those of
SR across space. In addition, the reduction in root respiration
would enhance the negative correlations of HR with SM and
ST in top 1 m in South Asia considering its decreasing vege-
tation productivity (Figs. S10 and S12a–b). Water availability
impacts on microbial activities are affected by other factors
such as temperature and substrate availability (Moyano et al.,
2013; Tecon and Or, 2017). We observed decreasing SM (0–
1 m) at middle and low latitudes in North America, Europe,
and Asia, the east coast of South America and Africa, and
southern Australia/Oceania (Fig. S7d). However, HR and SR
and FBC and BBC in the top 1 m widely increased due to
the positive effects of temperature and substrate availability
(Figs. 5–7). Therefore, negative correlations of HR, SR, and
FBC and BBC with SM in the top 1 m at middle and low
latitudes in North America, Europe, Asia, the east coast of
South America and Africa, and southern Australia/Oceania
resulted from the facilitating effects of temperature and sub-
strate availability on HR, SR, and FBC and BBC in the top
1 m even with decreasing SM (0–1 m).

Microbial C pools showed varied correlations with SM
and ST in the top 1 m across space (Fig. 9). Specifically,
FBC and BBC mostly showed significant positive correla-
tions with ST and SM in the top 1 m (P<0.05; Fig. 9e–
h). But we also observed negative correlations of FBC and
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Figure 9. Pearson’s correlation between the CLM-Microbe model simulated (a–b) HR, (c–d) SR, and (e–f) FBC in the top 1 m, (g–h)
BBC in the top 1 m, and (a, c, e, g) ST and (b, d, f, h) SM in the top 1 m from 1901 to 2016. Black dot in each grid indicates significant
correlation (P<0.05). HR: heterotrophic respiration; SR: soil respiration; FBC: fungal biomass carbon; BBC: bacterial biomass carbon; ST:
soil temperature; SM: soil moisture.

BBC in the top 1 m with ST (0–1 m) in central North Amer-
ica and South America and with SM (0–1 m) at middle and
low latitudes in North America, Europe, Asia, the east coast
of South America and Africa, and southern Australia/Ocea-
nia. Temperature negatively impacts microbial biomass due
to enhanced microbial turnover with rising temperature, but
such a relationship depends on environmental conditions (Jo-
ergensen et al., 1990; He and Xu, 2021; Yuste et al., 2007).
Water availability enhances microbial biomass. The positive
correlations of FBC and BBC with SM in the top 1 m at mid-
dle and high latitudes in Asia, Europe, and North America
contributed to positive correlations of FBC and BBC with
ST in the top 1 m in such regions. In addition, substrate avail-
ability is critical for soil microbes. Increases in DOC, SOC,
and LitC in the top 1 m can explain the widely found pos-
itive correlations of FBC and BBC with ST (0–1 m) across
space (Figs. S11–12). Water can affect soil microbes in dis-
tinct ways, affected by other factors such as temperature and
substrate availability (Moyano et al., 2013; Tecon and Or,
2017). We observed decreasing SM (0–1 m) at middle and

low latitudes in North America, Europe, Asia, the east coast
of South America and Africa, and southern Australia/Ocea-
nia (Fig. S7d). However, FBC and BBC in the top 1 m widely
increased due to the positive effects of temperature and sub-
strate availability (Figs. 6 and 7c–f). Therefore, negative cor-
relations of FBC and BBC with SM in the top 1 m at middle
and low latitudes in North America, Europe, Asia, the east
coast of South America and Africa, and southern Australi-
a/Oceania resulted from the facilitating effects of tempera-
ture and substrate availability on FBC and BBC in the top
1 m despite decreasing water availability.

4.4 Future improvements

Although the CLM-Microbe model can well reproduce the
global distribution of C in vegetation, soil, and microbes,
four key improvements are identified for future work. First,
soil and microbial processes along soil profiles need to be
better defined. Soil and microbial variables such as DOC,
SOC, FBC, and BBC in 0–30 cm were better simulated than
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those in 0–1 m (Table 1; Figs. 1–2), indicating that soil and
microbial processes in the deeper soil profile are not ade-
quately modeled. Therefore, better defining soil and micro-
bial processes with depth can help improve the model effi-
cacy in capturing soil and microbial processes and further
reduce uncertainties in future projections of the C cycle.
Second, land-use change needs to be considered in future
work. In addition to changes in environmental factors, land-
use change also has profound influences on the plant, soil,
and microbial processes. Drastic changes in vegetation, soil,
and microbial processes due to land-use change can occur at
small scales, and the spatial pattern of those processes can
also be changed (Pascual et al., 1997; Sampaio et al., 2007;
Stevenson et al., 2016). Therefore, considering the impacts
of land-use change in the CLM-Microbe model can help im-
prove the model efficiency in capturing spatial patterns of
C density and stocks in terrestrial ecosystems. The global
biogeographic patterns of soil microbes and their functions
have been recognized (Xu et al., 2020). This modeling study
has made progress toward a full investigation of microbial
patterns and mechanisms, and a community-wide microbial
data system is needed to facilitate more data–model integra-
tion to improve microbial models. Lastly, factorial analysis
to attribute the variations in terrestrial C fluxes will be ad-
dressed in our future work. Variations in terrestrial C fluxes
and pools are driven by multiple environmental change fac-
tors that contribute individually or in combination. Attribut-
ing the variations in terrestrial C fluxes and pools to environ-
mental change factors is important for the understanding of
terrestrial C flux and pool dynamics (Xu et al., 2010).

5 Conclusions

The ESMs incorporating microbial processes are expected to
represent uncertainties in the terrestrial C cycle more com-
prehensively. The CLM-Microbe model can reproduce the
distribution of vegetation (GPP, NPP, and VegC), soil (HR,
SR, DOC, and SOC), and microbial (FBC, BBC, and MBC)
variables. In addition, microbial fluxes (HR and SR) and
pools (FBC and BBC in top 30 cm and 1 m) increased from
1901 to 2016. We observed increases of such variables in
most of the land but slight decreases of FBC and BBC in the
top 1 m in Australia/Oceania. The increases in HR, SR, and
fungal and bacterial biomass C were closely associated with
increasing vegetation C input and SM and ST in the top 1 m.

This study represents one of the first attempts to sim-
ulate the spatial and temporal variations in C fluxes and
pool sizes of soil microbes during the last century using a
microbial-explicit model – the CLM-Microbe model. As the
community is moving towards a microbial-explicit Earth sys-
tem model, this study provides robust support for microbial
model development and application for predicting microbial
roles in the C–climate feedback. The variations in soil micro-
bial community over historical periods and across space sim-

ulated by the CLM-Microbe model provide a crucial founda-
tion to study the impacts of soil microbes on terrestrial bio-
geochemical processes.

Code and data availability. The sources of observational data for
model validation have been clearly cited in the main text. The
CLM-Microbe used in this study is available in the GitHub
repository: https://github.com/email-clm/clm-microbe, last access:
1 May 2021. The model version used in this study has been archived
(Xu et al., 2022). The model outputs have been archived at Dryad:
https://doi.org/10.5061/dryad.612jm6471 (He and Xu, 2024). The
CRUNCEP dataset version 7 is available at https://rda.ucar.edu/
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