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Abstract. Silvopastoral systems (SPSs) have been shown to
improve ecosystem resilience and provide sustainable land
management solutions in the Sahel. However, accurately es-
timating the contribution of Sahelian ecosystems to the over-
all greenhouse gas (GHG) balance is a challenge, in par-
ticular regarding the magnitude of carbon dioxide (CO2)
and nitrous oxide (N2O) emissions from soils. In this work,
we spatialized and applied the process-based model Sahe-
lian Transpiration Evaporation and Productivity – GENeral
model of litter DEComposition – N2O (STEP–GENDEC-
N2O) to investigate the magnitude and spatial and tempo-
ral patterns of herbaceous mass, as well as CO2 and N2O
emissions from soil (not net emissions) in Sahelian SPSs.
Our results show that over the last decade (2012–2022),
there was a heterogeneous spatial distribution of herba-
ceous mass production and of soil CO2 and N2O emis-
sions in Sahelian SPSs. Spatial variations in soil CO2 emis-
sions are primarily controlled by soil carbon content, tem-
perature, herbaceous mass, and animal load, while soil ni-
trogen content, soil water content, and animal load are the
main factors driving the spatial variations in N2O emis-
sions from soil. The estimated CO2 and N2O emissions
from soil in Sahelian SPSs over the 2012–2022 period were

equal to 58.79± 4.83 Tg CO2-C yr−1 (1 Tg= 1012 g) and
21.59± 3.91 Gg N2O-N yr−1 (1 Gg= 109 g), respectively.
These values are generally lower than estimates reported
in the literature for tropical areas and croplands. Further-
more, our simulations indicated a significant annual rising
trend of soil CO2 and N2O emissions between 2012 and
2020 as herbaceous mass increased, making more C and N
available for the nitrification, denitrification, and decompo-
sition processes. By mapping soil CO2 and N2O emissions,
we provide crucial insights into the localization of emission
hotspots in Sahelian SPSs, thereby offering valuable infor-
mation that can be used to devise and implement effective
strategies aimed at fostering carbon sequestration in the Sa-
hel.

1 Introduction

Carbon dioxide (CO2) and nitrous oxide (N2O) are two im-
portant greenhouse gases (GHG) that contribute significantly
(> 90 %) to anthropogenic climate warming (Hansen et al.,
2000). With 298 times the warming potential of CO2 over
100 years (Myhre et al., 2013), N2O is also a stratospheric
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ozone-depleting substance (Ravishankara et al., 2009). At-
mospheric concentrations of CO2 and N2O have experi-
enced significant increases since the late 1700s (Bloch-
Johnson et al., 2021; Prinn et al., 2018). This surge is primar-
ily attributed to emissions originating from terrestrial soils
(Butterbach-Bahl et al., 2013; Chevallier et al., 2015; Tian
et al., 2020) during the period from 1700 to 1980 (Kammen
and Marino, 1993). However, post-1990, the major contrib-
utors to greenhouse gas emissions on a global scale shifted
to the energy systems and industrial sectors (Parmesan et al.,
2022). CO2 emissions from soil are due to organic matter de-
composition (Robertson and Paul, 2000), while N2O is pro-
duced in soils through nitrification (i.e. oxidation of ammo-
nium to nitrate) and denitrification (i.e. the reduction of ni-
trate to molecular N; Davidson and Verchot, 2000). These
processes are regulated by a range of environmental factors
(Aulakh et al., 1991; Bajracharya et al., 2000; Reth et al.,
2005), making it difficult to scale up soil CO2 and N2O emis-
sions from local sites to the regional and global scale.

Nevertheless, in the last decade, several works provided
estimates of CO2 and N2O emissions from terrestrial soils at
a large scale (Dangal et al., 2020; Leahy, 2004; Tian et al.,
2015, 2016, 2018, 2019, 2020). However, regions such as
Africa, and especially sectors such as West African Sahelian
livestock production systems, have not received much atten-
tion. Our knowledge of the magnitude and the spatiotemporal
distribution of soil CO2 and N2O emissions in these systems
is limited and subject to large uncertainties (Assouma et al.,
2017). This is mainly due to a lack of experimental and mod-
elling studies focused on the region.

Silvopastoral systems (SPSs) are one of the most common
livestock production systems in the West African Sahel (Le
Houerou, 1987; Herrero et al., 2013a, b; Turner et al., 2014).
They are composed of a mix of trees and herbaceous cover
grazed by livestock. As an attractive nature-based climate so-
lution, SPSs offer long-term climate benefits thanks to the
presence of trees that have the potential to sequester carbon
and offset GHG emissions (Agbohessou et al., 2023a; Torres
et al., 2017). On the other hand, it has been reported that the
livestock component of SPSs has an impact on the nitrogen
(N) and carbon (C) cycles and therefore on GHG emissions
(Butterbach-Bahl et al., 2020). Indeed, livestock affect sub-
strate availability in soil through N input from their excreta,
thus impacting CO2 and N2O emissions (Butterbach-Bahl et
al., 2020; Dangal et al., 2020). It has been also reported that
direct agricultural N2O emissions from Africa mainly arise
from livestock manure deposited in pastures and rangelands
(Xu et al., 2019). Livestock movements result in heteroge-
neous spatial and temporal distributions of excreta, which
increases spatial heterogeneity in soil properties and avail-
able nutrients, promoting microbiological processes driving
soil CO2 and N2O emissions (Assouma et al., 2017; Smith
et al., 2003). Actually, rangeland soils, combined with live-
stock productions, were reported to be responsible for a large
share of GHG emissions (Assouma et al., 2017; Soussana et

al., 2010; Valentini et al., 2014). The importance of range-
lands in the global CO2 and N2O cycles and their potential
for increasing atmospheric CO2 and N2O levels have been
highlighted in a number of studies (Chang et al., 2015; Dan-
gal et al., 2020; Leahy, 2004). Accordingly, to better under-
stand the magnitude of GHG emissions in these systems and
to develop effective and spatially targeted climate solutions,
it is important to identify CO2 and N2O emission hotspots
and accurately estimate emissions from Sahelian SPSs.

The different bottom-up approaches used to estimate
large-scale soil CO2 and N2O emissions include the use of
emission factors (EFs) as proposed by the Intergovernmental
Panel on Climate Change (IPCC; Hergoualc’h et al., 2019;
IPCC, 2006), statistical extrapolation of field measurements,
and process-based models (Bigaignon et al., 2020; Delon et
al., 2019; Li et al., 2000; Parton et al., 2001). Aside from
this, the top-down approaches integrate atmospheric mea-
surements and atmospheric inversion models (Saikawa et al.,
2014). Each method has its uncertainties and limitations, re-
sulting in significant divergences in results across studies
(Tian et al., 2019), especially in underrepresented regions
like West Africa (Tian et al., 2020). The IPCC defined N2O
emission as 1 % of the applied N in the Tier 1 level (IPCC,
2006). This assumption of constant EFs can neither depict
spatial variations in N2O emissions nor reflect the impacts
of changing environments over time (Davidson and Kanter,
2014). Statistical extrapolation can also fail to depict the spa-
tial heterogeneity in emissions, especially when the spatial
variability in the parameters exceeds the prevailing condi-
tions during the calibration step (Tian et al., 2019). On the
other hand, the process-based model simulation approach has
the advantage of describing the overall C and N cycle within
the terrestrial systems and can integrate various driving fac-
tors controlling soil CO2 and N2O production and emissions
(Tian et al., 2019). This approach involves the use of exten-
sive data, such as meteorological, soil, and ecosystem man-
agement data. However, estimating the model parameters can
be challenging as there is a scarcity of experimental stud-
ies that contain comprehensive details on local and regional
pedoclimatic conditions and agricultural practices in West
Africa. Additionally, reliable and accurate large-spatial-scale
input datasets for the models are often lacking, not only in
under-represented areas but also in well-documented regions
such as Europe (Ballabio et al., 2016).

