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Abstract. Identifying the climate-induced variability in the
condition of vegetation is particularly important in the con-
text of recent climate change and plants’ impact on the mit-
igation of climate change. In this paper, we present the co-
herence and time lags in the spectral response of three in-
dividual vegetation types in the European temperate zone to
the influencing meteorological factors in the period 2002–
2022. Vegetation condition in broadleaved forest, coniferous
forest and pastures was measured with monthly anomalies of
two spectral indices – normalised difference vegetation index
(NDVI) and enhanced vegetation index (EVI). As meteoro-
logical elements we used monthly anomalies of temperature
(T ), precipitation (P ), vapour pressure deficit (VPD), evap-
otranspiration (ETo), and the teleconnection indices North
Atlantic Oscillation (NAO) and North Sea Caspian Pattern
(NCP). Periodicity in the time series was assessed using the
wavelet transform, but no significant intra- or interannual cy-
cles were detected in both vegetation (NDVI and EVI) and
meteorological variables. In turn, coherence between NDVI
and EVI and meteorological elements was described using
the methods of wavelet coherence and Pearson’s linear cor-
relation with time lag. In the European temperate zone anal-
ysed in this study, NAO produces strong coherence mostly
for forests in a circa 1-year band and a weaker coherence
in a circa 3-year band. For pastures these interannual pat-
terns are hardly recognisable. The strongest relationships oc-
cur between conditions of the vegetation and T and ETo –
they show high coherence in both forests and pastures. There
is a significant cohesion with the 8–16-month (ca. 1-year)
and 20–32-month (ca. 2-year) bands. More time-lagged sig-
nificant correlations between vegetation indices and T occur

for forests than for pastures, suggesting a significant lag in
the forests’ response to the changes in T .

1 Introduction

Vegetation is one of the main components of the terres-
trial Earth, which plays an important role in regulating cli-
mate through evaporative cooling processes and carbon se-
questration, among others. Hence, vegetation’s presence be-
tween the atmosphere, hydrosphere and lithosphere is crucial
(Zhang et al., 2017). Among different vegetation types, the
major ones, which cover up to 78 % of the world’s land area,
are forests and grasslands (IPCC, 2019; FAO and UNEP,
2020).

Modern climate change is widespread, rapid and intensi-
fying (IPCC, 2019). Climate change deepens the processes
of land degradation through e.g. increase in rainfall intensity
and flooding, heat stress, or drought frequency and severity
(IPCC, 2019). The influence of climate change on vegeta-
tion, especially on forest conditions, is highlighted in several
studies (Buras et al., 2020; Schuldt et al., 2020; Prăvălie et
al., 2022; Yang et al., 2019; Liu et al., 2015). It has the poten-
tial to cause severe, long-term damage to forest ecosystems
by increasing the frequency of extreme weather events, such
as droughts, destructive windstorms and wildfires in many
regions (Bryn and Potthoff, 2018; Hofgaard et al., 2012;
Karlsen et al., 2017; Morin et al., 2018). That is why mon-
itoring vegetation dynamics and precisely characterising the
response of vegetation to changing climate is essential in or-
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der to maintain a sustainable environment (Tomlinson et al.,
2011; Barbosa et al., 2019).

The most widely used parameter for evaluating vegeta-
tion’s response to climate change is the normalised differ-
ence vegetation index (NDVI), derived from satellite remote
sensing (Adole et al., 2016; Huang et al., 2021; Soubry et
al., 2021; Buras et al., 2020; Barbosa et al., 2019). The
NDVI is a normalised transform of the near-infrared to red
reflectance ratio, which is intended to standardise vegetation
index values to fall between −1 and +1 (Didan and Munoz,
2019). According to research, it is a trustworthy ecological
indicator, if obtained from properly calibrated satellite-borne
sensors (Huang et al., 2021). In the research of vegetation
vigour, NDVI has a long history spanning 50 years, but in
recent times the enhanced vegetation index (EVI) has also
gained popularity. In the EVI formula the blue radiation is
additionally used to stabilise the index value against vari-
ations in aerosol concentration levels (Didan and Munoz,
2019).

Spectral vegetation indices – NDVI and EVI – de-
rived from Moderate Resolution Imaging Spectroradiometer
(MODIS) data were coupled with meteorological elements
in many research papers (e.g. Buras et al., 2020; Li et al.,
2010; Mao et al., 2012; Mbatha and Xulu, 2018; Moreira et
al., 2019; Zhu et al., 2023; Ghaderpour et al., 2023; Schuldt
et al., 2020). The applied coupling methods used in these
studies were often based on single and multiple linear re-
gressions and Pearson’s correlations between vegetation in-
dices and climate elements but assuming the stationary re-
lationship. However, the time lag in the correlation between
vegetation indices and weather elements should not be disre-
garded. The spectral response to the influencing factor varies
depending on the vegetation type – it is quicker for grass-
lands and agricultural lands (Moreira et al., 2019), while in
the case of forests this response might be very extended in
time (Barbosa et al., 2019; Carl et al., 2013), so a significant
delay in correlation between vegetation condition and mete-
orological element can occur. For instance, elements such as
temperature can influence the trees’ phenological timing of
the following year (Carl et al., 2013). Therefore, nowadays
the wavelet coherence (WC) method is often used in order
to capture the delay in the spectral response of the vegeta-
tion. This method allows us to study the multiscale and non-
stationary processes over finite spatial and temporal domains
(Furon et al., 2008) and hence is advantageous when com-
pared to the Fourier transform because the latter requires sta-
tionarity (Martínez and Gilabert, 2009). The WC method has
proven to be useful in geophysics and climatology, linking
e.g. rainfall and the El Niño–Southern Oscillation (ENSO)
index (Torrence and Webster, 1999) or rainfall and monsoon
in Pakistan (Hussain et al., 2022). WC has already been used
several times when coupling climatological factors such as
temperature or rainfall and vegetation occurrence. The co-
herence of meteorological elements and grasslands, savan-
nas and forests was researched e.g. in Brazil (Moreira et al.,

2019; Barbosa et al., 2019), South Africa (Mbatha and Xulu,
2018), southern China (Zhou et al., 2022), India (Naga Ra-
jesh et al., 2023) and Indonesia (Erasmi et al., 2009). In Eu-
rope, similar research was conducted in the Mediterranean
(Ghaderpour et al., 2023). Surprisingly, the coherence be-
tween vegetation dynamics and climate elements in the tem-
perate zone is very understudied, and the existing studies are
limited in time and space (Carl et al., 2013; Zhu et al., 2022).
Such research is especially important in light of recent veg-
etation disturbance caused by severe drought events that oc-
curred in Europe in recent years (Buras et al., 2020; Schuldt
et al., 2020).

