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Abstract. Afforestation has been considered a critical
nature-based solution to mitigate global warming. China has
announced an ambitious afforestation plan covering an area
of 73.78× 104 km2 for the period 2020–2050. However, it
is unclear which areas will be suitable for afforestation un-
der future climate change. Here, we carried out a finer-
resolution (25× 25 km) dynamical downscaling of climate
change for China using the Weather Research and Forecast
(WRF) model nested with the bias-corrected MPI-ESM1-2-
HR model. Then, using the Holdridge life zone model forced
by the WRF model output, we mapped the climatological
suitability for forests in China. The results showed that the
potential forestation domain (PFD) at present (1995–2014)
approximated 500.75× 104 km2, and it would increase by
about 3.49 % to 518.25× 104 km2 in the period 2041–2060
under the Shared Socioeconomic Pathway (SSP) scenario
(SSP2-4.5). Considering the expansion of the future PFD due
to climate change, the afforestation area for each province
was allocated to grid cells following the climatological suit-
ability for forests. The new afforestation grid cells would be
located around and to the east of the Hu Line (a geograph-
ical division stretching from Heihe to Tengchong). Due to
afforestation, the land cover would be modified. The conver-
sion from grasslands to deciduous broadleaf forests in north-
ern China took up the most area, accounting for 40 % of the
new afforestation area. The grid-cell-resolved afforestation
dataset was consistent with the provincial afforestation plan
and the future climatological forest suitability. The dataset

would be valuable for investigating the impacts of future af-
forestation on various aspects, including the carbon budget,
ecosystem services, water resources, and surface hydrocli-
mate regime.

1 Introduction

Afforestation has been considered a reasonable nature-based
solution for global warming (Rohatyn et al., 2022; Yu et al.,
2022). Afforestation could increase carbon stocks in terres-
trial ecosystems by absorbing atmospheric carbon dioxide
through its biogeochemical effect (Jayakrishnan and Bala,
2023; Zhu et al., 2019; Gundersen et al., 2021). Moreover,
afforestation changes the surface energy and mass budgets as
well as the water cycle by modifying the surface albedo and
roughness along with the partitioning between sensible and
latent heat fluxes (Bonan, 2008; Breil et al., 2021; Wang et
al., 2023). Specifically, afforestation causes warming effects
through decreasing albedo and cooling effects through inten-
sifying evapotranspiration, which can partly offset or amplify
the cooling effects due to carbon uptake from the atmosphere
(Arora and Montenegro, 2011). Afforestation not only im-
pacts the climate, but also enhances forest ecosystem ser-
vices such as maintenance and enhancement of habitat pro-
visioning and species richness (Brockerhoff et al., 2017). In
recent decades, China has implemented large-scale afforesta-
tion programmes (Zhang et al., 2000), such as the Three-
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North Shelter Forest Program (Hu et al., 2021), the Grain
for Green Programme (Xiao, 2014), and the Natural Forest
Conservation Program (Huang et al., 2019). These ecologi-
cal engineering programmes have been beneficial for water
conservation (Liu et al., 2023), mitigating climate warming
(Yu et al., 2020), increasing terrestrial carbon sequestration
(Shi and Han, 2014), reducing water erosion risk (Wang et
al., 2021), and alleviating dust storms (Tan and Li, 2015).
These initiatives have significantly increased China’s total
forest cover from 8.6 % in 1949 to 24.02 % in 2022 (Zhang
and Song, 2006; Fu et al., 2023; Moore et al., 2016), and they
have contributed to 42 % of land greening in China during
2000–2017 (Chen et al., 2019).

In September 2020, the Chinese government declared a
specific objective of achieving carbon neutrality before 2060
(Liu et al., 2022; Zhao et al., 2022). In pursuit of this goal,
China is committed to expanding its forest area in the fu-
ture, and new national afforestation plans have been intro-
duced. For instance, the Action Plan for Carbon Dioxide
Peaking Before 2030 (State Council of China, 2021) out-
lines China’s target to increase forest cover to 25 % by 2030.
The National Forest Management Planning (2016–2050), is-
sued by the State Forestry Administration of China in 2016,
set the afforestation target of about 73.78× 104 km2 for the
period 2020–2050 in China. Such extensive afforestation in
the future would lead to land cover conversion from non-
forestland to forestland, potentially causing a series of ef-
fects through the aforementioned biogeophysical and bio-
geochemical processes. It is important to note that the effects
of afforestation are highly dependent on the afforestation lo-
cation. For example, tropical afforestation may yield greater
cooling effects than boreal afforestation (Arora and Mon-
tenegro, 2011). However, recent studies find that the bene-
fits of afforestation may be overestimated, which is contro-
versial, because the responses of the global carbon cycle to
anthropogenic land use change are uncertain (Bastin et al.,
2019; Veldman et al., 2019; Lewis et al., 2019). There is lim-
ited climate change net mitigation potential if tree planting
occur in water-limited locations, such as in drylands (Ro-
hatyn et al., 2022). It is therefore imperative to strategically
allocate the national planned afforestation area to specific re-
gions and project the possible land cover changes resulting
from afforestation.

Various studies have examined the climatic effects of fu-
ture afforestation scenarios (Abiodun et al., 2013; Naik and
Abiodun, 2016; Diasso and Abiodun, 2018; Odoulami et al.,
2019; Zhang et al., 2022). For example, Odoulami et al.
(2019) fully replaced savanna areas (between 8 and 12° N)
with evergreen broadleaf trees over West Africa to study
the climate effects of future afforestation. An obvious in-
crease in total annual precipitation was found over the af-
forested area. Similarly, Abiodun et al. (2013) employed ran-
dom afforestation scenarios to replace 25 %–100 % of the
current land cover in Nigeria and found a local cooling ef-
fect. In summary, these studies mostly employed idealistic

and hypothetical afforestation scenarios and neglected the fu-
ture climatological suitability of forests. In addition, process-
based dynamic global vegetation models (DGVMs), such as
LPJ-GUESS, have been extensively used to explore the re-
sponses of potential natural vegetation distribution to climate
change (Hickler et al., 2012; Verbruggen et al., 2021), and
they are also useful tools for quantifying future afforestation
scenarios (Krinner et al., 2005; Horvath et al., 2021). The
DGVMs driven by meteorological data generally consider
complex biogeophysical, biogeochemical, and physiological
processes, such as evapotranspiration, carbon–nitrogen inter-
actions, and photosynthesis (Cramer et al., 2001). Given that
the mathematical representations of these processes and their
parameters as well as future meteorological scenario data
from global climate models (GCMs) have large uncertain-
ties, their overlap may yield greater uncertainties (Jiang et
al., 2012; Martens et al., 2021).