In this study, we selected the Sahelian Transpiration Evap-
oration and Productivity – GENeral model of litter DE-
Composition – N2O (STEP–GENDEC-N2O) process-based
model (Agbohessou et al., 2023a), which couples water bud-
get, herbaceous aboveground and belowground vegetation
growth and decay, herbaceous and tree foliage litterfall (Jar-
lan et al., 2005; Mougin et al., 1995; Tracol et al., 2006),
soil biogeochemistry, and gaseous emissions (Bigaignon et
al., 2020; Delon et al., 2019; Moorhead and Reynolds, 1991)
to investigate the spatial and temporal patterns of herba-
ceous vegetation mass and CO2 and N2O emissions from
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soil and estimate their annual budget in the Sahelian SPSs.
The STEP–GENDEC-N2O model was specifically designed
for Sahelian semi-arid ecosystems and has been validated lo-
cally for soil CO2 and N2O emissions in several sites repre-
sentative of the Sahelian SPSs (Agbohessou et al., 2023a; Bi-
gaignon et al., 2020; Delon et al., 2015, 2019). In this study,
this model was scaled up and used at the regional scale, i.e.
at the west Sahelian regional scale.

The specific objectives of our study are to (1) investigate
the spatiotemporal patterns of herbaceous vegetation mass,
CO2, and N2O emissions from soils in the Sahelian SPSs
over the last decade (2012–2022); (2) identify the environ-
mental factors responsible for the changes in the spatial pat-
terns of soil CO2 and N2O emissions; and (3) estimate the
soil CO2 and N2O budget of the Sahelian SPSs during the
2012–2022 period.

2 Materials and methods

2.1 Characteristics of the study area

The Sahel region is a semi-arid strip stretching across the
African continent from Senegal to the Red Sea (Le Houérou,
1989). The region is characterized by high temperatures, low
soil fertility, and a long dry season alternating with a short
rainy season, with precipitation occurring mostly between
June and September, making it challenging to grow crops.
As a result, a large portion of the region is used for pastoral
activities, which serve as the primary means of subsistence
(Touré et al., 2012). The focus of this study is on the Sahe-
lian SPSs of West Africa from latitude 13 to 18° N and from
longitude 18° W to 20° E (Figs. 1 and A1), which covers ap-
proximately 40 % (≈ 892 353 km2) of the Sahelian band. The
dynamics of rainfall in the Sahel are strongly linked to the
dynamics of the West African monsoon (Biasutti, 2019). The
Sahel experienced a dry period from the late 1960s to the
mid-1990s, marked by years of extreme droughts such as in
1973–1974 and in 1984–1985. Several studies have reported
a recovery period (Galle et al., 2018; Nicholson, 2017) for
the Sahel since 1984, which is defined by an increasing trend
in total seasonal rainfall (Biasutti, 2019; Dai et al., 2004).
However, rainy season characteristics have changed: rainfall
is more intense and intermittent (especially in areas with the
lowest rainfall), and wetting is concentrated in the late rainy
season (Biasutti, 2019; Chagnaud et al., 2022).

2.2 Model used from 1D processes to 2D upscaling:
STEP–GENDEC-N2O

2.2.1 Model description

STEP–GENDEC-N2O is a process-based model developed
for the Sahelian herbaceous savanna, coupling water bud-
get, aboveground and belowground herbaceous vegetation
growth and decay, litter fall (Mougin et al., 1995), soil

biogeochemistry (Moorhead and Reynolds, 1991), and soil
gaseous emissions (Agbohessou et al., 2023a; Bigaignon et
al., 2020; Delon et al., 2019). The model simulates the main
processes of the water, C, and N cycling between the at-
mosphere, vegetation, and soil at daily time steps and fi-
nally simulates CO2 and N2O emissions. STEP–GENDEC-
N2O is forced daily by rain, global radiation, air tempera-
ture, wind speed, and relative air humidity. The model has
been applied to estimate herbaceous vegetation mass in Sene-
gal, Mali (Mougin et al., 1995; Tracol et al., 2006), and
Niger (Hiernaux et al., 2009), and the model has been ap-
plied to CO2, NO, and N2O emissions in Mali (Delon et
al., 2015) and in Senegal (Agbohessou et al., 2023a; Bi-
gaignon et al., 2020; Delon et al., 2019). In the litter de-
composition GENDEC sub-model, the soil C content is cal-
culated from the total litter input provided by STEP, while
soil N is derived from the quantity of C using C/N ratios
(Moorhead and Reynolds, 1991). Soil moisture, soil tem-
perature, and biomass (i.e. herbal aerial mass, herbaceous
root mass, ligneous leaf mass, and faecal matter from live-
stock) are used as input variables to simulate microbial res-
piration. This is done by examining the interaction between
buried litter, decomposer microorganisms, and six C and N
pools (i.e. labile compounds, holocellulose, resistant com-
pounds, dead microbial biomass, living microbial biomass,
and soil N). N2O production and emissions from nitrifi-
cation and denitrification are simulated using the DNDC
(DeNitrification–DeComposition) equations (Li et al., 2000;
Liu, 1996) adapted to the semi-arid region, as described in
Bigaignon et al. (2020) and Agbohessou et al. (2023a). STEP
alone has already been run to simulate aboveground biomass
production at the local scale (Jarlan et al., 2003, 2005, 2008;
Mougin et al., 1995), mesoscale (Grippa et al., 2017), and
West African Sahel scale (Pierre et al., 2016). The summary
figure (Fig. A9) showing the connection between the STEP
and GENDEC models and the N2O module can be found in
the Appendix.

2.2.2 Model upscaling

We used STEP–GENDEC-N2O to simulate daily herbaceous
vegetation mass and CO2 and N2O emissions from soil in
western Sahelian SPSs. We developed a framework to run
the model at a regional scale using the parameterizations
developed in the above-cited studies. Simulations were per-
formed at the western Sahelian band scale (Fig. 1) divided
into 18 271 grid cells of 0.1°× 0.1° from 2012 to 2022. In-
put variables were extracted from different datasets avail-
able at the global or regional scale, as described below (Ta-
ble 1). For the soil dataset that is provided at a finer reso-
lution (< 0.1°× 0.1°), pixel values for each centroid of the
18 271 simulation grid cells was extracted. Simulations were
performed over an 11-year period (2012–2022) preceded by
a 6-year spin-up using the meteorological forcing data of the
year 2012, which was repeated 6 times. The spin-up period
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Figure 1. Illustration of the upscaling approach used. Model inputs and outputs and the simulation domain (Sahelian SPSs) are shown on the
map. Silvopastoral areas were filtered from cultivated areas in the simulation area.

allows carbon and nitrogen pools to reach stability, as in Ag-
bohessou et al. (2023a). Indeed, in the model, the carbon
compartments for buried litter, feces, and dry roots are not
initialized at 0; thus, our simulations start with initial car-
bon values of 3.7, 0.3, and 6.0 g C for buried litter, feces, and
dry roots, respectively. These values represent means derived
from in situ measurements collected over several years at the
Dahra site, where the model has previously been employed
at the local scale. The carbon and nitrogen sub-model used
is relatively simple, employing first-order differential equa-
tions with moderate nonlinearity, which likely accounts for
the rapid convergence observed in the model. All of this ex-
plains why the model did not require an extensive spin-up
time to run with appropriately supplied carbon and nitrogen
compartments.

2.3 Model input data

2.3.1 Climate data

The climate data required for the simulation were de-
rived from two different datasets (GPM_3IMERGDF and
AgERA5). Precipitation (mm) data were taken from
the IMERG (Integrated Multi-satellitE Retrievals for
GPM) dataset, GPM_3IMERGDF (Huffman et al., 2019).
GPM_3IMERGDF or GPM IMERG Final Precipitation
L3 1 d 0.1°× 0.1° V06, is derived from the 30 min
GPM_3IMERGHH dataset (Huffman et al., 2019) and rep-
resents the final estimate of the daily accumulated precipi-
tation. The selected product is the precipitationCal* multi-

satellite precipitation estimates with gauge calibration. Dez-
fuli et al. (2017) validated the IMERG product in Africa
using gauge data from western and eastern Africa. They
showed that the precipitation diurnal cycle is relatively
better-captured by IMERG than by the Tropical Rainfall
Measuring Mission (TRMM) Multi-Satellite Precipitation
Analysis (TMPA) product. Maranan et al. (2020) did a
process-based validation of GPM IMERG in Africa using
gauge data from a West African forested zone. Additionally,
the choice of the IMERG dataset over the ERA5 dataset for
precipitation is based on expert recommendations and on the
results of previous evaluations of ERA5 precipitation data
by Lavers et al. (2022). Their study highlighted significant
errors, primarily in tropical regions. According to Lavers et
al. (2022), users can only have confidence in ERA5 precipi-
tation data in extratropical regions.