This study aims to identify patterns in time series of three
different types of vegetation (broadleaved and coniferous
forests and pastures) in the temperate zone and relate them
with meteorological elements and teleconnection indices us-
ing the wavelet transform (WT) and wavelet coherence (WC)
methods. Thus, the main objectives of this research are (1) to
identify the variability and periodic changes in time series of
MODIS-based NDVI and EVI of different vegetation types
and in time series of meteorological elements and telecon-
nection indices using the WT method and (2) to couple the
NDVI and EVI vegetation indices with meteorological ele-
ments and teleconnection indices in order to determine the
coherence and time lags in the spectral response of individual
vegetation types to the influencing factors using the methods
of WC and Pearson’s correlation. The analyses are carried
out for the broadleaved and coniferous forests and pastures
in the temperate zone of central Europe in the period 2002–
2022.

2 Materials and methods

2.1 Study area

The study area characterised by three vegetation types – the
two types of forest (broadleaved and coniferous forest) and
pastures including meadows and other permanent grasslands
under agricultural use – is located in the administrative bor-
ders of Poland (Fig. 1). The analysed vegetation types are
situated within a territory extending from 49 to 54.5° N lati-
tude and from 14 to 24° E longitude. From the north, the re-
search area borders the Baltic Sea, while the terrain changes
towards the south – there are mountains at the southern edges
of the research area. Because Europe’s land relief is arranged
mostly latitudinally, there are no orographic barriers, and cli-
mate in the study area is influenced by the western transfer
of air masses and therefore indirectly by the Atlantic Ocean.
The warm temperate climate is characterised by mean winter
temperature from −3.5 °C (in the north-east and in the sub-
mountain and foothill regions in the south) to 1.5 °C (in the
west), mean summer temperature from 14.5 °C (in foothill
regions in the south) to 19.5 °C (in the centre) and a mean
annual precipitation from 450 mm in the centre of the study
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Figure 1. Spatial distribution of three vegetation masks –
broadleaved forest (CLC class 311), coniferous forest (CLC class
312) and pastures (CLC class 231) – used in the study.

area to 1200 mm in the mountains (1991–2020) (Tomczyk
and Bednorz, 2022).

The selected vegetation types were defined on the basis of
Corine Land Cover (CLC) 2006, 2012 and 2018 databases
(CLMS, 2021). The CLC database provides data on land
cover across 44 classes in European countries. For areal
phenomena, the CLC employs a minimum mapping unit
(MMU) of 25 ha and for linear phenomena a minimum width
of 100 m. (CLMS, 2021). The CLC 2006, 2012 and 2018
databases were used to prepare masks for broadleaved forests
(CLC class 311), coniferous forests (CLC class 312) and
pastures (CLC class 231). The CLC forest vector layers for
2006, 2012 and 2018 were intersected, and the polygons
that were still forest for these three periods made up the
broadleaved or coniferous forest mask. The percentage of
forest coverage was calculated for each MODIS pixel. The
pixels containing at least 80 % of forest cover were selected
for further analysis. To ensure the uniformity of forest pix-
els, a criterion of 80 % coverage of broadleaved or conif-
erous forest was applied. Following these selection criteria,
174 243 pixels were retained as the broadleaved forest mask
and 798 777 pixels were retained as the coniferous forest
mask, representing the area of 10 890 and 49 924 km2, re-
spectively. Clusters of broadleaved forest are rather small,
and most of them are located in the north-western part of the
study area, in the south-eastern edge of the area (Bieszczady
Mountains) and in the eastern part (Białowieża Forest). The
tree species dominating in the species composition are birch,
oak and beech (Zajączkowski et al., 2022). In contrast, conif-
erous forest prevail in most of the study area, and the pre-
dominant species, covering 58 % of the forest area, is pine
(Zajączkowski et al., 2022). In the mountains, the proportion
of spruce and fir species composition is also apparent (Za-
jączkowski et al., 2022).

The pastures mask was prepared following the same steps
as used for forest masks, except that only CLC vector layers
for 2012 and 2018 were used (because of the poor quality of
the 2006 CLC class 231). Following such selection criteria,
338 193 pixels were retained as the pastures mask, represent-
ing the area of 21 137 km2.

2.2 MODIS data: NDVI and EVI

This study uses two vegetation indices (VI) – the normalised
difference vegetation index (NDVI) and enhanced vegetation
index (EVI) – derived from the Moderate Resolution Imag-
ing Spectroradiometers (MODIS) on board the Terra and
Aqua satellites – products MOD13Q1 and MYD13Q1 (Di-
dan, 2021a, b). Theoretical description of the MODIS VI and
the NDVI and EVI algorithm details are provided in Didan
and Munoz (2019). The MOD13Q1 and MYD13Q1 prod-
ucts were downloaded for the period 2002–2022. Because
the data from Terra and Aqua are processed 8 d out of phase
at 16 d intervals, combining both satellites’ data streams pro-
duces a quasi-8 d product time series (Didan and Munoz,
2019). MOD13Q1 and MYD13Q1 products are published
with 250 m spatial resolution. To cover the area between 49
and 55° N latitude and 14 and 24° E longitude, three granules
were required because each granule has 4800× 4800 pixels.
Eventually, 2712 granules were needed to cover the time pe-
riod 2002–2022.

Together with the NDVI (or EVI) product, the correspond-
ing pixel reliability and day-of-year layers were used. Be-
cause in 16 d composite the adjacent selected pixels may
originate from different days, so for each pixel in such com-
posite the day-of-year layer keeps the information about the
actual day the pixel originated, while the pixel reliability
layer keeps the information that describes overall pixel qual-
ity (Didan and Munoz, 2019). Based on this, only the pixels
indicated as good or marginal quality were selected, which
is a common practice in similar studies (e.g. Buras et al.,
2020). In the next step, based on the day-of-year informa-
tion, each of the selected pixels was allocated to the respec-
tive month. To get the monthly values of NDVI (or EVI), a
monthly maximum NDVI (or EVI) was calculated for each
of the retained pixels. The reason behind this approach is
that low-value observations either are erroneous or have re-
duced vegetation vigour for the time period under considera-
tion (Holben, 1986).

Next, the deseasonalised time series of monthly anoma-
lies from the multi-annual monthly values of NDVI (or EVI)
were prepared for each MODIS grid cell (i.e. each pixel), so
that e.g. the deseasonalised value (anomaly) for January 2002
is the difference between the January 2002 value and multi-
annual mean from all Januaries. It should be noted that the
term “anomaly”, which is commonly used in climatologi-
cal studies (e.g. Kulesza, 2021), should be interpreted as a
“deviation from the mean value”. Finally, spatially averaged
252-element (21 years × 12 months) time series of NDVI
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(or EVI) anomalies in respective vegetation masks were pre-
pared. The spatially averaged values of NDVI (or EVI) were
calculated as area averages of all NDVI (or EVI) values in the
MODIS grid cells (i.e. all pixels) within the respective vege-
tation masks. The methodology diagram showing the above-
described steps is presented in Fig. 2.