The impact of future climate change is one of the biggest
challenges. Previous studies (de Lima et al., 2022; Hinze
et al., 2023) explored the responses of potential vegeta-
tion distribution to future climate change based on climate–
vegetation models forced by the climate projection data of
the GCM. However, the resolution of the raw GCM is too
coarse (∼ 100–300 km) to describe the finer land surface
features at a regional scale (Varney et al., 2022; Turner et
al., 2023; Song and Yan, 2022; Parsons, 2020). To over-
come such shortcomings, downscaling techniques are widely
used to translate GCM output to regional high-resolution
data. Statistical downscaling involves the establishment of
statistical relationships between local climate variables and
coarsely resolved atmospheric fields (Wilby and Dawson,
2013). However, it is not clear whether this historical statis-
tical relationship is always stable in future climate scenarios.
Moreover, statistical downscaling cannot ensure the physi-
cal consistency among meteorological variables. By contrast,
physically based dynamical downscaling using a regional
climate model (RCM) nested within a GCM could pro-
vide high-resolution climate simulations (Giorgi and Mearns,
1999; Mishra et al., 2014). Physical consistency is crucial for
identifying potential afforestation regions due to the multi-
ple meteorological variables involved. Previous studies (Liu
et al., 2020a; Bowden et al., 2021) have employed the dy-
namical downscaling approach to quantify the climatological
suitability of natural vegetation. However, previous studies
(Niu et al., 2019; Wu and Gao, 2020) used the raw GCM out-
puts as the lateral boundary conditions (LBCs) of RCM. It is
well known that raw GCM outputs have some uncertainties,
and the accuracy of LBCs is the most critical factor affecting
the performance of dynamical downscaling due to the under-
lying biases propagated into RCM through the LBCs (Sato
et al., 2007; Moalafhi et al., 2017; Karypidou et al., 2023).
Therefore, high-accuracy LBCs are the key to obtaining ro-
bust future potential vegetation types. Correcting the GCM
outputs before dynamical downscaling is necessary for re-
ducing the underlying uncertainty.
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By taking into account the aforementioned background
factors, this study aims to map the future afforestation dis-
tribution in China. It is highlighted that the results are con-
strained by both the national afforestation plan and future cli-
mate change. The national afforestation plan determines the
total afforestation area of each province, and climate change
determines where it is suitable for forest growth. Section 2
introduces the methodology. The main results are described
in Sect. 3. The discussion and conclusions are presented in
Sects. 4 and 5, respectively.

2 Method

2.1 Data sources

This study used three categories of data: (1) ground mete-
orology measurements and satellite-observed land use/land
cover data, (2) national planned afforestation area data, and
(3) climate modelling data from GCM as well as ERA5 re-
analysis data.

2.1.1 Ground meteorology measurement data and land
use/land cover data

This study used observation data of air temperature and pre-
cipitation at 2 m from the CN05.1 dataset (Wu and Gao,
2013). This dataset has a spatial resolution of 0.25°× 0.25°
and a temporal resolution of days from 1995 to 2014. The
dataset was produced by interpolating more than 2400 mete-
orological stations in China using the “anomaly approach”.
The CN05.1 dataset has been widely used to evaluate the
performance of RCM simulations in China (Yu et al., 2015;
Huang and Gao, 2018; Yan et al., 2019; Gao et al., 2023).

Land use type is a key parameter of RCMs (Mallard and
Spero, 2019; Yan et al., 2021). This study used the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) land
cover type dataset (MCD12Q1) for the year 2020 (Fig. S1 in
the Supplement), with a spatial resolution of 500 m (Friedl
et al., 2010). The MCD12Q1 features a 17-class Interna-
tional Geosphere-Biosphere Programme (IGBP) classifica-
tion scheme (Loveland et al., 2000). It could match the first
17 default categories of land use with the Weather Research
and Forecast (WRF) model (Table S1 in the Supplement).
The MCD12Q1 is highly accurate globally, with an overall
accuracy of approximately 75 % (Friedl et al., 2010; Sulla-
Menashe et al., 2019). It was widely used to investigate land
use and land cover change (You et al., 2020; Hou et al.,
2022) and served as the lower boundary conditions for cli-
mate modelling (Yu et al., 2017; Ge et al., 2020; Zhao et al.,
2021).

2.1.2 National planned afforestation area data

This study also used the national planned afforestation
area data, which were from the National Forest Manage-

ment Planning (2016–2050) (NFMP) released by the State
Forestry Administration of China (2016). The NFMP pre-
sented the total national afforestation area of 73.78×104 km2

(equivalent to an increase in China’s forest cover by 7.7 %)
and the area corresponding to each province between 2020
and 2050 (Fig. 6d). The NFMP was utilized as a policy con-
straint to identify the future afforestation domain in China.

