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Abstract. Recent meta-analyses suggest that microzoo-
plankton biomass density scales linearly with phytoplankton
biomass density, suggesting a simple, general rule may un-
derpin trophic structure in the global ocean. Here, we use a
set of highly simplified food web models, solved within a
global general circulation model, to examine the core drivers
of linear predator–prey scaling. We examine a parallel food
chain model which assumes microzooplankton grazers feed
on distinct size classes of phytoplankton and contrast this
with a diamond food web model allowing shared microzoo-
plankton predation on a range of phytoplankton size classes.
Within these two contrasting model structures, we also evalu-
ate the impact of fixed vs. density-dependent microzooplank-
ton mortality. We find that the observed relationship between
microzooplankton predators and prey can be reproduced with
density-dependent mortality on the highest predator, regard-
less of choices made about plankton food web structure. Our
findings point to the importance of parameterizing mortality
of the highest predator for simple food web models to reca-
pitulate trophic structure in the global ocean.

1 Introduction

Over the past decades, there has been considerable progress
in our understanding of marine planktonic ecosystems. Both
satellite and in situ observations have helped to elucidate
the biogeography, phenology, and structure of these systems.
Much of this knowledge has been incorporated into numeri-

cal models to make projections and perform sensitivity anal-
yses, in particular pertaining to the impacts of global change
(Dutkiewicz et al., 2013; Henson et al., 2021). As a result,
marine ecosystem models have become increasingly detailed
and complex, with a particular focus on improving the repre-
sentation of the rich diversity of plankton. For example, the
European Regional Seas Ecosystem Model (ERSEM) con-
tains 10 different plankton functional types and 3 types of
bacteria (Butenschön et al., 2016), whereas the current ver-
sion of the Plankton Type Ocean Model (PlankTOM11) in-
cludes 9 plankton functional types, bacteria, and jellyfish
(Wright et al., 2021). The Darwin model uses allometric scal-
ing to model dozens of plankton size classes (Ward et al.,
2012; Henson et al., 2021).

As ecosystem models become increasingly complex, it
becomes increasingly challenging to understand how their
structure impacts the bulk biogeochemical properties of the
system. For example, assumptions about microzooplankton
predation on phytoplankton determine model predictions of
phytoplankton carbon in the surface ocean, which in turn
influences rates of carbon fixation and, eventually, carbon
sequestration from the surface layer to the deep ocean.
Due to their influence on carbon cycling globally, Earth
system models typically contain representations of ocean
ecosystems and are incorporating expanded plankton diver-
sity (Séférian et al., 2020), raising questions about how much
model complexity is required to capture biogeochemically
relevant properties (Kwiatkowski et al., 2014).
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Figure 1. Recent meta-analyses suggest microzooplankton biomass density scales linearly with phytoplankton biomass density in the global
ocean. Panel (a) shows the sampling locations, and panel (b) shows the relationship between microzooplankton and phytoplankton biomass
in mg C m−3 (Rajakaruna et al., 2022; Hatton et al., 2015).

Observational datasets provide a critical resource to dis-
criminate between models with different assumptions about
modeled food web interactions (Luo et al., 2022; Petrik et
al., 2022). The relationship between microbial predators and
prey (for example, microzooplankton and phytoplankton, re-
spectively) is one observed phenomenon with profound im-
plications for global biogeochemical cycles, for example by
controlling the biomass of autotrophs that fix carbon and im-
pacting carbon export through microzooplankton excretion
of fecal pellets (Buck and Newton, 1995). One recent meta-
analysis suggests a relatively simple set of observational re-
lationships between microbial predators and their prey (Ra-
jakaruna et al., 2022). Specifically, predator biomass (say, Y )
appears to scale with prey biomass (say, X) following a sim-
ple linear relationship, i.e., Y ∼X (Fig. 1). These observa-
tional compilations present the opportunity to identify key
features of ocean biogeochemical models that capture rela-
tionships between predator and prey biomass.

Here, we undertake this task with a highly idealized set of
ecosystem models, solved in the global ocean with a general
circulation model. The models we examine are highly ab-
stracted (Fig. 2), capturing some essential features that are
general to a wide class of ecosystem and biogeochemical
models.

All ecosystem models with descriptions of diversity
beyond the classic nutrient–phytoplankton–zooplankton–
detritus (NPZD) formulation (Fasham et al., 1990; Wrob-
lewski, 1989) must make assumptions about which predators
feed on which prey. However, it is unclear whether empiri-
cally rooted contrasting assumptions (Holt et al., 1995; Arm-
strong, 1999) about predator preference for prey type impact
the scaling between predator and prey biomass in a manner
that is consistent with patterns observed by Rajakaruna et
al. (2022). Our models are put forth specifically to address
this question.

In addition to asking whether food web structure impacts
plankton predator–prey relationships, we also consider the
role of predation in the highest predator, in this case the zoo-

plankton. By their nature, planktonic ecosystem models do
not explicitly resolve the dynamics of higher trophic lev-
els. Therefore, the effects of higher predation on the high-
est predator are usually parameterized (Edwards and Brind-
ley, 1999; Steele and Henderson, 1992; Rhodes and Mar-
tin, 2010). The assumptions made here profoundly influence
biogeochemical properties such as primary production and
chlorophyll distribution (Aumont and Bopp, 2006; Aumont
et al., 2015; Stock and Dunne, 2010; Stock et al., 2014; Yool
et al., 2013). However, it is unclear if and how their effects
are dependent on choices made about food web structure.

