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Abstract. Effective wildfire management and prevention
strategies depend on accurate forecasts of fire occurrence and
propagation. Fuel load and fuel moisture content are essen-
tial variables for forecasting fire occurrence, and whilst exist-
ing operational systems incorporate dead fuel moisture con-
tent, both live fuel moisture content and fuel load are either
approximated or neglected. We propose a mid-complexity
model combining data driven and analytical methods to pre-
dict fuel characteristics. The model can be integrated into
earth system models to provide real-time forecasts and cli-
mate records taking advantage of meteorological variables,
land surface modelling, and satellite observations. Fuel load
and moisture is partitioned into live and dead fuels, including
both wood and foliage components. As an example, we have
generated a 10-year dataset which is well correlated with in-
dependent data and largely explains observed fire activity
globally. While dead fuel moisture correlates highest with
fire activity, live fuel moisture and load are shown to poten-
tially enhance prediction skill. The use of observation data to
inform a dynamical model is a crucial first step toward dis-
entangling the contributing factors of fuel and weather to un-
derstand fire evolution globally. This dataset, with high spa-
tiotemporal resolution (∼ 9 km, daily), is the first of its kind
and will be regularly updated.

1 Introduction

Landscape fires have wide-ranging consequences for local
ecosystems, meteorology, regional air quality, and global at-
mospheric composition. They occur across various environ-
ments, including forests, croplands, and savannahs, where
both living and dead vegetation act as fuel sources. Fire be-

haviour, duration, emissions, and impact on the landscape
can vary based on fuel characteristics. Ground fires, fuelled
by organic-rich soil such as peat, are associated with below-
ground burning (Turetsky et al., 2015). Surface, ladder, and
crown fires, fuelled by vegetation at different levels (floor
level, mid-level, and canopy level, respectively), represent
above-ground burning. The intensity of these fires is influ-
enced by the availability of fuel and its curing state. Con-
sequently, these characteristics have implications for emis-
sions and the injection height of aerosols and trace gases into
the atmosphere. In addition, they modify the fire impact on
the landscape, affecting the albedo as well as surface heat
and moisture fluxes, which results in atmospheric feedbacks.
For example, given sufficient fire intensity and suitable atmo-
spheric conditions, pyroconvective clouds may form, a pro-
cess which is, in part, subject to fuel characteristics (Bad-
lan et al., 2021). The examination and quantification of wild-
fire impacts is relevant for Earth system models (ESMs). In-
tegrating vegetation fires in ESMs presents numerous chal-
lenges relating to the complexity of modelling the temporal
evolution of fire spread and the spatial representation of fuel
characteristics at a fine scale (< 10 km). Such resolutions are
not currently resolved by ESMs, either used for weather fore-
casting (∼ 10 km) or climate simulations (∼ 100 km).

To comprehensively model vegetation impact on wildfires
several variables must be considered. One such variable is
fuel load, which is the total mass of vegetation per unit area
and provides the baseline of biomass available. Fuel load can
be further partitioned between wood and foliage, both alive
and dead. Fuel moisture content of both live (LFMC) and
dead (DFMC) vegetation is another key variable, which mod-
ulates flammability (Yebra et al., 2013). Both fuel load and
moisture content directly influence fire occurrence, intensity,
and rate of spread. Fuel moisture content is expressed as the
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proportion of water relative to the total dry mass of vegeta-
tion. LFMC is controlled by various ecophysiological traits
and environmental factors affecting transpiration, such as soil
moisture and humidity (Castro et al., 2003). DFMC is inde-
pendent of transpiration and is determined by meteorologi-
cal factors, including precipitation, solar radiation, as well as
fuel composition and structure.

The global monitoring of fuel load and moisture content
presents several challenges. Globally, peat fire fuel is diffi-
cult to estimate and model in near real time (NRT) given the
measurement and process uncertainty (Spawn et al., 2020).
Remote sensing techniques can be utilized to estimate the
fuel load for above-ground fires (Xiao et al., 2019), although
they are limited to sensor coverage in both time and space.
Alternatively, fuel can be estimated using land surface mod-
els with dynamic vegetation (Thonicke et al., 2010), although
similar limitations apply as they are simulated at coarse reso-
lution. Concerning fuel moisture content, recent studies have
shown the potential of satellite-based observations in gen-
erating high-resolution global LFMC products (Quan et al.,
2021; Zhu et al., 2021). Whilst these results are promising,
sparse daily coverage limits global NRT estimates required
to fully characterize fuel evolution. Satellite-based passive
microwave vegetation optical depth (VOD) retrievals can be
used to estimate LFMC content with NRT global coverage
(Forkel et al., 2023); however, these are provided at a coarse
spatial resolution (∼ 0.25◦) and are likely to be subject to
noise from soil moisture and vegetation type. Additionally,
VOD provides an estimate of total moisture content, which
itself is dependent on total fuel load, further entangling the
signal. Modelling efforts to introduce LFMC estimates based
on variables such as soil moisture are in development across
the community (Rabin et al., 2017).

This paper presents a novel modelling framework that
combines satellite observations and numerical weather pre-
diction simulations to infer fuel load and fuel moisture con-
tent. The framework is integrated into the operational system
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and aims to provide real-time estimations
of fuel characteristics, enabling the assessment of landscape
flammability daily, or even subdaily (Fig. 1). The model rep-
resents an initial step in categorizing above-ground fuel load
and moisture, providing a foundation for diagnosing land-
scape fire disturbance in an operational weather forecasting
system and to generate a long-term record of these essen-
tial climate variables. The framework includes foliage and
wood fuel load, including both alive and dead components,
as well as LFMC and DFMC. The output provides infor-
mation on fuel evolution and fire danger, acting as the first
step toward developing a global mid-complexity fire rate-of-
spread model. Additionally, the model output could be used
for modelling other land surface processes, such as trace gas
fluxes or biochemical soil properties, with the future aim of
achieving full dynamical coupling of fires between the land
surface and atmosphere.

To assess the operational capability of the model and eval-
uate performance in simulating fuel characteristics relative
to observed fire activities globally, the model was retrospec-
tively run for the period from 2010 to 2019. The resulting
dataset, available daily at a global scale with a horizontal
resolution of ∼ 9 km, can be used for research throughout
the fire community and beyond. The second and third sec-
tions of the paper detail the calculation and categorization of
fuel load and moisture, followed by independent validation
of each component. The final two sections establish relation-
ships between the dataset and active fire observations while
defining thresholds for active fire conditions.

2 Fuel load

2.1 Fuel load model

Various methods can be employed to estimate above-ground
biomass (AGB), which represents the above-ground compo-
nent of the total fuel load. Dynamic global vegetation models
(DGVMs) offer the advantage of providing AGB estimates
with high temporal resolution using atmospheric forcing and
surface variables. However, these models often lack consen-
sus at fine spatial resolutions and fail to account for the im-
pact of human-induced disturbances on the landscape (Yang
et al., 2020). Satellite-based and even in situ AGB estimates
could provide AGB information for fire forecasting. How-
ever, existing datasets typically suffer from limited coverage,
and those that do provide global coverage are not readily
available in near real time (NRT) or lack the high temporal
resolution necessary for accurate fire forecasting (e.g. San-
toro and Cartus, 2021).

In this study, we have integrated satellite-derived AGB
data with modelled net ecosystem exchange (NEE) to esti-
mate daily above-ground fuel load at a horizontal resolution
of approximately 9 km for the period from 2010 to 2019.
The initial AGB estimate for 2010 was obtained from the
ESA Biomass Climate Change Initiative (ESA-CCI) version
3 dataset (Santoro and Cartus, 2021). This dataset combines
synthetic aperture radar (SAR) backscatter observations from
Envisat ASAR and ALOS-1 PALSAR-1 satellites. Using the
BIOMASAR algorithm, the dataset relates forest backscatter
to canopy density and height, which is then used to infer live
AGB globally for 2010 at 100 m horizontal resolution as a
static map (Santoro et al., 2021).