The spatial distribution of the GPM_3IMERGDF aver-
age precipitation over the last decade (2012–2022) exhibits
significant gradients, with precipitation reaching as low as
0 mm at the northern border, exceeding 500 mm at the south-
eastern border, and exceeding 1000 mm at the south-western
borders (Fig. A2). Additionally, there is a significant increas-
ing trend in annual mean precipitation from 2010 to 2021,
along with interannual variability (Fig. 3c).

Temperature (°C), solar radiation (MJ m−2), vapour pres-
sure (hPa), and wind speed (m s−1) were extracted from the
AgERA5 dataset (Boogaard et al., 2020) using the R package
ag5Tools (Brown and de Sousa, 2023). The AgERA5 dataset
provides daily surface meteorological data matching the in-
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put needs of STEP–GENDEC-N2O. The dataset is based on
the ECMWF (European Centre for Medium-Range Weather
Forecasts) reanalysis ERA5-Land dataset (Muñoz-Sabater,
2019). ERA5-Land is an enhanced global dataset for the land
component of the fifth-generation reanalysis produced by the
ECMWF. It combines extensive historical observations from
satellites, aircraft, and land and marine weather sensors into
global estimates using advanced modelling and data assim-
ilation systems to generate consistent time series of multi-
ple climate variables. More information about the ERA5-
Land product can be found in Muñoz-Sabater et al. (2021)
and Gleixner et al. (2020). In the data used, no significant
trends (p> 0.01) were observed in average air temperature
(range: 25–35 °C), minimum air temperature (range: 16–
27 °C), maximum air temperature (range: 25–39 °C), global
radiation (range: 19–25 MJ m−2 d−1), wind speed (range: 2–
7 m s−1), and vapour pressure (range: 5–25 hPa; extracted
from ERA5-Land) in the Sahel between 2012 and 2022.

2.3.2 Soil data

Soil pH and soil texture (i.e. clay, silt, and sand content) were
obtained from the iSDA (Innovative Solutions for Decision
Agriculture, Ltd.) soil dataset (Hengl et al., 2021). The iS-
DAsoil dataset contains soil property predictions at a 30 m
pixel size using machine learning coupled with remote sens-
ing data and a training set of over 100 000 analysed soil sam-
ples from all over Africa (Hengl et al., 2021; Miller et al.,
2021). Prediction uncertainty estimates per pixel for the iS-
DAsoil property data are provided in Hengl et al. (2021). In
the same study, the average accuracy performance based on
5-fold spatial cross-validation for various soil variables indi-
cated that soil pH exhibited the highest performance, with a
concordance correlation coefficient (CCC) of 0.90. The CCC
values for soil clay content, sand content, and silt content
were 0.85, 0.85, and 0.78, respectively. We initialized the dry
soil albedo, soil moisture (mm), and soil temperature (°C) at
the beginning of the simulation using data extracted from the
ECMWF reanalysis ERA5_Land (Muñoz-Sabater, 2019).

Exploration of the extracted soil datasets showed that the
soils in the Sahel region are typically sandy, with high levels
of sand and low levels of clay (Fig. A3a and b). This results
in soils that are well-drained but low in nutrients. The soil
pH in the south-western part of the Sahel ranges from 5 to 7,
while in the north and east it is higher than 7 (Fig. A3c).
The pH levels of the soils in the Sahel vary also depending
on their texture. Sandier soils typically have a higher pH (7–
8.5), while clay soils have a lower pH (5–7).

2.3.3 Animal load data

Information about livestock population and animal load dis-
tribution were obtained from the total livestock number for
the reference year 2010 provided by the Gridded Livestock
of the World version 3 (GLW3; Gilbert et al., 2018) dataset.

GLW3 provides global population densities of cattle, buf-
faloes, horses, sheep, and goats in each land pixel at a spa-
tial resolution of 0.083333 decimal degrees (approximately
10 km at the Equator). The relative spatial distribution of
livestock over the simulation period was assumed to be the
same as the one indicated by the GLW3 database for the
year 2010. To our knowledge, no measurement data are avail-
able for the temporal variation in livestock across the Sa-
hel. Indeed, the Food and Agricultural Organization of the
UN, Statistics Division (FAOSTAT) provides estimates of
the livestock population at the national level for the period
from 2012 to 2020 (FAOSTAT, 2024). However, these data
are only available at the national scale and have not been
downscaled to the finer spatial scales required for our sim-
ulation. GLW3 is currently the most recently compiled and
harmonized sub-national livestock distribution dataset avail-
able (and only covers the year 2010). In Gilbert et al. (2018)
it is mentioned that the outputs of the GLW3 dataset have
been adjusted to ensure that the total number of animals in a
country aligns with the FAOSTAT 2010 total stock number.
To our knowledge, there are no recent datasets available prior
to 2010 presenting livestock distribution at the sub-national
scale in our region. We used the annual values of the GLW3
database to distribute the animal load on a monthly basis, tak-
ing into account the temporal variation in the livestock popu-
lation from one month to the next throughout the year. We as-
sumed an increase in the livestock up to 100 % (in reference
to the GLW3 database) in the pixels during the rainy season
and a gradual decrease down to 20 % as we approached the
middle of the dry season.

Analysis of the GLW3 dataset revealed that livestock is
heterogeneously distributed across the Sahel and that the an-
imal load is dominated by bovines, ovines, caprines, and
some equines (Gilbert et al., 2018). High livestock densi-
ties were observed in north-western Senegal, southern Mau-
ritania, central Mali, northern Burkina Faso, southern Niger,
northern Nigeria, and south-western Chad (Fig. A3f).

2.3.4 Initial biomass data

The model calibration input parameters related to herbaceous
vegetation, such as initial mass (Bg0) and initial specific leaf
area (SLAg0) at germination date, were computed using data
from the biomass dataset provided by Action Contre la Faim
(ACF), Surveillance West Africa (Bernard and Fillol, 2020,
2021; Lambert et al., 2019). ACF biomass data were pro-
duced from 10 d images of dry mass production (DMP) from
Satellite Pour l’Observation de la Terre – Végétation (SPOT-
VGT) 4 and 5, PROBA-V satellite, and SENTINEL-3 satel-
lite (Lambert et al., 2019). The retrieval algorithm of the
DMP product is described as follows (Monteith, 1972; Swin-
nen et al., 2022):

DMP= R× fAPAR× γLUEc× γc× γT× γCO2 ×CUE. (1)

Biogeosciences, 21, 2811–2837, 2024 https://doi.org/10.5194/bg-21-2811-2024



Y. Agbohessou et al.: Modelling CO2 and N2O emissions from soils 2817

DMP is the 10 d dry mass production (kg DM ha−1 d−1),R is
the 10 d total shortwave incoming radiation (GJT ha−1 d−1),
the fraction of absorbed photosynthetically active radiation
(fAPAR) is the PAR fraction absorbed by green vegetation
(JAP/JP), γLUEc is the light-use efficiency at optimum (kg
DM GJ−1

AP), γc is the fraction of PAR in the total shortwave
(JP/JT), γT is the normalized temperature effect, γCO2 is the
normalized CO2 fertilization effect, and CUE is the carbon
use efficiency.

The 1 km2 resolution biomass raster product showing
biomass production in the Sahel in kg ha−1 yr−1 was down-
loaded for the study period. We extracted the biomass value
for each centroid of the simulation grid cells and performed
a normalization by scaling the dataset linearly to a range be-
tween 0 and 2.5 g m−2 (the min and max values of Bg0 in
the STEP model) to get the spatial distribution of the ini-
tial biomass (Bg0) at germination date. To obtain the spatial
distribution of the initial specific leaf area (SLAg0) at ger-
mination date, we normalized the ACF biomass dataset to a
range between 0 and 280 cm2 g−1 (the min and max values
of SLAg0 given in Jarlan et al., 2008). The normalization for-
mula used to linearly scale biomass values to Bg0 and SLAg0
ranges is the following:

Xnorm = a+
(x−min(x) ) · (b− a)

max(x) −min(x)
, (2)

with Xnorm representing the value of Bg0 or SLAg0; a and b
being the smallest and the largest value that Bg0 or SLAg0
can take, respectively; and x being the biomass values from
the ACF dataset.