By explicitly examining the role of predation in the high-
est predator in the context of two contrasting food webs, we
seek to identify the core, underlying drivers of linear scal-
ing between microbial predators and prey (Fig. 1). We then
“sample” the model and compare predictions to observations
of trophic structure covering a large range of temperate, sub-
tropical, and tropical ecosystems. In doing so, we evaluate
how these contrasting model structures impose trophic struc-
ture globally. While our ecosystem models are relatively sim-
ple by comparison to many extant biogeochemical models
(e.g., Dutkiewicz et al., 2020), they are comparable to the
ocean biology component of many extant Earth system mod-
els (Rohr et al., 2023) and allow for clear insight. We discuss
the implications of our findings for more complex models of
ecosystem dynamics.

2 Models and methods

In the sections that follow, we explain and justify the full
equations used to parameterize phytoplankton and microzoo-
plankton growth dynamics. We then describe model imple-
mentation in a global-ocean ecosystem context and the com-
parison of simulations with a published compilation of rele-
vant ocean data.
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2.1 Food web models

The main ecosystem model parameterization is reported in
Box 1, and a schematic representation is provided in Fig. 2.
Model equations are described in detail in the Appendix, and
our source code is provided in a publicly available repos-
itory (https://github.com/werdna-spatial/GUD_closure, last
access: 25 March 2024). The most important model param-
eters are provided in Tables 1 and 2, a more complete list is
provided in Table A3, and a fully exhaustive list is provided
in the online GitHub repository. We compared predictions of
a model with a diamond food web structure (shared preda-
tion) to a model assuming predators feed in parallel on dis-
tinct prey types in the following sections.

Parallel food chain model. Here it was assumed that mi-
crozooplankton grazers feed in parallel on microzooplank-
ton prey (Armstrong, 1999; Ward et al., 2013, 2012), mim-
icking predation that is specific to different size classes or
functional groups. Models with parallel feeding have led to
realistic predictions of plankton community composition in
the global ocean (Ward et al., 2013; Dutkiewicz et al., 2020).
Furthermore, parallel feeding was a component of 5 out of 10
Earth system models that were part of the most recent Cou-
pled Model Intercomparison Project (CMIP6) evaluated by
Rohr et al. (2023), making it a useful food web structure to
examine in a global-ocean context.

Diamond food web model. An alternative to parallel feed-
ing is a model with shared predation. Here, microzooplank-
ton predators may feed on multiple plankton types. Since
this general predation resembles a diamond, models with
shared predation are referred to as having a “diamond” food
web structure (Holt et al., 1995). A recent study examin-
ing plankton community composition along a resource avail-
ability gradient in the North Pacific indicated a model with
shared predation on Prochlorococcus, and heterotrophic bac-
teria may, in some circumstances, lead to improved pre-
dictions of plankton community composition (Follett et al.,
2022). Furthermore, shared predation was a component of 6
out of 10 CMIP6 Earth system models evaluated by Rohr et
al. (2023), making it a useful model structure to examine in
a global-ocean context.

The parallel food chain and diamond food web models use
established allometric scaling laws to assign traits accord-
ing to phytoplankton cell size (Banse, 1976; Litchman et al.,
2007; Ward et al., 2012; see Appendix). In both formulations,
small and large phytoplankton represent cells with a ∼ 0.5
and 5 µm equivalent spherical radius and are representative
of picocyanobacteria and eukaryotic algae, respectively. In
the parallel model, small and large microzooplankton rep-
resent protists with a ∼ 7 and 50 µm equivalent spherical ra-
dius and are representative of microzooplankton in the ciliate
size range. The generalist predator in the diamond food web
model has a 15 µm equivalent cell radius.

Box 1. Plankton ecosystem model equations.

2.2 Parameterizing microzooplankton mortality

All lower trophic ecosystem models must make choices
about the mortality of the highest predator. Here, loss pro-
cesses must be mimicked without being explicitly resolved.
This requirement to parameterize presents a problem for
plankton ecosystem modelers wishing to motivate model
form and function with mechanism. Nevertheless, one way
to evaluate the strength of different assumptions about model
closure is to examine the influence of contrasting assump-
tions on the model predictions in a holistic manner. Here, we
sought to do this by applying two widely assumed micro-
zooplankton loss processes, as can be seen in the following
sections.

Linear microzooplankton losses. Here, it is assumed that
the rate of microzooplankton mortality is independent of its
biomass density (Box 1). As such, linear losses may equiv-
alently be thought of as density-independent mortality. This
assumption has been applied within ecological and biogeo-
chemical models to predict the biogeography of cyanobacte-
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ria and heterotrophic bacteria in the North Pacific (Follett et
al., 2022) and in the global ocean (Ward et al., 2012, 2013).

Quadratic microzooplankton losses. Here, the rate of mi-
crozooplankton mortality increases with biomass density.
This increase in the mortality rate can be justified on sev-
eral grounds, including intraspecific competition (Barbier
and Loreau, 2019) and sinking (Schartau et al., 2007), which
may both increase with microzooplankton density. Here, we
invoke density-dependent mortality on the highest trophic
level to mimic the effects of unresolved predation on the
highest predator.