2.1.3 Climate modelling data and ERA5 reanalysis
data

To select the optimal LBCs from GCM, Song et al. (2023)
comprehensively evaluated the performance of GCM in the
Coupled Model Intercomparison Project 6 (CMIP6). It was
reported that the MPI-ESM1-2-HR model from the Max
Planck Institute outperforms all other GCMs in East Asia.
When compared with other CMIP6 models, the MPI-ESM1-
2-HR model was reported to also have a higher perfor-
mance in simulating various climatic variables such as the
sea surface temperature (Bhattacharya et al., 2022), mean
temperature (Karim et al., 2020), total precipitation (Kam-
ruzzaman et al., 2022), and large-scale circulation (Han et
al., 2022). The main configuration of the MPI-ESM1-2-HR
model utilized in this study comprised the coupling of the at-
mospheric (ECHAM6.3) and ocean model (MPIOM version
1.6.2) and the JSBACH land surface scheme and HAMOCC
ocean biogeochemistry model with a spatial resolution of
0.9375°× 0.9375° on a latitude–longitude grid; the model is
described in detail by Müller et al. (2018). The MPI-ESM-
MR model involved in CMIP5, which was the precursor of
the current MPI-ESM1-2-HR model, was widely used as the
LBCs to force RCMs in carrying out finer-resolution climate
simulation (Kebe et al., 2017; Ozturk et al., 2018; Crespo et
al., 2023). It is well known that there are several Shared So-
cioeconomic Pathways (SSPs) for future climate projections
in the CMIP6. Here, we used the climate projections of the
MPI-ESM1-2-HR model under the middle-of-the-road path-
way (i.e. the SSP2-4.5 scenario), which represents the devel-
opment path most likely to occur (O’Neill et al., 2016).

The ERA5 reanalysis is the fifth-generation global re-
analysis product developed by the European Centre for
Medium-range Weather Forecast (ECMWF) (Hersbach et
al., 2020). The state-of-the-art reanalysis data assimilated
multi-source data including from ground-based meteorolog-
ical measurements, satellite observations, and atmospheric
sounding based on a 4D-var ensemble data assimilation sys-
tem (Hersbach et al., 2020). The 6-hourly ERA5 reanalysis
data with a spatial resolution of 1.0°×1.0° from 1994 to 2014
were also used as the LBCs. Climate variables for ERA5 re-
analysis data and the MPI-ESM1-2-HR model include atmo-
spheric fields (air temperature, specific humidity, zonal wind,
meridional wind, geopotential height) and surface fields (i.e.
sea surface temperature, surface pressure, soil temperature
and moisture).
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Despite performing better than other GCMs, the MPI-
ESM1-2-HR model still exhibits biases. Hence, the correc-
tions of climate mean and variance were carried out us-
ing the method reported by Xu and Yang (2012) according
to Eqs. (1) and (2). The ERA5 data were used as a ref-
erence to correct the MPI-ESM1-2-HR model outputs. The
MPI-ESM1-2-HR model outputs were interpolated into grid
cells of 1.0°× 1.0° using the bilinear interpolation method
to match the ERA5 grid cells. The bias-corrected 6-hourly
data of the MPI-ESM1-2-HR model retained the same means
and variances as the ERA5 data (Figs. S2 and S3). This bias-
corrected approach was applied to the atmospheric and sur-
face fields:

Hcor =DGCM_H×
SDERA

SDGCM
+MERA (1)

Fcor =DGCM_F×
SDERA

SDGCM
+MERA

+ (MGCM_F−MGCM_H), (2)

where, Hcor and Fcor are bias-corrected data of 6-hourly
MPI-ESM1-2-HR models over the historical period (1994–
2014) and future period (2040–2060), respectively. DGCM_H
and DGCM_F indicate anomaly by referring to the histor-
ical and future mean of MPI-ESM1-2-HR modelling, re-
spectively. SDERA and SDGCM indicate the standard devi-
ation of ERA5 and MPI-ESM1-2-HR simulations during
the historical period, respectively. SDERA/SDGCM denotes
the variance-adjusted term. MERA denotes the climatolog-
ical mean of ERA5 data during the historical period, and
MGCM_F−MGCM_H indicates the mean future climate change
projected by MPI-ESM1-2-HR.

2.2 Methodology

The study consists of three steps. As shown in Fig. 1, the
first step is to carry out dynamical downscaling and prepare
finer-resolution climate data; the second step is to run the
Holdridge life zone model to identify forest-suitable lands
under future climate change scenarios; finally, the third step
is to allocate the national afforestation plan area to 25 km,
grid cells by taking into account the climatic suitability for
forests.

2.2.1 Dynamical downscaling of GCM outputs

In this study, the WRF model served as an RCM and was
utilized to obtain high-resolution simulations (Skamarock et
al., 2019). As an open-source community mesoscale numer-
ical model, the WRF model has generally been used to in-
vestigate regional climate modelling (Wang and Kotamarthi,
2015; Cardoso et al., 2019; Moustakis et al., 2021), weather
diagnosis (Ullah and Shouting, 2013; Lu et al., 2021), numer-
ical weather prediction (Case et al., 2008; Zheng et al., 2016),
and land–atmosphere interactions (Wang et al., 2013; Zhang
et al., 2020, 2021). Specifically, the WRF model has been

demonstrated to reproduce well the historical spatiotempo-
ral characteristics of temperature (Politi et al., 2021), pre-
cipitation (Moustakis et al., 2022), and biome classification
(Zevallos and Lavado-Casimiro, 2022), and it can success-
fully project the changes in temperature and precipitation
over China (Hui et al., 2018). The WRF model configura-
tions and physical parameterization (Hu et al., 2015) used in
this study are detailed in Table 1. The simulation domain is
shown in Fig. 2.

The last two decades (from 1994 to 2014) were consid-
ered the historical period in this study because the historical
simulation for GCM is up to 2014. Given that the NFMP
is implemented for afforestation up to 2050, the simulation
for the future period covers the decade around 2050, from
2040 to 2060. Three 21-year numerical experiments were
performed using the WRF model (Table 2). The first two
experiments, HIS_ERA and HIS_MPI, simulated the his-
torical climate change (1994–2014) using the ERA5 anal-
ysis and MPI-ESM1-2-HR models as LBCs and default
land use, respectively. The future climate change experiment
(FUT_MPI) used the 2020 MCD12Q1 land cover in simu-
lating the future period (2040–2060). All the WRF experi-
ments were run for 21 years (1994–2014 and 2040–2060),
but the first year of each experiment (1994 and 2040) as
spin-up time was discarded. The remaining 20-year period
(1995–2014 and 2041–2060) was analysed. We compared
the HIS_MPI and HIS_ERA experiments to validate the sim-
ulation performance. The FUT_MPI experiment generated
a high-resolution future climate dataset under the SSP2-4.5
scenarios.

