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S1 Tendencies of the leaf gas exchange

This section contains instructions to calculate the tendency equations for the A-gs model as implemented in CLASS model
(details of A-gs in CLASS are in appendix E of Vilà-Guerau de Arellano et al. 2015). We do not write the equations of the
A-gs model here but we used the same formulation than the reference excepting than vapor pressure deficit is referred as VPD
instead of DS . The code needed for calculating the budget tendency equation for CLASS model output is in a Github repository
(https://github.com/Rglezarm/LIAISE_manuscript). This repository also contains the code needed to reproduce all the figures
and analysis of the manuscript.

S1.1 General approaches to calculate tendencies

The tendency equations have been computed with respect to two different set of environmental drivers. The first set is the
one used in the present manuscript and has been termed (1) process-based tendencies. Here the set of environmental variables
are PAR, T, VPD, Ca and soil water content at the rootzone (w2). The second set of environmental variables is PAR, T, air
water vapor pressure (e), Ca and w2. The tendency equations derived with respect to this set has been termed (2) model-based
tendencies.

S1.1.1 Process-based tendencies

With this approach, partial tendencies are computed with respect to environmental variables that are known to directly control
the plant photosynthesis and the dynamic stomatal movements. However, the environmental variables are not completely
independent from each other. Specifically, VPD is known to depend on T, through the following expression:

V PD = esat(T )− e (S1)

Here, we are assuming that water vapor is saturated inside the sub-stomatal cavities, and that the temperature inside those
cavities is equal to the atmospheric temperature. A partial derivative with respect to a variable xi (xi = PAR, Ca, VPD, T or
w2) is calculated by leaving all the other variables from the set constant. Because of the tight relation between T and VPD, eq.
(S1), we highlight this fact of partial derivative by explicitly indicating in the tendency with respect to T (VPD) that VPD (T)
has been kept constant by adding it as a sub-index. To keep VPD constant when T changes, the atmospheric vapor pressure, e,
must balance the temperature change. According to this approach and to our formulation, we write the process-based tendency
equation for a general variable Y (e.g., gs, An, or TRleaf ) with the following mathematical expression.

dY

dt
=

∂Y

∂PAR

dPAR

dt
+

(
∂Y

∂T

)
V PD

dT

dt
+

(
∂Y

∂V PD

)
T

dV PD

dt
+

∂Y

∂Ca

dCa

dt
+

∂Y

∂w2

dw2

dt
(S2)

S1.1.2 Model-based tendencies

In a similar fashion to the previous approach, the model-based tendency equation for a general variable Y can be mathemat-
ically written as:

dY

dt
=

∂Y

∂PAR

dPAR

dt
+

∂Y

∂T

dT

dt
+

∂Y

∂e

de

dt
+

∂Y

∂Ca

dCa

dt
+

∂Y

∂w2

dw2

dt
(S3)

Although these two approaches view the tendencies through different lens, they are directly linked to each other.
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S1.1.3 Relation between process-based and model-based tendencies

Because we known that V PD is a function of T and e, a direct link between process-based and model-based budget
tendency equations can be obtained. The following equations depict the relation between the partial tendency terms of the two
approaches.

∂Y

∂T
=

(
∂Y

∂T

)
V PD

+

(
∂Y

∂V PD

)
T

∂V PD

∂T
(S4)

∂Y

∂e
=

(
∂Y

∂V PD

)
T

∂V PD

∂e
(S5)

Because the functional form of V PD is known (eq. (S1)), its partial derivative with respect to T and e can be computed.

