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Abstract. Achieving climate targets requires mitigation
against climate change but also understanding of the re-
sponse of land and ocean carbon systems. In this context,
global soil carbon stocks and their response to environmental
changes are key. This paper quantifies the global soil carbon
feedbacks due to changes in atmospheric CO2, and the asso-
ciated climate changes, for Earth system models (ESMs) in
CMIP6. A standard approach is used to calculate carbon cy-
cle feedbacks, defined here as soil carbon-concentration (βs)
and carbon-climate (γs) feedback parameters, which are also
broken down into processes which drive soil carbon change.
The sensitivity to CO2 is shown to dominate soil carbon
changes at least up to a doubling of atmospheric CO2. How-
ever, the sensitivity of soil carbon to climate change is found
to become an increasingly important source of uncertainty
under higher atmospheric CO2 concentrations.

1 Introduction

Global soil carbon stocks contain at least twice as much car-
bon than is stored in the world’s vegetation, making soils the
largest active store of carbon on the land surface of Earth
(Canadell et al., 2021). In the absence of human disturbance
and land-use change (Jones et al., 2018), future changes in
soil carbon depend on the sensitivity to increases in atmo-
spheric CO2 concentrations and the sensitivity to the associ-
ated impacts, such as increases in atmospheric temperatures

and changes in precipitation patterns (Varney et al., 2023;
Todd-Brown et al., 2014). The quantification of such carbon
cycle feedbacks is required to determine the overall response
of the climate system to given anthropogenic CO2 emissions
and to help achieve Paris Agreement targets (Friedlingstein
et al., 2022; Gregory et al., 2009).

Previous studies have defined land carbon cycle feedbacks
within Earth system models (ESMs) from both CMIP6 and
CMIP5 ensembles (Arora et al., 2020, 2013). In general,
the overall response of carbon stores is separated into those
due to changes in atmospheric CO2 (1CO2) and those due
to changes in global temperature (1T ), with the latter as-
sumed to represent the overall impacts of climate change on
large spatial scales. These components of land carbon cy-
cle feedbacks are called carbon-concentration feedbacks (βL)
and carbon-climate feedbacks (γL), respectively (Friedling-
stein et al., 2003, 2006). An advantage of using this formu-
lation is that it allows for the quantification of the feedbacks
for a given atmospheric CO2 concentration, which can then
be used as a simplified measure to compare amongst ESMs
despite the increasing model complexities (Arora et al.,
2020, 2013; Gregory et al., 2009). For example, it provides a
consistent metric to measure land carbon feedbacks despite
the differing climate sensitivities amongst ESMs (Boer and
Arora, 2013).

In this study, soil-carbon-driven feedbacks in ESMs are
quantified using this βγ formulation (Friedlingstein et al.,
2006). Additionally, the βγ formulation is combined with
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the Varney et al. (2023) framework, which breaks down
future changes in soil carbon (1Cs) into individual pro-
cesses which drive this response. This paper makes use of
the latest generation of the Coupled Model Intercomparison
Project (CMIP6) used within the Intergovernmental Panel
on Climate Change 6th Assessment Report (IPCC AR6;
IPCC, 2021; Eyring et al., 2016). To do this, soil carbon-
concentration and carbon-climate feedback parameters are
presented for CMIP6 ESMs, named βs and γs, respectively,
together with components which make up βs and γs due to
associated processes. The aim of this paper is to (1) quantify
the sensitivity of soil carbon to increased atmospheric CO2
concentrations and associated climate impacts by calculat-
ing βs and γs for CMIP6 ESMs, (2) investigate the linearity
of future soil carbon change at higher levels of atmospheric
CO2 increase, and (3) identify the fraction of the land carbon
response to climate change that is due to global soils.

2 Methods

2.1 C4MIP simulations

The Coupled Climate-Carbon Cycle Model Intercomparison
Project (C4MIP) was set up to provide a common frame-
work to allow for comparison and consistent evaluation of
carbon cycle feedbacks within ESMs (Friedlingstein et al.,
2006) and has been used across CMIP generations (Arora
et al., 2013, 2020). This framework includes a set of idealised
experiments to simplify and quantify the impact of increas-
ing atmospheric CO2 on the climate system. In these exper-
iments, additional effects such as land-use change, aerosols
and non-CO2 greenhouse gases are not included, and nitro-
gen deposition is fixed at pre-industrial values (Jones et al.,
2016).

The control simulation is known as the 1 % CO2 run
(CMIP simulation 1pctCO2), where a consistent 1 % in-
crease in atmospheric CO2 per year is prescribed (referred
to in this study as the full 1 % CO2 simulation), starting
from pre-industrial concentrations and running for 150 years.
Additional experiments were designed to enable the CO2
and climate effects to be isolated, and these are known as
biogeochemically coupled (referred to here as the “BGC”
simulation) and radiatively coupled (referred to here as the
“RAD” simulation) runs. In the BGC runs (CMIP6 simu-
lation 1pctCO2-bgc and CMIP5 simulation esmFixClim1),
the 1 % CO2 increase per year only affects the carbon cy-
cle component of the ESM, while the radiation code con-
tinues to see pre-industrial CO2 values. Conversely, in the
RAD runs (CMIP6 simulation 1pctCO2-rad and CMIP5 sim-
ulation esmFdbk1), the 1 % CO2 increase per year affects
only the radiation code, and the carbon cycle component of
the ESM continues to see just the pre-industrial CO2 value
(285 ppm).

This study uses the full 1 % CO2, BGC and RAD
C4MIP experiments with 10 CMIP6 ESMs (Eyring et al.,
2016): ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5,
CESM2, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L,
MPI-ESM1-2-LR, NorESM2-LM and UKESM1-0-LL (see
Table 1). For comparison, the soil carbon feedback pa-
rameters were calculated using six CMIP5 ESMs (Tay-
lor et al., 2012): CanESM2, GFDL-ESM2M, IPSL-CM5A-
LR, MPI-ESM-LR, NorESM1-ME and HadGEM2-ES (see
Table A2). The ESMs included were chosen due to the
availability of the data required at the time of analysis
(CMIP6: https://esgf-node.llnl.gov/search/cmip6/, last ac-
cess: 4 February 2024, CMIP5: https://esgf-node.llnl.gov/
search/cmip5/, last access: 6 February 2024).

2.2 Defining soil carbon feedbacks

2.2.1 Friedlingstein et al. (2006) βγ formulation

The standard formulation uses a linear approximation to
estimate carbon cycle feedbacks in a changing climate
(Friedlingstein et al., 2003, 2006). The change in land carbon
storage (1CL, PgC) is approximated linearly using feedback
parameters which define separate sensitivities to changes in
atmospheric CO2 (1CO2, ppm) and changes in global tem-
peratures (1T , °C), defined as the land carbon-concentration
(βL, PgC ppm−1) and carbon-climate (γL, PgC °C−1) (Eq. 1).

