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Abstract. Modeling terrestrial gross primary productivity
(GPP) is central to predicting the global carbon cycle. Much
interest has been focused on the environmentally induced
dynamics of photosystem energy partitioning and how im-
provements in the description of such dynamics assist the
prediction of light reactions of photosynthesis and there-
fore GPP. The maximum quantum yield of photosystem II
(8PSIImax) is a key parameter of the light reactions that in-
fluence the electron transport rate needed for supporting the
biochemical reactions of photosynthesis. 8PSIImax is gener-
ally treated as a constant in biochemical photosynthetic mod-
els even though a constant 8PSIImax is expected only for
non-stressed plants. We synthesized reported8PSIImax values
from pulse-amplitude-modulated fluorometry measurements
in response to variable temperatures across the globe. We
found that 8PSIImax is strongly affected by prevailing tem-
perature regimes with declined values in both hot and cold
conditions. To understand the spatiotemporal variability in
8PSIImax, we analyzed the temperature effect on 8PSIImax
across plant functional type (PFT) and habitat climatology.
The analysis showed that temperature’s impact on 8PSIImax
is shaped more by climate than by PFT for plants with broad
latitudinal distributions or in regions with extreme tempera-
ture variability. There is a trade-off between the temperature
range within which 8PSIImax remains maximal and the over-
all rate of decline of 8PSIImax outside the temperature range
such that species cannot be simultaneously tolerant and re-
silient to extreme temperatures. Our study points to a quan-
titative approach for improving electron transport and photo-
synthetic productivity modeling under changing climates at
regional and global scales.
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1 Introduction

Plant photosynthesis is central to the carbon cycle (Friedling-
stein et al., 2020, 2022). Illuminating its complexity is
needed to understand the carbon-cycle–climate feedback and
assess food production, biodiversity, and global ecosystem
health. Anthropogenic activities have induced a variety of
rapid shifts in the earth’s climate (IPCC, 2021) that im-
pact photosynthesis and ecosystem services globally (Hat-
field et al., 2020; Heinze et al., 2019). Factors such as temper-
ature stress impact photosynthetic carbon assimilation dif-
ferently across species and climates and have contributed
to significant variability in terrestrial ecosystem productiv-
ity and carbon sequestration potential (Wahid et al., 2007;
Ashraf and Harris, 2013; Heskel et al., 2016; Perez and Fee-
ley, 2020; Kelly et al., 2021). Terrestrial biosphere mod-
els (TBMs) have examined and incorporated many mech-
anisms of stress-induced photoinhibition of vegetation car-
bon assimilation (Berry and Bjorkman, 1980; Farquhar et al.,
1980; Ball et al., 1987; Franks et al., 2017; Lawrence et al.,
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2019; Parazoo et al., 2020; Yin et al., 2021; Porcar-Castell
et al., 2021). However, the inconsistency between physio-
logical process-based modeled gross primary productivity
(GPP) and inferred values via satellite and eddy-covariance
flux towers continues to be an ongoing challenge (Dietze,
2014; Sun et al., 2019; Zhang and Ye, 2021).

Photosynthesis is typically separated into light-dependent
reactions, which involve the absorption of light within the
photosystem complexes (photophysical) and its conversion
to oxidative and reductive energy (photochemical), and car-
bon reactions that further utilize the photochemical energy as
preserved in energy currency adenosine triphosphate (ATP)
and reducing power nicotinamide adenine dinucleotide phos-
phate (NADPH) to perform carbon fixation through the
Calvin–Benson cycle (biochemical) (Whatley et al., 1963;
Kamen, 1963; Stirbet et al., 2019; Buchanan, 2016). Process-
based models of net photosynthetic CO2 assimilation gen-
erally center on the simulation of the biochemical reactions
that are coupled with gas exchange via stomata (Farquhar
et al., 1980; Ball et al., 1987; Lin et al., 2012; Yin et al.,
2021). These models implement temperature regulation on
biochemical kinetics (Rogers et al., 2017) and environmental
dependence of stomatal conductance (Buckley, 2017), allow-
ing mechanistic descriptions of the impact of water, temper-
ature, and CO2 concentrations on the dynamics of biochemi-
cal reactions. However, light reactions, especially mechanis-
tic regulation by environmental factors, are treated less ex-
tensively.

Photophysical reactions control the dissipation of ab-
sorbed energy among different pathways, including fluores-
cence, photochemistry (PQ), constitutive heat dissipation,
and non-photochemical quenching (NPQ). These pathways
are subject to the constraint of energy conservation. NPQ
can be further separated into energy-dependent and energy-
independent mechanisms. The energy-dependent NPQ, also
known as reversible NPQ, quickly relaxes after removing il-
lumination and is connected to the xanthophyll cycle (John-
son et al., 1993; Demmig-Adams and Adams, 2006). The
energy-independent NPQ, also known as sustained NPQ, re-
laxes at longer timescales and can operate seasonally or even
inter-annually with the mitigation of environmental stresses
(e.g., temperature, water), and it involves protein accumula-
tion and photoinhibition (Demmig-Adams and Adams, 2006;
Takahashi and Badger, 2011; Tietz et al., 2017). The PQ path-
way transports electrons and protons to produce NADPH
and ATP, consequently regulating the carbon reaction rates
of photosynthesis. This pathway is typically quantified by
the fraction of available photosystem II (PSII) reaction cen-
ters (qL) for charge separation after receiving excitation
energy. When the NPQ pathway is completely disengaged
(NPQ= 0) and all PSII reaction centers are open (qL= 1) un-
der non-stress conditions, plants operate with maximum light
use efficiency (LUE) for biochemical carbon assimilation,
with an idealized maximum quantum yield of photosystem II
(8PSIImax) of 0.75–0.85 (Kitajima and Butler, 1975; Bjork-

man and Demmig, 1987; Genty et al., 1989; Corcuera et al.,
2011). This value is generally treated as an environmentally
independent constant in photosynthesis models (e.g., 0.85 in
the Community Land Model; Lawrence et al., 2019).

However, 8PSIImax can be irreversibly downregulated due
to plant energy-independent NPQ response to temperature
and other environmental stresses, especially extreme temper-
ature, or as a result of photodamage to reaction centers (i.e.,
qL is less than 1 even when plants are fully dark-adapted;
Porcar-Castell, 2011). This downregulation can induce a sig-
nificant reduction in vegetation productivity (Havaux, 1991;
Oberhuber and Edwards, 1993; Lu and Zhang, 1999; Mu-
rata et al., 2007; Ferguson et al., 2020; Kunert et al., 2022)
but has not been mechanistically parameterized in most pho-
tosynthesis models. Moreover, this impact of stress on the
light reactions has been found to be highly variable among
plant species across diverse regions (Li et al., 2008; Cor-
cuera et al., 2011; Marias et al., 2016; Perez and Feeley,
2020). In the Amazon, extreme temperature-induced reduc-
tion in 8PSIImax is irreversible and currently decreasing the
productivity of tropical forests, with large variability in re-
sponse among forest species (Tiwari et al., 2021). In addition,
distinct differences in temperature tolerance and resilience
of 8PSIImax values are also found among the same species
growing in different habitats (Corcuera et al., 2011; Fadrique
et al., 2022). To better assess the tolerance and resilience of
plant photosynthesis to more extreme climate change, there
is an urgent need for a more mechanistic understanding and
parameterization of the environments’ impact on photosys-
tem efficiency and its variability across species and habitats
(McCallum et al., 2013; Dusenge et al., 2019; Fadrique et al.,
2022).

The most common method for determining the various
quantum yields of energy dissipation pathways is via mon-
itoring chlorophyll a fluorescence (ChlaF). Pulse-amplitude-
modulated (PAM) fluorometry is a routine non-invasive
method for investigating energy partitioning among the four
dissipation pathways (Kitajima and Butler, 1975; Bjork-
man and Demmig, 1987; Klughammer and Schreiber, 2008;
Porcar-Castell, 2011; Lazár, 2015) and can serve as a bridge
to modeling mechanistic partitioning of adsorbed light en-
ergy at the leaf level (Gu et al., 2019; Han et al., 2022). A
dark-adapted, homeostatic plant minimizes the energy par-
titioning to the thermal and non-photochemical dissipation
pathways, leading to the maximum light allocation fraction
to the photochemical pathway (Klughammer and Schreiber,
2008). PAM fluorometry experiments identify 8PSIImax by
quantifying the ratio of the increase in fluorescence yield
during a saturation pulse (Fv) to the maximal fluorescence
yield of a dark-adapted sample (Fm). At the canopy level,
ground-based and satellite solar-induced ChlaF (SIF) mea-
surements (Mohammed et al., 2019) have been increasingly
integrated or assimilated to facilitate regional and global-
scale GPP prediction (Lee et al., 2015; Norton et al., 2018,
2019; Bacour et al., 2019a, b; Yang et al., 2021). The accu-
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racy of this model–SIF data integration depends on the abil-
ity of these models to represent GPP–SIF relationships at leaf
and canopy levels. Sun et al. (2023a, b) highlighted the com-
plexity of fully describing the many leaf- and canopy-level
factors at play in the GPP–SIF relationship. Parazoo et al.
(2020) examined seven TBMs that included SIF-based pho-
tosynthetic parameterization and found that much of their
discrepancy may be tied, among other things, to the need for
better descriptions of leaf mechanisms of energy partitioning
under environmental stress; others have pointed out similar
areas of needed research (Rogers et al., 2017; Kumarathunge
et al., 2019).

Our previous effort (Gu et al., 2019) has modeled the
leaf-level GPP–SIF dynamics as a function of NPQ, qL,
8PSIImax, and absorbed photosynthetically active radiation
(APAR). That study pointed out a need for mechanistic de-
scriptions of how NPQ, qL, and8PSIImax respond to environ-
mental conditions to accurately predict environmental regu-
lation of the GPP–SIF relationship at the leaf level. By empir-
ically fitting the NPQ rate coefficient with a function of rel-
ative light saturation and combining it with the biochemical-
reaction-centered photosynthesis model, van der Tol (2014)
estimated the responses of leaf-level fluorescence yield to
changing temperature, light, and CO2 concentration, indi-
cating that quantifying environmental responses of photo-
chemical yield are a key step in addressing the integrated
environmental impacts on GPP–SIF dynamics. Therefore,
here we present a novel model of 8PSIImax response to tem-
perature variation by collecting and applying a global-scale
database of published PAM measurements, with an emphasis
on parameterizing the different temperature tolerance and re-
silience of various plant functional types (PFTs) and investi-
gating how habitat climatology may affect this temperature–
8PSIImax relationship. This study will deliver the first global-
scale quantification of temperature impact on photosystem II
efficiency and its variability across PFTs and habitat clima-
tology and build a theoretical basis for assessing vegeta-
tion light utilization potential for carbon sequestration un-
der climate change and climate extremes. Modeling temper-
ature regulation on 8PSIImax is important for assessing ex-
treme temperature impacts on the maximum electron trans-
port rate (Jmax) in biochemical-reaction-centered photosyn-
thesis models. Moreover, characterizing the temperature re-
sponse of 8PSIImax will allow us to connect other light parti-
tioning mechanisms to temperature change, building the first
step of resolving coupled SIF and GPP responses to tempera-
ture change. With the support of the temperature dependence
modeling of8PSIImax provided by this study, a full modeling
of temperature responses of photosynthetic variables, includ-
ing qL, NPQ, and8F, can be achieved by coupling the photo-
physical reactions (Gu et al., 2019), photochemical reactions
(Gu et al., 2023), and the Farquhar biochemical model (Far-
quhar et al., 1980).