To update AGB over time, we incorporated NEE data
generated by the ECLand land surface model (Boussetta et
al., 2021) forced by ERA-5 meteorology (Hersbach et al.,
2020). ECLand represents the surface component of the oper-
ational Integrated Forecasting System (IFS) model employed
by ECMWF. The model simulations ran from 2010 to 2019,
producing daily NEE output at a horizontal resolution of
Tco2559 (approximately 4.4 km). Model NEE was derived
using the A-gs scheme, which depends on meteorological
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Figure 1. A schematic of the fuel characteristic model showing the required input data and the dependencies for the output variables.

and land surface variables (e.g. temperature and soil mois-
ture), as well as plant-specific physiological traits (Boussetta
et al., 2013).

As model NEE is prone to biases, the operational Coperni-
cus Atmosphere Monitoring Service, which provides atmo-
spheric CO2 forecasts (Agustí-Panareda et al., 2019), em-
ploys an online bias correction scheme. This approach in-
volves applying scaling factors to model NEE values based
on a climatology of optimized fluxes derived from atmo-
spheric inversions (Chevallier et al., 2010; Agustí-Panareda
et al., 2016). Here instead we bias corrected the NEE based
on differences between the 2018 and 2010 ESA-CCI prod-
uct following the recommended guidelines (Santoro et al.,
2021). This resulted in our average AGB values for 2010 and
2018 being equivalent to the ESA-CCI product but with the
inclusion of daily variability. Moreover, this correction ac-
counts for the additional non-carbon component of biomass
variability, which is absent in the ECLand model.

The modelled AGB, representing the fuel load, was fur-
ther subdivided into foliage and wood mass, considering both
alive and dead components as these are considered relevant
for fire modelling methodologies. To accomplish this, we ini-
tially obtained a static estimation of the live-to-dead mass ra-
tio for each of the 20 vegetation types defined in the ECLand
model. These ratios were based on literature estimates (Ta-
ble S1 in the Supplement). Each ∼ 9 km grid cell consisted
of low and high vegetation fractions, which were used to de-
rive the grid-cell-specific ratio. The dead fraction was subse-

quently divided between foliage and wood based on a fixed
percentage (DFP) per vegetation type (Table S1), which re-
mained constant over time.

The allocation of live mass to foliage (TFlive) varied tem-
porally and was determined using vegetation-specific leaf
mass per unit area (LMA) and observed leaf area index (LAI)
following the methodology described by Harper et al. (2016).
We updated this approach to suit the vegetation types used in
the ECLand model. Our definition of live foliage includes
leaf mass only, while dead foliage includes small branches
for the purpose of the fuel moisture model. LAI observations,
aggregated to the model horizontal resolution, were taken
from the CONFESS dataset, which provides 1 km monthly
global LAI (Boussetta and Balsamo, 2021).

The temporal variability in live wood mass (TWlive),
which is a representation of seasonal short-lived wood mass
(e.g. twigs), was determined as being proportional to LAI
using the power law relationship proposed by Enquist et
al. (1998) and vegetation-specific coefficients provided by
Eq. (4) in Harper et al. (2018). The remaining component
of live wood (SWlive), which is a representation of long-
lived wood mass which remains regardless of LAI state (e.g.
trunk), was assumed to be constant over time, preserving the
live-to-dead fuel load ratio (L :D) when averaged over the
entire time series (Eq. 1). Consequently, for any given time,
the fuel load of live foliage and wood can be calculated, while
the dead foliage (TFdead) and wood (TWdead) are obtained as
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the residuals based on Eqs. (2) and (3), respectively:

SWlive = L :DAGB− (TWlive+TFlive) (1)

TFdead =
DFP
100

(AGB− (TWlive+TFlive+SWlive)) (2)

TWdead =

(
1−

DFP
100

)
× (AGB− (TWlive+TFlive+SWlive)). (3)

The majority of total fuel load was allocated to SWlive
with relatively little seasonal variability in live wood mass,
TWlive, particularly in low latitude regions. The LAI depen-
dence resulted in an increased fraction of live mass during
the growing season, with relative increases largest in foliage
but absolute increases largest in wood (Fig. 2).

The allocation of fuel load based on region and fuel type
(see Fig. 3 and Table 1) demonstrated the anticipated sea-
sonal shifts between live and dead fuel load in the boreal
region. During winter months, up to 50 % of the fuel load
consisted of dead fuel, decreasing to approximately 10 %
during summer months. A similar yet narrower range in the
dead fuel fraction was observed in temperate regions (17 %–
41 %), while in tropical regions, the dead fraction constituted
only 11 %–17 % of the total fuel load. On average, globally,
dead fuel accounted for 22 % of the total fuel load, with an
approximately equal distribution between foliage and wood.
The remaining mass comprises 2 % living leaf matter and
76 % living wood. These findings agree with a recent study
by van Wees et al. (2022), which estimated that litter made up
approximately 21 % of the above-ground fuel load. Further-
more, they also found an approximately equal split between
foliage and wood.

Tropical regions contain the largest proportion of the total
fuel load, accounting for 414± 11 Pg or 63 %, aligning with
previous findings (e.g. Pan et al., 2011; Erb et al., 2018). In
comparison, the temperate (120± 7 Pg or 18 %) and boreal
(126± 10 Pg or 19 %) regions exhibit similar fuel loads, with
a higher proportion attributed to dead mass.

Analysis reveals a positive 10-year trend in fuel load
(2010–2019), with an overall increase of +4.5 Pgyr−1.
The tropics (+3.1 Pgyr−1) and boreal (+2.6 Pgyr−1) re-
gions contribute significantly to this trend. A small negative
trend is found in the northern (−0.2 Pgyr−1) and southern
(−0.9 Pgyr−1) temperate regions. The southern temperate
region exhibits a relatively large negative trend of−3 % yr−1.
These findings, specifically the negative trend in southern
temperate AGB, align with the spatial distribution of the
trend observed previously (Xu et al., 2023).

Whilst fuel load data presented here is at ∼ 9 km daily
resolution, ECland permits finer spatiotemporal resolution.
Given the coarse resolution forcing data and the variability
in vegetation mass, this is not considered here. It should be
noted that LAI is updated monthly, resulting in a step change
in fuel load allocation, whilst variability in total fuel load
within a given month is driven by the model.

2.2 Validation of fuel load

Model fuel load was validated against various regional
datasets that were independent of our calibration data, al-
though some techniques and observations used to estimate
above-ground biomass (AGB) were similar (Fig. 4; Ta-
ble S2). Mauro et al. (2021) used random forest models
which utilized observations including airborne laser scan-
ning data between 2008 and 2016 to estimate above-ground
live forest biomass in Oregon, USA, at 30 m resolution as a
static map. When combining the live wood and foliage esti-
mates from our study for the same region and averaging over
the 2010–2016 period, a comparative analysis reveals reason-
ably consistent results in terms of total living above-ground
biomass. Specifically, Mauro et al. (2021) reported a value
of 2.14 Pg, while our study found a slightly lower estimate of
1.88± 0.05 Pg.

Matasci et al. (2018) employed a combination of lidar
and Landsat observation data, along with a random forest-
based distance metric, to generate forest biomass estimates
for Canada at a resolution of 30 m, spanning the period from
1985 to 2011. Although their focus was primarily on the es-
timation of biomass in living forested regions, the method-
ology utilized is sensitive to some extent to dead material.
The living fuel load presented here for 2010–2011 (24.5 Pg)
shows an expected slight underestimate when compared with
their findings (27.5 Pg). However, it is important to note that
our total estimated fuel load (38.0 Pg) is significantly higher,
as it encompasses all above-ground dead fuel in addition to
the living fuel load.