1CL ≈ βL1CO2+ γL1T (1)

The Friedlingstein et al. (2006) methodology uses time-
integrated fluxes, which represent the total change in the size
of the land carbon pool (1CL). This is presented for the full
1 % CO2 simulation (Eq. 2), BGC simulation (Eq. 3) and
RAD simulation (Eq. 4) below, where 1CL, 1CBGC

L and
1CRAD

L are the changes in global land carbon pools (PgC)
and FL, FBGC

L and FRAD
L are the net carbon fluxes to the

land (PgC yr−1) for each simulation.

1CL =

∫
FL dt ≈ βL1CO2+ γL1T (2)

1CBGC
L =

∫
FBGC

L dt ≈ βL1CO2+ γL1T
BGC
≈ βL1CO2 (3)

1CRAD
L =

∫
FRAD

L dt ≈ γL1T
RAD (4)

In these equations, 1CO2(t) (ppm) is consistent between
all the scenarios. Within the RAD simulation, however
(Eq. 4), the carbon cycle does not see an increased CO2,
so the 1CO2 is neglected and only found in the full 1 %
CO2 and BGC simulations (Eqs. 2 and 3, respectively). 1T ,
1T BGC and 1T RAD (°C) are the changes in global temper-
atures in the full 1 % CO2, BGC and RAD simulations, re-
spectively. In Eq. (3), 1T BGC is assumed to be negligible,
following Friedlingstein et al. (2006). As the increased CO2
within the BGC simulation does not affect the radiation code,
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Table 1. The CMIP6 Earth system models included in this study and the relevant features of the associated land carbon cycle components:
simulation of interactive nitrogen, the inclusion of dynamic vegetation, representation of fire and the soil decomposition functions used
(Varney et al., 2022; Arora et al., 2020). Explanations of the temperature and moisture functions used within ESMs are given in Varney et al.
(2022) and Todd-Brown et al. (2013).

Earth system Nitrogen Dynamic Fire Temperature and
model cycle vegetation moisture functions

ACCESS-ESM1.5 Yes No No Arrhenius
and Hill

BCC-CSM2-MR No No No Hill
and Hill

CanESM5 No No No Q10
and Hill

CESM2 Yes No Yes Arrhenius
and Increasing

GFDL-ESM4 No Yes Yes Hill
and Increasing

IPSL-CM6A-LR No No No Q10
and Increasing

MIROC-ES2L Yes No No Arrhenius
and Increasing

MPI-ESM1.2-LR Yes Yes Yes Q10
and Increasing

NorESM2-LM Yes No Yes Arrhenius
and Increasing

UKESM1-0-LL Yes Yes No Q10
and Hill

there is no direct increase in atmospheric temperatures within
the model. Arora et al. (2020) explain however that local
changes in the carbon cycle arising from increases in CO2
affect latent and sensible heat fluxes at the land surface, in-
cluding changes to evaporative fluxes from stomatal closure
over land and changes in vegetation structure and coverage if
dynamic vegetation is included within the ESM (see Table 1).
This study assumes that the global temperature changes in
the BGC simulation are negligible in the context of the βγ
formulation (Fig. A1).

2.2.2 Soil carbon-concentration and carbon-climate
feedbacks

Global1CL can be written as the sum of the changes in veg-
etation carbon (1Cv) and changes in soil carbon (1Cs). Fol-
lowing the βγ formulation, a similar breakdown of the land
carbon-concentration and carbon-climate feedback parame-
ters can be derived, where βL = βv+βs and γL = γv+ γs
(Eq. 5).

1CL ≈ (βv+βs)1CO2+ (γv+ γs)1T (5)
1Cv ≈ βv1CO2+ γv1T (6)

1Cs ≈ βs1CO2+ γs1T (7)

Therefore, an equation for1Cs can be obtained, with soil-
specific carbon-concentration (βs) and carbon-climate (γs)
feedback parameters, which represent the sensitivity of 1Cs
to CO2 and T , respectively (Eq. 7).

2.3 Processes driving soil carbon change and the
relation to the βγ formulation

To isolate the processes which make up each soil carbon
feedback, we follow the framework presented in Varney et al.
(2023). An equation for soil carbon (Eq. 8) is derived us-
ing the definition of soil carbon turnover time (τs = Cs/Rh),
which is defined as the ratio of soil carbon storage (Cs) to
the carbon output flux from the soil (heterotrophic respira-
tion, Rh; Varney et al., 2020). Future soil carbon can then be
defined as initial soil carbon (Cs,0) plus a change in soil car-
bon (1Cs), as shown by Eq. 9, where the subscript 0 denotes
the initial state (decadal time average at the start of C4MIP
simulation). Equation (9) can be expanded to give Eq. (10),
which can be simplified to give Eq. (11), as shown below.

Cs = Rhτs (8)
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Cs,0+1Cs =
(
Rh,0+1Rh

)(
τs,0+1τs

)
(9)

Cs,0+1Cs = Rh,0τs,0+ τs,01Rh+Rh,01τs+1Rh1τs (10)
1Cs = τs,01Rh+Rh,01τs+1Rh1τs (11)

To consider the above- and below-ground effects on soil
carbon separately, the effects due to changes in vegetation
productivity, represented by net primary productivity (NPP),
and effects due to changes in soil carbon turnover time due
to increased heterotrophic respiration (τs) are considered
(Todd-Brown et al., 2014). However, due to the difference
between the global fluxes NPP and Rh in a transient climate,
an additional term is included which is defined as net ecosys-
tem productivity (NEP= NPP−Rh). Using the definition of
NEP, this can be substituted into Eq. (11) to give Eq. (12)
and expanded to give an equation for 1Cs in terms of NPP,
NEP and τs (Eq. 13, where the subscript 0 denotes the initial
state).

1Cs = τs,01(NPP−NEP)+ (NPP0−NEP0)1τs

+1(NPP−NEP)1τs (12)

1Cs = τs,01NPP+NPP01τs+1NPP1τs

− τs,01NEP−NEP01τs−1NEP1τs (13)

The individual terms in Eq. (13) are the change in
soil carbon due to NPP changes (1Cs,NPP ≈ τs,01NPP),
the change in soil carbon due to the NEP transient term
(1Cs,NEP ≈−τs,01NEP), the change in soil carbon due to
τs changes (1Cs,τ ≈ NPP01τs) and the transient effect on τs
(1Cs,τNEP ≈−NEP01τs). The two additional terms are the
non-linear term between NPP and τs (1NPP1τs) and the
non-linear term between NEP and τs (1NEP1τs).

The NEP term is used to represent the transient state of
the system where NPP 6=Rh. However, it is noted that, if the
initial state is in equilibrium, then the initial NEP (NEP0)
will be approximately equal to zero. This would mean the
1Cs,τNEP term (representing the difference in τs from using
NPP or Rh in the definition) will be negligible. Despite ini-
tialising at the start of the C4MIP simulations (decadal time
average at the start of C4MIP simulation), this term is in-
cluded within the analysis for completeness to ensure exact
values of 1Cs.