2.3 Meteorological elements

In this work, the gridded data from ERA5-Land reanaly-
sis (Muñoz-Sabater, 2019; Muñoz-Sabater et al., 2021) were
used. The monthly data representing meteorological ele-
ments, which are generally known to have a significant im-
pact on the dynamics of vegetation productivity (Chu et al.,
2019; Liu et al., 2015; Yang et al., 2019), i.e. 2 m tempera-
ture (T , in °C), precipitation (P , in mm) and evapotranspira-
tion (ETo, in mm), were downloaded for the period 2002–
2022. Spatial extent of the meteorological data was 49 to
55° N latitude and 14 to 24° E longitude, and the resolu-
tion of reanalysis data was 0.1°×0.1°. Additionally, monthly
data on 2 m dew point temperature were downloaded in or-
der to calculate the water vapour pressure deficit (VPD, in
hPa), a variable frequently used to explain the tree mortal-
ity (Gazol and Camarero, 2022; Schuldt et al., 2020). VPD
is the difference between saturation vapour pressure (SVP,
which is temperature-dependent) and actual vapour pressure
(AVP, which is dew-point-temperature-dependent). SVP can
be approximated from the air temperature records following
Tetens’ formula (American Meteorological Society, 2023),

SVP= 6.11× 10
(

7.5T
237.7+T

)
,

and AVP can be calculated from the same equation using
dew point temperature instead of air temperature. Eventually,
VPD = SVP−AVP.

In the next step the deseasonalised time series of monthly
anomalies from the multi-annual monthly mean values of T ,
P , VPD and ETo were prepared for each grid cell of the
ERA5-Land reanalysis. As in the case of NDVI (or EVI),
the term “anomaly” should be interpreted as a “deviation
from the mean value”. The data were then resampled to fit
the MODIS grid cells (which does not affect much the data
accuracy because monthly mean values of meteorological el-
ements are slowly changing over space). Finally, spatially
averaged 252-element time series of T , P , VPD and ETo
anomalies in respective vegetation masks were prepared. The
methodology diagram showing the above-described steps is
presented in Fig. 2.

2.4 Teleconnection indices

This study uses two well-known teleconnection indices:
North Atlantic Oscillation (NAO) and North Sea Caspian
Pattern (NCP). These large-scale climatic oscillations can be
considered a proxy for the general atmospheric circulation

pattern, giving aggregated information about the meteorolog-
ical condition in a given year (e.g. drought-favouring condi-
tions). The relationship between teleconnection indices and
vegetation condition in different regions of the world was the
focus of several studies (Brown et al., 2010; Gong and Shi,
2003; Vicente-Serrano and Heredia-Laclaustra, 2004; He et
al., 2022; Gouveia et al., 2008; Olafsson and Rousta, 2021).
According to many research results, NAO is associated with
NDVI at higher latitudes in parts of the Northern Hemi-
sphere (Vicente-Serrano and Heredia-Laclaustra, 2004; Olaf-
sson and Rousta, 2021; Gouveia et al., 2008), while the NCP
is associated with vegetation conditions in western Eurasia
(He et al., 2022).

Monthly values of NAO index in the period 2002–2022
were downloaded from the Climate Prediction Center of
the National Oceanic and Atmospheric Administration
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
pna/nao.shtml, last access: 4 March 2023). The procedure
used to calculate the NAO teleconnection index is based on
the rotated principal component analysis (RPCA) (Barnston
and Livezey, 1987). The RPCA technique is applied to
monthly mean standardised 500 geopotential height anoma-
lies in the region 20 to 90° N (and all longitudes) between
January 1950 and December 2000. The anomalies are
standardised by the 1950–2000 climatology. In the positive
phase of NAO the westerly circulation of the atmosphere
prevails over central and northern Europe, resulting in
relatively warm and humid weather in winter, while there
is cool and rainy weather in summer. In the negative phase,
the meridional circulation occurs more often, and central
Europe can then be reached by cold and dry air masses from
the north or hot air masses from the south.

The NCP index was calculated on the basis of 500 geopo-
tential height monthly values derived from ERA5 reanalysis
(Hersbach et al., 2020) in the same period 2002–2022. The
NCP index values were calculated from the normalised 500
geopotential height difference values between averages of
North Sea (55° N, 0° and 55° N, 10° E) and northern Caspian
Sea (45° N, 50° E and 45° N, 60° E) regions (Kutiel et al.,
2002). In the negative phase, above-normal temperatures and
below-normal precipitation occur in the Balkans, western
Türkiye and the Middle East. In the positive phase, it is the
other way round. There is no significant correlation between
the NCP and NAO (Araghi et al., 2019).

2.5 Methods

2.5.1 Wavelet analysis

The wavelet transform (WT) was applied to the deseason-
alised time series of NDVI, EVI, T , P , VPD and ETo, as
well as NAO and NCP, in searching for potential variations
in frequency and time at different scales. To this end, the
wavelet packet (Torrence and Compo, 1998) implemented in
the MATLAB computing environment was used. The use of
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Figure 2. Flow chart of the input data and the methodology used in this paper.

wavelet analysis gives the information on fluctuations which
change frequency over time. This is possible thanks to using
wavelets – structures that are time-limited and consist of sev-
eral short oscillations. The basic wavelet can be stretched and
shifted in time in order to create a so-called wavelet family
– a collection of similar structures. Wavelet analysis is based
on correlating the individual elements of wavelet family with
values of the time series throughout the observation period.
The wavelet power spectrum – |W |2 – represents this corre-
lation. The higher the power is, the more similar the wavelet
will be to the empirical data at a given point in the time se-
ries, which means that fluctuations in a given frequency are
more likely to occur in a given period. In this paper, we used
the Morlet wavelet and assessed the statistical significance
of the |W |2 values with the χ2 test (Torrence and Compo,
1998) (the level of significance α = 0.05). The regions of the
wavelet power spectrum, which are especially vulnerable to
adverse edge effects (because of the finite length of the time
series), are delimited by the “cone of influence” (COI). The
values of the wavelet power spectrum which are outside of
the COI are considered uncertain.