For further validation, we utilized two separate estimates
of African biomass: one from 2010 by Soto-Navarro et
al. (2020) and another from 2017 by Rodriguez Veiga and
Balzter (2021). Soto-Navarro et al. (2020) employed the
same ESA-CCI product for 2010 as used in this study. How-
ever, their dataset includes a savannah and woodland biomass
product specific to Africa, derived from an L-band PALSAR
mosaic dataset provided by JAXA at a resolution of 25 m
(Bouvet et al., 2018). They also incorporated below-ground
biomass information and their study reports above-ground
carbon biomass rather than total fuel load, which they ap-
proximate to be half the total dry mass. Consequently, com-
paring the two products may not be entirely appropriate as
they estimate different quantities. Their value for above- and
below-ground carbon biomass (77.1 Pg) for Africa for 2010
is slightly lower than the above-ground live total fuel load
found here (81.8 Pg), but the spatial distributions agree.

Rodriguez Veiga and Balzter (2021) employed a compre-
hensive approach, integrating lidar, synthetic aperture radar
(SAR), and optical-based data to estimate above-ground
biomass across Africa for 2017. Their estimation (117.5 Pg),
provided at a resolution of 100 m, is comparable to our com-
bined live and dead fuel load (115.9 Pg) for 2017, although
our live fraction is noticeably lower (89.0 Pg). Overall, the
model agreement across the four independent datasets eval-
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Figure 2. Global fuel load (in kilograms per square metre) for June, July, and August (JJA; left column) and December, January, and February
(DJF; right column) averaged between 2010 and 2019. The fuel is categorized into live foliage (top row) and wood (second row), and dead
foliage (third row), and wood (bottom row).

uated suggests the model produces an accurate estimation of
fuel load.

The dead fuel load and the ratio of live-to-dead fuel is dif-
ficult to validate given the lack of global observations. We
performed site-specific evaluation of our estimated dead fuel
and ratios using field measurements compiled by van Wees
et al. (2022). The observation database includes estimates of
total leaf, grass, stem, dead wood, and dead fine fuel load. By
subsampling the dataset where all or some of these variables

were available, we evaluated our modelled data against 202
data points between 2010 and 2019 (Fig. S1 in the Supple-
ment). Given that the observations are site specific and model
resolution is at a relatively coarse∼ 9 km resolution, the rep-
resentation error caused by the failure of the model to capture
subgrid heterogeneity was expected to be large. Furthermore,
modelled values were expected to be larger than observations
as the estimated quantities differ, the observations represent
the total carbon per unit area, whilst the model estimates the
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Figure 3. Daily time series of area summed fuel total load between 2010 and 2019 for the boreal (a), northern temperate (b), tropical (c), and
southern temperate (d) regions (black line). Also shown are the live leaf (green), live wood (orange), dead foliage (purple), and dead wood
(blue) components of fuel load.

Table 1. Area summed categorized and total fuel loads for four regions and globally averaged between 2010 and 2019 in petagrams (Pg)
with the standard deviation across all times. Also included is the average yearly trend for each region and globally in petagrams per year.

Region Total fuel load Live foliage Live wood Dead foliage Dead wood Trend (2010–2019)
(Pg) (Pg) (Pg) (Pg) (Pg) (Pgyr−1)

Northern boreal 126± 10 2.9± 2.0 76± 19 27± 9 21± 6 +2.6
(50–90◦ N)
Northern temperate 93± 7 2.6± 1.5 61± 15 19± 6 10± 3 −0.2
(23.5–50◦ N)
Tropics 414± 11 9.0± 0.2 347± 7 25± 2 34± 6 +3.1
(23.5◦ S to 23.5◦ N)
Southern temperate 27± 3 0.9± 0.2 18± 2 3.7± 0.8 4.5± 0.7 −0.9
(50–23.5◦ S)
Global 661± 20 15± 3 502± 32 75± 14 69± 11 +4.5

total fuel load. Despite these differences, the model provides
reasonable agreement with observed total fuel load (R: 0.43)
with the expected positive bias. For live load and dead fuel
load specifically, there is also some agreement (R: 0.39 for
both). The ratio of live-to-dead fuel load provides an R value
of 0.53. Whilst these values show that the model does not
provide perfect agreement with observations, we consider the
results to be encouraging considering the expected consider-
able representation error.

3 Fuel moisture content

Fuel state, in addition to quantity, is a key component for
modelling fire danger and risk. This includes, amongst other
things, fuel arrangement, structure, and moisture content.
Here we focus on a model derived moisture content for both

live and dead fuel, with DFMC further subdivided between
foliage and wood. An estimation for LFMC is possible from
satellite sensors (Quan et al., 2021; Zhu et al., 2021); how-
ever data are not available in NRT and often have gaps. Veg-
etation optical depth from passive microwave satellite re-
trievals can provide an estimation of absolute LFMC (Forkel
et al., 2023). However, to derive the relative LFMC the sig-
nal must be separated from the vegetation mass. For exam-
ple, a high VOD value could indicate either a high fuel load
with a moderate moisture content or a moderate fuel load
with a high moisture content. Alternatively, more accurate
in situ measurements are available (e.g. Yebra et al., 2019);
however, these represent local values typically obtained us-
ing destructive sampling and as such are not suitable at the
global scale.
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Figure 4. Comparison of observation derived and modelled above-ground biomass for Oregon, USA (a), Canada (b), and Africa (c, d),
including ∼ 9 km spatial distribution maps and standard deviation error bars. The values are computed as yearly or multi-year averages and
the live component of model biomass is also shown.

3.1 Live fuel moisture content model

To estimate daily LFMC from 2010 to 2019 at ∼ 9 km we
used a semi-empirical model based on key variables deter-
mined using a random forest regression (Fig. S2). A semi-
empirical approach was opted for as it provided a physical
constraint on the modelled LFMC, which was required as the
modelled LFMC range was not fully represented by the train-
ing data. Furthermore, the evaluation of the optimized mod-
els against independent LFMC observations showed only a
minor improvement when using a random forest approach.

The model was trained on Globe-LFMC data based on
in situ destructive sampling measurements (Yebra et al.,
2019). The data were taken from 1383 sampling sites in 11
countries and represents a range of vegetation types. Mea-
surements typically involve weighing the vegetation, drying
the vegetation, and then re-weighing it to determine the mois-
ture fraction. To avoid sampling noise generated from the
considerable variability in observed LFMC, we averaged ob-
servations for specific sites into monthly bins between 2010
and 2018, resulting in 25 410 samples. The spatial represen-
tation error was expected to be considerable as observations
are point specific for an induvial plant, whereas the model is

sampled at 9 km horizontal resolution, thus limiting the suc-
cess of the model.

Subsampling of Globe-LFMC data permitted seven
vegetation-specific parameter optimizations to be performed.
The ECLand equivalent of these are crops, short grass, ev-
ergreen needleleaf trees, deciduous broadleaf trees, mixed
crops/grassland, deciduous shrubs, and broadleaf savannah,
whilst the remaining vegetation types used the coefficients of
their most closely associated type from those seven. LAI val-
ues, previously described from the CONFESS dataset at 9 km
monthly resolution, were used in the optimization as well
as monthly 9 km four-layer soil moisture taken from ERA5-
Land (Muñoz-Sabater et al., 2021). Vegetation-specific layer-
weighted soil moisture (SM) values were then calculated
based on the fractional root distribution per layer, taken from
ECLand approximations (Boussetta et al., 2021).