In this study, we developed specific temperature response
functions of 8PSIImax for 12 plant functional types (PFTs)

commonly used in TBMs and determined temperature “tol-
erance” and “resilience” parameters for 8PSIImax. In addi-
tion, the climatological impacts on the temperature tolerance
and resilience of 8PSIImax are also examined via creating
a climatology index and incorporating it into the original
parameterization. Finally, we identified specific geographi-
cal locations where climate significantly affects PFT-specific
temperature–8PSIImax relationships.

2 Data and methods

2.1 PAM fluorometry data collection

We quantified the impact of temperature on 8PSIImax by col-
lecting 380 published studies with Fv/Fm data measured
using the PAM fluorometry method from four publication
repositories (Fig. 1a). To isolate temperature dependence
from other external regulators of 8PSIImax, we mined and
selected data from studies that provided cohesive descrip-
tions of temperature for the relevant measurements and ex-
cluded the effects of other confounding variables (e.g., water,
nutrient, light stress). Following this data selection strategy,
we selected PAM observations from the controlled environ-
ments (e.g., greenhouse) where nutrients, lights, and water
availability have been optimized and where only varied tem-
peratures are considered. We also included PAM data from
field experiments with the description of no other stress con-
ditions except for temperature. Following these guidelines,
a total of 104 studies out of the 380 publications were fi-
nally selected. Once selected, the measurements of Fv/Fm
were either directly recorded (for tabular and text reporting of
Fv/Fm values) or extracted from graphics using a web-based
extraction tool (Rohatgi, 2021). The corresponding experi-
mental temperature, the study location, measurement tech-
niques, duration of the temperature exposure, taxonomic de-
scription, and other factors of interest were recorded (dataset
in Supplement Sect. 1). As reporting of temperature was not
consistent across studies, we used three methods to identify
experimental temperature: (1) for publications that utilized
a diurnal description of temperature, the diurnal mean tem-
perature was used as a proxy measurement temperature, as
determined by the average of the minimum and maximum re-
ported values; (2) for studies performed in uncontrolled tem-
perature environments, the mean temperature experienced by
the plant during the experiment period was used; and (3) if
a study lacked a well-described reporting of specific experi-
mental temperature, the mean temperature during the exper-
imental period was collected from the 0.5°× 0.5° global at-
mospheric forcing dataset, CRUNCEP v.7 (Viovy, 2018).

In total, 2329 measurements from 104 studies were
recorded in the final database, with 2104 measurements
meeting the criteria for use in modeling. All measurements
included plant taxonomic descriptions, culminating in 146
distinct species from 46 different family groups and 29 or-
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Figure 1. Data acquisition, selection, and composition pipeline. (a) A summary of the rule-specific procedure of mining and selecting PAM
fluorometry data from publication repositories. (b) The definition of sub-datasets according to the availability of geographic information for
the data and PAM experimental methodology. (c) The number of available PAM data for the 16 chosen PFTs, being (1) needleleaf evergreen
temperate tree (NET-Te), (2) needleleaf evergreen boreal tree (NET-Bo), (3) needleleaf deciduous boreal tree (NDT-Bo), (4) broadleaf ever-
green tropical tree (BET-Tr), (5) broadleaf evergreen temperate tree (BET-Te), (6) broadleaf deciduous tropical tree (BDT-Tr), (7) broadleaf
deciduous temperate tree (BDT-Te), (8) broadleaf deciduous boreal tree (BDT-Bo), (9) broadleaf evergreen shrub (BES), (10) broadleaf
deciduous temperate shrub (BDS-Te), (11) broadleaf deciduous boreal shrub (BDS-Bo), (12) C3 Arctic grass (C3-AG), (13) C3 non-Arctic
grass (C3-NAG), (14) C4 grass (C4-G), (15) C3 crop (C3-C), and (16) C4 crop (C4-C). A PFT that has less than 30 data is marked by a red
star. (d) Spatial distribution of the “geo-set” of data and the number of measurements from each study represented by the circle size.

ders. We grouped these measurements into 16 PFT-specific
sub-datasets (Fig. 1b). These sub-datasets were analyzed
for PFT-specific 8PSIImax responses to temperature change.
In addition, within the 2104 total measurements, a subset
of 825 measurements from 30 publications included ex-
plicit latitude and longitude information. This “geo-set” of
data covers diverse geographic regions across a bounding
range of [35.4° S, 107° W, 69.25° N, 140° E] (Fig. 1d). For
data within this geo-set, 709 measurements were collected
from in-the-wild plants located in natural environments (non-
greenhouse) (Fig. 1c). This geo-specific and climate-affected
sub-dataset, herein called field site sub-dataset, was used to
assess the effects of climatological temperature on the re-
sponse behavior of plant 8PSIImax to temperature change.

2.2 Parameterizing temperature regulation on
8PSIImax for each plant functional type

We employ the PFT-specific sub-datasets to parameterize a
general temperature response function of 8PSIImax for all
data, as well as 12 PFT-specific temperature response func-
tions. We quantified the temperature tolerance and resilience

of8PSIImax for each PFT based on the corresponding param-
eterized temperature response function.

2.2.1 Selecting the fitting function and quantifying
temperature tolerance and resilience

Features of a function desirable for the parameterization of
the gathered data are as follows:

– capturing the characteristics of the temperature re-
sponse of 8PSIImax

– continuity across the full range of temperatures at a
global scale

– well-suited for further refinement of parameters with
additional data through fitting methods

– physically interpretable parameters.

With these characteristics in mind, the selected parame-
terization scheme was a rectangular function of temperature
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with the form

8PSIImax = Fv/Fm = f (T )

= a
1
2

(
erf
(
T −m1

s1

)
+ erf

(
m2− T

s2

))
, (1)

where T is the temperature in °C and erf is a special class of
the sigmoid function called the error function (erf):

erf(z)=
2
√
π

∫ z

0
e−t

2
dt. (2)

Each of the five parameters has a physical interpretation.
The a parameter is the maximal value of 8PSIImax under
no limitation from temperature or other environmental fac-
tors. The m1 (m2) parameters mark the temperature at which
8PSIImax has declined by 50 % of the a value (also called T50;
see Marias et al., 2016; Leon-Garcia and Lasso, 2019; Perez
and Feeley, 2020) at cold (hot) temperatures, with the units of
°C. The s1 (s2) parameters have units of °C and indicate the
slope of peak 8PSIImax decrease at the m1 (m2) temperature
values, which can be thought of as a plant’s resilience to cold
(hot) temperatures, as a smaller s1 (s2) means a more rapid
decline in8PSIImax under cold (hot) temperatures, indicating
a lower resilience to cold (hot) temperatures.

Furthermore, the temperature range within which the pre-
dicted 8PSIImax remains steady at its maximum (a) can be
estimated by creating a linear combination of si and mi pa-
rameters (Eqs. 3 and 4) shown below. The lower (TMC) and
upper (TMH) bounds of this temperature range are referred to
as a plant’s tolerance to cold and hot temperatures, respec-
tively.

TMC =m1+ 2s1 (3)
TMH =m2− 2s2 (4)

8PSIImax starts to decrease from its peak value as the tem-
perature drops below TMC or heats above TMH. We deter-
mined the best fit for the parameters in Eq. (1) using a varia-
tion of the Levenberg–Marquardt method (LMFIT package
version 1.0.3) (Newville et al., 2014). The model perfor-
mance was indicated using the coefficient of determination
(R2).

2.2.2 Model fitting and parameter constraints

To ensure that the model could consistently capture the pat-
tern shown in the gathered data, a cross-validation test for
parameterizing Eq. (1) was performed. The full dataset of
measurements using all PFTs underwent a permutation of or-
der, and 70 % of the data were selected for a calibration test.
The resulting parameterization was then used to predict the
8PSIImax value based on temperature for the remaining 30 %
of the dataset. This process was iterated 1000 times, with the
R2 recorded. This test was performed twice to check whether
there were enough iterations to properly represent the general
statistical tendency.

Available data within each PFT-specific sub-dataset may
cover different temperature ranges with associated variabil-
ity in 8PSIImax. This data characteristic may hinder the re-
liable estimation of the five parameters with the fitting al-
gorithm for the following reasons. First, 8PSIImax outliers at
low (high) temperatures can have outsized impacts on esti-
mating m1 (m2) and s1 (s2) parameters, leading to predic-
tion biases for 8PSIImax at low (high) temperatures. Further-
more, if the data used in model fitting did not cover a wide
range of temperatures or the minimum 8PSIImax value was
not less than a/2, parameters cannot be estimated accurately.
To avoid these prediction biases and make comparable the
fitted values of parameters for each PFT-specific tempera-
ture response function of 8PSIImax, we imposed unified con-
straints on each parameter’s range (Table A1) using a Monte
Carlo scheme (See Appendix A).

Finally, we applied paired 8PSIImax and temperature data
for each PFT to fit the PFT-specific temperature–8PSIImax
function (Eq. 1). To mitigate overfitting and ensure the
available temperature–8PSIImax measurement pairs covered
enough temperature variability for quantifying the decline
outside of a central range of temperatures, we desired at
least 30 data pairs and also a decline in 8PSIImax values by
at least 10 % from the maximum values. Only 12 of the 16
PFTs (Fig. 1b) were fully considered in the resulting analysis
(Sect. 3.1), with some resultant cold (hot) parameters being
treated with caution.

2.3 Parameterizing climatology influence on the
temperature–8PSIImax relationship

To test the hypothesis that climatological temperature reg-
ulates the temperature tolerance and resilience of 8PSIImax
and therefore shifts different PFT’s temperature–8PSIImax
responses toward converged responses to the climatol-
ogy of their “similar” local habitat, we generated a gen-
eral climatology-informed temperature–8PSIImax function
and compared its results with the corresponding PFT-
specific model results. In detail, we quantified correspond-
ing climatological temperature metrics for data within
the field site sub-dataset (Sect. 2.3.1) and assessed their
capacity to explain the prediction residuals from PFT-
specific temperature–8PSIImax functions using ART ANOVA
(aligned rank transform analysis of variance; Sect. 2.3.2).
Based on the results, we incorporated the metrics via a lin-
ear combination into a climatology temperature index (CTI)
(Sect. 2.3.3). This index was then incorporated to quantify a
CTI-informed temperature–8PSIImax function (Sect. 2.3.4).
The fitting results of this CTI-informed model were com-
pared to the corresponding PFT-specific model results. Fi-
nally, we identified where prediction deficiency was im-
proved by the CTI-informed parameterization and the clima-
tology’s effect on the temperature–8PSIImax relationship was
important to consider (Sect. 2.3.5).
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Figure 2. A pipeline of incorporating climatological temperature’s effect on the modeled parameterization of temperature tolerance and
resilience of vegetative8PSIImax, including (a) quantifying the histogram frequency distribution of three climatological temperature metrics
(WMET, SMET, AAT) within the field site sub-dataset and their contributions to the prediction deficiency estimated by the developed
PFT-specific temperature–8PSIImax functions using ART ANOVA. WMET and SMET refer to the median experienced temperature in the
winter and summer, respectively, while AAT refers to the annual average temperature calculated using the 0.5°× 0.5° CRUNCEP v.7 hourly
temperature dataset over 1985–2016. (b) Calculating the climatology temperature index (CTI) for all data in the field site sub-dataset using
results of ART ANOVA and Eq. (7), with the resulting distribution of CTI values shown in a histogram, and the quantile system approach
(QSA)-based data grouping and parameter (m1,m2, s1, s2) estimation. Here, QSA refers to using multiple bandwidths (shown as different
color boxes) to group data for fitting Eq. (1), varying the range of the selected data across the whole dataset, and recording the central
CTI (shown as the gold cross) and resulting parameters. (c) The CTI-informed parameterization of temperature–8PSIImax dynamic, which
linearly regressed each of the four parameters (m1,m2, s1, s2) on the corresponding central CTI values resulting in a CTI-informed parameter
estimation for the temperature–8PSIImax function.