∂V PD

∂T
=

desat
dT

(S6)

∂V PD

∂e
=−1 (S7)

Considering all the concepts of this section we can construct the following final expression to calculate the model-based
tendency equations from the process-based ones.

dY

dt
=

∂Y

∂PAR

dPAR

dt
+

[(
∂Y

∂T

)
V PD

+

(
∂Y

∂V PD

)
T

∂esat
∂T

]
dT

dt
−
(

∂Y

∂V PD

)
T

de

dt
+

∂Y

∂Ca

dCa

dt
+

∂Y

∂w2

dw2

dt
(S8)

S1.2 Strategy to calculate the budget tendency equations for A-gs model

Now that we have described the connection between the process-based and model-based budget tendency equations, we will
focus on deriving the process-based ones, eq. (S2), for the A-gs scheme. The tendency equations can be computed for any
intermediate variable of the leaf gas exchange. Note that in the previous section we have denoted such generic variable as Y .
This fact implies that we can quantify the effect that changes of the environmental variables have in any variable of the leaf gas
exchange. Our final goal is to do that for the stomatal conductance to water vapor (gs), the net assimilation rate (An) and the
leaf transpiration (TRleaf ).

In leaf gas exchange models, these variables are generally linked to each other. Their dependency varies from one model (or
even implementation of a model) to another. A− gs model structure can be summarized as follows. The first step of the model
is to calculate the variables that depend solely on temperature. After that, Ci is computed through several equations that capture
its dependency with T, VPD and Ca. These variables allow the calculation of CO2 primary productivity (Am). Subsequently,
gross primary productivity is calculated for a soil at field capacity (A∗

g). This means that the plant is completely unstressed in
terms of soil water content. At this step, the dependency on PAR is also included. The fourth step is to include the soil water
content dependency of gross primary productivity. This is done by applying a soil water stress function (f(w2)) that factorize
the gross primary productivity at field capacity. At this point, both the stomatal conductance to water vapor, net assimilation
rate of CO2 and leaf transpiration can be computed. Table S1 defines A-gs variables that may not have been introduced before.
The A-gs parameters can be found in Table 3 of the manuscript.

Taking advantage of this structure, we calculate the tendency equations as follows:

1. Calculate the total temporal derivatives of the environmental variables. dPAR
dt , dT

dt , dV PD
dt , dCa

dt and dw2

dt are calcu-
lated using a numerical technique called symmetric difference quotient applied to the output of the numerical experiments
performed with CLASS.
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2. Calculate the tendency equation of the CO2 primary productivity (Am). Equations in Sect. S1.3.

3. Calculate tendency equation of the gross primary productivity under unstressed water situations (Ag
∗). Equations

in Sect. S1.4.

4. Calculate the tendency equation of the gross primary productivity at a particular soil water content in the root
zone (Ag). Equations in Sect. S1.5.

5. Calculate the tendency equation of the net leaf assimilation rate (An). Equations in Sect. S1.6.

6. Calculate the tendency equation of the stomatal conductance to water vapor (gsw). Equations in Sect. S1.7.

7. Calculate the tendency equation of the leaf transpiration (TRleaf ). Equations in Sect. S1.8.

Table S1. List of variables used in the A-gs model that may have not been introduced before.

Variables

Symbol Definition

α (mg J−1) Light use efficiency
Ag (mg m−2

leaf s−1) CO2 gross primary productivity at leaf level
A∗

g (mg m−2
leaf s−1) Unstressed CO2 gross primary productivity at leaf level

Am (mg m−2
leaf s−1) CO2 primary productivity

Am,max (mg m−2
leaf s−1) CO2 maximal primary productivity

An (mg m−2
leaf s−1) Net CO2 assimilated rate

Rd (mg m−2
leaf s−1) Dark respiration

Γ (ppmv) CO2 compensation point
Cfrac (-) Fraction of the concentration (Ci-Γ)/(Ca-Γ)
D0 (kPa) Water vapor pressure deficit when stomata close
gm (mm s−1) Mesophyll conductance

S1.3 The tendency equation of Am

Am depends on Ca, T and VPD. Its tendency equation can be described as follows:

dAm

dt
=

∂Am

∂Ca

dCa

dt
+

(
∂Am

∂T

)
V PD

dT

dt
+

(
∂Am

∂V PD

)
T

dV PD

dt
(S9)