Model parameters were optimized using the trust-region
reflective algorithm based on the assumption that LFMC
varies with soil moisture and LAI following an asymptotic
regression (Eq. 4), by which we assume that as soil moisture
and LAI increase, so too does LFMC at a decreasing rate
from a minimum LFMC, LFMCmax−A, up to a maximum
LFMC, LFMCmax. We consider the independent contribution
from soil moisture and LAI as well as their combined influ-
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ence on LFMC. In a generalized approach we consider the
dormant stages of vegetation to be represented by the coeffi-
cient α, the vegetation resistance to draught conditions by β,
and the growth phase by γ . The resulting vegetation-specific
model coefficients for LFMC is presented in Table S3. As
vegetation cover in ECLand is given as low or high, we pro-
vide the values of both components and the combined values
in the dataset:

LFMC= LFMCmax−Ae
−(αSM+βLAI+γSM LAI). (4)

The optimized parameters provide reasonable agreement
with Globe-LFMC for most vegetation types, R = 0.36–
0.72, except for crops, R = 0.24 (Fig. S3). This is expected
given that irrigation is not considered by ECLand resulting
in inaccurate crop soil moisture. The dependency on LAI and
soil moisture varies between vegetation type, with soil mois-
ture values between 0.1 and 0.2 typically representing a no-
ticeable drop-off in LFMC toward a fire prone state (Fig. 5).
All vegetation types are sensitive to soil moisture changes,
whilst only some are sensitive to a combination of LAI and
soil moisture (short grass, evergreen needleleaf, deciduous
broadleaf, and deciduous shrubs). The maximum LFMC in
forested areas is lower than that of grasslands and shrublands,
which is expected given that a large fraction of biomass is al-
located to the relatively dry wood in forested regions.

3.2 Live fuel moisture content validation

Model LFMC was validated against estimates obtained by
combining retrievals from the Moderate Resolution Imaging
Spectroradiometer (MODIS) with radiative transfer model
(RTM) inversion techniques (Quan et al., 2021). Their
method to estimate daily LFMC at 500 m resolution involved
generating look-up tables based on RTM simulations consid-
ering three land cover classes: forest, grassland, and shrub-
land. They provide data at 8 d intervals including all dates
relevant to this study (2010–2019). Given the spatiotemporal
resolution of both datasets for comparison, they were aver-
aged to monthly 9 km resolution.

There is generally a good spatial agreement between the
two products, with well-known fire prone regions, such as
the western USA, African savannahs, or Australian shrub-
land, showing relatively low LFMC values in both datasets
(Fig. 6). Tropical forests are drier in the MODIS dataset,
whilst boreal regions are moister, relative to our dataset. Dif-
ferences in land cover classification between datasets could
explain some of these differences. The most noticeable dif-
ference is the range in values. When considering values
above 30 %, which we assume as a threshold for live fuel, the
MODIS derived mean (134 %± 70 %) is considerably larger
than our findings (112 %± 20 %), with a larger variability.
Our average value and variability compare well with the
Globe-LFMC dataset (108 %± 36 %), although that dataset
is not necessarily representative of a global value.

Figure 5. Modelled live fuel moisture content as a function of soil
moisture and LAI for seven different vegetation types.

There is generally a good agreement between the two
datasets when considering all points for all years between
2010 and 2019 (Fig. 7). Agreement between MODIS and
our dataset is also vegetation-type dependent. By using the
ECLand vegetation cover maps we separate the correlation
by type. The resulting correlation with herbaceous vegeta-
tion types is relatively high with R values of 0.65 (short
grass), 0.62 (deciduous shrubs), and 0.50 (broadleaf savan-
nah). Forested regions show poorer correlation, with ever-
green needleleaf forests negatively correlated (R =−0.23)
and deciduous broadleaf forests only weakly correlated (R =
0.33). This is expected given the complexity involved in es-
timating forest LFMC, which is highly heterogeneous. Satel-
lite observations are typically representative to the top of
canopy moisture and not the entire forest structure (Quan et
al., 2021). Comparatively, the model presented here provides
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Figure 6. Average live fuel moisture content (%) maps between 2010 and 2019 at∼ 9 km spatial resolution derived from model estimates (a)
and MODIS-based estimates (b).

an improved correlation in forested areas when evaluated
against the Globe-LFMC training data for both evergreen
needleleaf (R = 0.36) and deciduous broadleaf (R = 0.42)
forests.

The spread in values is bias low in our model relative to
that of Quan et al. (2021), with both extreme low (< 40 %)
and high (> 150 %) values typically not represented in our
estimates. This is the result of the asymptotic regression ap-
proach where anomalously high values are unlikely to ever
occur, as they tend toward a theoretical maximum LFMC.
Given that our focus is to establish the fire prone state of the
vegetation, any values over 150 % can be considered non-
flammable and their exact values are not essential for fire
modelling.

3.3 Dead fuel moisture content model

Current operational fire forecasting systems and fire weather
indices (FWI) typically depend on an estimation of DFMC
as a proxy for flammability (Van Wagner, 1974; Vitolo et al.,
2020). Whilst observations of DFMC can be made at a local
scale (e.g. Matthews, 2014), there is no global observation-

based product which could be implemented as an alternative
to modelling.

An estimation of daily DFMC from 2010 to 2019 at
∼ 9 km was made by generalizing the “Nelson model”,
which is a physically based model for moisture content of
a 10 h fuel (Nelson, 2000). The model was developed using
hourly air temperature, humidity, radiation, and precipitation
as inputs to derive heat and moisture transfer both internally
and at the surface. Here, as in Carlson et al. (2007), we ex-
tended the model to include 1, 10, 100, and 1000 h fuels.
The four classifications are based on the response time of
the fuel to changes in moisture and are commonly associated
with the fuel diameter. Given that the fuel model produces
dead foliage and wood, we further grouped the DFMC fuel
types: 1 and 10 h fuel moisture were used for foliage, includ-
ing small branches, whereas 100 and 1000 h fuel moisture
provided DFMC for wood. The weighting between the two
fuels for both is dependent on the vegetation type (Table S4),
based on the National Fire Danger Rating System (Deeming
et al., 1977).

We simplify the Nelson model by considering only the sur-
face exchange of moisture between the atmosphere and fuel

https://doi.org/10.5194/bg-21-279-2024 Biogeosciences, 21, 279–300, 2024



288 J. R. McNorton and F. Di Giuseppe: A global fuel characteristic model and dataset for wildfire prediction

Figure 7. A density heat map showing the correlation of modelled
and MODIS-derived live fuel moisture content for seven vegetation
types and for all vegetation types (bottom right) globally between
2010 and 2019. The R value is given for each type.

surface due to precipitation and vapour pressure differences,
as given by Eqs. (12) and (15) of Nelson (2000). We expand
the model to 1, 10, 100, and 1000 h fuels by modifying vari-
ous coefficients and stick radius to 0.2, 0.64, 2.0, and 6.4 cm,
respectively, based on Carlson et al. (2007).

Model time step is important for the stability of the model,
and the treatment of precipitation as an input can alter the
output noticeably. For example, intense precipitation,R, over
a short period might result in a small change in DFMC, dMR;
however, the same totalR spread over a longer period will re-
sult in larger dMR . To account for the impact of time-step du-
ration we adjust the precipitation coefficients given by Nel-
son (2000). For this study we apply daily time steps, dt , for
DFMC; however, in the future when the model is integrated
within ECland, the time step will decrease significantly to
less than 1 h and the coefficients will be adjusted further. The

resulting updates to Eq. (12) of Nelson (2000) can then be
applied to each fuel type as given by Eqs. (5)–(8). Maxi-
mum dMR values are taken from Carlson et al. (2007), which
may not be fully compatible with our system given that their
model uses 1 h time steps:

dMR,1−h =max
{
0.85,0.96

(
1− e−0.6R)

dt
}

(5)

dMR,10−h =max
{
0.6,0.32

(
1− e−0.6R)

dt
}

(6)

dMR,100−h =max
{
0.4,0.11

(
1− e−0.6R)

dt
}

(7)

dMR,1000−h =max
{
0.32,0.04

(
1− e−0.6R)

dt
}
. (8)

The impact of the vapour pressure effect on DFMC, dMV,
is also considered based on Eq. (15) of Nelson (2000) and
using the same constants where applicable. As with precipi-
tation, this is updated following stick radius and density rec-
ommendations from Carlson et al. (2007) to account for all
fuel types. The vapour pressure at the fuel surface, calcu-
lated following Eq. (20) of Nelson (2000), is dependent on
humidity, surface pressure, skin temperature, and air temper-
ature which were taken from ERA5-Land (Muñoz-Sabater
et al., 2021), although operationally they can be taken from
the atmospheric component of the IFS model. The resulting
DFMC evolves through time and is updated by adding dMR

and dMV at each time step.