Following on from this Varney et al. (2023) framework,
the equation for 1Cs (Eq. 13) can also be defined for the
change in soil carbon in both the BGC simulations (1CBGC

s ,
Eq. 14) and RAD simulations (1CRAD

s , Eq. 15), where the
superscripts denote the BGC and RAD simulations, respec-
tively.

1CBGC
s = τBGC

s,0 1NPPBGC

+NPPBGC
0 1τBGC

s +1NPPBGC1τBGC
s

− τBGC
s,0 1NEPBGC

−NEPBGC
0 1τBGC

s

−1NEPBGC1τBGC
s (14)

1CRAD
s = τRAD

s,0 1NPPRAD

+NPPRAD
0 1τRAD

s +1NPPRAD1τRAD
s

− τRAD
s,0 1NEPRAD

−NEPRAD
0 1τRAD

s

−1NEPRAD1τRAD
s (15)

These equations can be used to investigate the sensitivity
of these isolated processes to changes in atmospheric CO2
and global temperature (T ), as shown by Eqs. (16) and (17).
This is done by the explicit differentiation of Eqs. (14) and
(15) with respect to CO2 and T , respectively.

1CBGC
s =

∂

∂CO2

[
1CBGC

s

]
1CO2 (16)

1CRAD
s =

∂

∂T

[
1CRAD

s

]
1T (17)

Equations (16) and (17) can be used to relate these CO2
and T sensitivities to the βγ formulation, where β is used
to represent the sensitivity to CO2 and γ is used to repre-
sent the sensitivity to T . Equation (7), which defines 1Cs
in terms of the soil carbon-concentration (βs) and carbon-
climate (γs) feedback parameters, can be rewritten in terms
of partial derivatives, as shown by Eq. (18).

1Cs =
∂Cs

∂CO2
1CO2+

∂Cs

∂T
1T

where, βs = ∂Cs/∂CO2

and γs = ∂Cs/∂T (18)

Then, Eqs. (16) and (17) can be used together with Eq. (18)
to combine the βγ formulation with the Varney et al. (2023)
framework. In this case, therefore, βs and γs can be defined as
the contributions to1Cs based on the individual sensitivities
of the soil carbon controls to CO2 and T (by substituting
Eqs. (14) and (15) into Eqs. (16) and (17), respectively), as
shown by Eqs. (20) and (21).

1Cs =
∂

∂CO2

[
1CBGC

s

]
1CO2+

∂

∂T

[
1CRAD

s

]
1T, (19)

where

βs = τ
BGC
s,0

∂NPPBGC

∂CO2

+NPPBGC
0

∂τBGC
s

∂CO2
+
∂1NPPBGC1τBGC

s
∂CO2

− τBGC
s,0

∂NEPBGC

∂CO2
−NEPBGC

0
∂τBGC

s
∂CO2

−
∂1NEPBGC1τBGC

s
∂CO2

, (20)
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γs = τ
RAD
s,0

∂NPPRAD

∂T
+NPPRAD

0
∂τRAD

s
∂T

+
∂1NPPRAD1τRAD

s
∂T

− τRAD
s,0

∂NEPRAD

∂T
−NEPRAD

0
∂τRAD

s
∂T

−
∂1NEPRAD1τRAD

s
∂T

. (21)

Equations (20) and (21) can be rewritten by defining the
βs and γs contribution terms, where each component of the
equations makes up the total βs and γs sensitivities, as shown
below for βs (Eq. 22) and γs (Eq. 23):

βs = βNPP+βτ +β1NPP1τ −βNEP−βNEPτ −β1NEP1τ , (22)
γs = γNPP+ γτ + γ1NPP1τ − γNEP− γNEPτ − γ1NEP1τ , (23)

where βNPP and γNPP are the βγ contributions due to1NPP,
βτ and γτ are the βγ contributions due to 1τs, βNEP and
γNEP are the βγ contributions due to the transient NEP term,
including βNEPτ and γNEPτ representing the βγ contributions
due to the transient NEP term on 1τs, and then β1NPP1τ ,
β1NEP1τ , γ1NPP1τ and γ1NEP1τ are the non-linear effects
on βγ .

2.4 Calculation of feedback parameters

2.4.1 Defining climate variables

For each of the CMIP6 ESMs, the CMIP output variables
cSoil, cLitter and cVeg are considered in the land carbon stor-
age analysis. Soil carbon (Cs) is defined as the sum of carbon
stored in soils and the carbon stored in the litter (CMIP vari-
able cSoil+CMIP variable cLitter), allowing for a more con-
sistent comparison between the models despite differences
in how soil carbon and litter carbon are simulated (Varney
et al., 2022; Todd-Brown et al., 2013). For models that do
not report a separate litter carbon pool (CMIP variable cLit-
ter), soil carbon is taken to be simply the CMIP variable cSoil
(UKESM1-0-LL). Land carbon (CL) is defined as the sum of
carbon stored in soil+ litter (Cs) plus the carbon stored in
vegetation (Cv, CMIP variable cVeg). Global total values for
Cs and CL (PgC) are calculated using an area-weighted sum
(using the model land surface fraction, CMIP variable sftlf).

In the breakdown analysis of the βγ feedbacks, NPP
(CMIP variable npp) is defined as the net carbon assimilated
by plants via photosynthesis minus loss due to plant respira-
tion and is used to represent the net carbon input flux to the
system. Heterotrophic respiration (Rh, CMIP variable rh) is
defined as the microbial respiration within global soils and is
used to define an effective global soil carbon turnover time
(τs). τs (years) is defined as the ratio of mean soil carbon to
annual mean heterotrophic respiration, given as τs = Cs/Rh
(where the mean represents an area-weighted global aver-
age). Carbon fluxes (NPP and Rh) in the calculation of feed-

back contributions are considered area-weighted global to-
tals (PgC yr−1, using the model land surface fraction, CMIP
variable sftlf).

Increases in global temperatures (1T ) are considered us-
ing CMIP variable tas, which is defined as the change in
near-surface air temperature (°C). To calculate changes in at-
mospheric CO2 (1CO2) in the C4MIP 1 % CO2 simulations,
initial pre-industrial CO2 concentrations are assumed to be
285 ppm and then cumulatively increased by 1 % each year
for 70 years (approximately 2×CO2) or 140 years (approx-
imately 4×CO2).

2.4.2 Carbon-concentration feedback parameter (β)

To calculate the soil carbon-concentration feedback parame-
ter (βs), the BGC run was used. For each ESM, the change
in soil carbon in the BGC run (1CBGC

s , PgC) was divided
by the change in CO2 concentration (ppm) up to that point
in time (expressed in units of carbon uptake or release per
unit change in CO2, PgC ppm−1). For this study, βs was cal-
culated at the time of 2×CO2 and 4×CO2. To calculate
the land carbon-concentration feedback parameter (βL), the
same method was used but replacing CBGC

s with CBGC
L .