2.2.2 Identification of forest-suitable lands under
future climate change scenario

The distribution of terrestrial ecosystems is directly affected
by some main climate factors (i.e. temperature) (Piao et al.,
2011; Tatli and Dalfes, 2016). Therefore, the impact of fu-
ture climate change on forest-suitable lands is a further fac-
tor to be analysed. It is noted that the forest-suitable lands
in this study indicate the area of the potential forestation do-
main (PFD). Climate–vegetation models can describe the re-
lationship between the potential vegetation domain (PVD)
and the climatic conditions (Dan et al., 2005; Kummu et al.,
2021; Anwar and Diallo, 2022). Among a series of climate–
vegetation models – such as the Holdridge life zone (HLZ)
model (Holdridge, 1947), BIOME4 model (Kaplan, 2001),
BOX model (Box, 1981), LPJ-DVGM model (Sitch et al.,
2003), MAPSS model (Neilson et al., 1992), and IBIS model
(Foley et al., 1996) – the HLZ model is a classification model
for simulating the correlation between the potential terres-
trial ecosystem types and climate change based on the com-
bination of key climate variables (Holdridge, 1947). In recent
years, the HLZ model has been globally well accepted and
used to quantitatively identify the impacts of climate change
on the distribution of PVD at the global (Elsen et al., 2022;
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Figure 1. Outline for mapping the spatial distribution of future afforestation in China (PVD: potential vegetation domain; WRF: Weather
Research and Forecast model; MPI: MPI-ESM1-2-HR model).

Table 1. Model configurations and physical parameterization for WRF simulations.

Simulation configuration Setting

Model version WRF version 4.2
Domain East Asia including all of China (Fig. 2)
Horizontal resolution 25 km
Number of grids 289 (east–west) × 212 (south–north)
Vertical layers 40
Model top pressure 50 hPa
Initial and lateral boundary conditions ERA5 reanalysis and MPI-ESM1-2-HR

Physical parameterization Optional

Microphysics WSM 3-class simple ice (Hong et al., 2004)
Longwave radiation CAM (Collins et al., 2004)
Shortwave radiation CAM (Collins et al., 2004)
Land surface model Noah-MP (Niu et al., 2011)
Cumulus Grell–Dévényi (Grell and Dévényi, 2002)
Boundary layer YSU (Noh et al., 2003)

Navarro et al., 2022), continental (Fan et al., 2019), and re-
gional scales, e.g. China (Fan and Bai, 2021; Li et al., 2022).
Therefore, the HLZ model was used to obtain the spatial
pattern of forest-suitable lands during 2041–2060 under the
SSP2-4.5 scenario over China.

The HLZ classification system requires daily temperature
and monthly precipitation to obtain three bioclimatic vari-
ables: annual average biotemperature (AT), annual total pre-
cipitation (TP), and potential evapotranspiration ratio (PE).
The output of the FUT_2020 experiment provides these me-
teorological variables. The HLZ model is estimated with a

specific calculation formula as follows:

AT(t)=

∑n
j=1T (j, t)

n
, (3)

TP(t)=

n∑
j=1

P(j, t), (4)

PE(t)=
58.93AT(t)

TP(t)
, (5)

HLZ(t)=

√
(TEM(t)− Ti0)

2
+ (PER(t)−Pi0)

2

+(PET(t)−Ei0)
2 , (6)
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Figure 2. Model domain with topography.

Table 2. Detailed WRF numerical experiment design.

Experiment name Simulated periods Lateral boundary conditions Land use and land cover

HIS_ERA 1994–2014 ERA5 analysis Default
HIS_MPI 1994–2014 MPI-ESM1-2-HR Default
FUT_MPI 2040–2060 MPI-ESM1-2-HR 2020 MCD12Q1

where, AT(t), TP(t), and PE(t) are the AT (°C), TP (mm),
and PE for each grid in the period t , respectively. T (j, t)

and P(j, t) are the mean temperature with values above
0 and below 30 °C and the total precipitation on the j th
day in the period t , respectively; n is the number of days
in a year. TEM(t)= lnAT(t), PER(t)= lnTP(t), PET(t)=

lnPE(t); Ti0, Pi0, and Ei0 are the reference values of the clas-
sification scheme of the AT logarithm, TP logarithm, and PE
logarithm, respectively, at the central point of the ith poten-
tial vegetation type in the HLZ model classification scheme.
HLZ(t) is the ith potential vegetation type in the period t . A
low HLZ value indicates greater potential vegetation. Fan et
al. (2019) improved the HLZ model and revised the classifi-
cation scheme, which was applied successfully to Eurasia. In
this study, the reference values of the classification scheme
were used to quantify the distribution of potential vegetation
types in China (Table S3); for more details, the reader is re-
ferred to Fan et al. (2019). Compared to the actual vegeta-
tion types, the HLZ model can reproduce the potential for-

est distribution and grassland–forest geographical boundary
well (Fig. S4).

2.2.3 Approach for allocation of new afforestation
areas

In this section, we designed an approach to allocate the new
afforestation area for each province into grid cells. To obtain
plausible afforestation scenarios, the overall principles were
that future afforestation areas should consider both future cli-
mate change and the national afforestation plan. The specific
details are as follows:

1. The final total afforestation area should be consistent
with the NFMP.

2. Present forestland, cropland, urban, wetland, and wa-
ter body areas must not be encroached on. If the de-
mand of the NFMP cannot be met, we consider min-
imizing encroachment on cropland. This can establish
the concept of sustainable development as well as avoid
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repeated afforestation in the future (Zomer et al., 2008).
The present land cover dataset for the year 2020 is based
on MCD12Q1.