S1.3.1 Dependency on Ca

∂Am

∂Ca
= gmCfrac

(
1− Am

Ammax

)
(S10)
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S1.3.2 Dependency on VPD at constant T

(
∂Am

∂V PD

)
T

=
∂Am

∂Ci

∂Ci

∂Cfrac

(
∂Cfrac

∂V PD

)
T

(S11)

To calculate the above expression, some additional terms are needed:

∂Am

∂Ci
= gm

(
1− Am

Ammax

)
(S12)

∂Ci

∂Cfrac
= Ca −Γ (S13)

(
∂Cfrac

∂V PD

)
T

=−ad (S14)

S1.3.3 Dependency on T at constant VPD

(
dAm

dT

)
V PD

=
∂Am

∂Ammax

dAmmax

dT
+

∂Am

∂gm

dgm
dT

+
∂Am

∂Γ

dΓ

dt

+
∂Am

∂Ci

[
∂Ci

∂Γ

dΓ

dT
+

∂Ci

∂Cfrac

(
∂Cfrac

fmin
+

∂Cfrac

∂D0

∂D0

fmin

)(
∂fmin

∂fmin0

∂fmin0

∂gm
+

∂fmin

∂gm

)
dgm
dT

]
(S15)

To calculate the above expression, some temperature dependent functions are needed:

∂Γ

∂T
= 0.1 ·Γ · logQ10Γ (S16)

∂Ammax

∂T
= 0.1 ·Ammax

[
logQ10Am +3 · e0.3(T1Am−T ) − e0.3(T−T2Am)

(1+ e0.3(T1Am−T ))(1+ e0.3(T−T2Am))

]
(S17)

∂gm
∂T

= 0.1 · gm
[
logQ10gm +3 · e0.3(T1gm−T ) − e0.3(T−T2gm)

(1+ e0.3(T1gm−T ))(1+ e0.3(T−T2gm))

]
; (S18)

together with other terms

∂Am

∂Ammax
=

Am

Ammax
− gmCfrac(Ca −Γ)

Ammax

(
1− Am

Ammax

)
(S19)

∂Am

∂gm
= Cfrac(Ca −Γ)

(
1− Am

Ammax

)
(S20)
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∂Am

∂Γ
=−gmCfrac

(
1− Am

Ammax

)
(S21)

dAm

dCi
= gm

(
1− Am

Ammax

)
(S22)

dCi

dΓ
= 1−Cfrac (S23)

dCi

dCfrac
= Ca −Γ (S24)

∂Cfrac

∂fmin
=

V PD

D0
(S25)

∂Cfrac

∂D0
= (f0 − fmin)

V PD

D2
0

(S26)

∂D0

∂fmin
=− 1

ad
(S27)

∂fmin

∂gm
=

gminw

1.6 · gm
1√

f2
min0 +

4·gminw

1.6 gm

− fmin

gm
(S28)

∂fmin

∂fmin0
=− fmin

2 · gmfmin + fmin0
(S29)

∂fmin0

∂gm
=−1

9
(S30)

S1.4 The tendency equation of A∗
g

dA∗
g

dt
=

∂A∗
g

∂PAR

dPAR

dt
+

∂A∗
g

∂Ca

dCa

dt
+

(
∂A∗

g

∂T

)
V PD

dT

dt
+

(
∂A∗

g

∂V PD

)
T

dV PD

dt
; (S31)

with
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S1.4.1 Dependency on PAR

∂A∗
g

∂PAR
= α

(
1−

A∗
g

Am +Rdark

)
(S32)

S1.4.2 Dependency on Ca

∂A∗
g

∂Ca
=

(
∂A∗

g

∂Rdark

∂Rdark

∂Am
+

∂A∗
g

∂Am

)
∂Am

∂Ca
+

∂A∗
g

∂α

∂α

∂Ca
(S33)