2.3.1 Assessment of climatology temperature metrics

There were 25 locations ranging from [35.4° S, 107° W to
69.25° N, 140° E] within the field site sub-dataset (Fig. 1d).
For each location, we used hourly temperature from the
0.5°× 0.5° CRUNCEP v.7 forcing dataset (Viovy, 2018) be-
tween 1985 and 2016 to quantify three climatology tempera-
ture metrics: the average annual temperature (AAT), the sum-
mer median experienced temperature (SMET), and the win-
ter median experienced temperature (WMET). To isolate a
summer (winter) season based on temperature, a rolling 3-
month average was performed to find the warmest (coldest)
consecutive 3 months. From these 3 months, the median tem-
perature served as the location’s summer (winter) median ex-
perienced temperature over 30 years (Fig. 2a). In addition, an
AAT for each location was estimated by first calculating the
annual mean temperature of each year and then averaging
over all 30 years (Fig. 2a).

2.3.2 Quantifying climatology impact on prediction
efficiency

To examine how climatology metrics affect the prediction
efficiency of the developed PFT-specific model, an aligned
rank transform analysis of variance (ART ANOVA) was per-
formed. We calculated the residues (X) between collected
8PSIImax values (8PSIImax,O) and predicted 8PSIImax values
(8PSIImax,P) given by a specific temperature–8PSIImax func-
tion parameterization (Eq. 5).

X =8PSIImax,P−8PSIImax,O (5)

We then analyzed X with ART ANOVA. ART ANOVA is
a nonparametric test of data variation with multiple factors.
It allows a determination of the contribution of variance by
each factor and the interaction effect of multi-factors when
assumptions of equal sample sizes within each factor level
needed for conventional ANOVA parametric tests are not met
(Leys and Schumann, 2010). Here the divisions of each cli-
matology temperature metric level were determined via the
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Freedman–Diaconis rule (Freedman and Diaconis, 1981) as
follows.

Bin width = 2IQR× n−1/3 (6)

Here n is the number of residues used in the test and IQR is
their interquartile range.

Following Wobbrock et al.’s (2011) ART ANOVA analysis
procedure, we first performed a preprocessing step to align
the X of each 8PSIImax value in the field site sub-dataset for
each main effect of the predictors (SMET, WMET, AAT), as
well as their two-way and three-way effects, using Eqs. (B1)–
(B7) (see Appendix B). Second, the aligned X values for
each effect were then ranked from smallest to largest, with
ties between M numbers of X values resulting in the sum of
the ranks divided byM . Finally, a standard ANOVA test was
performed on the ranks of the aligned X values for each ef-
fect and their combinations. Here all main predictor effects
and their two-way and three-way interaction effects were in-
duced at each instance of ANOVA analysis, while only the
total sum of the squares of errors of the tested effect was
kept. Also, the total sum of squares of the residuals from
each ANOVA analysis was recorded and averaged to rep-
resent the final sum residual that failed to be explained by
the three climatology temperature metrics and their interac-
tion effects. The resulting total sum of the squares is each
effect’s sum of squares and the residual term. The ratio of
each effect’s sum of squares to the total sum of squares is
a measure of the explained prediction error resulting from
a specific temperature–8PSIImax model by SMET, WMET,
AAT, and their interactions.

Besides performing the above ART ANOVA analysis to
explain the contribution of climatological temperature to
the prediction error of the 12 PFT-specific temperature–
8PSIImax functions developed, we also performed the second
ART ANOVA analysis to examine the contribution of three
temperature metrics and their interactions to the prediction
residues by the general temperature–8PSIImax function de-
rived using all data in the field site dataset. The results of two
ART ANOVA were then compared (see Appendix D).

2.3.3 Climatology temperature index

To create a single predictor index that incorporates the effect
of three temperature metrics on predicting the temperature
response function of 8PSIImax, the climatology temperature
index (CTI) was created (Fig. 2b). This index, which was
associated with each 8PSIImax measurement in the field site
sub-dataset, was determined by creating a linear combina-
tion of SMET, WMET, and AAT (Eq. 7) based on the results
from the above ART ANOVA analysis. For each 8PSIImax
measurement p in the field site sub-dataset, its CTI value is
given as

CTIp = a1SMET∗p + a2WMET∗p + a3AAT∗p

+ a4

(
SMET∗p ×WMET∗p

)
+ a5

(
SMET∗p ×AAT∗p

)
+ a6

(
WMET∗p ×AAT∗p

)
+ a7

(
SMET∗p ×WMET∗p ×AAT∗p

)
. (7)

Here aL (L= 1,2, . . .7) is the relative contribution of each
climatological temperature metric and their interactions
to variations in prediction residues by each temperature–
8PSIImax function (PFT-specific or general) as shown in
Fig. 5. The * denotes the deviation from the mean of all
the respective climatology index values within the field site
dataset.

2.3.4 Quantile system approach for parameterizing
climatology’s effect on temperature resilience and
tolerance of 8PSIImax

To incorporate the climatology factors into the parameteriza-
tion of the temperature–8PSIImax function (Eq. 1), we quan-
tified the dependence of the parameters (m1, m2, s1, s2) on
CTI using the field site sub-dataset. Ideally, the field site
sub-dataset would cover diverse climatological temperature
conditions, be distributed consistently across the full global
range of CTI values, and contain statistically sufficient data
for all PFTs, but this is not the case. The 709 available mea-
surements represent a limited, non-uniform range of clima-
tology temperature metrics (histogram distribution of data in
Fig. 2b). We overcome this data limitation by generating one
CTI dependence function for each parameter in Eq. (1) using
all data from the field site sub-dataset and the quantile sys-
tem approach (QSA), which was developed to navigate the
small sample size and inconsistent CTI value distribution by
performing the following three steps.

First, to identify ranges of CTI upon aggregation can over-
come the non-uniform distribution of CTI values, we ranked
from least to greatest all field site sub-dataset 8PSIImax val-
ues and their corresponding experimentally measured tem-
perature values based on the CTI values at the location of the
associated studies. A bandwidth (B) is defined as a quantile
range of CTI values in the field site sub-dataset and recorded
as a percentile. The corresponding 8PSIImax and experimen-
tally measured temperature within the bandwidth B were
selected and composed into a CTI-labeled sub-dataset. The
central value of the range of CTI selected in this manner, here
being the average of the upper and lower bounds within B,
was used as a description of CTI for the corresponding CTI-
labeled sub-dataset. We then used the sub-dataset and its
central CTI value to define a “QSA set”, which was then
connected to the parameters of Eq. (1) through fitting. This
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bridges the parameters (m1,m2, s1, s2) to the QSA set’s asso-
ciated climatology. The maximum value of 8PSIImax param-
eter (a) in Eq. (1) was assumed to be independent of CTI and
kept the same as the fitted value based on the PFT-specific
parameterizations in Sect. 2.2. Four bandwidths (B = 66 %,
50 %, 33 %, 25 %) were chosen: the maximum bandwidth
(B = 66 %) was chosen due to larger selections generating
QSA sets too similar in composition to regress fitted parame-
ters on the central CTI values of the QSA sets. The minimum
bandwidth (B = 25 %) was chosen as a cutoff due to smaller
B values containing too many QSA sets of fewer than 30
measurements selected to fit Eq. (1), which caused rapidly
fluctuating parameterizations to occur.

Second, to analyze how varying central CTI values, which
serve to inform climatology, influenced the fitted parameters
in Eq. (1), QSA sets were generated for each bandwidth start-
ing from the bounds [0, B%] till [100 %–B, 100 %], with a
step size of 1 %. Each set was fit to Eq. (1), generating (100–
B) QSA sets per bandwidth B. All QSA sets across all cho-
sen B values had their resulting parameters (m1, m2, s1, s2),
associated with their central CTI values, aggregated, totaling
224 sets of CTI-related parameterization results.

Finally, to mitigate the existence of noisy data impact on
the regression of fitted parameters on the central CTI val-
ues of QSA sets, we applied a univariate smoothing algo-
rithm (Appendix C) similar to that outlined in Cleveland et al.
(1988) to smooth the fitted parameters and corresponding
central CTI values of the QSA sets before performing the fi-
nal regression analysis. This new composite set of smoothed
QSA set parameters was then regressed on the associated
QSA set central CTI values (Fig. 2c) to quantify the im-
pact of climatological temperature on the model parameters.
This provided four CTI-dependent equations of the parame-
ters (m1, m2, s1, s2) in Eq. (1), informing the climatological
impacts on temperature tolerance and resilience of vegetative
8PSIImax.

2.3.5 Comparison of CTI-informed and PFT-specific
parameterizations of the temperature–8PSIImax
relationship

To assess the improvement in this CTI-informed parameteri-
zation for the temperature–8PSIImax dynamic prediction, the
cumulative sum of the prediction residuals from this CTI-
informed parameterization was examined along the ascend-
ing order of CTI values and compared to the counterparts
from the PFT-specific parameterizations. The range of CTI
over which the sum of residuals is reduced implies improved
predictive power.

To further identify the geographical regions within which
the climatology’s effect on the temperature–8PSIImax re-
lationship of a specific PFT was important to consider,
we quantified the differences in estimated temperature re-
silience (s1, s2) and tolerance metrics (TMC, TMH) between
CTI-informed and PFT-specific parameterizations at each

0.5°× 0.5° grid cell across space. This comparison was con-
strained in the regions where CTI-informed parameteriza-
tion showed improvement in prediction over the PFT-specific
counterpart or could be compared to each other. Within this
constrained domain, the CTI value at each grid cell was cal-
culated using the 1985–2016 CRUNCEP v.7 hourly tem-
perature dataset (Viovy, 2018) following the method intro-
duced in Sect. 2.3.2. This was then applied to estimate CTI-
based temperature resilience (s1, s2) and tolerance metrics
(TMC, TMH) for the corresponding grid cell using the gener-
ated CTI-dependent m1, m2, s1, and s2 parameter equations
(Sect. 2.3.4). Covered PFTs at each grid cell were identi-
fied using the MODIS-derived present-day land cover data
(Lawrence and Chase, 2007; Lawrence et al., 2016). To fo-
cus the study on PFTs that consistently reside within the
CTI-constrained domain, only PFTs whose total cover areas
within the domain were at least 50 % of their global cover-
age were considered. PFT-specific temperature resilience (s1,
s2) and tolerance metrics (TMC, TMH) at each PFT-covered
grid cell were estimated using PFT-specific parameterization
(Sect. 2.2). The CTI-based parameters at each grid cell were
finally compared to the corresponding parameters from PFT-
specific functions to identify the region at which climatolog-
ical temperatures’ impact on the temperature tolerance and
resilience of a specific PFTs’ 8PSIImax values needs to be
considered.

3 Results

3.1 Temperature response of 8PSIImax varies
depending on PFT

Our results showed that the rectangular function (Eq. 1)
was able to capture the temperature dependence of 8PSIImax
across all the gathered PAM fluorometry data. The cross-
validation test resulted in a statistically consistent R2 of
0.49± 0.03 in both iterations (p value= 0.87). Data avail-
ability allowed for quality modeling of the PFT-specific
temperature–8PSIImax functions for 12 plant functional
types. Temperature variability explained more than 60 % of
8PSIImax variations (R2 > 0.60) for most of the PFTs (Fig. 3),
except for broadleaf evergreen temperate trees (BET-Te), C3
non-Arctic grasses (C3-NAG), and C4 grasses (C4-G) with
R2 values of 34 %, 59 %, and 46 %, respectively (Fig. 3d, i,
j). All PFTs followed the expected features of maintaining
maximum 8PSIImax values of around 0.8 over a general tem-
perature range from 16–34 °C. Additionally,8PSIImax signif-
icantly declined when temperatures get too hot (cold), de-
pending on diverse temperature tolerances and resiliency of
different PFTs.