3. After afforestation, China’s cultivated land area is not
expected to fall below 121.67× 104 km2 according to
the requirements of the National Land Planning Outline
(2016–2030) (State Council of China, 2017). This en-
sures that the cultivated land area stays within the “red
line” and enhances people’s welfare.

4. Afforestation is implemented in areas where the poten-
tial vegetation type is forestland in the context of future
climate, according to the output of the HLZ model. This
measure could ensure that future climate conditions are
suitable for the growth of forests.

5. Areas with a low HLZ value are given priority afforesta-
tion. The HLZ metric is a comprehensive metric con-
sidering the biotemperature, precipitation, and poten-
tial evapotranspiration ratio. A low HLZ value means
a greater chance of the area being potential forestland
according to the HLZ model.

3 Results

3.1 Model evaluation

We evaluate the performance of the key climate variables
and PVD based on the observations and two WRF simu-
lations (HIS_ERA and HIS_MPI). The performance of the
WRF simulation is quantified by the bias, mean absolute
error (MAE), and spatial correlation coefficient (R) for the
bioclimatic variables (AT, TP, and PE). Larger R values and
smaller bias and MAE values indicate better performance.
Figure 3 illustrates the spatial patterns of the observed and
simulated multi-annual averaged (1995–2014) AT, TP, PE,
and HLZ types in China. The WRF simulation can repro-
duce well the spatial distribution of the observations with
an increasing northwest to southeast temperature and pre-
cipitation gradient. However, the underlying bias still re-
mains against the observations (Figs. S5–S7). A more de-
tailed inspection of the scatterplots shows that the spatial
correlation coefficient between the observation and simula-
tions (HIS_ERA) is 0.982 for AT, 0.795 for TP, and 0.754
for PE (Fig. 4). The simulated AT is generally underesti-
mated in most regions, with the national-average bias of
−0.974 °C. Consistent with the previous studies (Meng et
al., 2018), the largest cold biases are in the Tibetan Plateau
and complex terrain regions (Fig. S5), with a bias of more
than −3.6 °C, which could be attributed to the poor simula-
tion of the snow–ice albedo feedback process (Ji and Kang,
2013). The simulated AT is relatively better in eastern China.
The WRF simulation generally overestimates TP in most re-
gions with a national-average bias of 92.883 mm (Fig. 4d).

The wet bias could be attributed to inappropriate param-
eterization schemes (Ou et al., 2020; Zhao et al., 2023),
coarse horizontal resolution (Lin et al., 2018; Rahimi et al.,
2019), and inappropriate land surface processes associated
with soil moisture and freezing–thawing (Fu et al., 2020;
Yang et al., 2018). However, the scatterplot dispersion dis-
plays that the simulated TP exceeding 1200 mm in southern
China is underestimated (Fig. S5). It is not surprising that
the temperature is well modelled, but the simulation capac-
ity of precipitation-related variables is modest for the WRF
model (Gao, 2020). It should be noted that the HIS_ERA
simulation exhibits a highly consistent representation to that
of HIS_MPI. The cross-correlations for three climate vari-
ables between the HIS_ERA and HIS_MPI simulation show
a high spatial correlation coefficient, and the scatter distribu-
tion is very close to the 1 : 1 line (Fig. 4).

The observed and simulated results of PVD are shown in
Fig. 3j–l. The kappa statistic is applied to validate the ob-
served and simulated accuracy of the PVD map from the
HLZ model (Cohen, 1960). The kappa coefficient ranges
from 0 to 1.0, and the degree of agreement differs across
these ranges. According to the description of Landis and
Koch (1977), a kappa coefficient range of 0–0.2 is consid-
ered slight agreement, 0.21–0.40 is fair agreement, 0.41–
0.60 is moderate agreement, 0.61–0.80 is substantial agree-
ment, and 0.81–1.00 is almost perfect agreement. Overall,
the WRF_ERA simulation could reproduce the distribution
of PVD well in China. However, some minor differences in
vegetation types are found. For example, in the northeast re-
gion of China, the WRF simulation could not precisely re-
produce the observed extent of steppe types. Such misclas-
sified zones could be due to the fact that the model over-
estimated the precipitation exceeding 220 mm in the transi-
tion zone of a dry–wet climate (Fig. S5d); thus, the vegeta-
tion types are changed from steppe to cool temperature for-
est. Other disagreement types are found in southern China,
where the observed subtropical forest expands northward up
to 32° N. However, the simulation results reduce the extent.
The dry bias of precipitation simulation in southern China
could explain the source of uncertainty. Despite the limited
ability displayed by the models, the overall accuracy based
on the kappa coefficient indicates a substantial agreement be-
tween the observation and the WRF simulation. When com-
pared with the observations, the kappa coefficient is 0.648 for
HIS_ERA and 0.662 for HIS_MPI. This suggests a perfect
agreement (kappa coefficient = 0.962) of the PVD between
the HIS_MPI and HIS_ERA (as shown in Fig. 3k and l). The
implementation suggests that the bias-corrected MPI-ESM1-
2-HR model can replace the ERA5 reanalysis data as the
LBCs of WRF to obtain similar accuracy in high-resolution
simulations. Therefore, in the following analysis, the WRF
model forced by the bias-corrected MPI-ESM1-2-HR model
will be applied to project future climate change.
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Figure 3. Spatial pattern of annual average biotemperature (AT), annual total precipitation (TP), potential evapotranspiration ratio (PE), and
potential vegetation domain from the Holdridge life zone (HLZ) model based on observations (a, d, g, j), HIS_ERA simulations (b, e, h, k),
and HIS_MPI simulations (c, f, i, l) during the period 1995–2014.