In the model, Bg0 and SLAg0 are calibration parameters.
Bg0 mainly affects the date of peak biomass (Tracol et al.,
2006), whereas SLAg0 is used to estimate the leaf area index
(LAI) and the fAPAR. The maximum conversion efficiency
(γc) of absorbed radiation into biomass (i.e. g of dry matter
per MJ of absorbed photosynthetically active radiation) was
set to 5 g MJ−1, which corresponds to the central value of the
γc range possible values (Mougin et al., 1995; Pierre et al.,
2011; Tracol et al., 2006) for all simulation grid cells.

2.3.5 Foliar mass of trees

Using the allometric equation developed by Hiernaux et
al. (2023), we transformed the tree area density product pro-
vided by Tucker et al. (2023) into an estimate of tree foliar
biomass in each simulation grid cell (Fig. A3e). The conver-
sion formula employed was

DMfoliar = 0.2693×A0.9441. (3)

Here, DMfoliar represents the mass of tree leaves in kilo-
grams, and A denotes the tree crown area in square metres.

2.4 Accounting for SPS distribution in model outputs

The Global Land Cover–SHARE (GLC–SHARE) dataset
(FAO Global Land Cover (GLC-SHARE) Beta-Release 1.0

Database, 2014) provides information about the spatial dis-
tribution of a set of 11 major land cover classes (i.e. artifi-
cial surfaces, cropland, grassland, tree-covered areas, shrub-
covered areas, herbaceous vegetation, aquatic or regularly
flooded, mangroves, sparse vegetation, bare soil, snow and
glaciers, and water bodies) for the year 2013 at a 1 km2 pixel
resolution. First, we assumed that land cover change intensity
was negligible in the Sahel during the last decade (the study
period). Second, a new land cover class called silvopastoral
areas was created that represents the sum of pixels of the
shrub-covered area and grassland classes (Fig. 1).

The proportions of silvopastoral area pixels within
the 0.1°× 0.1° simulation grid cells (pixel resolution
≈ 123.21 km2) were calculated using the GLC–SHARE
dataset to obtain the spatial distribution of silvopastoral sys-
tems in the Sahel (Fig. A1). In our analysis and interpretation
of the spatial distribution of herbaceous mass and CO2 and
N2O emissions, we consider the model outputs for simula-
tion pixels where silvopastoral areas are > 80 %. Addition-
ally, bivariate maps that display both model outputs and the
distribution of SPSs in the simulation domain were proposed
to provide a more comprehensive view of the results.

To estimate the annual budget of soil CO2 and N2O emis-
sions, the model outputs were weighted by the proportion of
silvopastoral area within each simulation grid cell (Figs. 1
and A1), thus considering all SPSs across the simulation do-
main, even those with % SPS< 80 %,.

2.5 Random forest algorithm for the analysis of soil
CO2 and N2O emission driving parameters

Random forest (RF) is a machine learning method developed
by Breiman (2001); it is a natural non-linear modelling tool
that has proven valuable in many fields (Liu et al., 2022;
Webb et al., 2021). We used the RF algorithm to identify the
most important factors influencing the spatial distribution of
soil CO2 and N2O emissions. The main advantages of RF
algorithms are the low number of tunable factors, good tol-
erance to outliers and noise, general resistance to overfitting,
and the ability to identify and rank the most important vari-
ables (Liu et al., 2022; Webb et al., 2021). The RF algorithm
was implemented in the R software (R Core Team, 2019),
and the modelling framework provided by the randomForest
R package (Liaw and Wiener, 2002) was used in our study.
The target variables of the RF are the spatial distribution of
the simulated soil CO2 and soil N2O emissions, while the ex-
planatory variables include the spatial distribution of various
environmental and biological factors that can impact the spa-
tial distribution of the soil CO2 and N2O emissions simulated
by the STEP–GENDEC-N2O model. These factors consist of
a combination of output variables from the STEP–GENDEC-
N2O model (e.g. soil water content, soil temperature, soil
C content, soil N content, and herbaceous mass) and input
variables for the STEP–GENDEC-N2O model (e.g. soil sand
content, soil clay content, soil pH, air temperature, albedo,
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annual precipitation, and animal load). We conducted the RF
with the default parameters proposed by the randomForest
package.

The method is composed of three critical steps, each of
which plays a crucial role in the overall performance of the
model. In the first step, a bootstrap sample of observations
(equal to the number of trees) is randomly drawn from the
dataset, with replacement. Approximately one-third of the to-
tal observations are left out and used as “out-of-bag” (OOB)
data to evaluate the model performance and prevent the need
for a separate validation dataset (Efron and Tibshirani, 1986;
Philibert et al., 2013). This provides a resampling procedure
that generates multiple versions of the training dataset, which
helps to mitigate overfitting and improves the accuracy of the
model. In the second step, a random subset of predictor vari-
ables is selected at each node of the decision tree (Ghattas,
2000; Philibert et al., 2013; Prasad et al., 2006). The number
of variables selected (mtry) was set to the integer part of the
square root of the total number of variables (Breiman, 2001;
Liaw and Wiener, 2002; Philibert et al., 2013). This approach
involves considering a subset of variables at each node of the
decision tree and selecting the best variable that maximizes
the information gain. This randomization technique reduces
the correlation among the trees and makes the model more
robust and accurate. In the final step, multiple decision trees
are grown from the bootstrapped dataset and the random sub-
sets of features. The trees are grown using recursive binary
partitioning of the data, with the best split determined by op-
timizing a quality criterion such as information gain accord-
ing to the Gini impurity index (Breiman et al., 1984). The
final prediction is made by averaging the outputs of the ag-
gregated predictions of all trees in the forest. The process is
repeated multiple times until a stable estimate of model per-
formance is obtained.

We assessed variable importance using the percentage in-
crease in mean squared error (% IncMSE) after a factor was
randomly permuted. The % IncMSE estimates the contribu-
tion of each variable to the reduction in the mean squared
error in the model (Breiman, 2001; Echeverry-Galvis et al.,
2014). Factors with higher % IncMSE values are considered
more important in explaining the spatial distribution of soil
CO2 and N2O emissions. The importance of each factor was
displayed using the variable importance plot developed from
the RF.

2.6 Statistical analysis and mapping

We conducted a linear regression analysis to examine trends
over time in herbaceous vegetation mass, soil CO2 and N2O
emissions, and relevant emission-driving variables. The Pear-
son correlation was used to assess the relationship between
the different variables. All statistical analysis and mapping
were performed using R (R Core Team, 2019).

3 Results

3.1 Spatiotemporal patterns in aboveground
herbaceous mass in the Sahelian SPSs (2012–2022)

The annual production of aboveground herbaceous mass sim-
ulated from 2012 to 2022 in the Sahelian SPSs displays a
latitudinal gradient characterized by higher herbaceous mass
in the southern regions, which diminishes as we progress to-
wards the northern latitudes (Fig. 2). The same spatial pattern
is observed in Fig. 2b, which highlights results for Sahelian
SPSs (pixel % SPS> 80 %). The maximum annual mean pro-
duction (2012–2022) reaches 3 t DM ha−1 yr−1, and the an-
nual minimum production is 0 t DM ha−1 yr−1.

Herbaceous mass in Sahelian SPSs exhibited interannual
variations, with standard deviations reaching up to 1.3 t
DM ha−1 yr−1 at some locations (Fig. A4a). We observed a
significant increasing trend (p< 0.001) in the annual herba-
ceous mass anomaly (a deviation from the 2012 to 2022 aver-
age) from 2012 to 2020 (Fig. 3a). This rising trend is evident
in the Hovmöller representation, which depicts a gradual in-
crease in herbaceous mass, particularly in the southern Sahel
region around the latitudes of 13 and 15° N (Fig. 3b), with
the highest production simulated in the wettest years (2019,
2020, and 2021; Fig. 3c). In the southern Sahel (13 to 15° N)
herbaceous mass in SPSs can reach 2.5 t DM ha−1 yr−1,
while in the northern Sahel (16 to 18° N) it does not ex-
ceed 0.5 t DM ha−1 yr−1 (Fig. 3b). Overall, herbaceous mass
in the Sahelian SPSs is highly correlated to the wet season
total precipitation, which shows large interannual variation
(Fig. 3c; p< 0.001 and r = 0.6).