2.5.2 Wavelet coherence and time lags

In order to determine the correlations changing over time
between NDVI (or EVI) and meteorological elements and
teleconnection indices, the wavelet coherence (WC) was ap-
plied to the deseasonalised time series of respective data sets,
resulting in six diagrams (scalograms) for each of the veg-
etation types for NDVI (for EVI likewise): NDVI with T ,
NDVI with P , NDVI with VPD, NDVI with ETo, NDVI
with NAO and NDVI with NCP. Wavelet coherence com-
bines the advantages of wavelet analysis and Pearson corre-
lation, allowing for searching for correlations that vary over

frequency and time (Torrence and Webster, 1999; Grinsted et
al., 2004). In this paper, WC was prepared according to Grin-
sted et al. (2004) in the MATLAB computing environment.
In the WC scalogram the colour scale ranges from blue (low
correlation) to red (high correlation) and thus represents the
wavelet coherence coefficient. The direction of arrows indi-
cates the phase delay between signals (time series): right ar-
rows indicate that the series are completely in phase, i.e. posi-
tive correlations, while the left arrows indicate that the series
are completely out of phase, i.e. negative correlations. The
statistical significance of values of the wavelet coherence co-
efficient was assessed using the Monte Carlo method at the
significance level of α = 0.05 (Grinsted et al., 2004).

In order to additionally investigate the delays in the spec-
tral response of the individual vegetation type to the trig-
gering meteorological factors, the overall, linear correlations
with appropriate time lags were calculated. The correlated
pairs of data sets were prepared with a 0- to 36-month delay
(3 years). A 0-month delay means that the independent vari-
able’s values (T , P , VPD, ETo, NAO, NCP) from month i
were correlated with the dependent variable’s values (NDVI,
EVI) from the same month. In turn, a 1-month delay means
that the independent variable’s values from month i were cor-
related with the dependent variable’s values from the i+ 1
month, and so on. The strength of the correlation between
the deseasonalised time series of NDVI (or EVI) and meteo-
rological elements and teleconnection indices for three vege-
tation types was assessed using the Pearson correlation coef-
ficient, expressed by the following formula: r = covxy/SxSy ,
where covxy is the covariance in the bivariate distribution of
the variables x (time series of a respective meteorological el-
ement or teleconnection index) and y (time series of NDVI
or EVI), and Sx and Sy are the standard deviations in the
marginal distributions of the variables x and y, respectively.
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The significance of linear correlations calculated in this way
was assessed at the significance levels of α = 0.05.

3 Results

3.1 Basic characteristics of VI and meteorological
elements

In the last 2 decades a slightly positive trend in condition
of the forests in Poland was noticed, with a mean NDVI
increase of 0.088× 10−3 per year (2002–2021) (Kulesza
and Hościło, 2023). The biggest increase in mean annual
NDVI (by 0.030 in 20 years) was observed in central-eastern
Poland, while it was weaker in the southern, western and
northern edges of the study area. In turn, the biggest mean
annual NDVI was observed in forests of the foothill regions
in the south and also in the Baltic Sea coastal region, while
central regions had lower NDVI. In general, broadleaved
forests had slightly bigger mean NDVI (0.841) than conif-
erous forests (0.791).

The trend of mean annual T was positive over the entire
research area, resulting in the increase in T by 1 to 1.6 °C
(in southern and eastern regions) (2002–2021) (Kulesza and
Hościło, 2023). In central and eastern regions the statistically
significant increase in ETo was also reported, with a mean
increase of 1.79 mm per year (while mean annual ETo is ca.
600 mm). The slope of the trend in changes in P was insignif-
icant in the whole study area. For the detailed analysis of the
spatiotemporal variability and trends in NDVI and T , P and
ETo over Poland in the last 2 decades, the reader is referred
our previous paper (Kulesza and Hościło, 2023).

The course of the monthly anomalies of NDVI during the
period 2002–2022 showed the dynamics of three vegetation
types. Positive anomalies of NDVI in the growing season
(April–September) were noticeable in 2011, 2013, 2016 and
2021, whereas the negative anomalies of NDVI occurred in
the growing season of 2003, 2008, 2018, 2019 and 2022
(Fig. 3). In 2015, the negative peak of NAO index in July
caused the positive T anomaly, negative P anomaly and very
big negative VPD anomaly (i.e. bigger-than-average deficit
of water vapour) in August. In turn, all this resulted in neg-
ative values of pastures’ NDVI in August and September
of 2015, but forest condition seemed unaffected. In 2018,
the combined effect of above-average T (in warm half-years)
and mostly below-average P resulted in gradually decreasing
values of NDVI in the growing season. Yet, the decrease in
NDVI values was not big. Additionally, the generally positive
T anomaly and negative P anomaly in the growing season of
2018 resulted in big negative VPD anomaly (i.e. deficit of
water vapour bigger than average) and big positive anomaly
of ETo. The following year (2019) experienced similar mete-
orological conditions (although not so severe), but the vege-
tation condition during the growing season was significantly
below average. Unlike in 2018, when the NAO phase was

positive in the growing season, in 2019 the NAO phase was
negative during the whole growing season. Moving forward,
the year 2021, probably because of the above-average P in
April, May and August, experienced the positive anomalies
of vegetation condition for all three types of vegetation. In
contrast, the following year (2022) experienced the negative
anomalies of NDVI values, especially visible at the begin-
ning of the growing season (April–May) and especially se-
vere for pastures. In March, May and June 2022, there were
significant negative anomalies of P and VPD, together with
positive anomalies of ETo.

3.2 Variability and periodic changes in VI and
meteorological elements and teleconnection indices

The data sets used in the study were purposely deseason-
alised, so the obvious 1-year cycle in both NDVI (or EVI)
and meteorological conditions is removed. Thus, WT was
used in searching for cycles and fluctuations with lower or
higher frequency over time (i.e. interannual or intraannual
cycles). Consequently, no strong and stable cycles over time
are detected in the graphs which show the wavelet power
spectrum |W |2 (Figs. 4 and 5). The pulse of a half-year and 1-
year cycle of fluctuations in NDVI is marked around 2010 for
all three types of vegetation (Fig. 4, left column). Although
they are statistically significant, neither is the power spec-
trum strong, nor did they last long. The EVI shows a similar
pattern for pastures but much fewer statistically significant
fluctuations for broadleaved and coniferous forests (Fig. 4,
right column). These pulses come from the big negative
NDVI and EVI anomalies in January and December 2010
(Fig. 3), caused by extensive and persistent snow cover that
significantly changed the values of spectral reflectance.