2.4.3 Carbon-climate feedback parameter (γ )

To calculate the soil carbon-climate feedback parameter (γs),
the RAD run was used. For each ESM, the change in soil
carbon in the RAD run (1CRAD

s , PgC) was divided by the
change in temperature T (°C) up to that point in time (ex-
pressed in units of carbon uptake or release per unit change in
temperature, PgC °C−1). For this study, γs was calculated at
2×CO2 and 4×CO2. To calculate the land carbon-climate
feedback parameter (γL), the same method was used but re-
placing CRAD

s with CRAD
L .

2.4.4 Feedback parameter contributions

To calculate the isolated contributions which make up β and
γ , as shown in Eqs. (22) and (23), the BGC and RAD simula-
tions are again used for each CMIP6 ESM. To calculate gra-
dients with respect to CO2 and T , the methodology presented
above is used but with the relevant component against CO2
or T , such as NPP or τs. The βs contributions are expressed
in units of carbon uptake or release per unit change in CO2
(PgC ppm−1) and the γs contributions are expressed in units
of carbon uptake or release per unit change in temperature
(PgC °C−1), using the definitions presented in Eqs. (22) and
(23).
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Figure 1. Time series of projected changes in soil carbon (1Cs) in CMIP6 ESMs for the (a) idealised 1 % CO2, (b) biogeochemically
coupled 1 % CO2 (BGC) and (c) radiatively coupled 1 % CO2 (RAD) simulations. This figure has been adapted from Fig. A2 in Varney et al.
(2023).

3 Results

3.1 Projections of soil carbon change

Projections of soil carbon change in CMIP6 ESMs for the
full 1 % CO2 (1Cs), BGC (1CBGC

s ) and RAD (1CRAD
s )

simulations are presented in Fig. 1. Soil carbon is pro-
jected to increase in the full 1 % CO2 simulation amongst
CMIP6 ESMs (ensemble mean 88.2± 40.4 PgC at 2×CO2
and 177± 141 PgC at 4×CO2). However, the magnitude
of the increase varies amongst the ESMs, with a range
of 38 PgC (NorESM2-LM) to 145 PgC (BCC-CSM2-MR)
at 2×CO2 and a range of 15 PgC (ACCESS-ESM1-5)
to 502 PgC (CanESM5) at 4×CO2. Six of the ESMs
(CanESM5, CESM2, GFDL-ESM4, MIROC-ES2L, MPI-
ESM1-2-LR, NorESM2-LM) see an increased 1Cs value
with increasing climate forcing. However, the remaining four
ESMs (ACCESS-ESM1-5, BCC-CSM2-MR, IPSL-CM6A-
LR, UKESM1-0-LL) see a saturation in the rate of increase
or even a turning point where carbon starts to decrease again,
from 70 years (≈ 2×CO2) in the simulation (Fig. 1a).

The projected increase in soil carbon can be approximated
by the increases projected in the BGC run (1CBGC

s ; ensem-
ble mean 132± 66.5 PgC at 2×CO2 and 348± 203 PgC at
4×CO2, Fig. 1b) and the decreases projected in the RAD
run (1CRAD

s ; ensemble mean −45.5± 22.9 PgC at 2×CO2
and −170± 94.7 PgC at 4×CO2, Fig. 1c). The responses
due to increases in atmospheric CO2 (BGC simulation) are
found to dominate the overall response (full 1 % CO2 simula-
tion) in the majority of the models, where greater magnitudes
of change are seen compared with the RAD simulation (ex-
ception ACCESS-ESM1-5). The BGC simulation also sees a
greater spread in projected 1Cs, with ranges of 218 PgC at
2×CO2 and 603 PgC at 4×CO2 (1CBGC

s ) compared with
ranges of 68 PgC at 2×CO2 and 312 PgC at 4×CO2 in the
RAD simulation (1CRAD

s ).
Figure 2 shows patterns of soil carbon changes at 4×CO2

for the full 1 % CO2 (1Cs), BGC (1CBGC
s ) and RAD

(1CRAD
s ). In the BGC simulation, increases in 1CBGC

s are

seen across the majority of regions within CMIP6 ESMs,
though exceptions are found at the northern latitudes for
two ESMs (CanESM5 and NorESM2-LM). Across the en-
semble, the projected increases in 1CBGC

s have spatially
varying magnitudes, where generally the greatest increases
are seen in the tropical regions. Conversely, the RAD sim-
ulation generally sees reductions in 1CRAD

s globally, with
the greatest reductions seen in the tropical regions. How-
ever, disagreement is seen at the northern latitudes, where
four models (ACCESS-ESM1-5, CanESM5, MIROC-ES2L,
UKESM1-0-LL) see an increased 1CRAD

s and three models
(BCC-CSM2-MR, CESM2, NorESM2-LM) see a decreased
1CRAD

s . The overall 1Cs values seen in the full 1 % CO2
simulation are again found to be mostly dominated by the
BGC simulation (Fig. 2), though exceptions are seen where
the RAD simulation is shown to dominate the response for
certain regions. Specifically, the reduced 1Cs within the
RAD simulation dominates the net response at the north-
ern latitudes of three ESMs (BCC-CSM2-MR, CESM2 and
NorESM2-LM, the only models where decreases were seen)
as well as in the tropical regions of three different ESMs
(ACCESS-ESM1-5, GFDL-ESM4 and UKESM1-0-LL).

3.2 Soil carbon-concentration and carbon-climate
feedback parameters

The calculated βs and γs values for CMIP6 ESMs are pre-
sented in Table 2. Values for βs are found to be positive
amongst the CMIP6 ESMs, which is consistent with in-
creased Cs with increasing CO2, and values for γs are found
to be negative, which is consistent with decreased Cs with
increasing temperature (Fig. 3). The magnitudes of the feed-
back parameters (βs and γs) are found to vary amongst the
CMIP6 ensemble, suggesting uncertainty in the magnitude of
the soil carbon response to climate change. Generally, mod-
els with higher sensitivities to CO2 (βs) also have higher
sensitivities to temperature (γs), where r2 values of 0.64
(2×CO2) and 0.60 (4×CO2) are found between the βs
and γs values (Table 2). The ranges in projected βs param-
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Figure 2. Maps showing the changes in soil carbon (1Cs) at 4×CO2 in CMIP6 ESMs, for the (a) idealised simulation 1 % CO2 (left
column), (b) biogeochemically coupled 1 % CO2 (BGC, middle column) and (c) radiatively coupled 1 % CO2 (RAD, right column).

eters are found to be relatively consistent between 2×CO2
and 4×CO2 (where a small decrease is seen), with a range
of 0.704 PgC ppm−1 and a range of 0.636 PgC ppm−1, re-
spectively. Conversely, the ranges of calculated γs param-
eters are found to be less consistent between 2×CO2 and
4×CO2 (increasing range with increased global warming),
with ranges of 42.7 and 68.0 PgC °C−1, respectively (Ta-
ble 2).