3.4 Case study validation

Derived DFMC and LFMC were first validated using ex-
treme wildfire case studies. Fire occurrence was spatially cor-
related with both moisture variables averaged over the entire
month in which the wildfire events occurred, although of-
ten the wildfires occurred on timescales of either less than
or more than 1 month. We overlaid a fuel load mask, consid-
ering regions where either dead or live fuel was above 1 or
2 kgm−2, for DFMC and LFMC, respectively. Fire observa-
tions were taken from the MODIS Collection 6 and Collec-
tion 6.1 Active Fire Dataset (Giglio et al., 2020) in which ac-
tive fires were detected using a contextual algorithm (Giglio
et al., 2016) based on retrievals in the mid-infrared bands.
Specifically, we used the MCD14ML product, which pro-
vides geographic coordinates of active fires at a monthly res-
olution. Observations were aggregated onto the fuel moisture
dataset resolution (∼ 9 km). For comparison the spatial maps
were compared with the average moisture content for the spe-
cific month taken from the 9 remaining years of the dataset
(2010–2019). Cases studies were evaluated representing four
distinct wildfire events: tropical forest, boreal forest, temper-
ate forest, and mixed shrubland. It is important to note that
LFMC is dependent on both phenology and meteorological
conditions, and as a result it may not always provide a suit-
able direct correlation with the fire susceptibility of vegeta-
tion.
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3.4.1 Bolivia, August 2010

The Bolivian wildfires in 2010 were mainly concentrated in
the department of Santa Cruz in the east of the country, burn-
ing a total area of 38 000 km2 (Bustillo Sánchez et al., 2021).
This diverse region contains a mixture of tropical dry and
wet forests as well as savannahs, making the fuel character-
istics difficult to model using a single vegetation type. The
Chiquitanía seasonally dry tropical forest, located between
the Amazon and Gran Chaco dry forest, was the most af-
fected region. The fires were concentrated toward the end of
the dry season in August and were the result of human ac-
tivities, above average winds, and a La Niña event causing
drought (Singh et al., 2022). Within the ECLand classifica-
tion the fires mainly occurred in evergreen broadleaf forest.

Evaluation of both DFMC and LFMC, relative to the
2011–2019 average, showed a noticeable reduction in mois-
ture content over the entire eastern Bolivian region in Au-
gust 2010 (Fig. 8). Fire-detected cells within the mapped do-
main, 62◦W, 21◦ S to 56◦W, 15◦ S and where live fuel load
is above 2 kgm−2, had an August average LFMC for 2011–
2019 of 107 %± 11 %, whereas for 2010 this decreased to
just 91 %± 16 %. The average DFMC, where dead fuel load
is above 1 kgm−2, was 27 %± 10 % for August 2011–2019
and also higher than for 2010, when it was 16 %± 12 %. It
should be noted that the DFMC values reported are a mass
weighted average of the foliage and wood DFMC combined.
This suggests that based on fuel moisture alone, the elevated
fire risk for 2010 is detected by the dataset. The exact thresh-
olds for likely ignition for both LFMC and DFMC are vege-
tation dependent and, to establish fire danger from the values
derived here, need to be explored in more detail. It should
also be noted that the August average climatology for 2011–
2019 will contain instances of fire occurrence. For compari-
son, LFMC for cells with no fire detection are closer in value
for the 2011–2019 August average, 108 %± 11 %, when
compared with 2010, 99 %± 15 %. The average DFMC of
those same cells, with no fire detection, were 27 %± 9 % for
2011–2019, compared with 15 %± 11 % for 2010, a similar
difference to that seen in fire-detected cells. Given the no-
ticeable difference in LFMC, our findings suggest that for-
est fires in this region, for this period, were dependent on
LFMC values rather than DFMC, although dead fuel burning
likely contributed to the fire activity. Importantly, no fire de-
tection does not mean no occurrence as both overpass time
and, moreover, atmospheric and land surface conditions may
result in no detection. Furthermore, high fuel load and low
moisture content produce favourable conditions for fire oc-
currence but still require an ignition event. Finally, fuel load
is not updated following a burn event, and as a result, our es-
timates for fuel load are likely to be overestimated following
a fire.

Most of the Bolivian fires in August 2010 occurred in the
second half of the month, when both DFMC and LFMC of
the fire-detected cells was lowest (Fig. 8). For August 2010

Figure 8. Spatial distribution of August 2010 active fire detec-
tions from MODIS over Bolivia, where red indicates positive de-
tection (a). The August 2010 (solid line) and August 2011–2019
(dotted line) regional average live fuel moisture content (black) and
dead fuel moisture content (blue) for the same domain is shown (b).
Also shown is a spatial representation at ∼ 9 km of the average Au-
gust 2010 (a, c, e) and August 2011–2019 (b, d, f) dead (c, d) and
live (e, f) fuel moisture content.

daily variability in the average DFMC (±2.4 %) was larger
than that of LFMC (±0.8 %). This suggests that the onset
of fire risk from low DFMC is likely to occur more rapidly
than for LFMC. This is expected as LFMC is more resilient
to drought conditions given the dependency on soil moisture
and not surface moisture.

3.4.2 Canada, July 2014

The 2014 summer wildfire season in the Northwest Terri-
tories, Canada, was the worst in recorded history in the re-
gion, resulting in a burnt area of 34 000 km2 (Kochtubajda
et al., 2019). The fire-affected region, predominantly to the
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west and north of Great Slave Lake, is relatively homoge-
neous, covered in evergreen needleleaf forests. We focus our
analysis on July, when fire occurrence was highest. The di-
agnosed moisture content is only reflective of fuel flamma-
bility and not directly increased fire occurrence. For 2014,
increased fire occurrence was, in part, attributed to changes
in lightning-induced ignitions (Veraverbeke et al., 2017).

The region south of Great Slave Lake, which was not sub-
ject to significant wildfire activity in 2014, has the same av-
erage LFMC in July, 121 %± 8 %, as the 2011–2019 cli-
matology, 121 %± 8 % (Fig. 9), whereas fire-detected cells,
within the mapped domain (119◦W, 59◦ N to 108◦W, 65◦ N)
with live fuel load above 2 kgm−2, exhibited a lower av-
erage LFMC in 2014, 107 %± 9 %, relative to 2010–2019,
112 %± 8 %. Most of these cells are concentrated to the
west and north of Great Slave Lake and northeast of Lac La
Martre. Similarly, for DFMC, where dead fuel load is above
1 kgm−2, fire-detected cells provide a lower average value
for 2014, 27 %± 21 %, relative to 2010–2019, 37 %± 16 %.
The relative change in moisture content between the fire
event years and the climatology is smaller than for the Bo-
livian fires. Given the difference in vegetation type between
the two events, this would suggest that evergreen forests re-
quire only a small change in moisture content to noticeably
increase fire risk. As previously mentioned, an anomalously
high number of lightning-induced ignitions in July 2014 con-
tributed to the severity of the wildfire seasons. However, our
derived moisture content values would suggest that in addi-
tion to this, the fuel characteristics were favourable for an
above-average fire season.

The fire season in the Northwest Territories spanned the
months before and after July, and this is reflected in the low
DFMC and LFMC both at the start and end of July, relative to
the climatology. The variability in DFMC (±5.4 %) is once
again larger than for LFMC (±0.6 %) and, as with the Boli-
vian fires, both LFMC and DFMC are typically beyond the
spread of the climatology.

