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S1 Tendencies of the leaf gas exchange

This section contains instructions to calculate the tendency equations for the A-g, model as implemented in CLASS model
(details of A-gs in CLASS are in appendix E of Vila-Guerau de Arellano et al. 2015). We do not write the equations of the
A-g, model here but we used the same formulation than the reference excepting than vapor pressure deficit is referred as VPD
instead of Dg. The code needed for calculating the budget tendency equation for CLASS model output is in a Github repository
(https://github.com/Rglezarm/LIAISE_manuscript). This repository also contains the code needed to reproduce all the figures
and analysis of the manuscript.

S1.1 General approaches to calculate tendencies

The tendency equations have been computed with respect to two different set of environmental drivers. The first set is the
one used in the present manuscript and has been termed (1) process-based tendencies. Here the set of environmental variables
are PAR, T, VPD, C, and soil water content at the rootzone (ws). The second set of environmental variables is PAR, T, air
water vapor pressure (e), C, and ws. The tendency equations derived with respect to this set has been termed (2) model-based
tendencies.

S1.1.1 Process-based tendencies

With this approach, partial tendencies are computed with respect to environmental variables that are known to directly control
the plant photosynthesis and the dynamic stomatal movements. However, the environmental variables are not completely
independent from each other. Specifically, VPD is known to depend on T, through the following expression:

VPD =e4q(T) — ¢ (S1)

Here, we are assuming that water vapor is saturated inside the sub-stomatal cavities, and that the temperature inside those
cavities is equal to the atmospheric temperature. A partial derivative with respect to a variable z; (r; = PAR, C,, VPD, T or
wo) is calculated by leaving all the other variables from the set constant. Because of the tight relation between 7" and VPD, eq.
(S1), we highlight this fact of partial derivative by explicitly indicating in the tendency with respect to T (VPD) that VPD (T)
has been kept constant by adding it as a sub-index. To keep VPD constant when T changes, the atmospheric vapor pressure, e,
must balance the temperature change. According to this approach and to our formulation, we write the process-based tendency
equation for a general variable Y (e.g., g5, Ap, of T'R;cq¢) With the following mathematical expression.

dy Y dPAR <8Y) ar ( )4 > dVvPD 0Y dC,  OY dwy (S2)
T

At~ 0PAR dt  \oT ), ., dt \aVPD),. di ' aC, di = 0w, di

S1.1.2 Model-based tendencies

In a similar fashion to the previous approach, the model-based tendency equation for a general variable Y can be mathemat-
ically written as:

dl_ 24 dPAR+6ld£+al@+8YdCa+al%
dt ~ OPAR dt OT dt  Oe dt  0C, dt  Owy dt

(83)

Although these two approaches view the tendencies through different lens, they are directly linked to each other.


https://github.com/Rglezarm/LIAISE_manuscript

S1.1.3 Relation between process-based and model-based tendencies

Because we known that V' PD is a function of 7" and e, a direct link between process-based and model-based budget
tendency equations can be obtained. The following equations depict the relation between the partial tendency terms of the two
approaches.

)4 oYy aYy OV PD
==\ 7= + (S4)
oT ol ) pp ovVPD ), oT

Y Y PD
2 _ 0 ov (S5)
Oe OVPD ), Oe
Because the functional form of V' PD is known (eq. (S1)), its partial derivative with respect to T and e can be computed.
OVPD  desu

or 4T (56)
OVPD _ 4 S7)

Oe

Considering all the concepts of this section we can construct the following final expression to calculate the model-based
tendency equations from the process-based ones.

dY  9Y dPAR oy oY Oesar ] dT [ OY de OV dC, OV duwp
dt OPAR dt or )ypp \OVPD), 0T | dt \OVPD),dt 0C, dt = Ows dt

(S8)

S1.2 Strategy to calculate the budget tendency equations for A-g, model

Now that we have described the connection between the process-based and model-based budget tendency equations, we will
focus on deriving the process-based ones, eq. (S2), for the A-g, scheme. The tendency equations can be computed for any
intermediate variable of the leaf gas exchange. Note that in the previous section we have denoted such generic variable as Y.
This fact implies that we can quantify the effect that changes of the environmental variables have in any variable of the leaf gas
exchange. Our final goal is to do that for the stomatal conductance to water vapor (g,), the net assimilation rate (A,) and the
leaf transpiration (T'Rjcq f).