2.3 Global-ocean ecosystem models

To explore the ecological and biogeochemical implications
of these characteristics, we introduced these parameteriza-
tions of primary and secondary producers into a global-ocean
ecosystem, biogeochemistry, and circulation model (MIT-
gcm). The ecosystem model simulates flow of C, N, and
other elements (Fig. 2) between inorganic nutrients, photo-
autotrophs, microzooplankton, and detritus. It is embedded
in a coarse-resolution (1°×1° horizontal, 24 vertical levels),
climatologically averaged, global-ocean circulation model
that has been constrained with satellite and in situ observa-
tions (Wunsch and Heimbach, 2007).

2.4 Model data comparison and statistical analyses

We sampled the model in locations where there are environ-
mental samples in the compilation of Rajakaruna et al. (2022)
(Fig. 1). After log-transforming phytoplankton and micro-
zooplankton biomass density, we conducted an ordinary least
squares type 2 (OLS II) regression and quantified a Pear-
son correlation coefficient. We compared the regression slope
and Pearson R value between the models and the environ-
mental datasets. To identify whether sampling locations were
representative of the broader global ecosystem, we repeated
the same analysis, sampling the entire global ocean. In do-
ing so, we asked which model assumptions were necessary
for the ecosystem model to internally reproduce the observed
relationships between microzooplankton and phytoplankton
biomass density (Fig. 1).

2.5 Sensitivity studies

Our assumed phytoplankton and zooplankton sizes are nar-
row by comparison to the diversity of plankton sizes that
exists in nature, which in some cases is captured by other
ecosystems (Dutkiewicz et al., 2020; Ward et al., 2012) and
Earth system models (Kearney et al., 2021). To assess the
sensitivity of our findings in relation to assumptions about
plankton size, we conducted simulations for all four models
in which the (i) phytoplankton volume was increased ∼ 3-
fold, (ii) zooplankton volume was increased ∼ 3-fold, and
(iii) phytoplankton and zooplankton volumes were both in-
creased ∼ 3-fold.

Predator feeding assumptions profoundly influence mod-
eled dynamics of phytoplankton and microzooplankton
(Rohr et al., 2022). To evaluate the sensitivity of our find-
ings to assumptions about plankton feeding, we conducted
simulations in which (i) the microzooplankton in the dia-
mond model were allowed to actively switch feeding pref-
erence to more abundant prey (see Vallina et al., 2014, and
Appendix Eq. A21), and (ii) microzooplankton preyed upon
phytoplankton according to a type III feeding curve (see Rohr
et al., 2022, and Appendix Eq. A21).

3 Results

We first describe model predictions of ecosystem structure in
the global ocean and go on to examine which of the mod-
els leads to predictions of predator and prey biomass density,
consistent with the observations in Fig. 1. In all that follows,
we compare the predictions for both the diamond and par-
allel food chain models with and without density-dependent
microzooplankton losses.

3.1 Surface ocean phytoplankton carbon

All models make qualitatively similar predictions of surface
ocean total planktonic carbon (Fig. 3). Plankton carbon den-
sity is lowest in the low-latitude oligotrophic gyres and high-
est in coastal regions, in the equatorial upwelling, and at
high latitude. These predictions are all qualitatively consis-
tent with predictions of phytoplankton biomass density in-
dicated by satellite remote sensing of ocean color (Hu et
al., 2019). Interestingly, however, there are clear differences
in the total plankton carbon density predicted by the four
models, with the most notable contrast between the mod-
els with parallel feeding and the diamond food web (com-
pare columns in Fig. 3). Specifically, the model with par-
allel feeding tends to predict a greater total phytoplankton
carbon density at high latitude and in equatorial upwelling
and coastal regions. There are more subtle increases in total
plankton carbon density when quadratic microzooplankton
losses are assumed instead of linear microzooplankton mor-
tality (compare bottom and top rows in Fig. 3). The quadratic
closure allows for a far greater contribution of phytoplankton
to total carbon (Figs. S1 and S2 in the Supplement), raising
total planktonic carbon inventories globally (Fig. 3). Quali-
tatively similar differences in these four models are found in
depth-integrated primary production (Fig. S3), carbon export
(Fig. S4), and secondary production (Fig. S5). These results
identify a subtle interplay between food web structure and
microzooplankton mortality in predictions of plankton car-
bon density in the global ocean.

3.2 Surface ocean community composition

All four models predict qualitatively similar patterns in phy-
toplankton community composition in the surface ocean
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Table 1. Size-independent parameters. All parameters were held constant in all simulations, except for the linear and quadratic mortality
terms, which were set to zero in simulations where these terms were not considered. Nondimensional units are represented by n.d.

Parameter Symbol Value Units

Linear zooplankton mortality rate δz 0.02 d−1

Quadratic zooplankton mortality rate δzz 0.08 m3 mmol−1 d−1

Grazing half-saturation constant Kg,i 20 mmol m−3

Grazing assimilation efficiency ε 0.3 n.d.

Table 2. Size-dependent parameters and scaling coefficients. Coefficients a and b constrain allometric relations of the form aV b, where V
represents cell volume (µm3). Scaling parameters and coefficients were held constant across all simulations.

