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Abstract. Knowledge of plant species distributions is essen-
tial for various application fields, such as nature conserva-
tion, agriculture, and forestry. Remote sensing data, espe-
cially high-resolution orthoimages from unoccupied aerial
vehicles (UAVs), paired with novel pattern-recognition meth-
ods, such as convolutional neural networks (CNNs), enable
accurate mapping (segmentation) of plant species. Training
transferable pattern-recognition models for species segmen-
tation across diverse landscapes and data characteristics typ-
ically requires extensive training data. Training data are usu-
ally derived from labor-intensive field surveys or visual in-
terpretation of remote sensing images. Alternatively, pattern-
recognition models could be trained more efficiently with
plant photos and labels from citizen science platforms, which
include millions of crowd-sourced smartphone photos and
the corresponding species labels. However, these pairs of
citizen-science-based photographs and simple species labels
(one label for the entire image) cannot be used directly for
training state-of-the-art segmentation models used for UAV
image analysis, which require per-pixel labels for training
(also called masks). Here, we overcome the limitation of
simple labels of citizen science plant observations with a
two-step approach. In the first step, we train CNN-based
image classification models using the simple labels and ap-
ply them in a moving-window approach over UAV orthoim-
agery to create segmentation masks. In the second phase,

these segmentation masks are used to train state-of-the-art
CNN-based image segmentation models with an encoder—
decoder structure. We tested the approach on UAV orthoim-
ages acquired in summer and autumn at a test site compris-
ing 10 temperate deciduous tree species in varying mixtures.
Several tree species could be mapped with surprising accu-
racy (mean F1 score = 0.47). In homogenous species assem-
blages, the accuracy increased considerably (mean F1 score
= 0.55). The results indicate that several tree species can be
mapped without generating new training data and by only
using preexisting knowledge from citizen science. More-
over, our analysis revealed that the variability in citizen sci-
ence photographs, with respect to acquisition data and con-
text, facilitates the generation of models that are transferable
through the vegetation season. Thus, citizen science data may
greatly advance our capacity to monitor hundreds of plant
species and, thus, Earth’s biodiversity across space and time.

1 Introduction

Spatially explicit information on plant species is crucial for
various domains and applications, including nature conserva-
tion, agriculture, and forestry. For instance, species informa-
tion is required for the identification of threatened or invasive
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species, the location of weeds or crops in precision farming,
or tree species classification for forest inventories.

Remote sensing has emerged as a promising tool for map-
ping plant species (Miillerova et al., 2023; Bouguettaya et al.,
2022; Fassnacht et al., 2016). Thereby, supervised machine
learning algorithms are commonly used to identify species-
specific features in spatial, temporal, or spectral patterns
of remotely sensed signals (Sun et al., 2021; Maes and
Steppe, 2019; Lopatin et al., 2019; Curnick et al., 2021; Wag-
ner, 2021). In recent years, remote sensing imagery from
drones, also known as unoccupied air vehicles (UAVs), has
emerged as an effective source of information for mapping
plant species (Kattenborn et al., 2021; Fassnacht et al., 2016;
Schiefer et al., 2020). By means of mosaicking a series of
individual image frames, UAVs enable the creation of geo-
referenced orthoimagery of relatively large areas with ex-
tremely high spatial resolution, e.g., in the millimeter or cen-
timeter range. The fine spatial grain of such imagery can re-
veal distinctive morphological plant features to identify spe-
cific plant species. Such plant features include the leaf shape,
flowers, branching patterns, or crown structures (Sun et al.,
2021; Kattenborn et al., 2019a). An effective way to harness
this spatial detail is provided by deep-learning-based pattern-
recognition techniques, in particular by convolutional neural
networks (CNNs). A series of studies have demonstrated that
CNN s allow one to precisely segment plant species’ canopies
in high-resolution UAV imagery (Kattenborn et al., 2021;
Hoeser and Kuenzer, 2020; Brodrick et al., 2019). Such CNN
models learn the characteristic spatial features of the tar-
get (here, plant species) through a cascade of filter opera-
tions (convolutions). Given these high-dimensional compu-
tations, efficiently applying these models to UAV orthoim-
agery, which often have large spatial extents and high reso-
lution, requires training and applying them sequentially us-
ing smaller subregions of an orthoimage (e.g., image tiles of
512 pixels x 512 pixels; Fig. 1c).