In leaf gas exchange models, these variables are generally linked to each other. Their dependency varies from one model (or
even implementation of a model) to another. A — g, model structure can be summarized as follows. The first step of the model
is to calculate the variables that depend solely on temperature. After that, C; is computed through several equations that capture
its dependency with T, VPD and C,,. These variables allow the calculation of CO, primary productivity (A,,). Subsequently,
gross primary productivity is calculated for a soil at field capacity (Aj). This means that the plant is completely unstressed in
terms of soil water content. At this step, the dependency on PAR is also included. The fourth step is to include the soil water
content dependency of gross primary productivity. This is done by applying a soil water stress function (f (w5)) that factorize
the gross primary productivity at field capacity. At this point, both the stomatal conductance to water vapor, net assimilation
rate of CO4 and leaf transpiration can be computed. Table S1 defines A-g, variables that may not have been introduced before.
The A-g, parameters can be found in Table 3 of the manuscript.

Taking advantage of this structure, we calculate the tendency equations as follows:

1. Calculate the total temporal derivatives of the environmental variables. 2CA% 4T " dVED d% and 222 are calcu-

lated using a numerical technique called symmetric difference quotient applied to the output of the numerical experiments
performed with CLASS.




2. Calculate the tendency equation of the CO; primary productivity (A,,). Equations in Sect. S1.3.

3. Calculate tendency equation of the gross primary productivity under unstressed water situations (A, ). Equations
in Sect. S1.4.

4. Calculate the tendency equation of the gross primary productivity at a particular soil water content in the root
zone (A,). Equations in Sect. S1.5.

5. Calculate the tendency equation of the net leaf assimilation rate (A,). Equations in Sect. S1.6.
6. Calculate the tendency equation of the stomatal conductance to water vapor (gs,). Equations in Sect. S1.7.

7. Calculate the tendency equation of the leaf transpiration (TR)..¢). Equations in Sect. S1.8.

Table S1. List of variables used in the A-g; model that may have not been introduced before.

Variables
Symbol Definition
a(mgJ™h) Light use efficiency
Ay (mg mfei 7 s7 CO3 gross primary productivity at leaf level
Ay (mg mfei s Unstressed CO» gross primary productivity at leaf level
A (mgm,; f s7h CO primary productivity
Am,maz (Mg m,_; f sfl) CO2 maximal primary productivity
A, (mg mfei f sfl) Net CO- assimilated rate
Rg (mg mfei §S b Dark respiration
I' (ppmv) CO> compensation point
Crrac () Fraction of the concentration (C;-I")/(C,-T")
Dy (kPa) Water vapor pressure deficit when stomata close
Gm (Mmm s’l) Mesophyll conductance

S1.3 The tendency equation of A,,,

A, depends on C,, T and VPD. Its tendency equation can be described as follows:

dA, 0A;, dC, 0Am dar 0An, dVPD (S9)
dt — 0C, dt oT ) pp dt OVPD ), dt

S1.3.1 Dependency on C,

0Am Am

aca B gmcfrac (1 a Ammaw) (510)



S1.3.2 Dependency on VPD at constant T

oVPD

( 8A'm > o aAAm 801
T

N 8C1 acfrac

aCvfrac
dVPD )

To calculate the above expression, some additional terms are needed:

OAm _(,_An
oC; ~ "\ Apma
oC;

=C,-T
aCfrac ¢

aCvfrac - _a
ovVPD ), ¢

S1.3.3 Dependency on T at constant VPD
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To calculate the above expression, some temperature dependent functions are needed:
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(S11)

(S§12)

(S13)

(S14)
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(S16)

(S17)

(S18)

(S§19)

(S20)
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S1.4 The tendency equation of A;

dA:  9A; dPAR 0A;dC, <aA;) dr

dt  OPAR di | 9C, dt T\ T )ypp di

with

i
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dVPD

OVPD
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(S25)

(S26)

(S27)

(S28)
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S1.4.1 Dependency on PAR

DA A
=afll-—2L —
OPAR ( Am + Rdark )

S1.4.2 Dependency on C,

aA; _ < aA; aRdark + aA;) 8Am I GA!’; Oa

0Cy  \ORgarr OA,, 0A,, ) 0C,  Oa 0C,

To calculate the above expression some additional terms are needed:

94y Ay aPAR <_ A >
aRdark B Am + Rdark Am + Rdark Am + Rdark
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S1.4.3 Dependency on V PD at constant T

0AS \ ([ 04 ORdark 0A; A,
OVPD ), \ORaer 0An  0A, ) \OVPD),

(832)

(S33)

(S34)

(S35)

(S36)

(S37)

(S38)
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S1.4.4 Dependency on T at constant VPD

0A” 0A* r  O0A% 0A?
g _ g aRda'rk + g 8Am + g 6704 dl (S40)
' Jvpp ORdarr 0Am 0A,, or )pp Oa OI'dT
Oa 3-agCy,
ar ~ " (Cot2T) (S41)
S1.5 The tendency equation of A
dA,  0A, dPAR n 04, dC, 04, dar 04, dVPD  0Ag dwy (S42)
dt ~ OPAR dt oC, dt oT )ypp dt  \OVPD ), dt Owy dt