The linearity of future soil carbon changes can be in-
vestigated by comparing the 2×CO2 and 4×CO2 lines
for βs and γs in Fig. 3. A future linear response is shown
to be a good approximation. However, the figure suggests
a slight non-linearity in the soil carbon response to both
CO2 (1CBGC

s ) and temperature (1CRAD
s ) in the majority

of ESMs. The BGC simulation generally sees greater con-
sistency between 2×CO2 and 4×CO2 βs values, for ex-
ample in the CESM2 and NorESM2-LM models. However,
the majority of ESMs (ACCESS-ESM1-5, BCC-CSM2-
MR, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-
ESM1-2-LR and UKESM1-0-LL) see a reduction in βs and a
saturation in the sensitivity with greater CO2 levels (Fig. 3a).
In the RAD simulation, generally inconsistencies are seen
between 2×CO2 and 4×CO2 (exception MPI-ESM1-2-
LR), and an increased sensitivity of CRAD

s to temperature (T )
with increased climate forcing is suggested by the majority of
CMIP6 ESMs (Fig. 3b). As an example, in CESM2, where
one of the lowest sensitivities to T at 2×CO2 is seen, the
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Figure 3. Time series plots used to calculate the soil feedback parameters. (a) Soil carbon in the BGC simulation (CBGC
s , PgC) vs. CO2

(ppm) for the carbon-concentration feedback parameters (βs, PgC ppm−1) and (b) soil carbon in the RAD simulation (CRAD
s , PgC) vs.

temperature (T , °C) for the soil carbon-climate feedback parameters (γs, PgC °C−1), for each CMIP6 ESM. The lines show the gradients at
2×CO2 (lighter line) and 4×CO2 (darker line), respectively.

ESM sees an approximate 50 % increase in γs by 4×CO2
(Table 2).

The βs and γs values were also calculated for CMIP5
ESMs (Table A3), which can be compared with a subset
of generationally related CMIP6 ESMs considered in this
study (Fig. A3). The CMIP6 ensemble means for both βs
and γs parameters are found to be lower compared with the
CMIP5 ensemble means (Tables 2 and A3). The relation-
ship of βs and γs values between CMIP5 and CMIP6, how-
ever, is not found to be consistent amongst the ensembles.
For βs, reductions are seen in four ESMs (GFDL-ESM2M
vs. GFDL-ESM4, IPSL-CM5A-LR vs. IPSL-CM6A-LR,
MPI-ESM-LR vs. MPI-ESM1-2-LR and HadGEM2-ES vs.
UKESM1-0-LL) compared with increases in the remain-
ing two (CanESM2 vs. CanESM5 and NorESM1-ME vs.
NorESM2-LM). For γs, a greater value (closer to 0) is seen
in four ESMs (CanESM2 vs. CanESM5, GFDL-ESM2M
vs. GFDL-ESM4, IPSL-CM5A-LR vs. IPSL-CM6A-LR and
MPI-ESM-LR vs. MPI-ESM1-2-LR) compared with a lower
value (greater negative) seen in the remaining two ESMs

(NorESM1-ME vs. NorESM2-LM and HadGEM2-ES vs.
UKESM1-0-LL).

3.3 Breakdown of the feedback parameters into soil
carbon drivers

In this section, βs and γs are broken down into the individ-
ual sensitivities of drivers of soil carbon change which make
up the net response. As shown in Fig. 4, the total soil carbon
sensitivities (βs and γs, blue bars) can be considered as the
sum of the sensitivity due to 1NPP (βNPP and γNPP, green
bars), the sensitivity due to1τs (βτ and γτ , red bars) and ad-
ditional terms due to the transient land carbon sink, such as
NEP (βNEP and γNEP, light green bars) and the NEP effect on
τs (βτNEP and γτNEP , pink bars). Additionally, there are non-
negligible contributions due to non-linear sensitivities be-
tween NPP and τs (β1NPP1τ and γ1NPP1τ , black bars) and a
small contribution from non-linear sensitivities between NEP
and τs (β1NEP1τ and γ1NEP1τ , grey bars).

Investigating the sensitivity of soil carbon to 1NPP, βNPP
is found to be positive amongst CMIP6 ESMs (Fig. 4). At
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Figure 4. Investigating the contribution of individual soil carbon drivers to the soil carbon-concentration (βs, top row) and carbon-climate
(γs, bottom row) feedback parameters, for each CMIP6 ESM, for (a) 2×CO2 and (b) 4×CO2. The figure shows soil carbon feedback
parameter contributions from NPP (βNPP and γNPP), τs (βτ and γτ ), the non-linearity in NPP and τs (β1NPP1τ and γ1NPP1τ ) and the
effect from the non-equilibrium term NEP (βNEP, βτNEP , β1NEP1τ and γNEP, γτNEP , γ1NEP1τ ).

2×CO2, βNPP ranges from 0.567 PgC ppm−1 (ACCESS-
ESM1-5) to 5.62 PgC ppm−1 (BCC-CSM2-MR), with an
ensemble mean of 2.37± 1.37 PgC ppm−1. There is some
evidence of a saturation of global NPP at higher CO2,
with the sensitivity of NPP to CO2 (βNPP) decreasing at
4×CO2 to an ensemble mean of 1.44± 0.933 PgC ppm−1.
The sensitivity of NPP to global temperature changes (γNPP)
is found to be more variable in the ensemble. The ma-
jority of models find γNPP to be negative. However, it is
found to be positive in two ESMs (CanESM5 and MPI-
ESM1-2-LR). The sensitivity of NPP to temperature (γNPP)
is found to be more consistent with climate change than
the sensitivity to CO2 (βNPP), where the γNPP ensemble
mean changes from −29.4± 40.1 PgC °C−1 at 2×CO2 to
−35.3± 33.1 PgC °C−1 at 4×CO2 (Fig. 4). At 4×CO2, the
lowest sensitivity of NPP to temperature is seen in CanESM5

(3.95 PgC °C−1) and the highest sensitivity in BCC-CSM2-
MR (−90.8 PgC °C−1).

Investigating the sensitivity of soil carbon to1τs, negative
βτ and γτ values are mostly found amongst the CMIP6
models (Fig. 4). An anomaly is found where τs is found to
increase with temperature in the ACCESS-ESM1-5 model,
where the reason for this is unclear (Fig. A2). The sensitivity
of τs to T (γτ ) is also found to be more consistent with
increasing climate change than the sensitivity to CO2,
where an ensemble mean of −25.2± 27.9 PgC °C−1 at
2×CO2 and −20.5± 29.5 PgC °C−1 at 4×CO2 is seen.
At 4×CO2, the greatest sensitivity of τs to temperature
is seen in the MIROC-ES2L model (−54.6 PgC °C−1)
and the lowest sensitivity is seen in the NorESM2-
LM model (−2.80 PgC °C−1). τs is found to decrease
non-linearly with increasing CO2 (βτ ). At 2×CO2,
βτ ranges from −0.329 PgC ppm−1 (ACCESS-ESM1-
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Table 2. The soil carbon-concentration (βs, PgC ppm−1) and
carbon-climate (γs, PgC °C−1) feedback parameters for 2×CO2
and 4×CO2 for the CMIP6 ESMs.