3.2 Future potential vegetation cover

For the future simulation, the three key variables (AT, TP,
and PE) of the HLZ model are obtained from the FUT_MPI
experiment. The projected spatial distribution of PVD is pre-
sented in Fig. 5a. The most dominant vegetation types are
forest, polar/tundra, and desert/scrub, accounting for 57.1 %,
20.1 %, and 17.7 % of the total area of China, respectively.
The forest types are located in eastern China, characterized
by a latitudinal distribution. The potential forest types from
north to south are mainly cool temperate forests, warm tem-
perate forests, and subtropical forests, in that order. This may
be explained by the fact that temperature is the critical factor
in defining the forest types due to the sufficient precipitation
in eastern China.

Flow diagrams are useful tools for depicting precise
changes in vegetation types, displaying whether the vegeta-
tion types are shifting and in which direction. The projected

changes in the vegetation types for the area are shown in
Fig. 5b. The results indicate that under future climate change,
the PVD changes correspondingly. A total area of 10.4 % will
be shifted in China. The northward expansion of subtropical
forests replaces warm temperate forests, with an area of ap-
proximately 30.6× 104 km2, which is considered the largest
shift type (Fig. S8). In addition, projected future increases
in temperature and precipitation have caused some non-
forestland areas to transition into forested lands (Fig. S9).
For example, in western China, areas that are polar/tundra
and steppe at present have transitioned into cold temperate
forest and cool temperate forest in the future, respectively,
and the shifted area is 18.4×104 and 1.7×104 km2, respec-
tively.

Overall, the PFD (1995–2014) covers approximately
500.75× 104 km2. It is projected to expand to 518.25×
104 km2, experiencing an increase of around 17.5× 104 km2
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Figure 4. Scatterplots of the annual average biotemperature (AT), annual total precipitation (TP), and potential evapotranspiration ratio
(PE) for each grid against the observations and HIS_ERA, the observations and HIS_MPI, and HIS_MPI and HIS_ERA. HIS_ERA and
HIS_MPI indicate the WRF simulation driven by the ERA5 reanalysis data and the bias-corrected MPI-ESM1-2-HR model, respectively.
The observation is derived from the CN05.1 dataset. Evaluation indexes include the bias, mean absolute error (MAE), and spatial correlation
coefficient (R). The dotted black line indicates the 1 : 1 line.

Figure 5. Projected spatial pattern of (a) potential vegetation types from the HLZ model under the SSP2-4.5 scenario in the future period
(2041–2060) from the FUT_MPI simulation and (b) area changes across historical baseline (1995–2014) and future period, where the
calculations are based on the FUT_MPI simulation versus the HIS_MPI simulation.
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(about 3.49 %) within the period 2041–2060 under the SSP2-
4.5 scenario. In eastern China, the main transition is intercon-
version between forest types. In western China, some non-
forestland types turn into forest types. These changes indi-
cate that the forest-suitable region would be modified under
future climate change, and it is necessary to consider the cli-
matic contexts in terms of future large-scale afforestation.

3.3 Identification of future potential afforestation
location in China

According to the approach of the new afforestation alloca-
tion in Sect. 2.2.3, we mapped the future afforestation dis-
tribution of China. First, historical open-space regions for
afforestation were identified. We excluded some ineligible
regions, including present forestland, cropland, urban, wet-
land, and water body areas based on the 2020 MCD12Q1
land cover data (Fig. S1); the remaining regions were con-
sidered open-space regions for afforestation (Rohatyn et al.,
2022). The results show that the total area of open-space re-
gions is about 612.88× 104 km2 in China, with the majority
located in southern and western China (Fig. 6a).

The second step was to determine the distribution of fu-
ture PFD. We used the map of potential vegetation derived
from the outputs of the HLZ model (Fig. 5a) to select the
forest type grids as future PFD under the SSP2-4.5 scenar-
ios during 2041–2060. The future PFD was considered to
be forest-suitable lands constrained by future climate condi-
tions. The forest-suitable lands are mainly located in eastern
China (Fig. 6b). The corresponding annual total precipitation
is over 353.6 mm among the selected grids.

Then, we combined the historical open-space region
(Fig. 6a) with the future PFD (Fig. 6b), which enabled us to
obtain the future potential afforestation areas (Fig. 6c). These
regions provide suitable climate conditions for forest growth
and can be utilized for afforestation implementation in the
context of future climate change. The total area of potential
afforestation is approximately 191.33× 104 km2.

There is no doubt that the potential afforestation area is
extensive and unrealistic. Thus, according to the national tree
planning policy, we further restricted the afforestation area.
The NFMP released by the State Forestry Administration of
China (2016) included the total area of planning afforestation
in each province during 2020–2050 (Fig. 6d) and was con-
sidered a reference for future afforestation design. It notes
that the potential afforestation area for individual provinces
is usually larger than the national planned afforestation area
(Table S2). Thus, we further constrained the potential af-
forestation areas following the HLZ value. Specifically, we
sorted the HLZ value for each province in the potential af-
forestation region in ascending order (Fig. 6c); low HLZ val-
ues were given priority afforestation. We calculated the total
afforestation area sequentially grid by grid, until it satisfied
the NFMP policy requirements. The approach of the total
afforestation area for each province is calculated based on

Eq. (7):

Area= (0.55NWoody savannas+ 0.80NSavannas

+NGrasslands and croplands)× r2,
(7)

where Area indicates the total afforestation area; r indicates
the spatial resolution (here, r equals 25 km); and N indicates
the number of afforestation grids in the historical land cover.
The land cover types represent the area used for afforesta-
tion. Given the tree cover for woody savannas and savannas
is 30 %–60 % and 10 %–30 % according to the IGBP classifi-
cation scheme (Table S1), it means that approximately 45 %
and 20 % of the grid area for woody savannas and savan-
nas, respectively, has already been covered by forests in the
historical period. Thus, to avoid repeated afforestation, the
coefficients 0.55 and 0.80 were set.