As mentioned previously, the gross primary productivity (Ay) is calculated from that under unstressed water situations (A7)
and a soil water stress fucntion (8(ws)), Ay = Aj - B(w2). Similarly the tendency equation of Ay can be computed from that
of A7 and an additional term:

o e, ar (543)

dA,
o

S1.5.1 Dependency on PAR

94,  OA
9PAR ~ 9PAR " (544)

S1.5.2 Dependency on C,

A, 0A7

ac, ~ac, " (545)

S1.5.3 Dependency on VPD at constant T

94, \ [ 04;
<8VPD)T - <8VPD>T P (546)




S1.5.4 Dependency on T at cosntant VPD
<6Ag ) B (8A; ) 5
T )vpp T )vpp

S1.5.5 Dependency on wo

aAQ — A* dﬂ(wZ)

8w2 T d’UJQ

A7 is given by the model and as a consequence, the only term we analytically solve in this section is

(S47)

(S48)

The functional form of the water-stress function # implemented in CLASS model is the one presented by Combe et al.
(2016). The following equations govern the functional form and were proposed in the cited manuscript (see equations (13) and

(14) of the manuscript).

SM = 27w
We = Wap

1 — ¢~ P(Cp)SMI
B = 1 —eP(Cs)

6.4-Cpg ifO%SCg<25%,
P(C3)=1476-C5—0.3 if 25 % < Cs < 50 %,
23:66:C5+0:34 _ 1 if 50 % < Cs < 100 %.

Taking into account that functional form, the analytical derivative of 3 with respect to ws is:

dp 1 P(Cg)e PCa)sMI
dwy Wie — Wap 1 —eP(Cs)

S1.6 The tendency equation of A,
A, is the difference between the gross primary productivity and the dark respiration.
An = Ag — Raark

The budget tendency equation of A, is:

dA, 0A, dPAR 0A, dC, <8An) dr (8An> dVPD 0A, dw;
T

dt OPAR di ' 9C, dt "\ 9T )yppdt " \oVPD), di ' Ow, di

(S49)
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which can be related to that of A,

dAn o LI% deark, dAm
dt — dt dA,, dt

S1.7 The budget tendency equation of g5 and g

The stomatal conductance to carbon dioxide gy, is calculated through the following equation:

alAg

9sc = Gmin,c T

(Ca=T) (1- Y52

(S55)

(S56)

The total temporal derivatives of g, and g, are related, eq. (S57). Therefore, we only need to calculate the budget tendency

equation for one of the two.

dgs dgse

a M ar

where p is the ratio of the molecular diffusivities between water vapor and carbon dioxide and is approximately 1.6.
The tendency equation for g, is:

dgsc  0gse dPAR  0gsc dC,
dt = OPAR dt aC, dt

S1.7.1 Dependency on PAR

8gsc o agsc aA’élg
OPAR ~ 0A, OPAR

agsc o ai

04, (C, —T) (1 - VD&)

S1.7.2 Dependency on C,

dVPD  0Ogs.d
L 99sc dws

99sc _ 0gse I 0Yse 8149
0C, \9C. /), ~ 94,0C,

(S57)

(S58)

(S59)

(S60)

(Se61)



(8.950) _ _gsc — minc (562)
A

0C, C,-T
agsc 9sc — Gminc
= S63
04, A, (563)

S1.7.3 Dependency on VPD at constant T

agsc agsc agSC aAg
= S64
<8VPD)T <8VPD)A97T taa, (8VPD . (564
agsc _ 9sc — Iminc
(8VPD > v 7  D.+VPD e

S1.7.4 Dependency on T at constant VPD

9gse ~ (0gse\ dU | Dgs. (DA,
( or >VPD - ( or >Ag dt 94, \ or VPD (S66)
09sc _ Jsc — Gminc
(8F )A v Ca-T (S67)

S1.8 Tendency equation for TR ¢,

In this research, we have estimated TR, ¢ as:

0.622
TRicar = gsp 2

S

VPD (568)

where p is the air density and Pgs the surface pressure taken as 101300 Pa. The tendency equation of T'R;c s has the following
form

(S69)

dTRicas _ OTRicas dPAR 0T Rica dCo (0T Ricas AT (OTRicas) dVPD  OTRicos dws
dt  OPAR dt oC, dt or  )ypp dt OVPD ), dt Owy  dt
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S1.8.1 Dependency on PAR

a,‘TRleaf _ dTRleaf dgs

OPAR dgs dPAR (570)
dezzz:af _ p0£f2 VPD (S71)
S1.8.2 Dependency on C,

OT Rieas _ AT Rieay 09s (572)

oC, dgs 0C,

S1.8.3 Dependency on VPD at constant T

(5858), 23 ), 25
S1.8.4 Dependency on T at constant VPD

<3TR1eaf> _ AT Rjeay <8gs> (S74)

or VPD dgs T ) vpp
S1.8.5 Dependency on wo
OT Rieaf _ dTRicay Ogs (S75)

Ows dgs Ows

S2  Observed direct and diffuse components of shortwave radiation

Fig. S1 and Fig. S2 show the radiation components for the studied day and for a cloudy day occurred during LIAISE Field
Campaign.
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Radiation at La Cendrosa, 17/07/2021
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Figure S1. Radiation components at La Cendrosa during the studied day. The inset figure depicts the ratio of diffuse radiation (Sin,qifs) to
net radiation (R,,). The blue shaded area depicts a low diffusive regime whereas the red shaded area depicts a high diffusive regime according
to the classification used by Niyogi et al. (2004).