Earth system 2×CO2 4×CO2

model βs γs βs γs

ACCESS-ESM1.5 0.242 −29.2 0.127 −37.3
BCC-CSM2-MR 0.861 −50.5 0.763 −83.1
CanESM5 0.544 −21.4 0.620 −31.8
CESM2 0.175 −7.67 0.183 −15.1
GFDL-ESM4 0.397 −25.0 0.371 −31.4
IPSL-CM6A-LR 0.357 −11.9 0.222 −15.3
MIROC-ES2L 0.684 −49.4 0.630 −63.1
MPI-ESM1-2-LR 0.494 −14.4 0.375 −15.6
NorESM2-LM 0.157 −12.0 0.161 −19.5
UKESM1-0-LL 0.351 −24.7 0.307 −32.7
Ensemble mean 0.426 −24.6 0.376 −34.5
Ensemble SD ± 0.213 ± 14.2 ± 0.212 ± 21.3

5) to −1.90 PgC ppm−1 (BCC-CSM2-MR), with an
ensemble mean of −0.900± 0.574 PgC ppm−1. Due
to the non-linearity, a reduced ensemble mean of
−0.450± 0.359 PgC ppm−1 is found at 4×CO2 com-
pared with 2×CO2 (Fig. 4).

It is apparent from Fig. 4 that the sensitivities of NPP and
τs to both CO2 and T must be accounted for to understand
and quantify the sensitivities of soil carbon. The magnitude
of βτ is found to be approximately one-third of the magni-
tude of βNPP at both 2×CO2 and 4×CO2 but with coun-
teracting signs of change. Models with the lowest βNPP sen-
sitivities also see the lowest βτ sensitivities (e.g. ACCESS-
ESM1-5) and vice versa. The magnitude of γNPP is generally
found to be greater across the ensemble compared with γτ ,
with however a greater range of sensitivities. Additionally,
the apparent sensitivity of soil carbon to CO2 is less than the
individual sensitivities of NPP and τs, due to a cancellation
effect from opposing signs, leading to a lower apparent βs.
The magnitudes of βNPP and βτ are lower at 4×CO2 than
2×CO2, which means a reduced sensitivity of NPP and τs to
CO2 at greater levels of climate change. However, due to this
cancellation effect, the same reduced sensitivity is not seen in
βs. Conversely, a reduced sensitivity of NPP and τs to tem-
perature is not suggested under increasing climate forcing.
No clear relationship between γNPP and γτ is seen amongst
the CMIP6 ESMs (Fig. 4).

The contribution of the non-linearity between NPP and
τs to the net soil carbon sensitivity is also investigated
(β1NPP1τ and γ1NPP1τ ). Figure 4 suggests that the non-
linearity between NPP and τs is more robustly projected to
result from increasing CO2 (βs). However, non-linearities
in γs are also seen in the models with the greatest
temperature sensitivities. The ensemble mean predicted
β1NPP1τ is found to be −0.462± 0.462 at 2×CO2 and

−0.463± 0.468 PgC ppm−1 at 4×CO2. As expected from
Fig. 4, predicted γ1NPP1τ is found to have a low sensitiv-
ity, where the ensemble means of−0.374± 3.12 at 2×CO2
and −0.0478± 7.42 PgC °C−1 at 4×CO2 are found. Addi-
tionally, the NEP terms (βNEP and γNEP) are shown to con-
tribute to both CO2 and T sensitivities (Fig. 4), due to the
disequilibrium of land carbon changes under 1 % increasing
CO2.

3.4 Investigating the robustness of the 1Cs
approximation

Projections of 1Cs in ESMs in the full 1 % CO2 simu-
lation were compared with the estimated 1Cs derived us-
ing Eq. (7), which uses the derived βs and γs feedback
parameters together with model-specific 1T and estimates
for 1CO2 (Fig. 5). This investigates the approximation that
changes in the full 1 % CO2 simulation are equal to the sum
of changes in the BGC and RAD simulations. At 2×CO2,
the approximation is found to predict1Cs within 20 % of the
actual projected values in the 1 % CO2 simulation for 7 out
of the 10 CMIP6 ESMs (BCC-CSM2-MR, CESM2, GFDL-
ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-2-LR
and UKESM1-0-LL). At 4×CO2, the robustness of the as-
sumption between the BGC and RAD simulations decreases
for future changes in soil carbon. However, βs1CO2+γs1T

is within 20 % of the projected 1Cs for 5 out of the
10 ESMs (GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L,
MPI-ESM1-2-LR and UKESM1-0-LL). The models where
the approximation is the least consistent with projected
1Cs are ACCESS-ESM1-5 and BCC-CSM2-MR, where at
4×CO2 the greatest non-linearities are present between
BGC and RAD simulations (Fig. 5).

3.5 Comparisons between soil and land feedback
parameters

The contribution of the sensitivity of soil carbon stocks (Cs)
to the total sensitivity of land carbon stocks (CL) was inves-
tigated by comparing the β and γ feedback parameters for
land (Table A1) and soil (Table 2) for both 2×CO2 and
4×CO2 in CMIP6 ESMs (Fig. 6). Here, the assumption
from Eq. (5) is followed that the land sensitivity is made up of
the sum of the soil and vegetation responses. For the carbon-
concentration feedback (β), the portion of the land sensitiv-
ity to CO2 (βL) that is due to global soils (βs) ranges from
19 % (NorESM2-LM) to 53 % (BCC-CSM2-MR), with a
mean of 38± 11 % seen across the CMIP6 ESMs at 2×CO2
(Fig. 6a). Similar proportions are found at 4×CO2, ranging
from 22 % (NorESM2-LM) to 58 % (MIROC-ES2-L), with a
mean of 42± 12 % seen across the CMIP6 ESMs (Fig. 6b).
The portion of βL due to βs is estimated to be close to half of
the total land response. For the carbon-climate feedback (γ ),
the portion of the land sensitivity to climate (γL) that is due to
global soils (γs) ranges from approximately 42 % (CESM2)

Biogeosciences, 21, 2759–2776, 2024 https://doi.org/10.5194/bg-21-2759-2024



R. M. Varney et al.: Soil carbon-concentration and carbon-climate feedbacks 2769

Figure 5. Comparison of 1Cs (PgC) in the full 1 % CO2 simulation (x axis) against the estimated 1Cs using the calculated βs and γs
feedback parameters (y axis), where estimated 1Cs ≈ βs1CO2+ γs1T for each CMIP6 ESM at (a) 2×CO2 and (b) 4×CO2.

to 147 % (MPI-ESM1-2-LM), with a mean of 75± 30 %
seen across the CMIP6 ESMs at 2×CO2 (Fig. 6a), and
at 4×CO2 the range is from 48 % (ACCESS-ESM1-5) to
157 % (MPI-ESM1-2-LM), with a mean of 75± 31 % seen
across the CMIP6 ESMs (Fig. 6b). Therefore, the portion of
γL due to γs is estimated to be the majority of the sensitivity,
suggesting that soil dominates the response of land carbon to
climate. Note that the MPI-ESM1-2-LR model sees a greater
γs value compared with γL, resulting in the percentage of
the land response attributed to soil being greater than 100 %.
This suggests a positive γv response in this model, meaning
a predicted increased vegetation carbon globally with global
warming.