3.1.1 Tolerance

The TMC and TMH tolerance metrics of 12 PFTs varied from
−0.7 to 32.6 °C and from 25.8 to 42 °C, respectively, indicat-
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Figure 3. PFT-specific parameterization results for 12 plant functional types, with the abbreviations (a) NET-Te, (b) NET-Bo, (c) BET-Tr,
(d) BET-Te, (e) BDT-Tr, (f) BDT-Te, (g) BES, (h) BDS-Te, (i) C3-NAG, (j) C4-G, (k) C3-C, and (l) C4-C. The red line is the resulting
PFT-specific model (Eq. 1). The dotted blue lines depict the slope of the model at the temperature m1 (m2) where 8PSIImax declines 50 %
from maximum a, and its slope is the resiliency parameter s1 (s2) for cold (hot) temperatures. The left (right) vertical dotted green lines
depict the tolerance parameter TMC (TMH) for cold (hot) temperatures, and the region between them is the range of temperatures at which
8PSIImax remains constant.

ing large differences in cold and hot temperature tolerance
of 8PSIImax values among 12 PFTs (Fig. 4a). Due to data
gaps (Fig. 3c, e, and l), the TMC of broadleaf evergreen trop-
ical trees (BET-Tr) and broadleaf deciduous tropical trees
(BDT-Tr) and the TMH of C4 crops (C4-C) were not used in
mean and standard deviation (SD) calculations of TMC and
TMH. The mean and SD values of TMC and TMH for the rest
of the PFTs are 16.3± 12.2 and 33.8± 4.8 °C, respectively.
Among the 12 PFTs, the cold and hot tolerance responses
of needleleaf evergreen temperate trees (NET-Te) are clos-
est to the average, with values of 15.2 and 33 °C for TMC
and TMH, respectively (Fig. 4a). The 8PSIImax of C3 non-
Arctic grasses (C3-NAG) showed the widest range of tem-
perature tolerance to both cold and hot temperatures, ranging
from −0.7 to 34.5 °C (Fig. 4a). Broadleaf evergreen shrubs
(BESs) showed a similar range of tolerance temperatures:

3.5 to 34.7 °C (Fig. 4a). In contrast, needleleaf evergreen
boreal trees (NET-Bo), broadleaf deciduous temperate trees
(BDT-Te), C4 grasses (C4-G), and C3 crops (C3-C) showed
weaker 8PSIImax tolerance to both hot and cold temperature
compared to the average, ranging from 26.9–32.8, 26.4–30.8,
27.5–28.6, and 26.1–32.1 °C ◦, respectively (Fig. 4a).

Most PFTs do not have simultaneously strong and weak
tolerances to high and low temperature extremes; i.e., high
TMH values rarely occurred with low TMC values (strong
temperature extreme tolerance), and low TMH values rarely
occurred with high TMC values (weak temperature extreme
tolerance). Broadleaf evergreen tropical trees (BET-Tr),
broadleaf evergreen temperate trees (BET-Te), and broadleaf
deciduous tropical trees (BDT-Tr) all had above-average hot
tolerance, with TMH values of 36.9, 42, and 41.9 °C, respec-
tively (Fig. 4a). BDT-Tr and BET-Te were PFTs with strong
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Figure 4. Visualization of the PFT-specific tolerance and resilience parameters, including (a) the tolerance range of temperatures across
which8PSIImax remains consistently near the maximum modeled value (a) for the 12 modeled PFTs, as defined by the TMC and TMH values;
(b) the cold (s1) and hot (s2) temperature resiliencies of the 12 modeled PFTs, labeled in the upper left and right corners, respectively; (c) the
trade-off between cold tolerance (TMC) and resilience (s1); and (d) the trade-off between hot tolerance (TMH) and resilience (s2) for the
12 modeled PFTs. PFTs with a filled blue circle next to their parameter value in panels (a, b) were not used in determining the respective
cold temperature parameters’ mean and standard deviation, and similarly PFTs with filled red circles next to their parameter values in
panels (a, b) were not used in determining the respective hot temperature parameters’ mean and standard deviation. Open circles of red or
blue in panels (a, b) identify a PFT with data such that the resulting cold or hot parameter results should be taken with some caution. The
gray lines in panels (a, b) are the average parameter values. The high cold and high hot tolerance classifications are based on the PFT having
a TMC or TMH value that is 1σ less than or greater than the respective average tolerance value and are represented by the dashed blue and
orange lines, respectively. The high-resiliency parameters are defined both as having s1 or s2 that is 1σ greater than the respective average
value across considered PFT values.

hot tolerance, defined as TMH 1 standard deviation higher
than the mean (Fig. 4a). The TMC value of BET-Te indicated
a decline at temperatures below 32.6 °C, although there was
high variability in its8PSIImax values at each temperature be-
low 32.6 °C. The declining trend of the TMC values of BET-
Te gradually became obvious when temperatures fell below
−7.7 °C (Fig. 3d). BET-Tr (Fig. 3c) and BDT-Tr (Fig. 3e)
lacked cold temperature measurements. Broadleaf deciduous
temperate shrubs (BDS-Te) had a strong cold tolerance, with
a TMC of 7.7 °C, but did not have hot temperature tolerance
(TMH= 26 °C), unlike the other PFTs of C3-NAG and BES
with strong cold tolerance (Fig. 4a). C4 crops (C4-C) were
strongly cold tolerant (TMC =−0.86 °C), but due to low data
availability, the hot temperature responses of this group were
unclear (Fig. 3l).

3.1.2 Resilience

The s1 and s2 resilience parameters of 12 PFTs varied from
1.56 to 24.9 °C and from 3.7 to 12.9 °C, respectively, indi-
cating that the resilience of 8PSIImax values to cold and hot
temperature varied with PFT (Fig. 4b). A strong cold or hot
resilience was signalled by a large s1 or s2 value and a slower
decline in 8PSIImax as temperature changes beyond the ideal
tolerance range. Due to data gaps (Fig. 3c, e, and l), the s1
of broadleaf evergreen tropical trees (BET-Tr) and broadleaf
deciduous tropical trees (BDT-Tr) and the s2 of C4 crops
were not used in mean and SD calculations of s1 and s2. The
mean and SD values of s1 and s2 for the rest of PFTs were
11.6± 6.2 and 7.1± 2.6 °C, respectively. Among 12 PFTs,
NET-Te had the closest-to-average resilience to both low and
high temperature (s1= 12.3 °C; s2= 6.8 °C) (Fig. 4b). The
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8PSIImax values of the C3-NAG had the least cold and second
least hot temperature resilience, with an s1 and s2 of 3.9 and
4.9 °C, respectively (Fig. 4b). The next least-resilient PFT
overall was BES, with an s1 and s2 of 8.99 and 6.7 °C, re-
spectively (Fig. 4b). There was no PFT that had both strong
cold and strong hot temperature resilience, as defined by one
SD more than the mean. The most temperature-resilient PFT
overall was BDT-Te, with an s1 and s2 of 14.9 and 12.99 °C,
respectively (Fig. 4b). Other PFTs that had higher than av-
erage cold and hot resilience include C4-G (s1= 13.7 °C;
s2= 7.99 °C) and C3-C (s1= 14.3 °C; s2= 8.3 °C) (Fig. 4b).

PFTs that had strong cold resilience but weak hot
resilience included NET-Bo (s1= 13.6 °C; s2= 5.8 °C),
BET-Tr (s1= 20.9 °C; s2= 6.6 °C), BET-Te (s1= 24.9 °C;
s2= 4.0 °C), and BDT-Tr (s1= 11.7 °C; s2= 3.7 °C)
(Fig. 4b). BET-Te was a PFT with strong cold resilience.
More cold temperature measurements for BET-Tr and BDT-
Tr were needed to validate the current fitting result (Fig. 3c
and e). PFTs that had strong hot resilience but weak cold
resilience included BDS-Te (s1= 7.7 °C; s2= 10.3 °C) and
C4-C (s1= 1.56 °C; s2= 12.9 °C) (Fig. 3h and l). BDT-Te,
BDS-Te, and C4-C were all PFTs with strong hot resilience,
although more hot temperature observations for BDT-Te and
C4-C are still needed for validating this fitting result.

3.1.3 Tolerance–resilience trade-off in PFT

There was a positive correlation between s1 parameters and
TMC parameters but a negative correlation between s2 pa-
rameters and TMH parameters for 12 PFTs (Fig. 4c and d).
These results indicated a clear trend in temperature responses
of the various PFTs’ 8PSIImax values, in which the more
temperature-resilient PFTs were less temperature tolerant,
and vice versa. The s1 and TMC parameters of BET-Te
(24.9 °C, 32.6 °C) indicated BET-Te was the most resilient
but one of the least tolerant to cold temperature, whereas C4-
C with a low s1 (1.56 °C) and the coldest TMC (−0.9 °C) was
extremely tolerant but one of the least resilient to cold tem-
perature (Fig. 4c). Besides C4-C and BDT-Te, which needed
more observations at high temperature for validating their fit-
ted high resilience to hot temperature, BDS-Te was the third
most resilient (10.3 °C) but the least tolerant (26 °C) to hot
temperatures (Fig. 4d). In contrast, C3-NAG showed both
strong tolerance to cold temperature (TMC=−0.9 °C) and
high temperature (TMH= 38.9 °C) but was the second least
cold (s1= 3.85 °C) and third least hot resilient (s2= 4.9 °C)
to temperature (Fig. 4c and d).

Based on this trade-off between temperature tolerance and
resilience of the PFTs’ 8PSIImax temperature response, we
can classify 12 PFTs into three groups with different life
history strategies of light partitioning in response to ex-
treme temperatures. PFTs within the cold and hot tempera-
ture tolerance group (strongly temperature tolerant), includ-
ing BES and C3-NAG, held the maximum 8PSIImax value
(∼ 0.8) within a wide (> 20 °C) temperature range. In con-

trast, PFTs within the cold and hot temperature resilience
group (strongly temperature resilient), including BDT-Te,
NET-Bo, C4-G, and C3-C, can still keep higher8PSIImax val-
ues in response to a large increase in hot temperature or de-
crease in cold temperature. NET-Te is a PFT with medium
temperature tolerance and resilience in between these two
extreme groups. BET-Te, BDT-Tr, BET-Tr, C4-C, and BDS-
Te are the temperature specialist group. They have a strong
tolerance to either hot or cold temperatures (but not both)
and are strongly resilient in opposite temperature extremes.
Among them, C4-C and BDS-Te were PFTs with strong
cold tolerance and strong hot resilience, whereas BET-Tr and
BET-Te were PFTs with strong cold resilience and strong hot
tolerance. BDT-Tr was only tolerant to hot temperatures.

3.2 Climatology’s influence on the
temperature–8PSIImax relationship

To test the hypothesis that climatological temperature shifts
different PFT’s temperature–8PSIImax responses toward con-
verged responses to the climatology of their “similar” lo-
cal habitat, we generated a general climatology-informed
temperature–8PSIImax function by estimating the global dis-
tribution of the climatology temperature index (CTI) and
quantifying its regulations on tolerance and resilience pa-
rameters in Eq. (1) across the globe (Sect. 3.2.1). To iden-
tify the specific region within which the impact of clima-
tological temperatures on the temperature tolerance and re-
silience of 8PSIImax values needs to be considered, we quan-
tified the spatial distributions of the CTI-informed param-
eters (m1, m2, s1, s2) and tolerance metrics (TMC, TMH)
(Sect. 3.2.2) and compared them with their PFT-specific
counterparts (Sect. 3.2.3).