It is worth noting that the planned afforestation area is
larger than the potential afforestation area in Henan and
Shandong provinces (Table S2). A small amount of cropland
had been scheduled for afforestation to meet the national af-
forestation demand. The occupied croplands are mainly lo-
cated in mountain areas, where the regions are highly suitable
for forest growth. With such an afforestation scenario design,
125.33× 104 km2 croplands in China are still available for
cultivation. It is also away from the protection “red line” of
121.67× 104 km2, released by the National Land Planning
Outline (2016–2030) (State Council of China, 2017).

A Chinese vegetation regionalization map (Wu et al.,
1980) was used to identify the forest types within each
grid (Fig. 6e). Finally, the distribution of future potential af-
forestation regions in China is shown in Fig. 7. The find-
ings show that the probable locations for future potential af-
forestation areas in China are around and to the east of the
Hu Line (a geographical division of climate zone, population
density, and economic development in China, stretching from
Heihe to Tengchong). Due to afforestation, the land cover
would be modified. In northern China, the main conversion
types are from grasslands to deciduous broadleaf forests, and
the region has the largest land conversions in China, account-
ing for 40 % of the new afforestation area. The most intensive
conversion provinces are Shanxi and Shaanxi. In southwest
China, the dominant conversions are from woody savannas
and savannas to evergreen broadleaf forests. These conver-
sions account for 26 % and 16 % of the new afforestation
area, respectively. These land use conversions are mainly lo-
cated in southwest China, such as Yunnan province, Sichuan
province, and Guizhou province. Overall, the final total af-
forestation area in China is approximately 73.64× 104 km2,
consistent with the NFMP (73.78× 104 km2). Therefore, for
each province within the future afforestation region, we ap-
plied the aforementioned approach to ensure that the total af-
forestation area of individual provinces and the extent were
consistent with the national policies and future climate con-
ditions, respectively.
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Figure 6. Spatial distribution of (a) historical open-space region for afforestation, (b) future potential forestation domain (PFD) from the
HLZ model considered to be forest-suitable lands, (c) potential afforestation region constrained by climate change, (d) national planned
afforestation area in the individual provinces from the NFMP, and (e) Chinese vegetation regionalization map.

Figure 7. Map of future potential afforestation distribution and land shift types constrained by both the national afforestation plan and climate
change. Forest types from IGBP include evergreen needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous needleleaf forests
(DNF), deciduous broadleaf forests (DBF), and mixed forests (MF). The dotted black line indicates the Hu Line.

4 Discussion

The most probable geographical distribution of future poten-
tial afforestation regions in China was investigated in this
study. The total afforestation area in this study (73.64×
104 km2) is larger than that in existing studies. For example,
Zhang et al. (2022) reported an obvious increase in poten-
tial forestation lands by 33.1× 104 km2 under future climate
scenarios (2070s) using a machine learning approach to pre-
dict the ecological niche of forests. Xu (2023) reported that
the area of prioritized potential forestation land was about
66.61× 104 km2 in 2020 through spatial overlay analysis
of multiple factors (i.e. climate, transportation, topography,
land use). However, the effects of future climate change and
the national afforestation plan are ignored. Our results show

that forest-suitable lands will increase by 17.5×104 km2 un-
der the SSP2-4.5 scenario compared with the historical pe-
riod. The dataset would be valuable for studying the effects
of future afforestation on carbon budget, ecosystem services,
water resources, and surface climate.

Our findings indicate that future afforestation in China
would mostly be located around and to the east of the Hu
Line, consistent with Zhang et al. (2022). The area near the
Hu Line is a transition zone characterized by dry–wet, agro-
pastoral, and grassland–forest areas. This transition zone is
highly sensitive to climate change (Li et al., 2015). Due
to moisture limitations, the historical forest distribution is
mainly located east of the Hu Line. Crossing the Hu Line
is challenging for forests (Liu, 2019). However, under future
climate change, the projected results show that the temper-
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ature and precipitation in China will increase by the middle
of the 21st century under the SSP2-4.5 scenario compared
with the historical period (Yang et al., 2021). A similar con-
clusion is also derived from our projection (Fig. S9). The
response of PFD to future climate change could be slightly
modified. Therefore, only a small proportion of future poten-
tial afforestation areas are in the western region of the Hu
Line, such as the Loess Plateau region. This shows that af-
forestation planning should consider vegetation responses to
future climate change.

Afforestation can provide temperature benefits (e.g. cool-
ing the land surface), according to previous studies (Peng et
al., 2014; Yu et al., 2020; Breil et al., 2024); however, the bio-
physical response of afforestation to temperature varies spa-
tially. At a global scale, it is logical that afforestation causes
a warming effect in high-latitude regions due to the albedo-
dominant radiation effect, while it causes a cooling effect in
low-latitude regions due to the evapotranspiration-dominant
non-radiation effect (Bonan, 2008; Arora and Montene-
gro, 2011). Thus, afforestation-induced regional temperature
changes depend on the net effects. Afforestation can also
cause daytime cooling but nighttime warming (Yuan et al.,
2022), and it can increase the surface temperature in winter
but decrease it in the other seasons (Ma et al., 2017). Differ-
ential seasonal and daily responses lead to larger uncertain-
ties in the net effects induced by afforestation. Therefore, a
more realistic afforestation scenario is necessary in order to
quantify the effects of afforestation on temperature under fu-
ture climate change and to develop climate change mitigation
policies.