To calculate the above expression some additional terms are needed:

∂A∗
g

∂Rdark
=

A∗
g

Am +Rdark
− αPAR

Am +Rdark

(
1−

A∗
g

Am +Rdark

)
(S34)

∂Rdark

∂Am
=

1

9
(S35)

∂A∗
g

∂Am
=

∂A∗
g

∂Rdark
(S36)

∂A∗
g

∂α
= PAR

(
1−

A∗
g

Am +Rdark

)
(S37)

∂α

∂Ca
=

3 ·α0Γ

(Ca +2Γ)2
(S38)

S1.4.3 Dependency on V PD at constant T

(
∂Ag

∗

∂V PD

)
T

=

(
∂A∗

g

∂Rdark

∂Rdark

∂Am
+

∂A∗
g

∂Am

)(
∂Am

∂V PD

)
T

(S39)
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S1.4.4 Dependency on T at constant VPD

(
∂A∗

g

∂T

)
V PD

=

(
∂A∗

g

∂Rdark

∂Rdark

∂Am
+

∂A∗
g

∂Am

)(
∂Am

∂T

)
V PD

+
∂A∗

g

∂α

∂α

∂Γ

dΓ

dT
(S40)

∂α

∂Γ
=− 3 ·α0Ca

(Ca +2Γ)2
(S41)

S1.5 The tendency equation of Ag

dAg

dt
=

∂Ag

∂PAR

dPAR

dt
+

∂Ag

∂Ca

dCa

dt
+

(
∂Ag

∂T

)
V PD

dT

dt
+

(
∂Ag

∂V PD

)
T

dV PD

dt
+

∂Ag

∂w2

dw2

dt
(S42)

As mentioned previously, the gross primary productivity (Ag) is calculated from that under unstressed water situations (A∗
g)

and a soil water stress fucntion (β(w2)), Ag =A∗
g ·β(w2). Similarly the tendency equation of Ag can be computed from that

of A∗
g and an additional term:

dAg

dt
= β

dA∗
g

dt
+A∗

g

dβ(w2)

dw2

dw2

dt
(S43)

S1.5.1 Dependency on PAR

∂Ag

∂PAR
=

∂A∗
g

∂PAR
·β (S44)

S1.5.2 Dependency on Ca

∂Ag

∂Ca
=

∂A∗
g

∂Ca
·β (S45)

S1.5.3 Dependency on VPD at constant T

(
∂Ag

∂V PD

)
T

=

(
∂A∗

g

∂V PD

)
T

·β (S46)
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S1.5.4 Dependency on T at cosntant VPD

(
∂Ag

∂T

)
V PD

=

(
∂A∗

g

∂T

)
V PD

·β (S47)

S1.5.5 Dependency on w2

∂Ag

∂w2
=A∗

g

dβ(w2)

dw2
(S48)

A∗
g is given by the model and as a consequence, the only term we analytically solve in this section is dβ(w2)

dw2
.

The functional form of the water-stress function β implemented in CLASS model is the one presented by Combe et al.
(2016). The following equations govern the functional form and were proposed in the cited manuscript (see equations (13) and
(14) of the manuscript).

SMI =
w2 −wwp

wfc −wwp
(S49)

β =
1− e−P (Cβ)SMI

1− e−P (Cβ)
(S50)

P (Cβ) =


6.4 ·Cβ if 0 %≤ Cβ < 25 %,

7.6 ·Cβ − 0.3 if 25 %≤ Cβ < 50 %,

23.66·Cβ+0.34 − 1 if 50 %≤ Cβ ≤ 100 %.

(S51)

Taking into account that functional form, the analytical derivative of β with respect to w2 is:

dβ

dw2
=

1

wfc −wwp

P (Cβ)e
−P (Cβ)SMI

1− e−P (Cβ)
(S52)

S1.6 The tendency equation of An

An is the difference between the gross primary productivity and the dark respiration.