3.2.1 CTI global pattern and its regulation on the
temperature tolerance and resilience of 8PSIImax
values

The ART ANOVA analyses indicated that annual average
temperature (AAT), the median experienced temperature in
the winter (WMET) and summer (SMET), and their inter-
actions could explain around 96 % of the variances in pre-
diction residues generated with PFT-specific temperature–
8PSIImax functions (see Appendix D). Therefore, we esti-
mated the CTI as the linear combination of AAT, WMET, and
SMET, as well as their interactions (Eq. 7), using their rela-
tive contribution to variations in prediction residues by PFT-
specific temperature–8PSIImax functions calculated from the
ART ANOVA analysis. We employed this method to quan-
tify the CTI distribution at each 0.5°× 0.5° grid cell across
the globe using the 1985–2016 CRUNCEP v.7 hourly tem-
perature dataset (Viovy, 2018).

The global distribution of CTI showed a clear latitude gra-
dient. A large area of the mid-latitudes had CTI values close
to zero (Fig. 5a and b), indicating these regions had very
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Figure 5. Global distribution of CTI values and their latitudinal trends. (a) Map depicting the global distribution of CTI for grid cells at
which |CTI| ≤ 900. (b) Latitude mean CTI values of all land grid cells with |CTI| no larger than |900| (black line), with both the minimum
and maximum (light gray), as well as ± the standard deviation (σ ) (dark gray). Four green lines from the left to the right demonstrate the
CTI bounds of −900, −150, 150, and 900. The range of 150≤ |CTI| ≤ 900 refers to the CTI range at which the temperature–8PSIImax
relationship was improved by CTI-informed parameterization compared to the PFT-specific parameterization. (c) The percentages of land
grid cells at each latitude that were below (blue), within (hatched green), and above (red) the range of |CTI| ≤ 900.

similar CTI indices to the mean state, which referred to the
mean of all the respective CTI values within the field site sub-
dataset. The CTI values trended to be more positive from the
mid-latitude to the tropical regions and more negative from
the mid-latitude to the polar regions (Fig. 5a and b).

The resulting regression of each parameter on CTI showed
a strong correlation between CTI and each model param-
eter (m1, m2, s1, s2) in Eq. (1), in addition to the tol-
erance values (TMC, TMH). The strongest CTI dependence
was with the hot temperature parameters (m2, R2

= 0.94;
s2, R2

= 0.87) (Fig. 6b and d). Cold temperature parame-
ters had slightly less dependence on CTI (m1, R2

= 0.75;
s1, R2

= 0.35) (Fig. 6a and c). The CTI values were neg-
atively correlated to the cold T50 parameter m1 (Fig. 6a)
but positively correlated to the cold resilience parameter s1
(Fig. 6c). In contrast, the CTI values were positively corre-
lated to the hot T50 parameter m2 (Fig. 6b) but negatively
correlated to the hot resilience parameter s2 (Fig. 6d). Built
upon the regressions ofm1,m2, s1, and s2 on CTI, the regres-
sion of TMC and TMH on CTI showed that TMC is negatively
but not significantly correlated to CTI (R2

= 0.07), whereas
TMH was positively and significantly correlated (R2

= 0.93)
to CTI (Fig. 6e and f). These results indicated that the climate
condition in the habitat in part affected the temperature toler-
ance and resilience of 8PSIImax. Taking the averaged CTI of
the field site sub-dataset as a reference, the 8PSIImax values
of plants in the warmer than average habitats (higher positive
CTI) had a stronger tolerance to hot temperatures (Fig. 6f) at
the cost of lower hot temperature resilience (Fig. 6d). Sim-
ilarly, the 8PSIImax values of plants located in colder than
average habitats (lower negative CTI) had a lower cold tem-
perature resilience (Fig. 6c) but no statistically significant
change in cold temperature tolerance with CTI (Fig. 6e).

The regression of each model parameter (m1, m2, s1, s2)
in Eq. (1) on CTI, denoted as the CTI-informed parame-
terizations of the temperature–8PSIImax relationship, facil-
itated the prediction of the temperature responses of plant
8PSIImax in certain CTI ranges. Compared to the prediction
by PFT-specific parameterization, the CTI-informed param-
eterization improved the accuracy of 8PSIImax prediction by
4.3 % on average in the land grid cell with 150≤ |CTI| ≤ 900
and held comparable in the region with |CTI| < 150 (Fig.
D2). This land area with |CTI| ≤ 900 accounted for ∼ 53 %
of the earth’s land area, which was distributed in the lati-
tudinal bands of 60° S–80° N, especially in the latitudinal
bands of 30–60° S and 30–70° N. At this latitude range, al-
most 100 % of land grid cells had |CTI| ≤ 900 (Fig. 5c). Spa-
tially, these regions included much of South America out-
side of the Amazon, Africa, and most of Canada and Rus-
sia (Fig. 5a). The upper Andes and Mexico’s Sierra Madre
ranges, a large region in Ethiopia, and much of Libya had
CTI that is much lower than the surrounding regions at the
same latitude, falling with the CTI bounds of improved or
comparable predictive power. Notable regions that fell out-
side the bounds were both the Amazon and Indonesian rain-
forests, as well as the Indian subcontinent and much of the
Congo rainforest (Fig. 5a). Our results highlighted that cli-
matology’s effect on temperature tolerance and resilience of
8PSIImax values needs to be considered in these regions with
|CTI| ≤ 900.

3.2.2 Latitudinal variation in CTI-informed
temperature tolerance and resilience of plant
8PSIImax

Using the CTI-informed parameterizations, the cold and
warm T50 parameters (m1, m2), temperature resilience pa-
rameters (s1, s2), and resultant temperature tolerance param-
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Figure 6. Linearly smoothed MID regression of temperature resilience and tolerance parameters on the climatological temperature index
(CTI) using the QSA approach: (a) m1-CTI, (b) s1-CTI, (c) m2-CTI, (d) s2-CTI, (e) TMC-CTI, and (f) TMH-CTI. Here m1, m2, s1, and s2
refer to the original four parameters in Eq. (1). The original estimation of each parameter and the corresponding mean CTI of a QSA set are
displayed in blue-filled circles. The smooth window width featured in (a) the top left plot is centered upon each QSA result, and all values
within that CTI range are averaged. The orange cross symbols (x) are the resulting smoothed values, which were then run through a linear
least-square regression. The resulting regressions are displayed as purple lines.

eters (TMC, TMH) of vegetative8PSIImax values within the re-
gion of |CTI| ≤ 900 were estimated and showed clear latitu-
dinal gradients across the globe. The latitudinal mean m1 in-
creased from−5.5 to−3.5 °C across the transient band mov-
ing from tropical latitudes to mid-latitudes (30–40° N and S)
and from −3.5 to almost 0 °C from mid-latitudes to high
latitudes (50–80° N and 55–65° S) but held values around
−5.5 °C in the tropics (30° N–30° S) and around −3.5 °C in
the mid-latitudes (40–50° N and 40–60° S) (Fig. 7a). Param-
eter s1 also showed less latitudinal variability around 30° N–

30° S and the mid-latitude band around 40–50° N and 40–
60° S but an inverse trend compared to the latitudinal vari-
ability in m1, decreasing from 13.2 °C in tropical latitudes
(30° N–30° S) to 12.7 °C in mid-latitudes (30–40° N and S)
and from 12.7 °C in mid-latitudes to 11.6 °C in high latitudes
(50–80° N and 55–65° S) (Fig. 7b). The cold tolerance TMC,
being a linear combination of m1 and s1, exhibited a similar
trend as m1, with almost 2 °C of variation across latitudes,
which is smaller in comparison to the latitudinal variabil-
ity in m1 (Fig. 7c). These results indicated the 8PSIImax in
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Figure 7. Latitudinal mean and standard deviation (σ ) of CTI-informed model parameters, including (a, b) cold and hot T50 parameters
(m1,m2) at which 8PSIImax values decrease by 50 %, (c, d) cold and hot temperature resilience parameters (s1, s2) in Eq. (1), and (e, f) de-
rived cold and hot temperature tolerance metrics (TMC, TMH) for land grid cells with |CTI|< 900.

temperate habitats across 40–50° N and 40–60° S had simi-
lar cold temperature T50 and cold temperature resilience and
tolerance. However, 8PSIImax tended to have a higher cold
temperature T50 and be less tolerant and resilient to cold tem-
peratures from 30–40° N and S, from 50–80° N, and from
55–65° S.

The latitudinal mean m2 decreased from 49.2 to 47.9 °C
from 20–40° N and S and from 47.9 to 45.8 °C from middle
to high latitude (50–80° N, 55–65° S), with a maximum value
of 49.7 °C across the tropics and an almost constant value
of 47.9 °C across 40–50° N and S (Fig. 7d). Similar to the
relationship between the latitudinal trend of m1 and s1, the
latitudinal mean s2 increased across latitudes where the m2
decreased, with a greater latitudinal variation compared to s1
(Fig. 7e). Similar to m1 and s1, m2 and s2 also had less vari-
ation in the tropic (30° N–30° S) and the mid-latitude band
around 40–50° N and 40–60° S. The hot tolerance TMH, be-
ing a linear combination of m2 and s2, exhibited a similar
trend to m2, with around 15 °C of variation across latitudes
being larger in comparison to the latitudinal variability inm2
(Fig. 7f). These findings also suggested that the vegetation
at temperate habitats across 40–50° N and S had a similar

response of the 8PSIImax value to hot temperature. In con-
trast, the 8PSIImax values tended to be less tolerant but more
resilient to hot temperature across the tropical-to-middle-
latitude transition regions (30–40° N and S) and middle-to-
high-latitude transition regions (50–80° N, 55–65° S).

Corresponding to the latitudinal pattern of T50, resilience,
and tolerance parameters (Fig. 7) with the spatial pattern of
CTI values (Fig. 5), 8PSIImax values became less cold tol-
erant and resilient and less hot tolerant but more hot re-
silient along warm-to-cold climatological gradients (CTI gra-
dients).

3.2.3 Spatial distribution of the differences between
CTI-informed and PFT-specific
parameterizations

To identify specific geographical locations where PFT-
specific temperature tolerance or resilience of 8PSIImax dif-
fered from the CTI-informed counterparts, we calculated
the difference in TMC, TMH, s1, and s2 between CTI-
informed and PFT-specific parameterizations at each grid
cell. Only PFTs with total cover area within the grid cells
of |CTI| ≤ 900 accounting for ≥ 50 % of its global total dis-
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Figure 8. Latitudinal mean and standard deviation (σ ) of the difference between CTI-informed and PFT-specific temperature tolerance
metrics and resilience parameters of vegetative 8PSIImax values, including (a) cold temperature tolerance (TMC), (b) cold temperature
resilience (s1), (c) hot temperature tolerance (TMH), and (d) hot temperature resilience (s2). Here only grid cells having |CTI| values ≤ 900
and targeted PFT cover are included in the calculation of latitudinal mean and standard deviation. Targeted PFTs refer to PFTs in which total
covered area within the grid cells having |CTI| ≤ 900 accounts for ≥ 50 % of its global total distribution area. Each PFT-specific result is
shown as separate colors, with the shaded regions of the same color being ± 1σ at each latitude.

tribution area were included in this analysis, resulting in the
following PFTs: NET-Te, NET-Bo, BET-Te, BDT-Te, BES,
BDS-Te, C3-NAG, and C3-C. The latitudinal mean and stan-
dard deviation of compared results for all grid cells that con-
tained said PFT were calculated and are shown in Fig. 8.