Parameter Symbol a b Units

Phytoplankton sinking rate w 0.06 0.28 m d−1

Maximum phytoplankton growth rate µmax 2.0,0.6 (large, small) −0.16 d−1

Ammonium half-saturation constant KNO−3
0.17 0.27 mmol m−3

Nitrite half-saturation constant KNO−2
0.17 0.27 mmol m−3

Nitrate half-saturation constant KNH+4
0.085 0.27 mmol m−3

Phosphorus half-saturation constant KPO3−
4

2.6 0.27 mmol m−3

Grazer maximum ingestion rate gmax,i 23 −0.15 d−1

(Fig. 4). Specifically, the small phytoplankton size class
dominates in the low-latitude oligotrophic gyres (deep red
colors in Fig. 4), and the large phytoplankton size class dom-
inates at high latitudes (deep blue colors in Fig. 4). Nev-
ertheless, the model with shared predation (diamond food
web) predicts far greater competitive exclusion of the small
phytoplankton size class at high latitude. The parallel food
web model predicts coexistence of the small and large phy-
toplankton throughout much of the surface ocean, regardless
of which microzooplankton closure is used (left-hand col-
umn in Fig. 4).

3.3 Interplay between community composition and
total carbon density

Interestingly, the impact of food web structure (diamond vs.
parallel) and microzooplankton closure (linear vs. quadratic)
appears to be mirrored in the model predictions of plankton
carbon density (Fig. 3) and community composition (Fig. 4).
Specifically, the greatest differences are between the dia-
mond and parallel models (comparing columns), with more
nuanced differences between closure assumption (comparing
rows). This mirroring points to community composition as
a driver of total plankton carbon density. Specifically, any-
where in the ocean with greater representation of the smaller
size class tends to predict an elevated total plankton carbon
density.

3.4 Quadratic microzooplankton closure predicts
global trophic structure

The results in Figs. 3–4 point to the importance of a food web
structure for predictions of planktonic ecosystem carbon in
the global ocean. We now turn our attention to ask the follow-
ing question: which of these models is consistent with obser-
vations that microzooplankton carbon density scales linearly
with phytoplankton carbon density (Fig. 1, Rajakaruna et al.,
2022)?

In Fig. 5, we show the relationship between total micro-
zooplankton and phytoplankton carbon for the global ocean.
Each colored point represents the number of 1° grid cells
falling within the microzooplankton and phytoplankton car-
bon density marked by its position on the axes. The dashed
black line represents the OLS II regression slope. Interest-
ingly, we find here that any differences between the paral-
lel and diamond food web are minimal (compare columns,
Fig. 5), and the largest differences are between the linear and
quadratic microzooplankton closure (compare rows, Fig. 5).
Therefore, in predicting ecosystem trophic structure, which
we think of here as the relationship between microzooplank-
ton and phytoplankton carbon density, the impacts of food
web on phytoplankton community composition that were re-
vealed in Figs. 3–4 cease to play an important role. More-
over, only the model with quadratic microzooplankton losses
predicts a relationship between microzooplankton and phy-
toplankton carbon density that is consistent with the linear
scaling in the observation dataset in Fig. 1 (bottom row of
Fig. 5). The model with linear microzooplankton mortality
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Figure 2. Two contrasting models considered here are (a) the parallel food chains and (b) the shared predation in the form of a diamond food
web. Both models cycle elements (C, N, and P) through inorganic and organic forms. Iron biogeochemistry was included in the model in a
manner similar to C, N, and P but is not shown for parsimony. Model equations, along with parameter definitions and units, are detailed in
the Appendix.

Figure 3. Depth-integrated total plankton carbon predicted by all four contrasting models. Color represents total plankton carbon density
averaged over a seasonal cycle.

predicts far less correlation between microzooplankton and
phytoplankton carbon density (reflected in the lower r val-
ues) and a negative slope that relates total microzooplankton
carbon with phytoplankton carbon.

Why does the linear closure predict such a variable rela-
tionship between microzooplankton and phytoplankton car-
bon density? To investigate these predictions, we attempted
to separate out spatial and temporal impacts on the relation-
ship.

In Fig. 6, we show seasonal variability in the relation-
ship between microzooplankton and phytoplankton carbon
density for a single site in the English Channel. Observa-
tions of time-dependent biomass dynamics (Fig. 6a) are as-
sociated with a strikingly linear relationship between micro-
zooplankton and phytoplankton biomass density (Fig. 6b).
Consistent with prior analyses (Steele and Henderson, 1992;
Fasham, 1995; Edwards and Brindley, 1999; Edwards and

Yool, 2000), models with linear zooplankton losses predict
oscillations in phytoplankton and microzooplankton biomass
(Fig. 6c, e), irrespective of whether a parallel or diamond
food web structure is assumed. The regression slopes for this
single location mirror the regression slopes for the global
ocean; the linear microzooplankton closure predicts a shal-
low regression slope with low r value (Fig. 6d, f), and the
quadratic closure predicts a far higher correlation between
phytoplankton and microzooplankton biomass (Fig. 6h, j),
again consistent with the global collection (Fig. 5). Notably,
there are many inconsistencies between the modeled time-
dependent biomass dynamics and the observations (Fig. 6).
For example, the quadratic closure predicts a premature
spring bloom initiation and termination (Fig. 6g, i). There-
fore, the correct relationship between phytoplankton and mi-
crozooplankton biomass density can be retrieved even when
the bloom dynamics are incorrect, pointing to the limitation
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Figure 4. Phytoplankton community composition in the surface ocean. Red indicates dominance of small phytoplankton; blue indicates
dominance of large phytoplankton.