Meteorological elements also do not show significant in-
terannual cycles. The components with a period of less than
half a year are more visible, but, similar to the case of NDVI,
although they are statistically significant, the power spectrum
is rather weak (Fig. 5). Only VPD shows a cyclical compo-
nent of circa 4 years, but it lies partly in the COI region and
is statistically insignificant. NAO and NCP produce signifi-
cant components with a period of less than half a year (weak
power spectrum) and additionally a short pulse of a 1-year
cycle that is visible around 2011 (NAO and NCP) and 2015
(NAO only) (Fig. 5, lower panel).

3.3 Coherence and time lags in the spectral response of
individual vegetation types to the influencing
factors

The pattern observed for coherence between NDVI and me-
teorological elements and teleconnection indices is different
for each of these factors.
T shows high coherence with the NDVI in all three types

of vegetation. There is a significant common power in the 8–
16-month (circa 1-year) band for the periods 2010–2015 and
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Figure 3. The deseasonalised time series of monthly anomalies of NDVI (broadleaved forest, coniferous forest, pastures), T , P , VPD, ETo,
and NAO and NCP indices in the period 2002–2022. Grey areas refer to warm half-years (April–October).

2020–2022 (Fig. 6). The second significant common power
band is 20–32 months (circa 2 years), visible for both forest
types for the whole time period 2002–2022 (and for pastures
only up to 2016). The observed regularities are additionally
proven by the Pearson linear correlations with appropriate
time lags. Significant positive correlations between NDVI
and T occur for broadleaved and coniferous forests for 8-,
12-, 27-, 28-, 29- and 30-month delays (Fig. 8). For pastures
significant positive correlations between NDVI and T only
occur for 12- and 27-month delays.

Both P and VPD produce a few small patches of signifi-
cant coherence with NDVI in all three vegetation types. Very
small patches of high coherence in the circa 1-year band be-
tween NDVI and P occur only around 2006 and 2009–2010
for broadleaved and coniferous forests (and for pastures only
one patch around 2009–2010) (Fig. 6). VPD produces even
smaller patches of high coherence in the circa 8-month band
(around 2006), where the NDVI and VPD are mostly out of
phase, meaning that the correlation between them is negative
(Fig. 6). In fact, significant negative Pearson’s correlations
appear for 7-, 8- and 9-month delays for all vegetation types

(Fig. 8). Figure 8 indicates also significant correlations be-
tween NDVI and VPD for 18- and 22-month delays.

ETo shows high coherence with NDVI in all three vegeta-
tion types. The significant common power appears in the in-
traannual (3–8-month) band from the beginning of the study
period until 2008 (Fig. 6). High and significant coherence
in a circa 1-year (8–16-month) band occurs mostly around
2010, while significant coherence in the circa 2-year (20–32-
month) band is distributed more or less along the whole study
period. Surprisingly, it seems the most stable for pastures,
which is low grassy vegetation, rather independent from in-
terannual weather conditions. Significant positive Pearson’s
correlations between NDVI and ETo occur for broadleaved
and coniferous forests for 8- and 22-month delays, while for
pastures only for the 22-month delay (Fig. 8).

Correlations in specific bands – intraannual and interan-
nual – are also visible between NDVI and the NAO index
in particular time periods. NAO produces strong coherence
with NDVI mostly for two forest types. Small areas of high
positive correlation in the circa 1-year band between NDVI
and NAO appear mostly for coniferous forest in the period
2013–2016 and 2018–2021, as well as for broadleaved forest
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Figure 4. Wavelet power spectrum (|W |2) for deseasonalised time series of NDVI (a, c, e) and EVI (b, d, f) for different vegetation types
during the period 2002–2022. The COI region is below the thick black line. Statistically significant areas at the level of α = 0.05 are indicated
by a thin black line.

Figure 5. Wavelet power spectrum (|W |2) for deseasonalised time series of T , P , VPD, ETo (mean value from three vegetation masks),
and NAO and NCP during the period 2002–2022. The COI region is below the thick black line. Statistically significant areas at the level of
α = 0.05 are indicated by a thin black line.

in the period 2015–2016 and 2019–2020. This is addition-
ally proven by the significant positive Pearson’s correlation
between NDVI and NAO for the 11-month delay (Fig. 8).
For pastures this interannual pattern is hardly recognisable

(Fig. 6). For broadleaved and coniferous forests the coher-
ence in the circa 3-year band up till 2013 is also visible. In-
terestingly, there is a significant common power for NDVI
and NAO in the 2–6-month (intraannual) band for the year
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2018 in all three vegetation types. Similar small patches of
high and significant intraannual coherence for this year are
mostly visible for broadleaved forest regarding T , VPD and
ETo but for coniferous forest and pastures regarding ETo
only (Fig. 6).

The NCP index produces a rather weak coherence with
NDVI in all three vegetation types. The cohesion pattern is
somehow similar to the one produced by NAO, with small ar-
eas of high and significant coherence in the circa 1-year band
around 2015 and 2020, which is mostly visible for coniferous
and broadleaved forests (Fig. 6). Additionally, for two for-
est types the coherence of circa 32 months (almost 3 years)
in the period 2010–2015 is also visible. Surprisingly, NCP’s
Pearson’s correlation with NDVI is significant for the 25- and
35-month delays (for forest types), but, unlike the cohesion’s
right arrows, this correlation is negative (Fig. 8).

The pattern observed for coherence between EVI and me-
teorological elements and teleconnection indices resembles
in many places the pattern observed for NDVI, especially re-
garding pastures.

However, in forest types, concerning T and ETo, their co-
herence with EVI gives substantially smaller areas of high
and significant cohesion, as compared to NDVI (Fig. 8). Nev-
ertheless, the Pearson linear correlations with time lags, pre-
pared for EVI, reveal many significant and positive corre-
lations between EVI and T for broadleaved forest (mostly
1-year delay and 2-year delay) and even more significant
correlations for coniferous forest. In turn, significant posi-
tive Pearson’s correlations between EVI and ETo occur in
broadleaved forest for a circa 2-year (22-month) delay but in
coniferous forest for a circa 1-year (10-month) delay and a
2-year (22- and 23-month) delay (Fig. 8).
P and VPD show some more areas of significant common

power with EVI than with NDVI, but the high-cohesion areas
are in an over 3-year band and lie partly in the COI region
(Fig. 8).

In the case of NAO, there is a significant common power
with EVI in the 30–40-month (circa 3-year) band in the pe-
riod 2005–2020 for broadleaved forest (Fig. 7). This is ad-
ditionally proven by the Pearson linear correlations with 30-
month time lag (Fig. 8). Similar to the case of NDVI, there
is a significant common power for EVI and NAO in the 2–
4-month (intraannual) band for the year 2018 for both forest
types. Similar small patches of high and significant intraan-
nual coherence for this year are visible for broadleaved and
coniferous forest regarding T , VPD and ETo (Fig. 7).