Our results showed that PFT-specific TMC for all ana-
lyzed PFTs had larger differences compared to the CTI-
informed counterparts, but no obvious latitudinal variabil-
ity was observed, as the magnitude of the variation was
about 2 °C. CTI-informed TMC for BET-Te, NET-Bo, BDT-
Te, and C3-C had a value below the corresponding PFT-
specific TMC (stronger cold tolerance) by 11, 5, 5, and 3 °C,
respectively, while CTI-informed TMC for NET-Te, BDS-
Te, BES, and C3-NAG had values above the corresponding
PFT-specific TMC (weaker cold tolerance) by around 6–7,
14, 18, and 22–23 °C, respectively (Fig. 8a). Similarly, the

differences between CTI-informed and PFT-specific cold re-
silience metric s1 showed slight latitudinal variability but dif-
fered among different PFTs. The CTI-informed s1 for C3-
NAG was 2 times greater than its PFT-specific counterpart
(210 %–250 %), followed by BDS-Te and BES with around
40 %–60 % greater CTI-informed s1 than its PFT-specific
counterpart (Fig. 8b), indicating that CTI-informed 8PSIImax
values of C3-NAG, BDS-Te, and BES were more resilient to
cold temperature than the corresponding PFT-specific esti-
mation. In contrast, CTI-informed 8PSIImax values of C3-C,
NET-Bo, BDT-Te, and BET-Te became less resilient to cold
temperatures than PFT-specific parameterization, with the
8PSIImax value of BET-Te having the largest cold resilience
reduction (50 %; Fig. 8b). Compared to the PFTs discussed
above, there was almost no significant difference in NET-Te
between the two parameterizations. Overall, our results in-
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dicated that C3-NAG, BES, BDS-Te, and BET-Te were key
PFTs with larger changes in cold tolerance (> 10 °C) and
cold resilience (> 40 %) of CTI-informed 8PSIImax values
compared to the corresponding PFT-specific counterparts.

The differences in TMH and s2 between CTI-informed and
PFT-specific parameterizations for all analyzed PFTs showed
larger latitudinal variability compared to their cold tempera-
ture counterparts. CTI-informed TMH for BET-Te was lower
(lower hot tolerance) than the PFT-specific TMH by around
2.5–10 °C with a larger reduction in TMH observed in south-
ern middle latitudes (Fig. 8c). In contrast, CTI-informed TMH
for BDT-Te, BES, BDS-Te, and C3-C all larger than the
PFT-specific counterparts, with the increased TMH difference
between the two parameterizations from high to lower lati-
tude, especially from 25–40° N and S (Fig. 8c). Among these
PFTs, CTI-informed TMH for BDS-Te showed the largest in-
crease with the latitudinal mean values by around 10–17 °C
across 60° N–60° S compared to the PFT-specific counter-
part. CTI-informed latitudinal mean TMH for C3-C and BDT-
Te increased by 6–12 °C across the covered latitude region
compared to the PFT-specific counterpart. Unlike PFTs dis-
cussed above, NET-Te, C3-NAG, and NET-Bo had diverging
TMH differences between the two parameterizations across
latitudinal gradients. Compared to the PFT-specific counter-
part, CTI-informed TMH for NET-Te showed a maximum
2.5 °C decrease around 60° N but a maximum 10 °C increase
around 20° N (Fig. 8c). Similarly, CTI-informed TMH for C3-
NAG and NET-Bo decreased by 5 °C beyond 60° N but in-
creased by around 1–7 °C across 60° N–50° S compared to
the corresponding estimation by PFT-specific parameteriza-
tion (Fig. 8c).

The CTI-informed s2 indicated that the 8PSIImax value
of BET-Te should have higher hot resilience than the PFT-
specific counterparts on average across all latitude bands,
with a wide range of percentage increase (7 %–72 %) across
30° N–60° S. In contrast, BDT-Te, BDS-Te, C3-C, NET-
Te, and BES all had lower hot resilience of 8PSIImax than
the PFT-specific estimation (Fig. 8d). CTI-informed hot re-
silience of 8PSIImax for BDT-Te and BDS-Te decreased by
around 45 %–68 % from 60° N–50° S, followed by C3-C,
BES, and NET-Te with around a 17 %–52 % decrease in
CTI-informed hot resilience of 8PSIImax compared to their
PFT-specific counterparts (Fig. 8d). CTI-informed s2 for
both NET-Bo and C3-NAG had diverging differences with
the corresponding PFT-specific counterparts across latitudi-
nal gradients. In the northern latitudes, the hot temperature
resilience parameter TMH for C3-NAG increased by up to
25 % from 30–60° N and from 30–60° S, spiking to over
50 % beyond 60° N, but decreased from 30° N–30° S com-
pared to the corresponding PFT-specific counterparts. NET-
Bo showed no significant difference between CTI-informed
and PFT-specific hot resilience estimation in the southern lat-
itudes and around 30–50° N, while it showed up to a 50 % in-
crease in CTI-informed values in around 50–80° N compared
to PFT-specific counterparts. In total, these findings indicated

that BDS-Te, BET-Te, BDT-Te, and C3-C were PFTs with
larger changes in hot tolerance (> 5 °C) and hot resilience
(> 10 %) of CTI-informed 8PSIImax values compared to the
corresponding PFT-specific counterparts. However, the dif-
ferences in these hot temperature response metrics between
the two parameterizations showed large variability across the
latitude.

4 Discussion

4.1 PFT variation in the temperature tolerance and
resilience of photochemical efficiency

Our study gathered global-scale PAM fluorometry observa-
tions to quantify temperature regulation on 8PSIImax values
of 12 PFTs. The developed PFT-specific rectangular func-
tions can capture the optimal 8PSIImax value of 0.8 within
different ranges of temperature and the decrease in 8PSIImax
in each PFT with colder and hotter temperatures (Fig. 3). The
variability in 8PSIImax around the ideal temperature range
echoed observed variability across species in response to
similar conditions (Li et al., 2004). Few previous studies
(Sastry and Barua, 2017; Slot et al., 2019; Perez and Feeley,
2020; Tiwari et al., 2021; Kunert et al., 2022) utilized differ-
ent functions to fit this heat response of8PSIImax values to the
warming climate. These studies mainly focused on specific
species, such as tropical evergreen and deciduous species.
To our knowledge, our study is the first global-scale effort
that quantifies the differences in this temperature–8PSIImax
relationship among 12 general PFTs. The generated PFT-
specific temperature–8PSIImax functions can be directly ap-
plied to adjust the8PSIImax parameter for simulating temper-
ature feedback of photosynthetic energy partitioning in ter-
restrial ecosystem models (TEMs) and Earth system models
(ESMs).

One advantage of the developed temperature–8PSIImax
model is its capability for quantifying the temperature tol-
erance and resilience of 8PSIImax values and assessing their
differences among different PFTs. Our results highlighted
the trade-off scheme of temperature responses of the vari-
ous PFTs’ 8PSIImax values, in which the more temperature-
resilient PFTs were less temperature tolerant, and vice versa
(Fig. 4). Our finding was consistent with previous studies
(Tiwari et al., 2021; Kunert et al., 2022) that also found
a negative relationship between temperature tolerance and
resilience metrics for some tropical tree species, although
the definition of temperature tolerance and resilience met-
rics in Tiwari et al.’s (2021) study was not completely con-
sistent with our definition. This trade-off may be associated
with the selection of different PFTs’ protection strategies un-
der current and historical temperature stress. Temperature-
resilient PFTs may protect PSII from damage via NPQ mech-
anisms, such as heat shock proteins (HSPs) and the xan-
thophyll cycle (Adams and Demmig-Adams, 1994; Verho-
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even et al., 1999; Wahid et al., 2007). Temperature-tolerant
PFTs may have more flexibility when it comes to PSII
protections due to either phenological responses (i.e., leaf
senescence under cold/hot stress, maximizing warm-season
growth; Sakai, 1980) or physiological feedback (i.e., evapo-
transpiration cooling under hot stress; Havaux, 1992).

According to this trade-off between temperature tolerance
and resilience of the PFTs’ 8PSIImax temperature response,
we identified the PFT group with cold and hot temperature
tolerance (BES and C3-NAG), the PFT group with cold and
hot temperature resilience (BDT-Te, NET-Bo, C4-G, C3-C),
and the temperature specialist PFT group (BET-Te, BDT-
Tr, BET-Tr, C4-C, and BDS-Te). NET-Te adopted a gener-
alist strategy, with tolerance and resilience values near the
mean across PFTs, though this may be an inherent bias in the
datasets. The higher tolerance of C3-NAG to both cold and
hot temperatures was probably associated with its discrete
distribution across diverse habitats, such as the Amazon and
boreal regions (Ke et al., 2012). Long-term exposure to di-
verse temperatures has evolved diverse C3-NAG species and
cultivars, which have distinct abilities to suppress oxidative
stress under temperature stress and therefore a broad heat and
cold tolerance of 8PSIImax (Soliman et al., 2012; Filho et al.,
2018). Similarly, BES, which was usually distributed in the
Mediterranean climate with typical cold winter and drought
summer (Ke et al., 2012), had been found to maintain higher
photochemical yields under hot and cold temperatures by ad-
justing vegetation structure and decreasing chlorophyll con-
tent (Oliveira, 2000). BDT-Te was the PFT with the most
heat resilience, reflecting a strong HSP and stomatal conduc-
tance response (Solhaug and Haugen, 1998; Wittmann and
Pfanz, 2007; Song et al., 2014). Some species within BDT-
Te had a phenotypic abscission response to high temperature
(Shirke and Pathre, 2003), which may be a reason behind the
mild variability in 8PSIImax measurements at high tempera-
ture (Fig. 3f). The higher cold and hot temperature resilience
of C3-C may be related to crop engineering selection of crop
genotypes that can be more resilient to extreme temperature
and weather events (Basu et al., 2009; Molina-Bravo et al.,
2011; Zhou et al., 2015; Sharma et al., 2017). In the tem-
perature specialist PFT group, BET-Te was the PFT with the
strongest hot tolerance and strongest cold resilience, which
may be due to its adaptation to hot temperatures by hav-
ing a phenological mechanism with year-round leaf turnover
(Williams-Linera, 1997) and having freezing resistance in
leaves (Sakai, 1980). Similar to BET-Te, BDT-Tr could main-
tain higher 8PSIImax at temperatures up to 42 °C. The high
heat tolerance of BDT-Tr was consistent with Tiwari et al.
(2021) and was probably associated with the synthesis of
HSPs under long-term exposure to tropical high temperature
(Taleisnik and Grunherg, 1994).

Our definitions of temperature tolerance and resilience are
not completely the same as previous studies; however, they
can be comparable after conversion. For example, previous
studies (Tiwari et al., 2021; Kunert et al., 2022) estimated T50

as the same definition ofm2 in our PFT-specific temperature–
8PSIImax model (Eq. 1) but quantified temperature resilience
of 8PSIImax as decline width (DW= T95− T5) and tempera-
ture tolerance of 8PSIImax as T5. Here T5 and T95 referred to
the temperature at which8PSIImax declined with temperature
change by 5 % and 95 %. By calculating T50, T95, and T5 us-
ing the fitted Eq. (1), we found that the parameterization for
BET-Tr using our model resulted in T5 of 42.35 °C, T50 of
49.98 °C, and a resilience metric (T95 – T5) of 15.26 °C. This
result was close to Tiwari et al. (2021) estimations of dry
(wet) season T5= 43.5 °C (41.9 °C), T50= 51.6 °C (49.4 °C),
and T95 – T5= 16.6 °C (15.4 °C) averaged across diverse
BET-Tr species. Also, our estimations of T5, T50, and T95
values for NET-Te were 38.7 °C, 46.7 °C, and 54.7 °C, re-
spectively. The estimated T5 and T95 fell within the Kunert
et al. (2022) estimated span of the six NET-Te species’ for
T5 (38.5–43.1 °C) and T95 (53.9–57.5 °C). However, the esti-
mated T50 was somewhat lower than the corresponding esti-
mation of 47.8–52.3 °C by Kunert et al. (2022).