Although the resolution of our dynamical downscaled sim-
ulation (25 km) is finer than raw GCM (∼ 100 km), it is
difficult to meet the needs of afforestation planning in ar-
eas with complex topography. Convection-permitting climate
modelling at the kilometre scale has recently been developed
to reproduce better mesoscale atmospheric processes (Prein
et al., 2015; Lucas-Picher et al., 2021) and obviously im-
prove the WRF simulation, especially precipitation (Knist
et al., 2020). However, improving the resolution involves
higher computational costs. By contrast, statistical downscal-
ing methods are also known to obtain high-resolution cli-
mate data with fewer computational resources (Tang et al.,
2016). These methods assume that the historical relationship
between local climate variables and the large-scale circula-
tion remains fixed in the future term (Wilby and Dawson,
2013). The multi-model ensemble from the CMIP6 statisti-
cal downscaling can significantly reduce the biases compared
with individual models (Gebrechorkos et al., 2019). Thus,
some statistical downscaled CMIP6 datasets (Gebrechorkos
et al., 2023; Lin et al., 2023; Thrasher et al., 2022), with a
resolution of 0.1–0.25° covering the global area, can be ap-
plied to explore the future global potential afforestation area
in later work. However, it is noted that the statistical down-
scaling data may have a limitation, as the covariance among
the variables may not align with physical laws.

This study may have some limitations and uncertainties.
Following the approach of existing studies (Ma et al., 2023;
Qiu et al., 2022), we also utilized the bias-corrected LBCs
in dynamical downscaling. However, the model uncertainty
in the future climate projection is difficult to quantify be-
cause one GCM is nested within the WRF model. The pro-
jected result generally exhibits variations based on the choice
of driving GCMs (Gao et al., 2022). This divergence can
be attributed to the inherent configurations and physical pa-
rameterization of the GCM, distinct radiative forcing sce-
narios, and varying equilibrium climate sensitivities found
in CMIP6 models (Zuo et al., 2023; Bukovsky and Mearns,
2020). For instance, the high-emission scenario could lead to
higher temperature and stronger precipitation in China rel-
ative to the middle-emission scenario (Yang et al., 2021).
Obvious differences are found in northern China, suggest-
ing that there are greater opportunities for afforestation in
semi-arid areas. Thus, the suitability of future forest lands
depends on emission scenarios (Liu et al., 2020b; Elsen et
al., 2022). Exploring the impacts of different SSPs on the
distribution of potential afforestation regions would be an in-
triguing avenue for future research. To address the concerns
about model uncertainty, exploring WRF forced by multiple
bias-corrected CMIP6 models can help uncover the source
of uncertainty. Utilizing ensemble means for downscaled cli-
mate simulation would contribute to a more robust projec-
tion. Additionally, the selection of different physical param-
eterization schemes in the WRF model can also influence the
simulation performance (Gbode et al., 2019). Selecting the
most suitable combination is beneficial for reducing the un-
derlying bias. Out of all the factors limiting afforestation al-
location, we used the HLZ value to constrain the afforesta-
tion distribution. Previous studies found that precipitation
was a key meteorological factor that restricts forest distri-
bution, especially in the mid-latitude regions (Hansen et al.,
2005; Fang et al., 2005). When the areas with high precipita-
tion were given priority afforestation, we obtained a similar
future potential afforestation distribution (Fig. S10). Future
studies should comprehensively consider additional factors,
such as local economic development, soil physicochemical
properties, and provincial tree planning policy.

5 Conclusions

This study evaluated the performance of the WRF model
in simulating the PVD from the HLZ model in China dur-
ing the historical period (1995–2014). The projected shifts in
the potential vegetation types were explored under the SSP2-
4.5 scenario during the future period (2041–2060) relative to
the historical period. Based on these data, the most proba-
ble distribution of future potential afforestation was obtained
by constraining both future climate contexts and national af-
forestation plans in China. We could draw the following main
conclusions:
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The output of the WRF model forced by the ERA5 anal-
ysis and bias-corrected MPI-ESM1-2-HR model could cap-
ture the spatial distribution of the PVD from the HLZ model
over China through comparisons with the CN05.1 dataset
during the historical period. However, the WRF simulation
did not precisely reproduce the observed extent of steppe
types in northeast China and of subtropical forests in south-
ern China. Such misclassifications might be attributed to the
bias of the precipitation simulation. Overall, in terms of the
nationwide potential forestation domain, the WRF model
could reproduce the spatial distribution well over China.

Under the SSP2-4.5 scenario, the PVD would obviously
shift during 2041–2060 compared to the historical period.
The largest shift type was from warm temperate forests to
subtropical forests over southern China. The new forest-
suitable lands would increase by about 17.5× 104 km2 in
China due to projected increases in temperature and precip-
itation. In addition, considering both future climate change
and the national tree planning policy, we found that the prob-
able locations for future afforestation were around and to
the east of the Hu Line, with a total area of approximately
73.64× 104 km2. The main shift types were from grasslands
to deciduous broadleaf forests in northern China and from
woody savannas and savannas to evergreen broadleaf forests
in southwest China. The findings of this study could provide
a dataset for exploring the effects of future afforestation, and
this method can guide designs of future gridded afforestation
regions for other countries.

Data availability. The MPI-ESM1-2-HR model (Müller et al.,
2018) can be downloaded from https://esgf.nci.org.au/search/
cmip6-nci/. The WRF model (Skamarock et al., 2019) can be
found at https://www2.mmm.ucar.edu/wrf/users/. The national
planned afforestation area data (State Forestry Administration of
China, 2016) are available at https://www.gov.cn/xinwen/2016-7/
28/5095504/files/b9ac167edfd748dc8c1a256a784f40d5.pdf.
The ERA5 reanalysis data (Hersbach et al., 2020) can be
found at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-pressure-levels?tab=form. The Chinese veg-
etation regionalization map data (Wu et al., 1980) are avail-
able at https://www.resdc.cn/data.aspx?DATAID=133. The
MCD12Q1 land use data (Friedl et al., 2010) can be obtained from
https://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.061/. The observed
temperature and precipitation data from CN05.1 (Wu and Gao,
2013) are available at https://ccrc.iap.ac.cn/resource/detail?id=228.
MATLAB (version 2020a) can be accessed at https://www.
mathworks.com/login?uri=%2Fdownloads%2Fweb_downloads
(MathWorks Inc., 2020, login required). The future po-
tential afforestation distribution data are available at
https://doi.org/10.5281/zenodo.10900150 (Shuaifeng, 2024).
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