NCP shows fewer areas of significant common power with
EVI than with NDVI. However, there are some significant
positive Pearson’s correlations between EVI and NCP, but
there are also significant negative correlations (30-month de-
lay for broadleaved forest) (Fig. 8). Moreover, unlike other
meteorological variables, here the arrows on the WC scalo-
grams tend to orientate up or down, which could be inter-
preted as uncoupling between both signals (Fig. 7).

4 Discussion

Observed years with decreased vegetation conditions and un-
favourable meteorological conditions related to this (above-
average T and below-average P ) are identified in many
research studies. A number of severe, large-scale drought
events occurred across Europe in the last 20 years, many
of which have also affected the area of this study. In 2003,
a severe drought mostly affected south-western Germany,
Switzerland and south-eastern France (Fink et al., 2004;
García-Herrera et al., 2010) with less impact on Poland (So-
morowska, 2022). As the NAO index was oscillating around
zero (Fig. 3), the anticyclonic pattern that led to a drought
corresponded more to anomalous northern displacement of
the Azores High than a typical blocking structure (Fink et
al., 2004). Yet, the key factor to reach unprecedented tem-
perature anomalies was soil moisture deficit (Fink et al.,
2004). Indeed, a peak of positive ETo was also visible in
May 2003 in our study area. In turn, in 2015 the negative
peak of NAO index in July caused the drought in Europe that
reached its peak intensity and spatial extent in August, af-
fecting especially the eastern part of Europe (Ionita et al.,
2017). Here, a very big negative VPD anomaly occurred in
August and resulted in a decreased condition of the vegeta-
tion, especially of pastures. Other severe droughts occurred
in Europe in 2018 (Buras et al., 2020; Schuldt et al., 2020;
Boergens et al., 2020), 2019 (Boergens et al., 2020; Hari et
al., 2020) and 2022 (Buras et al., 2023; Wang et al., 2023).
All of them were observed also in our study area. In sum-
mer 2018 daily maximum temperature in Poland was 3.3 °C
higher than the 1981–2019 average (and 1.2 °C higher than
daily maximum temperature in 2003), and precipitation was
below average as well. In 2019, the negative phase of NAO,
persisting for the whole growing season of 2019, contributed
to anticyclonic circulation and southerly advection of the air
masses over Poland. The frequency of circulation from the
south and south-east direction was 2 to 2.5 times higher than
the average for the 1951–2018 period (Ziernicka-Wojtaszek,
2021). As a consequence, June 2019 with a positive temper-
ature anomaly of over 4.0 °C (Fig. 3) was the warmest month
since 1951 (Ziernicka-Wojtaszek, 2021). The occurrence of
the consecutive summer droughts in 2018 and 2019 was un-
precedented, and its combined impact on the growing sea-
son vegetation was much stronger compared to the year 2003
(Hari et al., 2020). Indeed, the negative anomalies of NDVI
were observed for all three vegetation types in 2018, but the
vegetation condition during the growing season of 2019 was
even more below average. It is also important to mention that
increased vegetation growth at the beginning of the grow-
ing season, caused by favourable meteorological conditions,
contributes to the fast depletion of resources (e.g. soil mois-
ture) and promotes and strengthens droughts in summer (So-
morowska, 2022; Bastos et al., 2020). That was the case of
2018 and 2019 too.

https://doi.org/10.5194/bg-21-2509-2024 Biogeosciences, 21, 2509–2527, 2024



2518 K. Kulesza and A. Hościło: Coherency and time lag analyses

Figure 6. Wavelet coherence power spectrum (colour scale) between deseasonalised time series of NDVI and T , P , VPD, ETo, NAO and
NCP for broadleaved forest (left column), coniferous forest (middle column) and pastures (right column) during the period 2002–2022.
Colours range from blue (low correlation) to yellow (high correlation). Arrows indicate the phase difference between signals: right arrows
– series are completely in phase; left arrows – series are out of phase. The COI region is below the thick black line. Statistically significant
areas at the level of α = 0.05 are indicated by a thin black line.

In order to conduct the WT analysis, both NDVI (or EVI)
and meteorological time series were purposely deseason-
alised, so the obvious 1-year cycle, resulting from the sea-
sonality of weather pattern and vegetation in the temperate
zone, is removed. Time series of meteorological elements
do not show any significant interannual cycles in the pe-
riod 2002–2022. Similarly, no significant interannual cycles
in meteorological time series in central Europe were found
in other works using much longer time periods, regarding
T (Sen and Ogrin, 2016), P (Brázdil et al., 2021; Sen and
Kern, 2016) and NAO, which is rather a stochastic, unpre-
dictable and a strong non-stationary process (Schulte et al.,
2015; Pozo-Vázquez et al., 2001). Additionally, no strong
and stable interannual cycles over time were detected in the
deseasonalised time series of NDVI (and EVI). Thus, pre-

sumably the spectral response of the vegetation to the trig-
gering meteorological factors is caused rather by the actual
relationship between these variables than being as a result
of a coincidence. The WC and Pearson’s linear correlation
with appropriate time lags helped reveal these relationships
between NDVI (or EVI) and meteorological elements.

According to many scientific studies, temperature is one
of the most influential elements, shaping the vegetation con-
dition worldwide (Moreira et al., 2019; Ghaderpour et al.,
2023; Mbatha and Xulu, 2018). The correlation between
grasslands’ vigour and air temperature was strong in the an-
nual cycle in southern Brazil (2000–2014) (Moreira et al.,
2019). A similar significant common power in the 8–16-
month (ca. 1-year) band was produced by NDVI and soil
temperature for savannas and forest in South Africa in the pe-
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Figure 7. Wavelet coherence power spectrum (colour scale) between deseasonalised time series of EVI and T , P , VPD, ETo, NAO and NCP
for broadleaved forest (left column), coniferous forest (middle column) and pastures (right column) during the period 2002–2022. Colours
range from blue (low correlation) to yellow (high correlation). Arrows indicate the phase difference between signals: right arrows – series
are completely in phase; left arrows – series are out of phase. The COI region is below the thick black line. Statistically significant areas at
the level of α = 0.05 are indicated by a thin black line.

riod 2002–2017 (Mbatha and Xulu, 2018). In Europe, signifi-
cant annual in-phase coherency was observed between NDVI
and land surface temperature in northern Italy in the period
2000–2021 (Ghaderpour et al., 2023). In the temperate zone
analysed in this study, T shows high coherence with NDVI in
both forests and pastures. There is significant cohesion with
the 8–16-month (ca. 1-year) and 20–32-month (ca. 2-year)
bands. Pearson’s linear correlation shows more time-lagged
significant correlations between NDVI (or EVI) and T for
forests than for pastures. This suggests that there is a signif-
icant lag in the forests’ response to the changes in T , more
noticeable for forests than for pastures. It is in line with the
results of other researchers. For instance, in a beech forest in

Germany, a time shift of approximately 300 d appears in the
WC between NDVI and T (1989–2007) (Carl et al., 2013).