Figure 5. The relationship between phytoplankton and microzooplankton carbon density in the global ocean for the (a) parallel food chain
model with linear closure, (b) diamond food web with linear closure, (c) parallel food chain model with quadratic closure, and (d) diamond
food web model with quadratic closure. The color within each hexagon represents the number of 1° grid cells that fall within the biomass
range marked by their position on the axes. Slopes are OLS type II regression slopes, and r values are Pearson correlation coefficients.
Density-dependent microzooplankton mortality reproduces the relationship between Z and P , regardless of food web structure.

of biomass-scaling relationships as a sole indicator of model
performance. Nevertheless, these results demonstrate the ten-
dency of the linear closure to predict predator–prey oscilla-
tions as a key driver of the global relationship between phyto-
plankton and microzooplankton biomass density. The cyclic
behavior is true, irrespective of assumptions about parallel
food chains vs. a diamond food web.

In Fig. 7, we show spatial variation in the Z : P biomass
ratio in the surface ocean, where the color in each location
represents the seasonally averaged Z : P biomass ratio. In-
terestingly, there is considerable spatial variability in Z : P
for either food web assuming a linear closure (top row of
Fig. 7), with the Z : P biomass ratio rising at higher latitudes
(top row of Fig. 7). This prediction is consistent with prior

estimates of Z : P biomass variability in the global ocean
that assumed linear closure and parallel feeding (Ward et al.,
2012). The quadratic closure removes much of this spatial
variation (note the narrower color bar range in the bottom
row of Fig. 7). In a steady state, linear losses on the micro-
zooplankton allow them to place a limit on the phytoplankton
biomass, causing carbon to accumulate in the predator (Fol-
lett et al., 2022). Density-dependent mortality on the micro-
zooplankton forces the microzooplankton to be removed at a
rate that is commensurate with their biomass density, inhibit-
ing their ability to limit the phytoplankton population size
and causing both predators and prey to rise together as the
system is enriched with resources.

https://doi.org/10.5194/bg-21-2493-2024 Biogeosciences, 21, 2493–2507, 2024
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Figure 6. Time-dependent biomass dynamics in observational data
(a) and across models (c, e, g, i) with corresponding relationships
between total microzooplankton and phytoplankton carbon density
(b, d, f, h, j) during a seasonal cycle in the English Channel. Lin-
ear losses of the microzooplankton predict cyclic behavior in the
predator–prey relationship that are inconsistent with observations
(Fig. 1).

Our findings regarding quadratic closure as a driver of
linear phytoplankton and microzooplankton biomass scaling
are insensitive to different assumptions about phytoplankton
and microzooplankton size (Fig. S6). Furthermore, allow-
ing microzooplankton to actively switch to prey on more-
abundant phytoplankton allows for a greater coexistence of
phytoplankton in the diamond food web (Fig. S7; Vallina et
al., 2014) but unsurprisingly does not qualitatively modify
the scaling relationships reported in Fig. 5. Microzooplank-
ton feeding according to type III functional response leads
to a far greater correlation between predators and prey across
models (Fig. S8). These results are consistent with prior stud-
ies identifying type III feeding as a stabilizing mechanism
on microzooplankton–phytoplankton dynamics (Rohr et al.,
2022). Nevertheless, even when a type III response is as-
sumed, the quadratic closure still leads to a more realistic cor-

relation between microzooplankton and phytoplankton than
the linear closure (Fig. S8), pointing to the quadratic closure
as an important control on trophic structure globally.

4 Discussion

Microzooplankton predation on phytoplankton determines
phytoplankton carbon in the surface ocean, which in turn in-
fluences rates of carbon fixation and, eventually, carbon se-
questration from the surface layer to the deep ocean. Mod-
els of plankton ecosystem structure are becoming increas-
ingly complex, but models with relatively simple represen-
tation of plankton food webs are important components of
many extant Earth system models (Rohr et al., 2023). Here,
we have examined a set of models with minimal complexity,
in the context of environmental data, to examine core drivers
of a system structure globally. We find that the total phyto-
plankton carbon density, and community composition, is pro-
foundly impacted by choices regarding food web structure
and losses on the highest predator (in this case, microzoo-
plankton grazers). The diamond food web predicts competi-
tive exclusion of small and large phytoplankton size classes,
whereas parallel feeding allows the small phytoplankton size
class to persist throughout much of the surface ocean during
high latitude blooms and in coastal upwelling regions.

The persistence of small phytoplankton size classes at
higher latitudes is consistent with observational data show-
ing that picoplankton (< 2 µm) and nanoplankton (2–20 µm)
persist through temperature and resource gradients in a wide
range of ocean environments (Marañón et al., 2012). These
findings, in tandem with our study and prior modeling studies
(Ward et al., 2012, 2013), point to parallel feeding as a perva-
sive influence on planktonic system structure. Nevertheless,
shared predation has been invoked to explain Prochlorococ-
cus die-off with latitude (Follett et al., 2022) and is invoked
in many extant Earth system models (Rohr et al., 2023).
Therefore, both food web structures considered here (paral-
lel feeding and the diamond food web) may exist in natural
planktonic systems and are also assumed within models of
the global ocean that inform climate change projections. Our
findings point to the need to carefully consider assumptions
about predation on the highest trophic level with application
of either model structure, since these have profound implica-
tions both for phytoplankton carbon inventories and commu-
nity composition.