3.4.3 Portugal, June 2017

In June 2017, following an intense heatwave, wildfires in
Portugal resulted in 5000 km2 of land being burnt (Turco
et al., 2019). The most destructive single event occurred on
17 June in the Pedrógão Grande municipality in central Por-
tugal and resulted in 66 fatalities and 450 km2 of burnt land
(Ribeiro et al., 2020). Boer et al. (2017) found that current
methods based on simplified assumptions of fuel state failed
to predict the fire danger of the Pedrógão Grande event, and
as a result, it seems a fitting case study for our LFMC and
DFMC. The land cover in the region is mainly evergreen
needleleaf forests with a smaller mixture of broadleaf trees
and shrubs (Pinto et al., 2022). The fires often spread to the
wildland urban interface resulting in complex evolution be-
yond the simple correlation between moisture content and
fire occurrence.

Figure 9. Spatial distribution of July 2014 active fire detections
from MODIS over Northwest Territories, Canada, where red in-
dicates positive detection (a). The July 2014 (solid line) and July
2010–2019 excluding 2014 (dotted line) regional average live fuel
moisture content (black) and dead fuel moisture content (blue) for
the same domain is shown (b). Also shown is a spatial representa-
tion at∼ 9 km of the average July 2014 (a, c, e) and July 2010–2019
excluding 2014 (b, d, f) dead (c, d) and live (e, f) fuel moisture con-
tent.

Relative to the previous two case studies, the Pedrógão
Grande wildfires covered a smaller area and were con-
centrated in specific events which were relatively isolated
(Fig. 10). Given the relatively dense urbanization in the
area, it is unlikely these events were able to spread in the
same way as the more rural Bolivian and Canadian wild-
fires. Additionally, the area is subject to a lower fuel load
density as indicated by the relatively limited number of grid
cells with live fuel load above 2 kgm−2 or dead fuel load
above 1 kgm−2. In such heterogeneous environments igni-
tions events become more relevant as individual fires tend
to cover a smaller area. Fire-detected cells above the fuel
threshold were found to have a lower LFMC on average in
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Figure 10. Spatial distribution of June 2017 active fire detections
from MODIS over central Portugal where red indicates positive de-
tection (a). The June 2017 (solid line) and June 2010–2019 exclud-
ing 2017 (dotted line) regional average live fuel moisture content
(black) and dead fuel moisture content (blue) for the same domain
is shown (b). Also shown is a spatial representation at∼ 9 km of the
average June 2017 (a, c, e) and June 2010–2019 excluding 2017 (b,
d, f) dead (c, d) and live (e, f) fuel moisture content.

June 2017, 111 %± 5 %, relative to the 2010–2019 average
excluding 2017, 117 %± 6 %. The average DFMC for June
2017, 4 %± 2 %, was three times lower than the 2010–2019
average, 12 %± 3 %. As with the Canadian wildfires, also
in evergreen needleleaf forest, and unlike with the Bolivian
fires, in evergreen broadleaf forest the relative difference be-
tween LFMC between the fire year and the climatology is
small. This further supports the idea that fire risk in needle-
leaf forests noticeably increases with only a slight decrease
in LFMC.

Unlike the previous two case studies, the Portuguese wild-
fires in June 2017 were isolated to only a few events and
as such fuel characteristics at specific dates can be investi-
gated. The Pedrógão Grande event on 17 June coincides with
low DFMC values in the region, 4 %, following a week of
consistently low DFMC values, 0.8 %± 0.3 %. These values
are higher relative to climatology values of 8 % for 17 June
and 14 %± 4 %, for the preceding week. Initial LFMC val-
ues at the start of the month were within the average spread;
however, as the month progressed, the average values drifted
lower to 105 % on the 17 June, compared with a climatol-
ogy average of 114 %. As the vegetation type for these fires
is the same as that for the Canadian wildfires in 2014, this
would suggest that evergreen needleleaf forests have a model
LFMC fire danger threshold around 110 %.

3.4.4 Australia, December 2019

The Australian wildfire season in late 2019 and early 2020
resulted in the largest burnt area and fire severity in the re-
gion in recorded history (Deb et al., 2020). This followed
the country’s warmest and driest year on record (Filkov et
al., 2020). The fires resulted in a burnt area of 100 000 km2

(Davey and Sarre, 2020). The fires centred around the south-
east of the country in the state of New South Wales. The fire
resulted in major environmental damage, at least 33 human
deaths, agricultural damage, loss of over 3000 houses, and
large-scale emissions of both short-lived atmospheric pol-
lutants, causing poor air quality, and long-lived greenhouse
gases. The major fires occurred in December 2019 and Jan-
uary 2020. Here, given the time series of the data, we anal-
ysed fuel characteristics for December. Much of central Aus-
tralia is covered by areas with sparse vegetation, meaning
that although moisture content is low, there is insufficient
fuel for large-scale wildfires. Both the urbanized and forested
regions are found in more coastal areas where the fuel mois-
ture content is higher. Large-scale wildfires typically occur at
the forest–shrubland interface where, in the right conditions,
there is both sufficient fuel and low moisture content.

Deb et al. (2020) found there were incidents of wildfire
occurrence in Australia during the 2019–2020 season where
DFMC was low, below a fire threshold, and LFMC was
high, above a threshold; however, there were also incidents
where the opposite occurred. This suggests that both or ei-
ther threshold was met from which ignition events resulted in
fire spread. The fire-affected areas were typically evergreen
broadleaf forests; however, given the heterogeneous nature
of the landscape, several different vegetation classifications,
defined in ECLand, were burnt. The forest–shrubland in-
terface is clearly denoted by the boundary of the live fuel
threshold, which is applied as a mask to the fuel data for all
points below 2 kgm−2 (Fig. 11). Fire-detected cells above
this threshold were found to have a lower LFMC in De-
cember 2019, 108 %± 15 %, relative to the 2010–2018 av-
erage, 124 %± 8 %. This supports a fire risk threshold be-
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Figure 11. Spatial distribution of December 2019 active fire detec-
tions from MODIS over southeast Australia, where red indicates
positive detection (a). The December 2019 (solid line) and Decem-
ber 2010–2018 (dotted line) regional average live fuel moisture con-
tent (black) and dead fuel moisture content (blue) for the same do-
main (b). Also shown is a spatial representation at ∼ 9 km of the
average December 2019 (a, c, e) and December 2010–2018 (b, d, f)
dead (c, d) and live (e, f) fuel moisture content.

tween the two values. The average DFMC for December
2019, 25 %± 17 %, was lower than the 2010–2019 average,
34 %± 13 %.

The wildfire season in 2019 occurred for multiple months
either side of December, and as a result, no significant trend
in DFMC or LFMC is identified throughout the month. Both
DFMC and LFMC values fall below the spread of the clima-
tology for all days of the month. As with the previous case
studies, DFMC exhibits a higher variability throughout the
month, ±2.4 %, relative to LFMC, ±0.8 %.

4 Validation with fire activity

Various fire indices are used to define fire risk, including the
fire severity index (FSI; Van Wagner, 1987). Like the FWI,
the FSI is based on meteorological inputs and neglects land
surface variables. The FSI is currently used operationally at
ECMWF within the fire danger system (Di Giuseppe et al.,
2016). We compared our area averaged daily fuel load and
moisture with the FSI over several fire prone regions over the
10-year period for which the dataset is available. These were
then evaluated against active fire counts from MODIS over
the region at a daily frequency. As previously mentioned, the
phenology influences LFMC, and as a simple approach to
correct for this, we used the monthly anomaly of LFMC to
illustrate fire danger.