3.2 Soil CO2 and N2O emissions in Sahelian SPSs

3.2.1 Spatial distribution across the Sahel

The simulation results reveal a heterogeneous spatial distri-
bution of soil CO2 and N2O emissions, with the lowest emis-
sions in the north and the highest emissions in the south
(Fig. 4). SPSs in the pastoral zones of central Senegal, in
southern and central Mali, in northern Burkina Faso, and in
southern Niger (between longitudes of 7 and 8° E) exhibit
high levels of soil CO2 emissions (Fig. 4a and b). The aver-
age soil CO2 emissions for the period 2012–2022 reached
1.7 t CO2-C ha−1 yr−1, as shown in Fig. 4b. SPSs located
in the northern regions of Niger, as well as in Mauritania,
were generally not significant sources of CO2 (Fig. 4b). Only
SPSs in central Senegal, northern Burkina Faso, and Mali re-
mained constant CO2 emission hotspots throughout the study
period, with emissions as high as 2.6 t CO2-C ha−1 yr−1 in
some years, as shown in the all-year detailed maps in Fig. A6.
Interannual variabilities of up to 0.7 t CO2-C yr−1 ha−1 have
been observed in some SPSs (Fig. A4b).

Figure 4c depicts heterogeneous soil N2O emissions rang-
ing from 0 to 3 kg N2O-N ha−1 yr−1 and high emissions in
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Figure 2. Regional distribution of simulated herbaceous mass in the Sahelian SPSs (annual mean over 2012–2022) in t DM ha−1 yr−1.
(a) Bivariate map, which displays both simulated herbaceous mass and the distribution of SPSs in the simulation domain. (b) Map filtering
of the simulated herbaceous mass for areas with Sahelian SPSs> 80 % only.

some areas where the percentage of SPS pixels is lower than
80 %. Fig. 4d exclusively shows case areas that are repre-
sentative of the Sahelian SPSs (% SPS> 80), showing that
soil N2O emissions were as high as 2.3 kg N2O-N ha−1 yr−1

(mean 2012–2022 period) in SPSs located within the sandy
pastoral zones of central Senegal and in southern Mali be-
tween the latitudes of 13 and 15° N. In contrast, smaller
N2O emissions were observed in the other SPSs of the re-
gion, especially in Niger and Chad. High interannual vari-
abilities have been observed in the southern part of the Sahel
(Fig. A4c).

3.2.2 Exploring the temporal dynamics of model
outputs

Figure 5 shows the temporal dynamics of wet-season precip-
itation, soil CO2 emissions, soil N2O emissions, soil water
content, and soil total C at two contrasting sites showing dif-
ferent emission levels (low and high) located in Niger (lati-
tude 14.2, longitude 10.7) and Senegal (latitude 15.4, longi-
tude−15.4), respectively. These sites were on predominantly
sandy soils. The observed dynamics of the different variables
(precipitation, soil CO2 emissions, soil N2O emissions, soil
water content, and soil C content) at these sites show the
model’s ability to realistically simulate seasonal variations
at fine timescales in soil CO2 and soil N2O emissions in the
Sahel.

3.2.3 Factors controlling the spatial distribution of soil
CO2 and N2O emissions

The observed variations in the spatial patterns of soil CO2
and N2O emissions were attributed to a complex interaction
between meteorological, edaphic, and biophysical factors.
According to a statistical analysis assessed by random for-
est over the model output in grid cells containing more than
80 % of SPSs, soil carbon and nitrogen contents were found
to be the primary factors controlling the spatial distribution
of soil CO2 and N2O emissions, respectively, as shown in
Fig. 6. Soil C content, air temperature, and soil temperature
were identified as the three most significant factors control-
ling the spatial patterns of soil CO2 emissions. For soil N2O,
the two most significant factors after soil N content were soil
water content and animal load. The results further showed
that for soil CO2, the other driving factors were herbaceous
mass, animal load, annual precipitation (or soil water con-
tent), soil clay content, and soil water content (Fig. 6a). For
soil N2O, herbaceous mass, soil temperature, soil clay con-
tent, annual precipitation (or soil water content), and air tem-
perature (in that order) also appeared as key driving factors
(Fig. 6b). Soil pH was found to have the least influence on
the spatial pattern of soil N2O emissions (Fig. 6).

3.2.4 Annual budgets across the Sahel (2012–2022)

The simulated soil CO2 emissions include both microbial
respiration and root respiration of herbaceous vegetation.
Between 2012 and 2022, the estimated average soil CO2
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Figure 3. (a) Hovmöller (latitude–year) plot of annual precipita-
tion. (b) Hovmöller (latitude–year) plot of herbaceous mass in the
domain indicated in Fig. 2b. (c) Interannual variations in anomalies
(relative to the mean value for the period of 2012–2022).

emissions in the Sahelian SPSs were 58.79± 4.83 Tg CO2-
C yr−1 (1 Tg= 1012 g). The highest annual soil CO2 emis-
sions (65.80 Tg CO2-C yr−1) were found in 2020, while the
lowest (50.77 Tg CO2-C yr−1) were in 2012 (Fig. 7a). Dur-
ing this same period, the mean soil N2O emissions were
21.59± 3.91 Gg N2O-N yr−1 (1 Gg= 109 g), ranging from
17.31 Gg N2O-N yr−1 in 2012 to 27.43 Gg N2O-N yr−1 in
2020 (Fig. 7b). From 2012–2020, annual soil CO2 and
N2O emissions showed significant (p< 0.01) rising trends
of 4.30× 10−3

± 6.05× 10−4 Tg CO2-C yr−1 and 3.75×
10−3
± 4.47× 10−4 Gg N2O-N yr−1, respectively. However,

emissions dropped after 2021, with a 17.5 % decrease in soil
CO2 emissions and a 25.5 % decrease in soil N2O emis-
sions (Fig. 7c). Figure 7c reveals that the interannual vari-
ations in soil CO2 and soil N2O emissions are quite homoth-
etic, as indicated by a Pearson correlation coefficient of 0.86.
Annual precipitation over the 2012–2022 period averaged
over the study domain was significantly correlated to both
soil CO2 (p< 0.05, r = 0.48) and N2O (p< 0.05, r = 0.79)
emissions.

4 Discussion

Previous studies at global and regional scales have estimated
greenhouse gas (GHG) emissions from various ecosystems,
especially agricultural systems (Tian et al., 2020, 2015),
forests (Tian et al., 2020; Verchot et al., 1999), and range-
lands (Dangal et al., 2020). These studies have frequently
highlighted significant uncertainties when estimating emis-
sions from underrepresented regions, such as in Africa.
In addition, different modelling techniques often give di-
vergent results when estimating emissions from these re-
gions. In this study, we have scaled up the 1D STEP–
GENDEC-N2O model, which was previously used in lo-
cal studies across various sites in the western Sahel re-
gion. For example, in previous studies conducted at a
SPS located in the northern region of Senegal (Dahra;
15° 24′10′′ N, 15° 25′56′′W), Bigaignon et al. (2020) effec-
tively used STEP–GENDEC-N2O to satisfactorily simulate
soil water content (R2

= 0.68 and RMSE= 1.67 mm d−1),
NO−3 content in soil (R2

= 0.42 and RMSE= 0.83 mg N kg
soil−1), and N2O emissions (R2

= 0.36 and RMSE= 2.51 ng
N m−2 s−1). At the same site, Agbohessou et al. (2023a)
successfully simulated CO2 fluxes using STEP–GENDEC-
N2O combined with a tree growth model (DynACof; Vezy
et al., 2020), achieving convincing results for gross pri-
mary productivity (GPP; EF= 0.49 and RMSE= 2.15 g
C m−2 d−1) and ecosystem respiration (Reco; EF= 0.56
and RMSE= 1.34 g C m−2 d−1). Additionally, Delon et
al. (2019) demonstrated successful simulation of soil respi-
ration at the same site using STEP–GENDEC-N2O. At an-
other SPS located in Mali (Agoufou; 15.34° N, 1.48° W), De-
lon et al. (2015) employed STEP–GENDEC-N2O to simulate
soil moisture (R2

= 0.7), soil temperature (R2
= 0.86), and

herbaceous mass (R2
= 0.72), yielding satisfactory results.