The food web model structures assumed here are so sim-
ple that they exclude many mechanisms already considered
in extant Earth system models. For example, many Earth sys-
tem models contain representations of both microzooplank-
ton and mesozooplankton. In some cases, these are explicitly
represented with multiple state variables (Stock et al., 2014;
Aumont et al., 2015). In others, a single “adaptive” zooplank-
ton class mimics the effects of micro- and mesozooplankton
by feeding differently on phytoplankton prey types (Moore
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Figure 7. Seasonally averaged surface ocean Z : P biomass ratio. Spatial variability in the Z : P ratio is lessened by quadratic microzoo-
plankton losses, irrespective of food web structure.

et al., 2004; Long et al., 2021). Future studies may evalu-
ate the impact of different closures in the context of these
more sophisticated structures. Despite the simplicity of our
models, we anticipate that our central conclusions will hold
in a more general setting. Specifically, assumptions made
about highest-predator mortality constrain biomass-scaling
relationships regardless of model predictions about commu-
nity composition within a trophic level.

By comparison to the models considered here, plankton
communities are considerably more complex and diverse,
regarding organism size (Hansen et al., 1994), metabolism
(Alexander et al., 2015; Posfai et al., 2017), and resource
affinities (Litchman et al., 2007). Similarly, when it comes
to parameterizing microzooplankton losses, there are more
complex assumptions to be made beyond our very crude
contrast between linear (density-independent) and quadratic
(density-dependent) mortality, again with implications for
system properties (Omta et al., 2023; Rhodes and Martin,
2010). Despite these limitations, our modeling points to a
simple set of principles that we anticipate will extend to
more sophisticated representations of plankton ecology. In
particular, the quadratic microzooplankton closure provides
a realistic and important constraint on the relationship be-
tween microzooplankton and phytoplankton carbon density,
irrespective of the assumed food web. This generality and
consistency with observational data may also apply to other
predator–prey interactions. Linear scaling between predator
and prey abundance has also been observed between viruses
and heterotrophic bacteria (Rajakaruna et al., 2022). Viral
infection is thought to be highly host-specific (Flores et
al., 2011), suggesting a parallel food web structure between
predators and prey may be more appropriate. Our finding that
linear scaling between predators and prey can be reproduced
with the quadratic closure, regardless of food web structure,
provides insight that may inform models of plankton ecosys-

tems that include even more diverse representations of mi-
crobial life.

Appendix A: Model description

Here we provide details of the ecosystem model represented
graphically in Fig. 2. The description is very similar to other
implementations of the Darwin ecosystem model (Ward et
al., 2012; Dutkiewicz et al., 2009, 2012; Zakem et al., 2018).
All model parameter variable definitions and units are pro-
vided in Tables 1 and 2 of the main text and Tables A1–A3 of
this appendix. An exhaustive list of all parameter values can
be found in the online code repository (https://github.com/
werdna-spatial/GUD_closure, last access: 25 March 2024).

Dissolved organic and inorganic material are all governed
by a mass balance for advection, diffusion, and biological
sources and sinks:

∂X

∂t
= SX︸︷︷︸

biological reactions

−∇ · (uX)︸ ︷︷ ︸
advection

+∇ · (κ∇X)︸ ︷︷ ︸
diffusion

, (A1)

where X represents ammonium, nitrate, nitrite, phosphorus,
dissolved inorganic carbon (DIC), and iron, as well as pools
of dissolved organic carbon, nitrogen, phosphorus, and iron.
Pools of particulate detritus follow a similar mass balance but
are also assumed to sink at rate wY :

∂Y

∂t
= SY −∇ · (uY )+∇ · (κY )−

∂wYY

∂z
, (A2)

where Y represents carbon, nitrogen, phosphorus, and iron,
respectively.

Several of the biological source and sink terms are de-
scribed in the main text (Box 1). Here, we describe additional
source and sink terms for inorganic nutrients and detritus.
Ammonium is produced by the remineralization of organic
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material and lost by nitrification and phytoplankton growth:

SNH+4
= rDONDON+ rPONPON︸ ︷︷ ︸

remineralization

− ζNH+4
NH+4︸ ︷︷ ︸

nitrification

−

∑
j

VNH+4
Pj︸ ︷︷ ︸

nutrient uptake

. (A3)

Biological source and sink terms for nitrate, nitrite, phos-
phorus, and dissolved inorganic carbon are as follows:

SNO−3
= ζNO−2

NO−2︸ ︷︷ ︸
nitrification

−QN:C
∑
j

VNO−3 ,j
Pj︸ ︷︷ ︸

nitrate uptake

, (A4)

SNO−2
= ζNH+4

NH+4︸ ︷︷ ︸
nitrification

− ζNO−2
NO−2︸ ︷︷ ︸

nitrification

−QN:C
∑
j

VNO−2 ,j
Pj︸ ︷︷ ︸

nitrate uptake

,

(A5)

SPO3−
4
= rDOPDOP+ rPOPPOP︸ ︷︷ ︸

remineralization

−QP:C
∑
j

VDIC,jPj︸ ︷︷ ︸
phosphate uptake

, (A6)

SDIC = rDOCDOC+ rPOCPOC︸ ︷︷ ︸
remineralization

−

∑
j

VDIC,jPj︸ ︷︷ ︸
DIC uptake

, (A7)

SFe = rDOFeDOFe+ rPOFePOFe︸ ︷︷ ︸
remineralization

−QFe:C
∑
j

VDIC,jPj︸ ︷︷ ︸
iron uptake

,

(A8)

where fixed elemental ratios convert carbon uptake to other
elements (e.g., multiplication byQP:C in Eq. A6 converts car-
bon uptake to phosphorus uptake).