An =Ag −Rdark (S53)

The budget tendency equation of An is:

dAn

dt
=

∂An

∂PAR

dPAR

dt
+

∂An

∂Ca

dCa

dt
+

(
∂An

∂T

)
V PD

dT

dt
+

(
∂An

∂V PD

)
T

dV PD

dt
+

∂An

∂w2

dw2

dt
(S54)
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which can be related to that of Ag

dAn

dt
=

dAg

dt
− dRdark

dAm

dAm

dt
(S55)

S1.7 The budget tendency equation of gs and gsc

The stomatal conductance to carbon dioxide gsc is calculated through the following equation:

gsc = gmin,c +
a1Ag

(Ca −Γ)
(
1− V PD

D∗

) (S56)

The total temporal derivatives of gs and gsc are related, eq. (S57). Therefore, we only need to calculate the budget tendency
equation for one of the two.

dgs
dt

= µ · dgsc
dt

(S57)

where µ is the ratio of the molecular diffusivities between water vapor and carbon dioxide and is approximately 1.6.
The tendency equation for gsc is:

dgsc
dt

=
∂gsc

∂PAR

dPAR

dt
+

∂gsc
∂Ca

dCa

dt
+

(
∂gsc
∂T

)
V PD

dT

dt
+

(
∂gsc

∂V PD

)
T

dV PD

dt
+

∂gsc
∂w2

dw2

dt
(S58)

S1.7.1 Dependency on PAR

∂gsc
∂PAR

=
∂gsc
∂Ag

∂Ag

∂PAR
(S59)

∂gsc
∂Ag

=
a1

(Ca −Γ)
(
1− V PD

D∗

) (S60)

S1.7.2 Dependency on Ca

∂gsc
∂Ca

=

(
∂gsc
∂Ca

)
Ag

+
∂gsc
∂Ag

∂Ag

∂Ca
(S61)
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(
∂gsc
∂Ca

)
Ag

=−gsc − gminc

Ca −Γ
(S62)

∂gsc
∂Ag

=
gsc − gminc

Ag
(S63)

S1.7.3 Dependency on VPD at constant T

(
∂gsc

∂V PD

)
T

=

(
∂gsc

∂V PD

)
Ag,T

+
∂gsc
∂Ag

(
∂Ag

∂V PD

)
T

(S64)

(
∂gsc

∂V PD

)
Ag,T

=− gsc − gminc

D∗ +V PD
(S65)

S1.7.4 Dependency on T at constant VPD

(
∂gsc
∂T

)
V PD

=

(
∂gsc
∂Γ

)
Ag

dΓ

dt
+

∂gsc
∂Ag

(
∂Ag

∂T

)
V PD

(S66)

(
∂gsc
∂Γ

)
Ag,T

=
gsc − gminc

Ca −Γ
(S67)

S1.8 Tendency equation for TRleaf

In this research, we have estimated TRleaf as:

TRleaf = gsρ
0.622

Ps
V PD (S68)

where ρ is the air density and PS the surface pressure taken as 101300 Pa. The tendency equation of TRleaf has the following
form

dTRleaf

dt
=

∂TRleaf

∂PAR

dPAR

dt
+

∂TRleaf

∂Ca

dCa

dt
+

(
∂TRleaf

∂T

)
V PD

dT

dt
+

(
∂TRleaf

∂V PD

)
T

dV PD

dt
+

∂TRleaf

∂w2

dw2

dt
(S69)
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S1.8.1 Dependency on PAR

∂TRleaf

∂PAR
=

dTRleaf

dgs

dgs
dPAR

(S70)

dTRleaf

dgs
= ρ

0.622

Ps
V PD (S71)

S1.8.2 Dependency on Ca

∂TRleaf

∂Ca
=

dTRleaf

dgs

∂gs
∂Ca

(S72)

S1.8.3 Dependency on VPD at constant T

(
∂TRleaf

∂V PD

)
T

=
dTRleaf

dgs

(
∂gs

∂V PD

)
T

+ gsρ
0.622

Ps
(S73)