Building upon these previous local applications and valida-
tions of the STEP–GENDEC-N2O model in different rep-
resentative sites of the Sahelian SPSs, we provide the first
large-scale estimate of soil CO2 and N2O emissions from
western Sahelian SPSs.

In this section, we discuss the magnitude of soil CO2 and
N2O emissions reported in this study, the role of environmen-
tal and biological factors that drive the spatial heterogeneity
observed in soil CO2 and N2O emissions in Sahelian SPSs,
and the uncertainties and limitations associated with these
estimations.

4.1 Spatial and temporal patterns of herbaceous
vegetation, soil CO2 emissions, and their
relationship

In a previous study, Pierre et al. (2016) demonstrated the abil-
ity of the STEP model (alone) to simulate the dynamics of
herbaceous vegetation at regional scale in the western Sa-
hel. They found good agreement between the regional spa-
tial patterns of STEP-simulated vegetation masses and the
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Figure 4. Regional distribution of simulated soil CO2 and N2O emissions in the Sahelian SPSs (annual means from 2012–2022). Panels
(a) and (c) – bivariate maps display both model outputs and the distribution of SPSs in the simulation domain. Panels (b) and (d) – maps
displaying model outputs only in areas representative of the Sahelian SPS (> 80 %).

Moderate Resolution Imaging Spectroradiometer (MODIS)
vegetation indices. They observed a latitudinal gradient in
herbaceous vegetation mass caused by the rainfall gradient,
as is also shown in our results. The magnitudes of herba-
ceous mass in their study and ours are comparable, and the
spatial patterns are similar, although the study periods and
the input data employed are not exactly the same. Previous
estimates of mass production in the Sahel using the Land-
scapeDNDC model (Rahimi et al., 2021) exhibited relatively
stable temporal dynamics in mass production from 2010 to
2019. These estimates encompassed all land use types in

the Sahel region, which could explain the divergence from
our results, showing a gradual increase in mass production
in Sahelian SPSs between 2012 and 2022. Moreover, the
trend observed in this study is mainly driven by the most re-
cent years, with the highest values occurring in 2019, 2020,
and 2021. We compared the aboveground herbaceous mass
(ABG) simulated by STEP–GENDEC-N2O with the ABG
biomass product from ACF (Bernard and Fillol, 2020, 2021;
Lambert et al., 2019) for SPS pixels only (Fig. 8). This
revealed a significant correlation between the ABG herba-
ceous mass simulated by STEP–GENDEC-N2O and the ACF
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Figure 5. Temporal dynamics of model outputs across two sites with different levels of soil CO2 and N2O emissions. From top to bottom:
precipitation, soil CO2 emissions, soil N2O emissions, soil water content, and soil total C. On the left, a site exhibiting low emissions (latitude
−10.7, longitude 14.2), on the right, a site with high emissions (latitude 15.4, longitude −15.4).

biomass product (with an R2 value of 0.61 and an RMSE
of 1.51). The ABG biomass derived from ACF amounts
to 7 t DM ha−1 yr−1, whereas the simulated ABG herba-
ceous mass from STEP–GENDEC-N2O does not exceed 3 t
DM ha−1 yr−1. This variation can be attributed to the ACF
product being derived from satellite data, encompassing not
only herbaceous plants but also the tree and crop component
within these SPS-dominated pixels. Additionally, the Mon-
teith formulation (Monteith, 1972) used by ACF approaches
potential biomass and therefore corresponds more to the up-
per bound of the STEP–GENDEC-N2O simulations.

Plant litter is the main source of carbon entering the soil,
which explains the similar spatial patterns observed in both
annual herbaceous mass (Fig. 2b) and annual soil CO2 emis-
sions (Fig. 4b). This illustrates the effect of the C substrate
on CO2 emissions, as confirmed by the random forest anal-
ysis (Fig. 6). The size and composition (nature of substrate,
molecules, C/N ratio, etc.) of the available carbon pool ac-
tually control the magnitude of the CO2 emissions from soil
(Barnard et al., 2020). Soil CO2 emissions include the res-
piration of soil microorganisms (microbial or heterotrophic
respiration) and plant roots (autotrophic respiration), includ-
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Figure 6. Factors controlling the spatial changes in (a) soil CO2 emissions and (b) soil N2O emissions from random forest analysis. MSE is
the mean squared error.

ing all respiratory processes occurring in the rhizosphere
(Raich and Potter, 1996; Xu and Shang, 2016). Root cells
perform cellular respiration, metabolizing carbohydrates that
are sent down from the leaves. Depending on the vegetation
density, root respiration can contribute significantly to the to-
tal soil respiration (Macfadyen, 1970). In some SPSs in the
north-western Sahel (e.g. in Mauritania, Mali, and Niger),
we simulated significant soil CO2 emissions despite the low
herbaceous mass. These areas also exhibit high interannual
variabilities in soil CO2 emissions (Fig. A4b; up to 0.7 t
CO2-C ha−1 yr−1). The northern Sahel is generally charac-
terized by a long dry season and very low rainfall. In such
semi-arid areas, the first rainfall events at the onset of the
wet season rewet the dry soil, resulting in a mineralization
peak leading to a large soil CO2 efflux pulse, also known
as the Birch effect (Birch, 1958). The STEP–GENDEC-N2O
model accounts for this Birch effect (Delon et al., 2019),
which could explain the soil CO2 emissions hotspots sim-
ulated in some SPSs of the north-western Sahel. The site
(simulation pixel) located at a latitude of 15.4° N and lon-
gitude of 15.4° W (0.1°× 0.1°), as depicted in Fig. 5, ac-
tually illustrates the Birch effect in soil respiration dynam-
ics, with notably high emissions simulated at the onset of
the rainy seasons. This simulation pixel encompasses the
Dahra site in northern Senegal (latitude 15.40277° N, lon-
gitude 15.43222° W), where the 1D STEP–GENDEC-N2O
model results were in good agreement with observations
(Agbohessou et al., 2023a; Delon et al., 2019). According
to Fan et al. (2015), up to 20 % of the annual soil CO2 emis-
sions into the atmosphere occurs in African savanna ecosys-
tems following intense rainfall. The CO2 pulses associated
with rewetting can represent a large part of the annual C bud-
get in semi-arid and arid ecosystems (Barnard et al., 2020;
Jarvis et al., 2007; Ma et al., 2012; Rey et al., 2017).

In an SPS located in northern Senegal, Delon et al. (2017)
measured soil respiration ranging from 2.4± 0.62 g