The results show that FSI is typically well correlated with
fire activities in the selected domains (Fig. 12). It should be
noted that high FSI values are also found in regions with
little or no fire activity, for example, hot deserts, which are
not shown. This is because little or no vegetation cover can
still result in high FSI values, as this index only accounts for
weather conditions. The regions and times selected include
several significant wildfire events, but the intention here is to
also evaluate the interannual and seasonal variability of the
fire prone regions and evaluate how well the different vari-
ables correlate with fire activity.

The Alberta, Canada, domain is also dominated by ever-
green needleleaf forests. During the time series two signifi-
cant fires events occurred in the region: the Richardson fire
between May and July of 2011, which resulted in a burnt
area of evergreen needleleaf forest of 5800 km2 (Pinno et al.,
2013), and the entire 2019 wildfire season. Both the 2012
and 2015 fire seasons also saw significant fire activity. For
ease of analysis, we considered the inverse of both LFMC
and DFMC as the correlation variable. Seasonal fire activ-
ity is reasonably well captured by both FSI (R = 0.58) and
DFMC (R = 0.38), whilst the LFMC anomaly (R = 0.18) is
less well correlated due to the relationship between phenol-
ogy and LFMC. Given that DFMC, FSI, and LFMC are not
the only contributors to fire activity, a larger correlation value
was not necessarily expected. The skill of the FSI is unsur-
prising given that the index was developed using similar ev-
ergreen needleleaf forests. Both DFMC and FSI values sug-
gested an active fire season in 2018, which was not reflected
by fire counts, possibly owing to a lack of ignitions. Although
the LFMC anomaly generally correlated weakly with fire ac-
tivity, the second lowest LFMC anomaly in the dataset co-
incided with the active fire season in 2019. As expected, the
low interannual and seasonal variability in fuel load is not
found to be a contributing factor to fire activity.

In California, USA, domain seasonal fires are common,
and the largest within the period was the Thomas fire in De-
cember 2017 resulting in a burnt area of 1100 km2 (Nauslar
et al., 2018). The fuel load in the region is dominated by ev-
ergreen needleleaf forest in our model, but the Thomas fire
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Figure 12. Time series between 2010 and 2019 of fire counts (black), fuel load (yellow), FSI (blue), negative LFMC anomaly (green),
DFMC−1 (red) for Albert, Canada (top), California, USA (second panel), northern sub-Sahara (third panel), and southern Africa (bottom)
using a 30 d average. Shaded regions denote active fire seasons.
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specifically involved the burning of various vegetation types.
As with the Alberta domain, the FSI (R = 0.84) was devel-
oped for such environments and so performs well at repre-
senting active fire seasons, as does DFMC (R = 0.90). The
LFMC anomaly showed a weaker correlation with fire activ-
ity (R = 0.35). The interannual variability in fire activity is
not well reflected in either DFMC or FSI, as these values rep-
resent the fire risk only in the event of an ignition. As an ex-
ample, the lowest regional DFMC and highest FSI occurred
in 2012 and 2014, respectively, and neither year saw signifi-
cant fire activity. The Thomas fire occurred when the fire risk
forecast, given by FSI, was low, as was the regional DFMC.
There was, however, an anomalously low LFMC during that
period (third lowest in the 10-year record), suggesting that
had LFMC been considered in fire risk, a more accurate fore-
cast may have been provided. Seasonal variability in fuel
load is small and not thought to be a contributing factor in
fire activity; however, fuel type, dead/alive, and leaf/wood
may influence the likelihood of fire in the region and requires
further investigation.

The sub-Saharan Northern Hemisphere region of Africa,
including the Sahel, encompasses large fire prone savannah
areas. The region contributes approximately one-third of the
total burnt area globally for a given year (Humber et al.,
2019). Agricultural burns are common in the region and are,
in part, independent of the metrics used in this study. The dif-
ference in vegetation makes the nature of savannah wildfires
noticeably different to the previously evaluated forest fires.
Unlike the two previous case studies, fires in the region are
often fuel limited with fast turnover savannah grasses return-
ing in the growing season. Although fire counts correlated
well with both DFMC (R = 0.86) and FSI (R = 0.84), both
variables tend to peak in the last week of January toward the
end of the dry season. In contrast to this, fire counts and fuel
load typically peak in the last week of December, and this is
caused by a reduction in available fuel later in the dry season.
Given a relatively small interannual variability in fire season,
the anomaly in LFMC is not a useful variable for interannual
prediction.

The southern Africa domain encompasses deciduous and
evergreen broadleaf forests in the north and broadleaf sa-
vannah and deciduous shrubland in the south. As with the
Northern Hemisphere sub-Sahara African domain, agricul-
tural burns in the area are common resulting in fire counts
unrelated to fuel characteristics. Both the DFMC (R = 0.94)
and FSI (R = 0.86) correlated well with fire counts; however,
they suggest a prolonged fire season with a seasonal peak at
the start and end of September, respectively. This contrasts
with the fire count data, which show a relatively short fire
season, peaking in August whilst the fuel load is still high.
This once again highlights the importance of considering fuel
load in forecasting fire activity. LFMC is only weakly corre-
lated with fire count (R = 0.15); however, three of the four
most active fire seasons, 2010, 2011, and 2013, coincide with
the 3 years with the lowest LFMC anomalies.

These results provide examples of fire thresholds as de-
scribed by Kelley et al. (2019). These thresholds for fire ac-
tivity can be controlled by either fuel load availability, fuel
moisture content, ignition frequency, suppression capacity,
or a combination of all of these. (It should be noted that the
fire risk thresholds specific to the vegetation type described
in the previous section are not included in this evaluation.)

5 Vegetation-specific fire danger

A global comparison with MODIS active fire and our mod-
elled fuel moisture was performed to evaluate potential
thresholds for fire activity. The comparison was made by
first selecting only locations where active fires were detected
at least five times in the 10-year period. For simplicity, for
this analysis we ignore potential limitations of fuel load.
For both DFMC and LFMC, thresholds were expected to be
vegetation-type dependent, and as a result, we categorized
each grid cell globally by the dominant type in the ECLand
model. We defined threshold values for fire risk based on
the ratio of fire-detected to non-fire-detected values, for both
DFMC and LFMC (Fig. 13). If the percentage of fire de-
tections relative to non-fire detections for a given moisture
content exceeds 6.0 %, the fire risk is considered extreme.
Additional risk values are applied based on the percentage
of fire detections relative to non-fire detections for very high
risk (4.5 %), high risk (3 %), moderate risk (2 %), low risk
(1.5 %), and very low risk (1 %). These thresholds are in-
tended as a simplified measure of fire risk and would need to
be further refined based on fuel load and atmospheric condi-
tions to generate a fire risk forecast.

The results show the fuel moisture is negatively correlated
with fire activity for all vegetation types, and more so for
DFMC, suggesting that our values are suitable as a proxy
for fire danger. For LFMC the relationship is complicated by
vegetation typically uptaking more moisture in the growing
season and drying in the dormant season. The fire risk as-
sociated with LFMC should therefore consider plant phenol-
ogy, which requires further investigation. The probability of
fire occurrence differs between vegetation type as expected,
which emphasizes the importance of categorizing fuel. Glob-
ally, fires most often occur over short grass, for which we es-
timate a moderate fire risk for DFMC below 51 % or a low
fire risk for LFMC below 145 % or DFMC between 51 % and
68 %. These relatively low risks are expected given that short
grass has the largest global coverage of the vegetation types.
Relative to the number of grid cells considered for each veg-
etation type, fires most often occur in broadleaf savannah re-
gions, with active fires detected in fire prone regions 2.5 % of
the time, followed by deciduous broadleaf, 1.8 %. When the
LFMC drops below 104 % in both these regions, the fire risk
increases to very high, whilst for DFMC this occurs when
values drop below 65 % for broadleaf savannah and 58 % for
deciduous broadleaf. The fire risk in broadleaf savannah be-
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Figure 13. A kernel density estimation (KDE; first and third columns) and cumulative distribution function (CDF; second and fourth columns)
for both live (first and second columns) and dead (third and fourth columns) fuel moisture content for the six vegetation types where fires
most frequently occur. The KDE plots are divided between values where active fire detection occurred (red curve) and where no detection
occurred (blue curve), with the total number of values to which this is applicable in the legend. Similarly, the CDF is split between active fire
detection values (red line) and no detection (blue line). The shaded regions below the red CDF curve indicate the moisture content thresholds
for very low (green), low (yellow), moderate (orange), high (orange-red), very high (red), and extreme (black) fire risk.

comes extreme for DFMC values below 17 %. We only report
on fire risk for the six vegetation types which have the high-
est fire occurrence; however, fire risks are generated for all
vegetation types in ECLand.