4 Discussion

Quantifying the future sensitivity of global soil carbon stocks
to anthropogenic CO2 emissions and their role in future land
carbon storage is vital in order to understand future changes
in the Earth’s climate system (Canadell et al., 2021). Global
changes in soil carbon (1Cs), in the absence of human dis-
turbance and land-use change, will result from responses due
to changes in atmospheric CO2 and the associated changes in
global temperatures (T ), which are used to represent climate
effects on a global scale. By separating the sensitivities due
to increasing CO2 and T , the idealised C4MIP ESM simu-
lations allow for these effects on soil carbon to be examined
individually, and the use of the βγ formulation allows these
sensitivities to be quantified and compared for CMIP6 ESMs
(Jones et al., 2016; Friedlingstein et al., 2006). Further, com-
bining the βγ formulation with the Varney et al. (2023)1Cs
framework allows us to isolate the sensitivities of soil carbon
processes which influence βs and γs within models.

Across CMIP6 ESMs, soil carbon is projected to increase
in the BGC simulation (“CO2-only”) and decrease in the

RAD simulation (“climate-only”), consistent with projec-
tions of the overall land carbon response (Arora et al., 2020).
The BGC simulation has been used to quantify the sensitiv-
ity of soil carbon to 1CO2 (βs), where positive βs values
were defined according to the projected increase in soil car-
bon with increased atmospheric CO2 (Fig. 1b). The positive
βs has been shown here to mostly be a result of a positive
βNPP term (Fig. 4), which represents the increased CO2 fer-
tilisation effect describing increased vegetation productivity
under higher atmospheric CO2 concentrations, which leads
to an increased input of litter carbon into soil carbon pools
(Schimel et al., 2015; Koven et al., 2015). A negative contri-
bution of βτ to βs is also shown (Fig. 4). Previously, Varney
et al. (2023) presented a transient reduction in τs in CMIP6
ESMs due to an increased rate of carbon input into the soil
(i.e. negative βτ due to positive βNPP), a phenomenon known
as false priming (Koven et al., 2015). However, it can be seen
that the magnitude of this effect is small compared with the
CO2 fertilisation effect across the ESMs (βτ vs. βNPP, Fig. 4).
Despite agreement on a net increase in soil carbon stocks
globally (positive βs), this study highlights uncertainty in the
projected magnitude of this sensitivity amongst the CMIP6
models, which is seen to be driven by uncertainties in βNPP
(Fig. 4).

The RAD simulation has been used to quantify the sensi-
tivity of soil carbon to changes in climate (1T ; γs), where
negative γs values were defined due to the projected decrease
in soil carbon with global warming (Fig. 1c). The negative γs
term has been shown here to be a result of negative γτ and, in
many cases, negative γNPP (Fig. 4). The negative sensitivity
of τs to global warming (negative γτ ) is known to be due to
an increased rate of heterotrophic respiration (Rh) at warmer
temperatures as a result of increased microbial activity (Var-
ney et al., 2020; Crowther et al., 2016). The global sensitiv-
ity of NPP to climate changes (γNPP) is less certain where
both negative and positive values are seen across the CMIP6
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Figure 6. Comparisons of the land carbon-concentration (βL) feedback parameters with the soil carbon-concentration (βs) feedback param-
eters (top row) and the land carbon-climate (γL) feedback parameters with the soil carbon-climate (γs) feedback parameters (bottom row),
for (a) 2×CO2 and (b) 4×CO2.

ESMs (Fig. 4). This is likely due to more spatially varying
responses, where the resultant1Cs can be seen in Fig. 2. For
example, increased temperatures at northern latitudes could
result in the northward expansion of boreal forests (Pugh
et al., 2018), which would increase forest productivity and
subsequently carbon storage in these regions. However, fu-
ture changes in precipitation patterns could lead to regions
with reduced soil moisture, which would conversely lead to
reduced vegetation productivity and carbon uptake (Green
et al., 2019). The uncertainties associated with projected spa-
tial changes (γNPP), together with the uncertainties in the
magnitude of carbon turnover times within the soil (γτ ; Var-
ney et al., 2020; Koven et al., 2017), result in uncertainties in
the sensitivity of soil carbon to climate changes (γs) amongst
the CMIP6 models.

This paper highlights the importance of soils within the
land carbon response to global warming (Fig. 6). Despite the
1Cs sensitivity to CO2 dominating net soil carbon changes

(βs), it could be argued that the significance of the 1Cs cli-
mate sensitivity (γs) will increase under more extreme lev-
els of climate change. This is suggested by both a projected
saturation of βs and an increase in γs between 2×CO2 and
4×CO2 shown in the CMIP6 ensemble means (Table 2). The
saturation, or reduced rate of increase, in βs seen in CMIP6
is likely due to a limit of the CO2 fertilisation effect, based
on the reduced βNPP values between 2×CO2 and 4×CO2
(Fig. 4). The rate of CO2 fertilisation in the future is ex-
pected to be limited by nutrient availability (Wieder et al.,
2015), which in CMIP6 is now more explicitly represented
by the inclusion of an interactive nitrogen cycle in multi-
ple models (see Table 1). This implementation is expected to
limit the increased productivity from CO2 fertilisation within
ESMs (Davies-Barnard et al., 2020) and has previously been
found to lower the magnitude of the land feedback param-
eters (Arora et al., 2020). However, it is noted that warm-
ing within the soil could accelerate nutrient mineralisation,
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which could result in a liberation of nitrogen due to increased
microbial breakdown of plant litter, alleviating the nutrient
limitation in plants (Todd-Brown et al., 2014).

Unlike the βs parameter, the sensitivity of soil carbon to
climate changes (γs) has been shown to increase with global
warming in CMIP6. The greater γs values at 4×CO2 com-
pared with 2×CO2 found here imply an increased rate of
soil carbon loss under increased amounts of global warming
(Table 2). Additionally, it could be hypothesised that limita-
tions within CMIP6 ESMs in the representation of soil car-
bon and related processes could lead to a potential under-
estimation of γs. In Fig. 2, reductions in soil carbon stocks
at the high northern latitudes are only seen in three models
for the full 1 % CO2 simulation (BCC-CSM2-MR, CESM2
and NorESM2-LM). Varney et al. (2022) find that these
CMIP6 models represent quantities of northern-latitude car-
bon stocks most consistently with observational estimates,
which could imply an increased likelihood of soil carbon loss
from the northern latitudes based on consistency with obser-
vations. It is noted however that CESM2 and NorESM2-LM
contain the same land surface model and so are expected to
show similar results (Lawrence et al., 2019). Furthermore,
the majority of ESMs do not include explicit representation
of permafrost carbon (Burke et al., 2020). Including per-
mafrost within ESMs would result in increased quantities of
carbon within the soil known to be especially sensitive to
global warming (increased γs), which currently are not in-
cluded in the calculation of these feedbacks (Schuur et al.,
2015).