Dissolved organic material, for example DOC, is produced
through phytoplankton and zooplankton mortality and sloppy
feeding and consumed through remineralization:

SDOC=
∑
i

(1−βmort
p )δpPi︸ ︷︷ ︸

phytoplankton mortality

+

∑
j

(1−βmort
z )(δzZj + δzzZ

2
j )︸ ︷︷ ︸

zooplankton mortality

+

∑
i

∑
j

(1−βgraz
z )(1− ε)giZj︸ ︷︷ ︸

sloppy feeding

− rDOCDOC︸ ︷︷ ︸
remineralization

. (A9)

Dissolved nitrogen and phosphorus are governed by the same
sources and sinks and converted from carbon with fixed
stoichiometric ratios, e.g., for nitrogen QN:C (units mol N

(mol C)−1):

SDON =QN:C
∑
i

(1−βmort
p )δpPi︸ ︷︷ ︸

phytoplankton mortality

+QN:C
∑
j

(1−βmort
z )(δzZj + δzzZ

2
j )︸ ︷︷ ︸

zooplankton mortality

+QN:C
∑
i

∑
j

(1−βgraz
z )(1− ε)giZj︸ ︷︷ ︸

sloppy feeding

− rDONDON︸ ︷︷ ︸
remineralization

. (A10)

The same basic processes are also biological sources and
sinks for particulate organic carbon:

SPOC =
∑
i

βmort
p δpPi︸ ︷︷ ︸

phytoplankton mortality

+

∑
j

βmort
z (δzZj + δzzZ

2
j )︸ ︷︷ ︸

zooplankton mortality

+

∑
i

∑
j

β
graz
z (1− ε)giZj︸ ︷︷ ︸

sloppy feeding

− rPOCPOC︸ ︷︷ ︸
remineralization

, (A11)

where βmort
p and βmort

Z are given as partitions for phytoplank-
ton and zooplankton losses between particulate and dissolved
pools, with corresponding partitions for sloppy feeding given
by β

graz
p and β

graz
Z . As with DOM (Eq. A10), fixed stoi-

chiometric conversations are applied to convert carbon POC
sources to PON and POP. These equations are not shown for
brevity.

The phytoplankton growth rate µi is modified by light, nu-
trients, and temperature in a multiplicative manner:

µi = µmax,iγL,iγN,iγT,i, (A12)

where light limitation is based on the model of photoaccli-
mation following Geider et al. (1997). This can be seen as
follows:

γL,i =

(
1− exp

(
−αθI

µmax,iγN,iγT,i

))
. (A13)

Nutrient limitation follows Monod kinetics and Liebig’s law
of the minimum:

γN =min
{
VN,i,VP,i,VFe,i

}
, (A14)

Biogeosciences, 21, 2493–2507, 2024 https://doi.org/10.5194/bg-21-2493-2024



D. Talmy et al.: Impacts of highest-predator mortality 2503

where nutrient limitation by nitrogen, phosphorus, and iron is
governed by Monod kinetics. This can been seen as follows:

VN,i =
NO−3

NO−3 +KNO−3

e9NH+4 +
NO−2

NO−2 +KNO−2

e9NH+4 +
NH+4

NH+4 +KNH+4

, (A15)

VP,i =
PO3−

4

PO3−
4 +KPO3−

4

, (A16)

VFe,i =
Fe

Fe+KFe
, (A17)

where nitrate and nitrite assimilation are inhibited in the pres-
ence of ammonium with 9, following Follows et al. (2007)
and others (Ward et al., 2012; Dutkiewicz et al., 2009, 2012;
Zakem et al., 2018). Uptakes of ammonium, nitrite, and ni-
trate are found by partitioning total realized nutrient uptake
by the three different nitrogen species as follows:

VNH+4 ,i
=

1
VN,i

NH+4
NH+4 +KNH+4

γN , (A18)

VNO−2 ,i
=

1
VN,i

NO−2
NO−2 +KNO−2

e9NH+4 γN , (A19)

VNO−3 ,i
=

1
VN,i

NO−3
NO−3 +KNO−3

e9NH+4 γN . (A20)

Growth is modulated by temperature with the Arrhenius
equation:

γT = τexp
(
AE

(
1

T + 273.15
−

1
T0

))
. (A21)

The grazing rate of zooplankton type j follows a type II or
III functional response as a function of total phytoplankton
biomass (Holling, 1959), partitioned between phytoplankton
size classes according to the proportion of total phytoplank-
ton biomass in each size class:

gi,j = gmax,j
P
β
i∑

i

P
β
i

(
∑
i

Pi)
γ

(
∑
i

Pi)γ +K
γ

g,j

, (A22)

where the value of β switches the grazers from passive
(β = 1) to active (β = 2) switching and the value of γ
switches from a type II (γ = 2) to a type III (γ = 3) func-
tional response (Vallina et al., 2014). Our main simulations
assumed passive switching and type II functional response,
but we conducted sensitivities to both assumptions, sepa-
rately allowing active-prey switching and type III functional
response.

Table A1. Model state variables.