S1.8.4 Dependency on T at constant VPD

(
∂TRleaf

∂T

)
V PD

=
dTRleaf

dgs

(
∂gs
∂T

)
V PD

(S74)

S1.8.5 Dependency on w2

∂TRleaf

∂w2
=

dTRleaf

dgs

∂gs
∂w2

(S75)

S2 Observed direct and diffuse components of shortwave radiation

Fig. S1 and Fig. S2 show the radiation components for the studied day and for a cloudy day occurred during LIAISE Field
Campaign.
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Figure S1. Radiation components at La Cendrosa during the studied day. The inset figure depicts the ratio of diffuse radiation (Sin,diff ) to
net radiation (Rn). The blue shaded area depicts a low diffusive regime whereas the red shaded area depicts a high diffusive regime according
to the classification used by Niyogi et al. (2004).

Figure S2. Same as Fig. S1 but for a cloudy day occurred during the LIAISE field campaign.
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S3 Additional numerical experiment with modelled Ca similar to observed Ca

To explore the implications of the mismatch between modelled and observed Ca, we carried out a new numerical experiment
called IMP-CO2. In IMP-CO2, we forced Ca at 3 m to be similar to the Ca measured by the eddy-covariance system at La
Cendrosa (Fig. S3). In that way, Ca was lower for IMP-CO2 than for CONTROL throughout the day with the largest differences
occurring in the morning. IMP-CO2 resulted in larger stomatal conductance values (approximately 5 % more than Control
averaged over the numerical experiment time), slightly lower leaf net CO2 assimilation rate (approximately -2%) and slightly
larger leaf transpiration (approximately 2%). The diurnal shape of the fluxes and the tendencies remained similar between IMP-
CO2 and Control. Focusing on comparing the tendency terms of IMP-CO2 (Fig. S4) and Control (Fig. 6 in the manuscript), all
the terms remained similar except for the Ca terms. The Ca terms of the tendencies of IMP-CO2 had the same magnitude than
the Ca terms of Control. The main difference of the Ca terms was that they peaked earlier for IMP-CO2 than for CONTROL.
That means that the leaf gas exchange variables were affected earlier by the CO2 temporal changes which is logical since the
large drop in CO2 occurs before in IMP-CO2 than in Control. Despite these differences, IMP-CO2 results led to the same
conclusions of the study. For instance, like in Control, in IMP-CO2 the CO2 diurnal variability contributes the least to the
diurnal dynamics of gs,w, An and TRleaf .

Figure S3. Diurnal time series of Ca for the studied day. Blue dots depict observations at La Cendrosa measured with an Eddy covariance
system at 3 meter height whereas the black lines show the model results for Control (dashed line) and IMP-CO2 (solid line) experiments.

S4 Comparing observed and modelled leaf gas exchange

To compliment the comparison between the modelled and the observed leaf gas exchange, we show the modelled leaf
variables against the observations and post-processed observations (Fig. S5). Additionally, we provide the slope and intercept
of a linear regression fitted through the model results and observations.
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Figure S4. Temporal evolution of the tendencies of: (6a) gs, (6b) An and (6c) TRleaf for IMP-CO2 numerical experiment. Black lines
depict the total tendency terms, grey dashed lines depict the sum of the partial terms and the other solid coloured lines depict the partial
tendency terms due to temporal changes of PAR (orange lines), VPD (blue lines), T (red lines) and Ca (green lines). The vertical dashed
orange lines depict solar noon.

Figure S5. Modelled leaf gas exchange variables against observations and post-processed observations of gs,w, An and TRleaf . The solid
black lines depict the line with slope = 1 and intercept = 0, where model and observations are equal. The dashed black lines depict the linear
regression fitted through the data. Intercepts, slopes, root mean squared errors (RMSE), r2 and p-values are provided inside the figures.
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