Radiation at La Cendrosa, cloudy day
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Figure S2. Same as Fig. S1 but for a cloudy day occurred during the LIAISE field campaign.
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S3 Additional numerical experiment with modelled C, similar to observed C,

To explore the implications of the mismatch between modelled and observed C,, we carried out a new numerical experiment
called IMP-CO2. In IMP-CO2, we forced C, at 3 m to be similar to the C, measured by the eddy-covariance system at La
Cendrosa (Fig. S3). In that way, C, was lower for IMP-CO2 than for CONTROL throughout the day with the largest differences
occurring in the morning. IMP-CO?2 resulted in larger stomatal conductance values (approximately 5 % more than Control
averaged over the numerical experiment time), slightly lower leaf net CO5 assimilation rate (approximately -2%) and slightly
larger leaf transpiration (approximately 2%). The diurnal shape of the fluxes and the tendencies remained similar between IMP-
CO2 and Control. Focusing on comparing the tendency terms of IMP-CO2 (Fig. S4) and Control (Fig. 6 in the manuscript), all
the terms remained similar except for the C, terms. The C, terms of the tendencies of IMP-CO2 had the same magnitude than
the C, terms of Control. The main difference of the C, terms was that they peaked earlier for IMP-CO2 than for CONTROL.
That means that the leaf gas exchange variables were affected earlier by the CO, temporal changes which is logical since the
large drop in CO; occurs before in IMP-CO2 than in Control. Despite these differences, IMP-CO2 results led to the same
conclusions of the study. For instance, like in Control, in IMP-CO2 the CO; diurnal variability contributes the least to the
diurnal dynamics of g ., Ay, and TRjcaf.

Atmospheric CO>

480 1° --- CONTROL, 3m
ot —— IMP-C02,3m
260 SN « OBS,3m

440

ppm

420 1

400 4

04 06 08 10 12 14 16 18 20
Time [UTC]

Figure S3. Diurnal time series of C, for the studied day. Blue dots depict observations at La Cendrosa measured with an Eddy covariance
system at 3 meter height whereas the black lines show the model results for Control (dashed line) and IMP-CO?2 (solid line) experiments.

S4 Comparing observed and modelled leaf gas exchange

To compliment the comparison between the modelled and the observed leaf gas exchange, we show the modelled leaf
variables against the observations and post-processed observations (Fig. S5). Additionally, we provide the slope and intercept
of a linear regression fitted through the model results and observations.
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IMP-CO2. Temporal tendencies of gs, IMP-CO2. Temporal tendencies of A, IMP-CO2. Temporal tendencies of TRjear
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Figure S4. Temporal evolution of the tendencies of: (6a) gs, (6b) A, and (6¢) T Rjeqy for IMP-CO2 numerical experiment. Black lines
depict the total tendency terms, grey dashed lines depict the sum of the partial terms and the other solid coloured lines depict the partial
tendency terms due to temporal changes of PAR (orange lines), VPD (blue lines), T (red lines) and C, (green lines). The vertical dashed
orange lines depict solar noon.
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Figure S5. Modelled leaf gas exchange variables against observations and post-processed observations of gs ., Ap and TRjecar. The solid
black lines depict the line with slope = 1 and intercept = 0, where model and observations are equal. The dashed black lines depict the linear
regression fitted through the data. Intercepts, slopes, root mean squared errors (RMSE), r? and p-values are provided inside the figures.

14



References

Combe, M., de Arellano, J. V.-G., Ouwersloot, H. G., and Peters, W.: Plant water-stress parameterization determines the strength of land—
atmosphere coupling, Agricultural and forest meteorology, 217, 61-73, 2016.

Niyogi, D., Chang, H.-I., Saxena, V., Holt, T., Alapaty, K., Booker, F., Chen, F., Davis, K. J., Holben, B., Matsui, T., et al.: Direct observations
of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes, Geophysical Research Letters, 31, 2004.

Vila-Guerau de Arellano, J., Van Heerwaarden, C., Van Stratum, B., and Van Den Dries, K.: Atmospheric boundary layer: Integrating air
chemistry and land interactions, 2015.

15