4.2 Climatology-driven convergent
temperature–8PSIImax response across PFTs in a
certain region

The formation and application of the CTI as an integrated
indicator of climatological annual mean temperature, win-
ter median temperature, and summer median temperature al-
lowed for quantifying the variation in temperature tolerance
and resilience of photochemical efficiency with climatologi-
cal gradients. This CTI-incorporated temperature–8PSIImax
parameterization (Fig. D2) was comparable with the cor-
responding PFT-informed temperature–8PSIImax parameter-
ization within the region of |CTI| < 150 and increased pre-
dictive power within the region with 150≤ |CTI| ≤ 900, im-
plying that the irreversible variability in photochemical effi-
ciency of a plant with temperature change mainly depends
on its acclimation and adaptation to climatology in these re-
gions. PFT has been widely applied to interpret the variation
among plants in physiological, morphological, and pheno-
logical traits and correlated to plant adaptation to local envi-
ronmental conditions and to plant resource capture and sur-
vival strategies (Reich et al., 2003; Kelly et al., 2021). How-
ever, our results demonstrated that the temperature sensitivity
and tolerances of photochemical efficiency trait in a certain
CTI band (|CTI| ≤ 900) are convergent and can be param-
eterized using a CTI-informed fundamental function. This
universal function can be directly incorporated into TEMs
and ESMs to parameterize the temperature feedback of pho-
tosynthetic light reactions instead of using PFT-specific pa-
rameterization, which requires more parameters. Our finding
was similar to the study of Heskel et al. (2016) that found
consistent temperature sensitivity of leaf respiration across
several PFTs and biomes and parameterized it using a uni-
versal temperature-dependent function. The convergent tem-
perature responses of these plant traits may reflect the oc-

https://doi.org/10.5194/bg-21-2731-2024 Biogeosciences, 21, 2731–2758, 2024



2748 P. Neri et al.: The effect of temperature on Photosystem II efficiency

currence of phenotypic plasticity or ecotypic variations as
a result of plant acclimation and adaptation to its inhabited
climatological temperature (Berg et al., 2010; Marias et al.,
2016) or universal metabolic constraints on vegetation tem-
perature feedback (Heskel et al., 2016).

The global distribution of the regions within the bounds of
improved prediction (150≤ |CTI| ≤ 900) were concentrated
around subtropical regions (30–40° N and S) and along the
transition zones from the mid-latitudes to the polar regions
(50–70° N and 50–60° S) (Fig. 5a and b). These regions typ-
ically had a large inter-seasonal variability in temperature or
contrasting precipitation seasonality coupling with hot tem-
perature through the year. Several observations (Wahid et al.,
2007; Li et al., 2008; Soliman et al., 2012; Marias et al.,
2016) have shown that plant species in a variable climato-
logical environment have been more phenotypically plastic
and representative of “experienced temperature” through dif-
ferent feedback. Such feedback examples include synthesis
of non-structural carbon under temperature stress, genera-
tion of HSP to avoid heat damage, and increasing evapo-
rative cooling through adjusting stomatal size and density.
Moreover, moisture stress may modulate plant plastic capac-
ity due in part to an attempt to maximize water use efficiency
(WUE) and maintain homeostasis (Wahid et al., 2007; Lin
et al., 2015; Marias et al., 2016). The improved prediction of
temperature–8PSIImax relationships in these regions by our
CTI-informed parameterization was consistent with previous
observations in the subtropical region in that species from
contrasting climate of origin (desert vs. coastal) did not show
significantly different tolerance when growing in the com-
mon environment (Knight and Ackerly, 2001).

4.3 The correlation of temperature tolerance and
resilience of photochemical efficiency with its local
habitat climatology

Our results indicated that 8PSIImax tends to be less cold tol-
erant and resilient but less hot tolerant and more hot resilient
along warm-to-cold climatological gradients, except for the
temperature region across 40–50° N and 40–60° S. The de-
crease in both cold tolerance and resilience of photochem-
ical efficiency along warm-to-cold climatology was proba-
bly because more extreme and highly frequent cold tempera-
ture (e.g., chilling) in colder regions may damage metabolic
processes and inhibit adaptive vegetation feedback, such as
sugar synthesis, osmotic production, and pigment synthesis
(Hajihashemi et al., 2018), or induce initiation of NPQ to
dissipate the resulting excess energy (Rapacz et al., 2004). In
contrast, our finding of the decrease in hot tolerance along
warm-to-cold climatology supported previous conclusions
that vegetation distributed in warmer climates have greater
heat tolerance (Smillie and Nott, 1979; Salvucci and Crafts-
Brandner, 2004; Marias et al., 2016; Fadrique et al., 2022).
The lack of a latitudinal trend of temperature tolerance and
resilience across 40–50° N and 40–60° S was probably due to

the highly variable climatology in the mid-latitudes. There-
fore, the temperature tolerance and resilience of 8PSIImax
may reflect local climate properties.

4.4 The advantage of CTI-informed parameterization
over PFT-specific parameterization is PFT
dependent

Our results suggested that the importance of climatolog-
ical regulation on temperature–8PSIImax relationships dif-
fers among different PFTs. In the region with comparable
or improved prediction power by CTI-informed parameter-
ization, CTI-informed 8PSIImax values of C3-NAG, BES,
BDS-Te, and BET-Te showed larger changes in cold toler-
ance (> 10 °C) and cold resilience (> 40 %) compared to
the corresponding PFT-specific counterparts, whereas CTI-
informed 8PSIImax values of BDS-Te, BET-Te, BDT-Te, and
C3-C had larger changes in hot tolerance (> 5 °C) and hot
resilience (> 10 %) compared to the corresponding PFT-
specific counterparts. As discussed in Sect. 4.2, this result
may reflect the acclimation and adaptation of these PFTs to
local temperature variability instead of the PFT-unified life
history strategy (Curtis, 2016). For example, C3-NAG and
BES are distributed across wide latitude ranges, 67.5° N–
52° S and 52° N–43.5° S, respectively, with diverse climato-
logical variability in distribution space, whereas BDS-Te and
BET-Te were mainly distributed in temperate regions with
a large seasonal variability in temperature (Lawrence and
Chase, 2007; Ke et al., 2012; Lawrence et al., 2019).

4.5 Uncertainty and future work

Fully identifying the underlying mechanisms of why
8PSIImax declines with temperature is beyond the scope of
this study; however they likely fall into two categories: pho-
tophysical effects and biophysiochemical effects. From the
photophysical perspective, as temperature changes outside
of an idealized range, sustained NPQ is known to increase
in some plants (Porcar-Castell, 2011), though the variation
in the experimental method across the gathered studies in
this dataset makes the temporal scale of sustained NPQ ac-
cumulation inconsistent. A less straightforward photophys-
ical phenomena is how the maximum and minimum dark-
adapted fluorescence yields individually respond to temper-
ature, which would describe a separation of sustained NPQ
and photoinhibited reaction centers (i.e., qL is less than 1
even when leaves are fully dark-adapted). This separation
is also connected to state transitions between PSII and PSI
(Baker et al., 2007; Rath et al., 2022). Biophysiochemi-
cal effects are tied to changes that may be informed by
WUE strategies or damage to leaf cellular integrity (Kadir
et al., 2006), as well as membrane and enzyme degradation
(Schrader et al., 2004). In principle, there would be both a
hot and cold temperature beyond which intra-cellular mech-
anisms break down, bringing 8PSIImax to zero, though they
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likely vary with life strategy and phenology (i.e., evergreen
needleleaf in cold temperatures; Corcuera et al., 2011). In fu-
ture work, findings along this line would provide physically
justified bounds on allowed parameter values, preventing fea-
tures like the cold temperature result of BET-Te (Fig. 3d).

The PFT-informed parameterizations of 8PSIImax re-
sponses to temperature were able to demonstrate a trade-off
strategy of temperature tolerance and resilience of 8PSIImax
values among 12 commonly used PFTs in TEMs and ESMs.
However, the 4 PFTs of the original 16 that did not have suf-
ficient data to be described were all boreal plants: needleleaf
deciduous boreal tree (NDT-Bo), broadleaf deciduous boreal
tree (BDT-Bo), broadleaf deciduous boreal shrub (BDS-Bo),
and C3 Arctic grass (C3-AG). Since the boreal region is ex-
pected to experience more extreme temperature and climate
events (Francis and Vavrus, 2015), understanding how bo-
real ecosystems respond to changing temperatures becomes
more important and needs to be addressed in the future.
Among the 12 parameterized PFTs, C4 crops were underrep-
resented in terms of data and also need to be further studied.
Moreover, considering the number of diverse crop species
and increased engineering selection of crop genotypes (Leis-
ter, 2022), future studies need to better investigate species-
and genotype-specific temperature tolerances and resilien-
cies of photochemical efficiency for main food and commer-
cial crops.

The CTI-informed parameterization of8PSIImax responses
to temperature was limited by the distribution of the orig-
inal field site sub-datasets’ geographic distribution, which
were concentrated in the mid-latitudes and had little data
in the highly productive tropical and boreal forest regions.
This data limitation resulted in uncertainty in the assessment
of the predictive power of CTI-informed parameterization in
the tropical and boreal forest regions. This uncertainty can be
addressed in the future with new datasets to allow for more
robustly parameterized CTI-informed temperature–8PSIImax
relationships in these regions.

A potential complication in comparing the PFT-specific
and CTI-informed parameterization is a difference in the
temperature regimes under which data were collected. The
data used in the PFT-specific results include plants grow-
ing in greenhouses lacking experienced climatological varia-
tion, such that this initial “shock” towards homeostasis may
be dealt with using mostly quick-reacting methods such as
energy-dependent NPQ, as no previous temperature accli-
mation had been required. As plants acclimate to a specific
climatology, they shift from reversible to irreversible pho-
toinhibitory strategies, primarily sustained NPQ (Rizza et al.,
2001; Rapacz et al., 2004; Ehlert and Hincha, 2008). Fu-
ture comparison between the two parameterizations calls for
a more consistent and extensive dataset covered by diverse
plant species/PFTs under diverse natural habitats.

A broader application of this methodology to other energy
partitioning pathways of light reactions is required to fully
link light use efficiency with GPP (Gu et al., 2019).8PSIImax

(Fv/Fm) is a ratio composed of the minimum and maximum
levels of chlorophyll fluorescence from a dark-adapted leaf
(Tietz et al., 2017). In future work, we will further isolate
the temperature-dependent changes between these two vari-
ables and link the derived temperature–8PSIImax functions
in this study with the estimation of relative light saturation
and rates of other energy dissipation pathways. These fu-
ture efforts will allow clarification if the decline in 8PSIImax
is due to a rise in energy-independent NPQ or a change
in the availability of PSII reaction centers for photochem-
istry. There was an indication within the dataset that the
length of temperature exposure also affects the temperature–
8PSIImax response, which requires further examination. The
connected dynamics of water and heat stress have been ex-
amined (Ogaya et al., 2011; Ashraf and Harris, 2013; Seng
et al., 2023; Sommer et al., 2023), but extensive PFT-specific
relationships and climatological impacts need to be explored
in the future.