Symbol Description Units

NH+4 Ammonium mmol m−3

NO−3 Nitrate mmol m−3

NO−2 Nitrite mmol m−3

PO3−
4 Phosphate mmol m−3

DIC Dissolved inorganic carbon mmol m−3

Fe Iron mmol m−3

DOC Dissolved organic carbon mmol m−3

DON Dissolved organic nitrogen mmol m−3

DOP Dissolved organic phosphorus mmol m−3

DOFe Dissolved organic iron mmol m−3

POC Particulate organic carbon mmol m−3

PON Particulate organic nitrogen mmol m−3

POP Particulate organic phosphorus mmol m−3

POFe Particulate organic iron mmol m−3

Table A2. Biological source and sink variables.

Symbol Description Units

SNH+4
Biological sources and sinks of ammonium mmol m−3 s−1

SNO−3
Biological sources and sinks of nitrate mmol m−3 s−1

SNO−2
Biological sources and sinks of nitrite mmol m−3 s−1

SPO3−
4

Biological sources and sinks of phosphate mmol m−3 s−1

SDIC Biological sources and sinks of DIC mmol m−3 s−1

SFe Biological sources and sinks of iron mmol m−3 s−1

SDOC Biological sources and sinks of DOC mmol m−3 s−1

SDON Biological sources and sinks of DON mmol m−3 s−1

SDOP Biological sources and sinks of DOP mmol m−3 s−1

SDOFe Biological sources and sinks of DOFe mmol m−3 s−1

SPOC Biological sources and sinks of POC mmol m−3 s−1

SPON Biological sources and sinks of PON mmol m−3 s−1

SPOP Biological sources and sinks of POP mmol m−3 s−1

SPOFe Biological sources and sinks of POFe mmol m−3 s−1
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Table A3. Model parameters and variables. Specific parameter values assume default values listed in various publications (Ward et al., 2012;
Dutkiewicz et al., 2020) and are available in our online repository (https://github.com/werdna-spatial/GUD_closure/tree/main/Paper_Data,
last access: 25 March 2024). Plankton traits (nutrient and grazing half-saturation constants, maximal grazing, and nutrient uptake rates)
were generated via allometric scaling relationships reported by Ward et al. (2012), and a subset of these is reported in Table 3. The large
phytoplankton has a faster maximal growth rate and higher nutrient half-saturation constants than the small phytoplankton, representative of
differences in growth rate between a eukaryotic algae and a cyanobacteria, respectively (Tables 2 and 3; Litchman et al., 2007; Ward et al.,
2012).

Symbol Description Value and units

wPOC Particulate organic carbon sinking rate 10 m d−1

wPON Particulate organic nitrogen sinking rate 10 m d−1

wPOP Particulate organic phosphorus sinking rate 10 m d−1

wPOFe Particulate organic iron sinking rate 10 m d−1

rDOC Particulate organic carbon remineralization rate 0.033 d−1

rDON Particulate organic nitrogen remineralization rate 0.033 d−1

rDOP Particulate organic phosphorus remineralization rate 0.033 d−1

rDOFe Particulate organic iron remineralization rate 0.033 d−1

rPOC Dissolved organic carbon remineralization rate 0.033 d−1

rPON Dissolved organic nitrogen remineralization rate 0.033 d−1

rPOP Dissolved organic phosphorus remineralization rate 0.033 d−1

rPOFe Dissolved organic iron remineralization rate 0.033 d−1

ζNH+4
Rate of ammonium oxidation to nitrite 2.0 d−1

ζNO−2
Rate of nitrite oxidation to nitrate 0.1 d−1

VNH+4 ,i
Rate of ammonium uptake by phytoplankton i allometric d−1

VNO−3 ,i
Rate of nitrate uptake by phytoplankton i allometric d−1

VNO−2 ,i
Rate of nitrite uptake by phytoplankton i allometric d−1

VDIC,i Rate of DIC uptake by phytoplankton i allometric d−1

QN:C Phytoplankton ratio of nitrogen to carbon 0.13 mol N (mol C)−1

QP:C Phytoplankton ratio of phosphorus to carbon 8.3× 10−3 mol P (mol C)−1

QFe:C Phytoplankton ratio of iron to carbon 8.3× 10−6 mol Fe (mol C)−1

βmort
p Proportion of phytoplankton mortality that goes to POC 0.4, 0.1 (large, small) n.d.
βmort
z Proportion of zooplankton mortality that goes to POC 0.6 n.d.
β

graz
z Proportion of sloppy feeding that goes to POC 0.1 n.d.
δp Phytoplankton linear rate of mortality 0.01 d−1

µi Growth rate of phytoplankton i variable d−1

γL,i Growth limitation by light variable n.d.
γN,i Growth limitation by nutrients variable n.d.
γT,i Growth modulation by temperature variable n.d.
θ Phytoplankton chlorophyll to carbon ratio 0.13 mg Chl (mmol C)−1

α Phytoplankton light affinity 1× 10−6 m2 mmol C (mumol photons)−1 (mg Chl)−1

I Photosynthetically available radiance variable mumol photons m−2 d−1

9NH+4
Ammonium inhibition of nitrate and nitrite assimilation 4.6 m3 (mmol N)−1

AE Temperature response function coefficient −4000 K
τ Temperature response function coefficient 0.8 n.d.
T0 Reference temperature for Arrhenius growth response 293.15 K
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