Similar high coherence values are produced by ETo in both
forest types and in pastures – mostly coherence in the circa
1-year (8–16-month) and circa 2-year (20–32-month) bands.
Indeed, forest vegetation response to water deficit can be de-
layed, especially depending on the tree type (broadleaved
or coniferous) and species. A similar in-phase relationship
in the 8–18-month band occurred in savannas and forest in
South Africa (Mbatha and Xulu, 2018). Yet, the surprisingly
high coherence in the 2-year band, which occurs for pas-
tures along the whole study period, is interesting because
one would expect current low grassy vegetation to be inde-
pendent of the weather conditions in the previous growing
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Figure 8. Correlation coefficients between deseasonalised time series of NDVI (a, c, e) or EVI (b, d, f) and T , P , VPD, ETo, NAO and NCP
for three different vegetation types: broadleaved forest (a, b), coniferous forest (c, d) and pastures (e, f). The pairs of data sets are correlated
with appropriate time lags of 0 to 36 months. Statistically significant correlations at the level of α = 0.05 are indicated by a circle.

seasons. However, one should remember that in statistics, a
significant correlation between two variables may occur by
chance, so a significant commonality in a wavelet coherence
spectrum analysis does not necessarily imply interconnection
(Mbatha and Xulu, 2018).

At this point, it is also worth adding some comment on
the differences in WC pattern observed for NDVI and EVI.
Regarding pastures, the coherence between EVI and me-
teorological elements and teleconnection indices resembles
(more or less) the pattern observed for NDVI, while it dif-
fers substantially when forest types are concerned. Indeed,
the correlation coefficient between deseasonalised anomalies
of NDVI and EVI is very high for pastures (0.94) but lower
for broadleaved forest (0.67) and coniferous forest (0.28).
It is also worth noticing that regarding forest, the EVI val-
ues are within a much narrower range than values of NDVI
(Fig. 9), mostly because of the very low NDVI values in
winter months of 2006 and 2010. The reason for this might
lie in different spectral bands used to construct both indices.
The research results indicate that EVI is more susceptible to
changes in canopy structure, while NDVI is more sensitive to
chlorophyll (Huete et al., 2002). Thus, while EVI may more
accurately represent early leaf shedding, NDVI is more likely
to represent changes in leaf colour, such as those occurring
during premature leaf senescence during a drought (Buras
et al., 2020). While some researchers suggest that NDVI re-
flects natural vegetation better than EVI (Li et al., 2010), oth-

ers prefer the latter, which also uses blue radiation to stabilise
the index value against variations in aerosol concentration
levels (Didan and Munoz, 2019).

Unlike in tropical and subtropical zones, P seems to have
weaker coherence with NDVI in the European temperate
zone. Lotsch et al. (2003) showed that ecosystems in arid and
semi-arid climate regimes (shrublands, savannas, grasslands)
are most sensitive to seasonal P anomalies at timescales of
4–6 months, whereas forested land areas exhibit weak cor-
relation with P anomalies at all timescales. According to
Lotsch et al. (2003) European temperate zone lies in the
area of weak correlations between P and NDVI. In south-
ern Brazil, low coherence between EVI and P was observed
only in regions where dry periods may occur during summer
(thus similar to temperate zone weather conditions) (2000–
2014) (Moreira et al., 2019). In Italy in 2000–2021, NDVI
and P were significantly coherent only in the south, where
the climate is the driest (Ghaderpour et al., 2023). In gen-
eral, vegetation in the subtropical or tropical zone is more
weather-dependent, leading to high coherence between veg-
etation vigour and P anomalies. On the other hand, the tem-
perate forest is less dependent on water availability thanks to
the deep root system that trees can use to reach deep water
resources. However, it makes the influence of meteorological
factors on forest NDVI/EVI less evident and harder to detect.

Another important characteristic of the vegetation in the
temperate zone is that in winter vegetation mostly pauses
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Figure 9. Scatterplots of deseasonalised anomalies of NDVI and EVI for three different vegetation types: broadleaved forest, coniferous
forest and pastures. The graphs also show the linear regressions (red lines), the regression equations, the coefficient of determination R2 and
the statistical significance level p.

(apart from some coniferous tree species), while meteoro-
logical elements obviously do not. P does not only show
a seasonal variability (bigger sums of P occur in summer
and lower in winter), but its intra- and interannual varia-
tions in winter are relatively high. The resulting coherence
between NDVI and P on the monthly basis, detected on the
WC scalogram, is rather weak. To compare, the NDVI corre-
lates well with P on the yearly basis, and this correlation is
much stronger than the one between NDVI and T (Kulesza
and Hościło, 2023).

Drought stress on vegetation over Europe is linked also to
various teleconnection patterns, with most studies focusing
on the influence of NAO on vegetation condition (Gouveia
et al., 2008; Olafsson and Rousta, 2021; Araghi et al., 2019).
According to Gouveia et al. (2008), negative values of winter
NAO induce low values of NDVI in spring but high values of
NDVI in summer in north-eastern Europe. The positive phase
of NAO has the opposite effect. This behaviour mainly re-
sults from the strong impact of NAO on winter temperature,
associated with the critical dependence of vegetation growth
on the combined effect of warm conditions and water avail-
ability during the winter season (Gouveia et al., 2008). In this
study, it was especially visible in the year 2018, when the
massive drought over Europe occurred. The NAO-induced
stable high-pressure system formed over central Europe in
April and lasted until October 2018, causing exceptionally
high temperature and a big deficit of water vapour. The spec-
tral response of the vegetation to changes in NAO index was
2–6 months delayed – and similar were the delays in response
to changes in T , VPD and ETo.

However, apart from this exceptional drought of 2018,
when the vegetation response to the triggering factors was
relatively quick, NAO produces strong coherence with NDVI
mostly for forests within the circa 1-year band and a weaker
coherence within the circa 3-year band. For pastures these
interannual patterns are hardly recognisable. As the atmo-
sphere is a system of interlinked vessels, the NAO may it-
self be influenced by other teleconnection systems, e.g. 3–4-

year cycle of ENSO (King, 2023). Thus the indirect effect of
ENSO on vegetation condition in Europe might be investi-
gated in the future.