C m−2 d−1 at the onset of the wet season to 0.7± 0.01 g
C m−2 d−1 at the end of the wet season in 2013. Our
estimated mean soil CO2 emission density for Sahelian SPSs
between 2012 and 2022 (0.06 g C m−2 d−1) is lower than
estimates at the global scale for grasslands (2.2 g C m−2 d−1)
and partially vegetated deserts (1.0 g C m−2 d−1) by Xu
and Shang (2016). On a global scale, for these types of
grasslands, the substrate (soil C content) is probably much
more important than in SPSs, which explains the higher
values of CO2 emissions. Our simulated soil CO2 emissions
for our region are also lower than the estimates by Warner
et al. (2019). The soil CO2 emissions (soil respiration)
calculated for our region (our simulation grid cells) from the
Warner et al. (2019) product indicate values as high as 7.8 t
C ha−1 yr−1, whereas the simulated soil CO2 emissions from
STEP–GENDEC-N2O do not exceed 2 t C ha−1 yr−1. These
differences can be explained by the following points. (i) The
Warner et al. (2019) product is a one-time prediction based
on input data from 1 January 1963 to 31 December 2011,
while our simulated soil CO2 emissions used for comparison
represent the annual mean of the period from 2012 to 2022.
(ii) We used a process-based model (STEP–GENDEC-N2O),
while the soil CO2 emissions (soil respiration) predicted
by Warner et al. (2019) are based on a machine learning
approach, specifically a quantile regression forest model.
This model was trained using selected environmental pre-
dictors and 2657 input soil respiration observations from the
global soil respiration database (SRDB; Bond-Lamberty and
Thomson, 2010). (iii) The SRDB database used by Warner
et al. (2019) does not contain measurements from sites
located in our region (the simulation area). Additionally,
Warner et al. (2019) mentioned that the greatest prediction
uncertainties were observed in semi-arid ecosystems.
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Figure 7. Interannual variation in soil CO2 and N2O emissions in the Sahelian SPSs (which cover approx. 892 000 km2) during 2012–2022.
(a) Soil CO2 emissions in Tg C yr−1 (1 Tg= 1012 g) and (b) soil N2O emissions in Gg C yr−1 (1 Gg= 109 g). (c) Interannual variations in
soil CO2 and N2O anomalies (relative to the mean value for the period 2012–2022). The Pearson correlation coefficient between CO2 and
N2O anomalies was 0.86. We calculated the proportion of SPS area pixels within each 0.1°× 0.1° simulation grid cell and used these values
to weight the model outputs for each grid cell.

4.2 Soil N2O and CO2 emissions in Sahelian SPSs and
the importance of livestock

Between 2012 and 2022, the simulated soil N2O emissions
from Sahelian SPSs were 0.022± 0.004 Tg N2O-N yr−1. The
regional natural soil N2O emissions in Africa were estimated
at 1.6 Tg N2O-N yr−1 for the period 2007–2016 (Tian et al.,
2020). The simulated average soil N2O emissions from Sa-
helian SPSs were lower than the median total N2O emis-
sions of 0.05 Tg N2O-N yr−1 from bomas (a livestock en-
closure where livestock excreta accumulates) in sub-Saharan
Africa’s semi-arid and arid climates (Butterbach-Bahl et al.,
2020). The average soil N2O emission density (per unit area)
in Sahelian SPSs (2012–2022) was found to be 0.01 g N2O-
N m−2 yr−1 (range – 0–0.23 g N2O-N m−2 yr−1), which is
comparatively lower than the average estimate in tropical re-
gions (0.11± 0.02 g N2O-N m−2 yr−1) and than the global
average (≈ 0.05 g N2O-N m−2 yr−1) reported for the period
of 2007–2016 (Tian et al., 2019). The soil N2O emission
density in Sahelian SPSs (2012–2022) was also lower than

global emission densities estimated in croplands (0.21± 0.08
N2O-N m−2 yr−1) and other ecosystems (0.06± 0.01 g N2O-
N m−2 yr−1), respectively, during the period of 2007–2016
(Tian et al., 2019). The most significant soil N input in Sa-
helian SPSs actually originates from livestock excreta, which
is lower than the N input in most fertilized agricultural fields
(Dangal et al., 2020), explaining the lower emission density
in SPSs compared to the global average emission density in
croplands. In fact, studies have shown that nitrogen fertilizer
application in croplands is the leading factor responsible for
the increases in emissions from agriculture (Cao et al., 2018;
Davidson, 2009; Maavara et al., 2019; Shcherbak et al., 2014;
Yao et al., 2020), followed by a minor yet significant rise in
emissions from livestock manure (Tian et al., 2020). But on
the other hand, in regions where very little nitrogen fertilizer
is used in cropland, such as in Africa, soil N2O emissions
mainly arise from livestock manure deposited in pastures and
rangelands (Butterbach-Bahl et al., 2020; Dangal et al., 2020;
Xu et al., 2019). This confirms the N2O emission hotspots
simulated in locations where the density of livestock is high
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Figure 8. The relationship between aboveground (ABG) herba-
ceous mass simulated by STEP–GENDEC-N2O and ABG biomass
predicted by ACF (Bernard and Fillol, 2020, 2021; Lambert et al.,
2019). Each point represents the annual mean biomass in a simula-
tion pixel. The dashed line represents the 1 : 1 line, while the solid
line depicts the linear regression line.

(Figs. 4c and d, A3f), as was also highlighted by the random
forest analysis. Indeed, the animal load distribution also af-
fects the spatial distribution of soil N2O and CO2 emissions,
as shown in Fig. 6. Several authors have already mentioned
this impact (Assouma et al., 2017; Butterbach-Bahl et al.,
2020; Dangal et al., 2020; Smith et al., 2003). Livestock in-
fluences the spatial distribution of soil C and N, which in turn
significantly affects soil N2O and CO2 emissions.

4.3 Common features of soil CO2 and N2O emissions in
Sahelian SPSs

Figure 7c shows that the interannual variations in soil CO2
and soil N2O emissions are quite homothetic, as indicated
by a Pearson correlation coefficient of 0.86. This suggests
that they are both responding in a similar manner to the dif-
ferent ecological drivers. Some authors stated that the main
processes responsible for CO2 (decomposition) and N2O (ni-
trification and denitrification) emissions from soils are influ-
enced by the same environmental factors, namely soil mois-
ture, soil temperature, soil texture, and soil C and N con-
tent (Davidson and Swank, 1986; Oertel et al., 2016; Rastogi
et al., 2002; Signor and Cerri, 2013). Several studies have
shown how soil CO2 and N2O emissions evolve over time in
response to changes in environmental driving factors (Cuhel
et al., 2010; Davidson and Swank, 1986; Khalil, 2003; Ray
et al., 2020), but the complexity of the interactions between

these different factors makes it difficult to assess the impor-
tance of each driver responsible for the spatial distribution of
the emissions. From our results, the main factor responsible
for the spatial distribution of soil CO2 and N2O emissions
in SPSs (Fig. 6) is substrate availability (soil C and N con-
tent), which outweighs other factors such as soil water con-
tent, temperature, and soil texture. Moreover, substrate avail-
ability is directly linked to herbaceous mass productivity (as
mentioned in Sect. 4.1) and to animal load (see Sect. 4.2).
This is consistent with the findings of Ray et al. (2020), who
showed that soil CO2 emissions are affected more by sub-
strate availability than by rainfall, although their experiment
was performed in a cropping system. In addition to influenc-
ing the spatial pattern of soil CO2 and N2O emissions, soil C
and N also impact the temporal variation in these emissions,
as shown in Fig. 5 where the largest emissions were found
where the C content was the highest. Furthermore, our sim-
ulations revealed a rise in emissions between 2012 and 2020
(Fig. 7c) that is correlated to the increase in herbaceous mass
during the same period (Fig. 3a). Indeed, the results produced
by the random forest approach (Fig. 6) confirm our expecta-
tions that the soil C and N content are the primary factors
influencing the spatial distribution of CO2 and N2O emis-
sions from soils. The RF classification may solely have orig-
inated from the hypothesis and the structure of the STEP–
GENDEC-N2O model if we were working at a local scale.
However, since we are operating at a regional scale and the
data inputted into the RF model reflect the spatial distribu-
tion of the explored factors in the region, we can attribute the
RF classification, our result (Fig. 6), to a combination of the
STEP–GENDEC-N2O model structure and the specific bio-
physical/edaphic conditions prevalent in the Sahelian band
under investigation.