5 Conclusion

The decline in8PSIImax outside of an ideal temperature range
is a consistent response across 146 species covering diverse
climatological conditions. We introduce a model to describe
this temperature response with easily interpretable parame-
ters.

There was variability in both the range of temperatures
under which PFTs maintained a maximum 8PSIImax (toler-
ance) and the rate of decline outside of the range (resilience).
More temperature-resilient PFTs were less temperature tol-
erant, and vice versa.

Temperature responses along the tolerance–resilience
trade-off suggest three categories of life history strategies of
light partitioning to hot and cold extremes: the PFTs with
cold and hot temperature tolerance (BES and C3-NAG), the
PFTs with cold and hot temperature resilience (BDT-Te,
NET-Bo, C4-G, and C3-C), and the temperature specialist
PFT group (BET-Te, BDT-Tr, BET-Tr, C4-C, and BDS-Te).

Indices of climatological temperature variability in space
were found to explain some of the variations not captured
in the PFT-specific parameterizations of the temperature–
8PSIImax relationship alone. We leveraged this into a
climatology-informed CTI scheme that was able to improve
predictive power in certain regions compared to the PFT-
specific schemes.

The global distribution of CTIs suggests that the regions
in which the CTI-informed parameterization performs better
compared to the PFT-specific parameterizations fall in the
transition zones from temperate to tropical regions and from
the mid-latitudes to the polar region. This is likely tied to the
more variable climatological environment experienced in the
regions, promoting a more consistent community tempera-
ture response via acclimation.

https://doi.org/10.5194/bg-21-2731-2024 Biogeosciences, 21, 2731–2758, 2024



2750 P. Neri et al.: The effect of temperature on Photosystem II efficiency

The advantage of CTI-informed parameterization over
PFT-specific parameterizations is PFT-dependent and varies
across latitudes. Climatological regulation on the tempera-
ture feedback of 8PSIImax is critical for PFTs with broad dis-
tributions in diverse habitats or those living in local regions
with a large seasonal variability in temperature.

Appendix A: Monte Carlo scheme for determining
parameter constraints in the fitting function

Differences in available data within each PFT-specific sub-
dataset may induce uncertainty in estimated parameters in
Eq. (1) and make the fitted parameter for each PFT-specific
temperature response function of 8PSIImax incomparable. To
avoid this parameterization uncertainty, we imposed unified
constraints on each parameter’s range using a Monte Carlo
scheme. We performed three tests. First, we did a test that
involved dividing all paired 8PSIImax and temperature data
within the dataset of each PFT into eight subsets. Each sub-
set covers a 10° range of measured temperature beginning at
−17 °C. Each subset then underwent a permutation, with a
percentage of the subset’s data selected randomly. Each ran-
dom group of 8PSIImax and temperature measurements in a
PFT-specific subset was aggregated and fitted to the model
(Eq. 1), and the parameters were recorded. The permutation,
random selection, and function fitting were all repeated for
700 iterations. This Monte Carlo scheme was done with three
different percentages (75 %, 50 %, 33 %) of data taken from
the PFT-specific subsets to observe the sensitivity of the fit-
ting results to the amount of fitted data. The estimated pa-
rameter values from 2100 instances of fitting were finally in-
tegrated to describe the distribution range of each parameter.
The parameter constraints within the range between the mean
of each parameter ± 2σ , here σ referring to the standard de-
viation of each parameter’s distribution, were recorded. This
gave a view of what a parameterization with wide tempera-
ture ranges may produce but could be heavily biased by the
most extreme subsets with limited data.

For the second test, a similar process was performed, ex-
cept there were three subsets capturing the relatively constant
central temperature range [7–35 °C] and the outer decline in
cold and hot temperatures. A total of 10 % of each subdivi-
sion’s data was selected to produce aggregated data for fit-
ting Eq. (1) containing the same number of data points as the
average PFT-specific sub-dataset. A total of 2000 iterations
of aggregated data points were modeled to produce ranges
of parameters that had less chance of being biased by the
most extreme data points. However, there was a spreading of
modeled values to the point of being unphysical in their in-
terpretation, likely due to aggregated data points that did not
actually have cohesive temperature–8PSIImax dynamics.

The third test analyzed the distribution of temperature–
8PSIImax data pairs with 8PSIImax around a/2. The spread
of temperature values around this boundary serves as the

Table A1. Constrained range of fitted parameters using the Monte
Carlo scheme.

Parameter Constrained range

a 0.74–0.83
m1 −23–7 °C
s1 1–25 °C
m2 35–57 °C
s2 1–13 °C

bounds implicit in the dataset itself and proved to be more
physically realistic. By comparing the minimum and maxi-
mum temperature values of the a/28PSIImax data points in
cold and hot temperature extremes to the parameter distribu-
tions in the previous tests, the parameter space in Table A1
was chosen.

Appendix B: Methodology for performing the aligned
rank transform

We performed ANOVA to evaluate how climatology metrics
affect the prediction efficiency of the developed PFT-specific
temperature–8PSIImax function. Before assigning ranks and
performing the standard ANOVA analysis, we performed
several preprocessing steps that isolated each interaction
term between SMET, WMET, and AAT. First, the aligned X
values for the main effect of SMET, WMET, and AAT were
found using Eqs. (B1)–(B3).

SMET′ = (X−Yijk)+
(
SMETi −µ

)
(B1)

WMET′ = (X−Yijk)+
(
WMETj −µ

)
(B2)

AAT′ = (X−Yijk)+
(
AATk −µ

)
(B3)

Here Yijk is the “cell mean”, calculated as the mean of all
X values in the test as the ith level of SMET, the j th level
of WMET, and the kth level of AAT as found using Eq. (6).
The µ is the mean of all X values used in the test. SMETi ,
WMETj , and AATk are the mean value of X at the given
level of SMET, WMET, and AAT, respectively.

The aligned X values for the two-way effects of SMET,
WMET, and AAT were found using Eqs. (B4)–(B6).

SMET′×WMET′ = (X−Yijk)+
(
SMETiWMETj

−SMETi −WMETj +µ
)

(B4)

SMET′×AAT′ = (X−Yijk)+
(
SMETiAATk

−SMETi −AATk +µ
)

(B5)

WMET′×AAT′ = (X−Yijk)+
(
WMETjAATk

−WMETj −AATk +µ
)

(B6)
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The aligned X values for the three-way interaction were
found using Eq. (B7).

SMET′×WMET′×AAT′ = (X−Yijk)

+

(
SMETiWMETjAATk −SMETiWMETj

−SMETiAATk −WMETjAATk +SMETi

+WMETj +AATk −µ
)

(B7)

SMETiWMETj is the mean value of X at the ith level of
SMET and j th level of WMET. SMETiAATk is the mean
value of X at the ith level of SMET and kth level of
AAT, and WMETjAATk denotes the mean value of X at
the j th level of WMET and kth level of SMET. The term
SMETiWMETjAATk is equivalent to the “cell mean”. These
terms were then used to perform the standard ANOVA anal-
ysis.

Appendix C: Algorithm for smoothing fitted parameters
and corresponding central CTI values of QSA sets

To decrease the existence of noisy data impact on the regres-
sion of fitted parameters on the central CTI values of QSA
sets, we smoothed the fitted parameters and corresponding
central CTI values of the QSA sets before performing the fi-
nal regression analysis. To determine a smoothing window
width, we defined the “distance” between two QSA sets as
the difference between their central CTI values, then inte-
grated all distances between all combinations of QSA sets
to determine their histogram distribution (Fig. C1). The me-
dian CTI value of this distribution, hereafter referred to as
the median intra-point distance (MID), was 367; it was then
used as the smoothing window width around a central CTI
value q. Each individual QSA set-fitted parameter (m1, m2,
s1, s2) from Eq. (1) was then adjusted to the mean of the cor-
responding parameter estimates within q ±MID.

Figure C1. CDF of the distances between central CTI values of the
QSA sets.

Appendix D: The contribution of climatology
temperature metrics and derived CTI to prediction
residues by the PFT-specific temperature–8PSIImax
functions

There were consistent results between the ART ANOVA
analysis for prediction residues estimated by the PFT-specific
temperature–8PSIImax functions (ANOVARS_pft) and the
general temperature–8PSIImax function that resulted from fit-
ting all data within the field site sub-dataset (ANOVARS_gen)
(Fig. D1). The ANOVARS_gen analysis showed that around
94 % of variances in prediction residues by the PFT-specific
temperature–8PSIImax functions were able to be attributed
to three climatological temperature metrics (WMET, SMET,
and AAT) and their cross terms. The interaction of WMET,
SMET, and AAT showed the largest impact and explained
around 37 % of variations in prediction residues, followed
by the cross effect of WMET and AAT with around 20 % of
variations in prediction residues associated with it (Fig. D1).
In addition, the cross effect of SMET and WMET and the
cross effect of SMET and AAT explained a similar number
(around 10 %) of variations in prediction residues. Compared
to the cross effect of three metrics, the main effects of in-
dividual metrics were relatively lower, with 8.78 %, 6.42 %,
and 1.28 % of variations in prediction residues associated
with WMET, AAT, and SMET, respectively (Fig. D1). Simi-
lar to ANOVARS_gen analysis, the ANOVARS_pft analysis in-
dicated that WMET, SMET, and AAT, as well as their inter-
actions, explained 96 % of variances in prediction residues
by the PFT-specific temperature8PSIImax function (Fig. D1).

This consistency justified that the regulation of climato-
logical temperature on the temperature–8PSIImax relation-
ship can be estimated using the results of either version of
ANOVA. Here we will use the results from ANOVARS_pft.
The outsized difference in the amount of variance associated
with the interaction and cross effects of three temperature
metrics compared to the main effect of individual metrics
suggested that annual mean temperature, together with the
winter and summer temperature that the plants usually ex-
perienced in their habitats, determined the temperature re-
sponse of plant photosynthetic light partitioning. Therefore,
it was necessary to integrate three climatological tempera-
ture metrics to investigate the regulation of climatological
temperature on the tolerance and resilience of 8PSIImax to
climate change. We employed AAT, WMET, SMET, and
their interactions to develop a climatology temperature in-
dex (CTI) and CTI-informed parameterization of m1, m2, s1,
and s2 from Eq. (1). By substituting observation tempera-
ture and site-specific CTI within the field site sub-dataset
into CTI-informed and PFT-specific parameterizations, we
showed that utilizing the CTI-informed parameterization im-
proved the accuracy of 8PSIImax prediction by 4.3 % on av-
erage, but this improvement was achieved across the range
150≤ |CTI| ≤ 900 (Fig. D2). This range represents the tran-
sition away from the mean state of SMET, WMET, and AAT

https://doi.org/10.5194/bg-21-2731-2024 Biogeosciences, 21, 2731–2758, 2024



2752 P. Neri et al.: The effect of temperature on Photosystem II efficiency

Figure D1. Results comparison of two ART ANOVA analyses.
ANOVARS_pft refers to results from ART ANOVA using predic-
tion residuals from PFT-specific temperature–8PSIImax functions.
ANOVARS_gen refers to results from ART ANOVA using predic-
tion residuals from the general (non-PFT-specific) temperature–
8PSIImax function. Here WMET and SMET refer to the median ex-
perienced temperature in the winter and summer, respectively, while
AAT refers to the annual average temperature.

Figure D2. Comparing the sum of the magnitude of the prediction
residuals between CTI-informed and PFT-specific parameterization
of vegetative temperature–8PSIImax relationship.

for the field site sub-dataset. For |CTI| below 150, the im-
provement in the sum of residuals was not significant, imply-
ing that CTI-informed temperature dependence of 8PSIImax
agreed with the PFT-specific results in aggregate.
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