The βγ formulation has many benefits in allowing the
quantification and comparison of land and soil carbon feed-
backs amongst ESMs. However, one limitation is due to1Cs
not being consistently linear with increasing CO2 and tem-
perature (Fig. 3), so the parameter values depend on the point
in time at which they are calculated (for example, 2×CO2 or
4×CO2). This has been shown to be due to non-linearities in
the processes driving soil carbon feedbacks (Fig. 4), such as
the discussed saturation of the CO2 fertilisation effect (βNPP;
Wang et al., 2020) and additionally a known Q10 dependence
of heterotrophic (soil) respiration on temperature (γτ ; Zhou
et al., 2009).

Non-linearities between CO2 and T responses are also
known and have previously been shown within ESMs in
the future land carbon responses (Schwinger et al., 2014;
Zickfeld et al., 2011; Gregory et al., 2009). Zickfeld et al.
(2011) suggest that the non-linearity in the land response is
due to significantly differing vegetation responses which de-
pend on whether or not climate effects are combined with
the CO2 fertilisation effect, e.g. forest dieback (Cox et al.,
2004). However, this is model-dependent, as not all models
within CMIP6 simulate dynamic vegetation (Table 1). The
spatial variations in the response of soil carbon to CO2 and
climate that are seen in Fig. 2 could also contribute to the
non-linearity. For example, a different spatial pattern of soil
carbon under elevated CO2 could lead to a different over-

all temperature response, e.g. if more carbon is at the high
latitudes where greater temperature changes are seen. Arora
et al. (2020) find that climate responses in the BGC simula-
tion account for a difference of 1 %–5 % in the calculation
of the feedbacks, suggesting a small but non-negligible ef-
fect of climate in the BGC runs. This response was shown
to be dependent on the representation of vegetation within
the model, as with the non-linearities found in Zickfeld et al.
(2011). Despite this, isolating and quantifying the key sensi-
tivities with the βγ method provides a useful benchmark for
feedbacks within CMIP.

5 Conclusions

The Friedlingstein et al. (2006) methodology adapted in this
study suggests that βs and γs linearity is a valid assumption
for projected soil carbon changes in ESMs up until a dou-
bling of CO2. However, under more extreme levels of climate
change, the results here suggest the need for the non-linearity
in feedbacks to be further investigated. Soil carbon is found
to have a greater impact on carbon-climate feedbacks than
vegetation carbon responses, which means that the sensitivity
of soil carbon to changes in global temperature is the dom-
inant response of the land carbon cycle when considering
climate effects. Therefore, further understanding and quan-
tifying the sensitivity of global soils under global warming is
necessary to quantify future changes in the climate system.
Moreover, the sensitivity of soil carbon to temperature in-
creases with increasing climate forcing, suggesting that soil
carbon is particularly important in the long-term land carbon
response under extreme levels of global warming.
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Appendix A

Figure A1. Time series of projected global mean temperature changes (1T ) in CMIP6 ESMs for the idealised simulations 1 % CO2 (a),
biogeochemically coupled 1 % CO2 (BGC, b) and radiatively coupled 1 % CO2 (RAD, c).

Figure A2. Time series of projected changes in net primary productivity (1NPP, top row) and soil carbon turnover time (1τs, bottom row)
in CMIP6 ESMs for the idealised simulations 1 % CO2 (a), BGC (b) and RAD (c). This figure has been adapted from Fig. A2 in Varney
et al. (2023).
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Figure A3. Comparison of the soil carbon-concentration (βs) feedback parameters (top row) and the soil carbon-climate (γs) feedback
parameters (bottom row) from generationally related ESMs from CMIP5 and CMIP6, for (a) 2×CO2 and (b) 4×CO2.
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Table A1. The land carbon-concentration (βL, PgC ppm−1) and
carbon-climate (γL, PgC °C−1) feedback parameters for 2×CO2
and 4×CO2 for the CMIP6 ESMs.

Earth system 2×CO2 4×CO2

model βL γL βL γL

ACCESS-ESM1.5 0.624 −64.5 0.312 −77.7
BCC-CSM2-MR 1.63 −62.1 1.39 −98.0
CanESM5 1.34 −21.6 1.27 −36.9
CESM2 0.839 −18.3 0.787 −30.1
GFDL-ESM4 1.00 −42.3 0.891 −57.3
IPSL-CM6A-LR 1.05 −18.4 0.614 −24.5
MIROC-ES2L 1.34 −56.7 1.08 −74.0
MPI-ESM1-2-LR 1.03 −9.81 0.699 −9.98
NorESM2-LM 0.811 −22.2 0.740 −35.3
UKESM1-0-LL 1.00 −35.6 0.746 −52.4
Ensemble mean 1.07 −35.2 0.854 −49.6
Ensemble SD ± 0.281 ± 19.1 ± 0.304 ± 26.0

Table A2. The CMIP5 Earth system models included in this study
and the relevant features of the associated land carbon cycle compo-
nents: simulation of interactive nitrogen, the inclusion of dynamic
vegetation and the soil decomposition functions used (Varney et al.,
2022; Arora et al., 2013; Anav et al., 2013; Friedlingstein et al.,
2014). Explanations of the temperature and moisture functions used
within ESMs are given in Varney et al. (2022) and Todd-Brown et al.
(2013).

Earth system Nitrogen Dynamic Temperature and
model cycle vegetation moisture functions

CanESM2 No No Q10
and Hill

GFDL-ESM2M No Yes Hill
and Increasing

IPSL-CM5A-LR No No Q10
and Increasing

MPI-ESM-LR No Yes Q10
and Increasing

NorESM1-ME Yes No Arrhenius
and Increasing

HadGEM2-ES No Yes Q10
and Hill

Code availability. Code is available on GitHub (https://github.com/
rebeccamayvarney/CMIP6-soil-beta-gamma, last access: 10 Jan-
uary 2024) and Zenodo (https://doi.org/10.5281/zenodo.10927091,
Varney, 2024).

Data availability. The CMIP6 and CMIP5 data analysed during
this study are available online (CMIP6: https://esgf-node.llnl.gov/
search/cmip6/, ESGF, 2024a, CMIP5: https://esgf-node.llnl.gov/
search/cmip5/, ESGF, 2024b).

Table A3. The soil carbon-concentration (βs, PgC ppm−1) and
carbon-climate (γs, PgC °C−1) feedback parameters for 2×CO2
and 4×CO2 for the CMIP5 ESMs.

Earth system 2×CO2 4×CO2

model βs γs βs γs

CanESM2 0.413 −39.4 0.463 −54.2
GFDL-ESM2M 0.421 −36.7 0.326 −73.5
IPSL-CM5A-LR 0.511 −28.3 0.410 −39.5
MPI-ESM-LR 1.02 −35.7 0.937 −63.6
NorESM1-ME 0.0281 −3.76 0.0287 −7.80
HadGEM2-ES 0.745 −12.9 0.729 −18.0
Ensemble mean 0.522 −26.1 0.482 −42.8
Ensemble SD ± 0.306 ± 13.3 ± 0.290 ± 23.7
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