In the literature, soil water content is often highlighted
as the major driver of the temporal variation in soil N2O
emissions, as it regulates oxygen availability to soil mi-
crobes (Butterbach-Bahl et al., 2013; Davidson and Verchot,
2000). The effect of soil moisture is actually predominant
in denitrification processes, which lead to large amounts of
N2O emissions when water-filled pore space (WFPS) in the
soil reaches 70 % to 80 % (Davidson and Verchot, 2000).
This is consistent with the result of our RF analysis, which
ranks soil water content as the second-most important fac-
tor responsible for spatial changes in soil N2O emissions
(Fig. 6b). The impact of air temperature and soil tempera-
ture on the spatial distribution of soil CO2 emissions sug-
gests a positive feedback loop between climate warming
and these emissions. The impact of global change drivers,
such as temperature on ecosystem processes and greenhouse
gas emissions, have been well studied and proven (Aulakh
et al., 1992; Bajracharya et al., 2000; Lloyd and Taylor,
1994; Ray et al., 2020). The annual budgets of CO2 and
N2O emissions (Fig. 7a and b) throughout the period of
simulation show low interannual variability. This can be
attributed to the low interannual variability in influencing
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factors such as substrate availability (C – 33.60± 2.38 g
C m−2 d−1 and N – 5.89± 0.46 g N m−2 d−1), and soil wa-
ter content (4.87± 0.19 % yr−1). Our simulation results do
not allow us to explore possible interactions between cli-
mate warming and annual soil CO2 and N2O emissions,
as the average annual air temperature (averaged over the
study domain) did not vary much over the simulation pe-
riod (28.37± 0.25 °C). Regional-scale observations show a
temperature increase ranging from 1 to 2 °C between 1950
and 2010 (Guichard et al., 2020). Therefore, over a 10-year
period, this corresponds to a maximum increase of approxi-
mately 0.33 °C, which is less than 0.5 °C. This order of mag-
nitude is comparable to the one computed for air tempera-
ture from the climate dataset used, and it is too small to be
detected by the temperature-versus-time regression.

4.4 Uncertainties and limitations

The lack of a comprehensive dataset on the annual spatial
distribution and growth dynamics of the livestock popula-
tion in the Sahel between 2012 and 2022 remains a signif-
icant source of uncertainty in the CO2 and N2O emissions
reported in this study. Actually, information on the spatial
distribution and population of livestock was only available
for the year 2010 (Gilbert et al., 2018). Only the spatial and
seasonal variability in the grazing pressure was taken into ac-
count in our simulation. We assumed that the annual distribu-
tion and growth dynamics of livestock in Sahelian SPSs did
not change significantly between 2010 and 2022, although
they might have been affected by the interannual variabil-
ity in herbaceous mass. Given the significant impact of live-
stock on CO2 and N2O emissions in these ecosystems (Ag-
bohessou et al., 2023a; Assouma et al., 2017; Soussana et al.,
2010; Valentini et al., 2014), an increase in livestock popula-
tion during the study period could result in the misestimation
of soil CO2 and N2O emissions. Significant changes in the
spatial distribution of animal load from one year to another
could also lead to some uncertainties in the simulated spatial
distribution of the emissions. Furthermore, it is worth noting
that our estimate does not account for tree root respiration,
which can lead to an underestimation of the total soil CO2
emissions in regions with high tree density.

In a previous study employing the STEP–GENDEC-
N2O model at the local scale (within a silvopastoral sys-
tem located in Senegal), Agbohessou et al. (2023a) con-
ducted an uncertainty analysis for STEP–GENDEC-N2O us-
ing a Monte Carlo simulation and a sensitivity analysis with
Sobol’s method (Sobol, 2001). In this study, they evaluated
the overall uncertainty surrounding CO2 and N2O emissions
simulated by STEP–GENDEC-N2O and identified the key
parameters/variables to which the CO2 and N2O emissions
simulated by STEP–GENDEC-N2O are most sensitive. They
found that the CO2 and N2O emissions simulated by STEP–
GENDEC-N2O at the local scale are particularly sensitive to
soil texture. This being the case, another significant source

of uncertainty in the CO2 and N2O emissions reported in this
study arises from the accuracy of the different input datasets
used, especially the soil and precipitation datasets. We used
the best dataset available for our region (to our knowledge)
for all input variables. However, the accuracy of our estimate
also depends on the accuracy of the input datasets used. The
choice of the various input datasets in this study is based on
expert recommendations, comparison of the results of uncer-
tainty analyses conducted for the different datasets in their
respective reference articles, and availability of the datasets
for our study region.

Soil C and N contents are significant factors influencing
the spatial distribution of soil CO2 and N2O emissions in
Sahelian SPSs, as indicated by our RF analysis. However,
despite the availability of some local measurement data (El-
berling et al., 2003a, b) and databases related to soil C and
N content (Hengl et al., 2021) in the Sahel region, accurately
assessing the temporal variability in these elements in Sahe-
lian SPS soils remains challenging.

Finally, we assumed that the impacts of natural or anthro-
pogenic disturbances such as wildfires on Sahelian SPSs dur-
ing our simulation period are fairly negligible. Uncertainties
related to disturbances like wildfire are actually difficult to
estimate, as there are varying perspectives and conflicting
findings in the literature regarding the impact of burning on
N2O emissions (Karhu et al., 2015; Takakai et al., 2006).

5 Conclusions and perspectives

Our study advances the understanding of the spatial distribu-
tion and annual budget of CO2 and N2O emissions from soil
in the Sahel. Information on the magnitude of CO2 and N2O
emissions from soils in underrepresented areas is important
to shed light on the contribution of these areas to the overall
GHG budget and thereby inform the development of effective
mitigation strategies that can help reduce GHG emissions.
SPSs represent a significant portion of the West African dry-
lands, where they have expanded due to global warming and
are expected to continue expanding in the near future (Thorn-
ton and Herrero, 2015). Previous studies at the local scale
in the Sahel have shown that soils in semi-arid ecosystems
are notable contributors to GHG emissions (Assouma et al.,
2017; Brümmer et al., 2009; Delon et al., 2017). Our results
extended these local estimates to a broader spatiotemporal
scale, showing that overall, Sahelian SPS soil emits less CO2
and N2O than tropical areas and croplands on a global scale.
Furthermore, by mapping emissions, we provided crucial in-
sights into the localization of soil CO2 and N2O emission
hotspots, thereby offering indirect assessments of soil health
in the Sahel region. This information can be a valuable asset
for land managers who can leverage it to devise and imple-
ment effective strategies aimed at minimizing emissions and
fostering carbon sequestration.
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To further refine estimates of soil CO2 and N2O emissions
in Sahelian SPSs, efforts to collect comprehensive datasets
of livestock spatial distribution and temporal dynamics, tree
densities, and fire are needed. Additionally, more experimen-
tal studies should investigate the roles of nitrification and
denitrification processes in soil N2O emissions and the role
of the decomposition process in CO2 emissions in semi-arid
ecosystems to better parameterize the model.

Appendix A

Figure A1. Spatial distribution of silvopastoral areas in the Sahel. (Details on how the percentage of silvopastoral area pixels within the
simulation grid cells were computed are provided in the Methodology, Sect. 2.4).

Figure A2. Spatial distribution of precipitation and air temperature (mean from 2012–2022).
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Figure A3. Spatial distribution of soil properties, tree foliar biomass, and livestock.

Figure A4. Standard deviations of the spatial distributions of (a) herbaceous biomass, (b) soil CO2 emissions, and (c) soil N2O emissions in
Sahelian SPSs (from 2012–2022). Only pixels dominated by SPSs (> 80 %) are displayed.
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Figure A5. Annual spatial distribution of herbaceous biomass in Sahelian SPSs (2012–2022). Only pixels dominated by SPSs (> 80 %) are
displayed.

Figure A6. Annual spatial distribution of soil CO2 emissions in Sahelian SPSs (2012–2022). Only pixels dominated by SPSs (> 80 %) are
displayed.
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Figure A7. Annual spatial distribution of soil N2O emissions in Sahelian SPSs (2012–2022). Only pixels dominated by SPSs (> 80 %) are
displayed.

Figure A8. Regional distributions of simulated (a) herbaceous biomass, (b) soil CO2 emissions, and (c) soil N2O emissions in Sahelian
SPSs (annual mean from 2012–2022). All pixels are displayed. The right panel shows (a) herbaceous biomass, (b) soil CO2 emissions, and
(c) soil N2O emissions along a latitudinal gradient of 0.1°, while the shaded areas indicate the standard deviations.
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Figure A9. Summary figure showing the connection between the STEP and GENDEC models and the N2O module.

Code availability. The 2D STEP–GENDEC-N2O model is avail-
able on Zenodo at https://doi.org/10.5281/zenodo.7866671 (Ag-
bohessou et al., 2023b). The rstep R package (Agbohessou,
2022), developed to automate workflows for 1D and 2D STEP–
GENDEC-N2O simulations, has been archived on Zenodo at
https://doi.org/10.5281/zenodo.7994028.

Data availability. Data will be made available upon request from
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