In contrast, NCP index produces rather weak coherence
with both NDVI and EVI in all three vegetation types. As
there are both positive and negative (depending on the time
lag) significant Pearson’s correlations between NDVI (or
EVI) and NCP, it seems that the overall influence of NCP
on vegetation condition in the European temperate zone is
rather weak. It is contrary to the results of He et al. (2022),
obtained for western Eurasia for 1981–2015. They concluded
that NCP has significant negative impact on meteorological
and vegetation conditions over this region. According to He
et al. (2022) the positive NCP phases may better contribute to
drier conditions over the region than NAO because the pos-
itive phases of NCP contribute to increasing dryness, thus
causing the region to become more water-limited.

Finally, it should be noted that the conducted analyses
have a few limitations. In general, vegetation in warm tem-
perate climate is highly seasonal. In the face of that, a severe
weather condition occurring at the beginning of the growing
season (e.g. drought) can induce poor vegetation conditions
in summer and autumn. However, big positive anomalies of
T or big negative anomalies of P that occur in late autumn
have a much smaller influence on vegetation conditions in
winter. That is why the intraannual relationships, with the
time lag smaller than 1 year, are a bit harder to detect than
similar relationships in the tropical or subtropical zones.

Another important issue is the interpretation of the spec-
tral indices’ values. For instance, the NDVI signal coming
from forest reflects not only the trees’ vigour, shaped by
weather conditions, but also the “noise” from the understorey
and other effects like pests, herbivores, pathogens and forest
management. Grassland seems to be mostly free from such
problems. Its response to the triggering meteorological fac-
tor is usually quick. Also, the quality of grassy vegetation in
one year does not have a major effect on its quality in the
subsequent year. In this study we only used pastures (CLC
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class 231) and not arable lands (CLC class 211 and 212) or
natural grasslands (CLC class 321) (CLMS, 2021) to ensure
the uniformity of the grassy vegetation. The natural grass-
land class in Poland is assigned mostly to small areas of mil-
itary training grounds and alpine grassland with rough, un-
even ground; steep slopes; and up to 50 % of bare rocks or
bare natural surfaces (Kosztra et al., 2017). However, pas-
tures are mowed during the growing season, which changes
their spectral properties regardless of the weather. Because
of this, the proper interpretation of the obtained results can
be difficult. At the same time, such results should be treated
with caution.

Finally, it should be noted that in this study all pixels
within the respective vegetation masks were spatially aver-
aged in order to produce single time series. However, the
relationship between vegetation indices and meteorological
elements may vary within each mask. Some initial sample re-
sults (illustrated in Figs. A1 and A2 in Appendix A) showed
us that there are no big differences between individual parts
of Poland. Poland is in fact the ninth largest country in Eu-
rope, but when it comes to response of different types of veg-
etation to changes in meteorological conditions, it might be
considered relatively homogenous and therefore representa-
tive of the whole European warm temperate zone.

5 Conclusions

The results presented in this paper show in detail the coher-
ence and time lags in the spectral response of three individ-
ual vegetation types in the temperate zone to the influencing
meteorological factors in the period 2002–2022. Vegetation
conditions in broadleaved forest, coniferous forest and pas-
tures were measured with monthly anomalies of two spectral
indices: NDVI and EVI. As meteorological elements we used
monthly anomalies of T , P , VPD, ETo, and teleconnection
indices NAO and NCP. Periodicity in the time series of differ-
ent vegetation types and in the time series of meteorological
elements and teleconnection indices was assessed using the
WT method. In turn, coherence between NDVI and EVI and
meteorological elements was described using the methods of
WC and Pearson’s linear correlation with time lag. The use
of various research methods helps to objectify the results ob-
tained.

Thanks to conducting the WT analysis, no significant and
stable intra- or interannual cycles over the whole time period
were detected in both vegetation (NDVI and EVI) and mete-
orological variables.

In the European temperate zone analysed in this study, the
weakest coherence with vegetation conditions is produced by
P and VPD. Also NCP produces rather weak coherence with
both NDVI and EVI in all three vegetation types. In contrast,
NAO produces strong coherence mostly for forests within the
circa 1-year band and a weaker coherence within the circa 3-
year band. For pastures these interannual patterns are hardly

recognisable. The strongest relationships occur between con-
ditions of the vegetation and T and ETo – they show high co-
herence in both forests and pastures. There is a significant co-
hesion within the 8–16-month (ca. 1-year) and 20–32-month
(ca. 2-year) bands. More time-lagged significant correlations
between vegetation indices and T occur for forests than for
pastures, suggesting a significant lag in the forests’ response
to the changes in T . Yet, the surprisingly high coherence
between vegetation condition and ETo in the 2-year band,
which occurs for pastures along the whole study period, is
interesting because low grassy vegetation seems to be unre-
lated to interannual weather conditions. To explain this, fur-
ther in-depth research is required based on the increasingly
longer research material. Additionally, as a division into just
three vegetation types (broadleaved forest, coniferous forest,
pastures) is rather coarse, a more detailed classification into
e.g. tree species should be prepared, and the selected species-
homogenous areas should be investigated in the future. The
species-homogenous areas might also be further divided spa-
tially in order to check in detail the differences in species
responses to the changes in meteorological conditions in dif-
ferent regions of the study area.

Another important methodological conclusion is the ob-
served differences in forest NDVI and EVI, while for pas-
tures NDVI and EVI values seem to be very similar. Finding
out which of these indicators is more suitable for which type
of forest and for low grassy vegetation requires separate, ex-
tended research that should be conducted in the future.

The research presented in this study fills the knowledge
gap on the coherence between vegetation conditions and me-
teorological elements in the temperate zone. However, the
obtained results might be useful for researchers working on
this topic in other climatic zones. Identifying the climate-
induced variability in the condition of vegetation is partic-
ularly important in the context of recent climate change and
plants’ impact on mitigation of climate change.
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Appendix A

Figure A1. Hypsometric map of Poland with division into eight
main nature-forest lands: I – Bałtycka, II – Mazursko-Podlaska,
III – Wielkopolsko-Pomorska, IV – Mazowiecko-Podlaska, V –
Śląska, VI – Małopolska, VII – Sudecka, VIII – Karpacka (source:
own elaboration based on a hypsometric map, https://pl.wikipedia.
org, last access: 4 November 2022).
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Figure A2. Wavelet coherence power spectrum (colour scale) between deseasonalised time series of NDVI and T , P , VPD, ETo, NAO and
NCP for broadleaved forest in the selected three nature-forest lands: I (left column), IV (middle column) and VII (right column) during the
period 2002–2022. Colours range from blue (low correlation) to yellow (high correlation). Arrows indicate the phase difference between
signals: right arrows – series are completely in phase; left arrows – series are out of phase. The COI region is below the thick black line.
Statistically significant areas at the level of α = 0.05 are indicated by a thin black line.
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