6 Discussion

This study provides the methodology for modelling fuel
characteristics relevant for wildfires suitable for an opera-
tional forecasting system. More specifically, we outline a
framework for estimating fuel load and moisture into four
distinct categories: live foliage, live wood, dead foliage, and
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dead wood. To complement the methodology, we have com-
piled a 10-year daily global dataset at 9 km horizontal reso-
lution based on a combination of modelling and earth obser-
vation data. The framework permits for characterization at a
higher spatiotemporal resolution, with plans to introduce this
in the IFS infrastructure hosted by ECMWF.

We found that approximately 78 % of global above-ground
fuel is made up of living matter, 2 % is leaf, and 76 % is
wood, although this figure varies considerably between re-
gions and time of the year. Spatially, 63 % of the total fuel is
found in tropical regions with the rest split between boreal,
19 %, and temperate, 18 %, regions, in agreement with previ-
ous studies (Pan et al., 2011; Erb et al., 2018). The fuel type,
not just load, is important for assessing not just fire danger
but even fire type (ground, crown, etc.). At any given time,
most fuel is not suitable for burning owing to a high fuel
moisture content. The consideration of fuel type and load is
currently missing from operational fire danger models and
such an approach affords the opportunity to easily improve
the ability to predict wildfire risk.

The derived fuel load was found to be in good agreement
with previous studies (Matasci et al., 2018; Soto-Navarro et
al., 2020; Mauro et al., 2021; Rodriguez Veiga and Balzter,
2021), although the seasonality of the fuel load and type
requires further validation when future observation-based
products become available. The 2010–2019 dataset presented
here is constrained by available observation-based AGB esti-
mates, which are required to bias correct model NEE. How-
ever, in an operational context it may be possible to utilize
a bias correction scheme based on atmospheric CO2 inver-
sions (Agustí-Panareda et al., 2019). This may be favourable
as the scheme is used operationally and has been extensively
validated using observations. Land use change, which is not
modelled, limits the accuracy of the derived fuel load in some
regions where the vegetation type is likely to change. The
fuel load reported here does not include the reduction in load
in response to fire activity, as such changes require a fully
integrated fire model.

As with fuel load, fuel moisture was derived for both live
and dead vegetation. Live fuel moisture was computed based
on a vegetation-dependent asymptotic regression of LAI and
four layers of soil moisture, which was trained from observed
fuel moisture content (Yebra et al., 2019). We generally
found good spatiotemporal agreement with moisture derived
from satellite observations reported by Quan et al. (2021);
however, our estimated range in moisture content is lower
than their estimates and the overall average LFMC is 20 %
lower. Whilst there is general agreement when considering
herbaceous vegetation types, there is a poor correlation over
forested areas. The reasons for this are unclear and could
relate to the difficulty in estimating below-canopy moisture
content from MODIS.

Dead fuel moisture was estimated by expanding the Nel-
son model for moisture to 1, 10, 100, and 1000 h fuels (Nel-
son, 2000). This was derived using ERA-5 meteorology and

ECLand vegetation types for both dead foliage, including
small branches, and for slow drying dead wood. Several as-
sumptions are made about the structure of dead fuel and the
vegetation-specific fuel allocation for different drying times.
As globally derived DFMC is not available, we validated
the estimated DFMC, alongside LFMC, by comparing val-
ues with several significant fire episodes in different biomes.
The results showed that fire occurrence increased as both
LFMC and DFMC decreased for all case studies. DFMC
most closely represents operational fire risk products relat-
ing to FWI, and evaluation against one such product, FSI,
showed general agreement between the two variables.

Vegetation-specific fire risk based on both live and dead
moisture content was derived by comparing active fire detec-
tion and no detection from MODIS. These thresholds high-
light the importance of considering vegetation type when
evaluating fire risk. For example, broadleaf savanna exhibits
an extremely high fire risk at low DFMC values (< 17 %);
however, high and very high risk exists for a broad range of
DFMC values up to 65 %. Whereas only a small change in
LFMC in evergreen broadleaf forests can result in a switch
from very low (> 131 %) to high risk (< 124 %). These fire
risks need to be refined further in future work and should fac-
tor in other components such as ignition sources, fuel, and
meteorological conditions.

As a final validation we evaluated our fuel characteris-
tics against an operational fire danger index, FSI, using ob-
served fire counts over several fire prone regions. We found
that whilst FSI typically correlates well with fire activity, it
overestimates fire activity in fuel limited regions and neglects
increased fire risk from low LFMC values. For one such in-
cident, the Thomas fire in California, neither DFMC nor FSI
accurately capture the expected fire behaviour; however, an
anomalously low LFMC may have created the conditions by
which the fire was able to spread effectively. In fuel limited
savanna and shrubland regions FSI estimates a prolonged fire
season, whereas the fire counts are considerably higher in the
first part of the dry season when there is available fuel. This
analysis highlights the importance of not just deriving fuel
characteristics as a limiting factor in fire activity, but also of
allocating both fuel load and moisture content appropriately
into subcategories using available model information, such as
vegetation type or LAI. Neither LFMC nor fuel load strongly
correlate directly with fire activity; however, they should be
considered when formulating both fire danger and fire spread
as they are shown to influence fire activity depending on the
domain of interest.

This study provides a framework by which coupled land–
atmosphere models can estimate key fuel characteristics rel-
evant for predicting fire activity in near real time. The dataset
provided is intended for use by the wider community to
investigate fire activity amongst other things. Of the vari-
ables included, DFMC most accurately represents existing
fire danger indices, like FWI. The use of fuel load, type, and
LFMC for fire risk requires further model development, al-
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though they already compare well with fire activity and are
shown to be limiting or contributing factors to fire activity in
certain regimes. The further development of a full fire risk
and fire spread model requires consideration of ignition and
spread based on meteorology and orography. Future mod-
elling applications could use the framework outlined here to
not only provide the risk of fire occurrence but also the risk
of fire spread and intensity based on fuel characteristics and
meteorology. The diagnosed fuel load and type can comple-
ment existing fire radiative power products to better estimate
trace gas and aerosol emissions from wildfires. It should be
noted that our estimates of fuel load currently neglect soil
carbon, which can significantly contribute to ground fires and
biomass burning emissions (Walker et al., 2020), but this will
be incorporated in future versions of the fuel model.

The skill of our model is limited by potential drift in fuel
load when unconstrained by observations, either through in-
verse trace gas analysis or direct AGB estimates. As a re-
sult, the framework would need to be further adapted for fu-
ture climate scenarios but would be suitable for past climates
where estimates of AGB are available.

Data availability. The 2010–2019 daily ∼ 9 km resolution fuel
characteristic dataset (ECMWF Fuel Characteristics V1) is hosted
on the Copernicus Climate Data Store. It is currently only
available by direct file transfer via ftp or sftp commands
from cems_fuelmodel_data@aux.ecmwf.int with the password “fu-
elmodel”. The data are stored as monthly files in subfolders of fuel
load and fuel moisture for both live and dead fuel.

Data will be made available through weblinks in the upcoming
ECMWF Data Store.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-21-279-2024-supplement.
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