However, generating models that are transferable across
various landscapes and remote sensing data characteristics
requires a large number of training data (Kattenborn et al.,
2021; Galuszynski et al., 2022). In particular, when neigh-
boring plant species bear a resemblance, a wealth of train-
ing data becomes essential, allowing the model to discern the
subtle distinctions between these species (Kattenborn et al.,
2021; Schiefer et al., 2020). Commonly, the generation of
training data is costly, as training data are usually derived
from field surveys or visual interpretation of remote sensing
images, also known as annotation or labeling. Both meth-
ods have limitations. For example, field surveys are often
logistically challenged by site accessibility or travel costs.
Moreover, they commonly only enable the acquisition of
point observations or relative cover fractions of the target
species (Leitdo et al., 2018). Visual image interpretation is
often much more effective (Kattenborn et al., 2019b; Schiefer
et al., 2023); however, for some species, precise visual iden-
tification of species can be challenging due to subtle indica-
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tive morphological features, the variability in these features
in the landscape, or the complexity of vegetation communi-
ties (e.g., smooth transitions of canopies of different species).
Moreover, the representativeness of data derived from field
surveys and visual interpretation is often limited to the lo-
cation and time at which the data were acquired. This can
reduce a model’s generalizability to new regions or time pe-
riods (Cloutier et al., 2023; Kattenborn et al., 2022). There-
fore, the number and quality of training data obtained can be
critical with respect to the performance and transferability of
CNN models (Bayraktar et al., 2020; Rzanny et al., 2019;
Brandt et al., 2020).

The challenge of limited training data for UAV-based plant
species identification may be alleviated by the collective
power of scientists and citizens openly sharing their plant ob-
servations on the web (Ivanova and Shashkov, 2021; Fraisl
et al., 2022; Di Cecco et al., 2021). A particular data trea-
sure in this regard is generated by citizen science projects
for plant species identification. Examples are the iNaturalist
and Pl@ntNet projects, which encourage tens of thousands
of individuals to capture, share, and annotate photographs of
global plant life (Boone and Basille, 2019; Di Cecco et al.,
2021). The quantity of such citizen science observations
is rapidly growing due to the increasing number of volun-
teers participating in such projects (Boone and Basille, 2019;
Di Cecco et al., 2021).

Currently, the iNaturalist project contains over 26 million
globally distributed and annotated photographs of vascular
plant species. The iNaturalist platform allows users to iden-
tify plant species manually or using a computer vision model
integrated into the platform. The submitted observations are
then evaluated by the community, and a research-grade clas-
sification is assigned if over two-thirds of the community
agrees on the species identification. The Pl@ntNet project
includes over 20 million observations of globally distributed
vascular plants. Pl@ntNet requires users to photograph their
observations and select an organ tag (e.g., leaf, flower, fruit,
or stem). Pl@ntNet features an image-recognition algorithm
to analyze the tagged photograph and suggest a plant species.
Pl@ntNet’s validation process uses a dynamic approach,
combining automated algorithm confidence with community
consensus (Joly et al., 2016). The validated observations of
iNaturalist and Pl@ntNet are shared via the Global Biodi-
versity Information Facility (GBIF), a global network that
provides open access to biodiversity data (GBIF, 2019).

Citizen-science-based plant photographs with species an-
notations provide a valuable, large, and continuously grow-
ing data source for training pattern-recognition models, such
as CNNs (Van Horn et al., 2018; Joly et al., 2016). How-
ever, such citizen science data have a cardinal limitation: they
only provide a simple species annotation for a plant pho-
tograph (the image i shows species j). Hence, these labels
enable one to train image classification models that predict
the likelihood of a species being present in an image, but
they do not specify where the species is present in the im-
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age. Ideally, for species-mapping applications, the species
labels would delineate the regions or pixels belonging to a
species (e.g., the pixels in the right corner of image i repre-
sent species j). Such labels (known as masks) could be used
to train CNN-based segmentation models, which can predict
a species probability for each individual pixel of an image
(or tile of an orthoimage) (Galuszynski et al., 2022; Schiefer
et al., 2020).

In a pioneering study by Soltani et al. (2022), the lim-
itation of the simple labels that come with citizen science
photographs was overcome by a workaround. At first, image
classification models were trained with citizen science data
and simple labels to predict a species per image. The trained
image classification models were then applied sequentially
on tiles of UAV-based orthomosaics in a moving-window-
like fashion with very high overlap (Fig. 1a). Lastly, the in-
dividual predictions derived from the moving-window steps
were rasterized to a seamless segmentation map (Fig. 1b).
However, this workaround is computationally intense and in-
efficient for large or multiple UAV orthomosaics, as segmen-
tation maps can only be derived from many overlapping pre-
diction steps. In contrast, the state-of-the-art CNN-based seg-
mentation methods (typically an encoder—decoder structure)
used in remote sensing applications are trained with refer-
ence data in the form of masks with dimensions (pixels) cor-
responding to the extent of the input imagery, where each
pixel of the mask defines the absence or presence of a class
(here, plant species) in the imagery (Kattenborn et al., 2021).
Respective segmentation models are more efficient, as they
segment multiple classes in a single prediction step. More-
over, they enable more detailed class representations in sit-
uations where multiple classes are arranged in complex pat-
terns.

Here, we propose a solution to overcome the limitation
of simple annotations of citizen science plant observations
with a two-step approach. In the first step, we apply the pro-
cedure of Soltani et al. (2022), involving CNN-based image
classification models trained on citizen science photographs
and simple species labels to predict plant species in UAV
orthoimages using the moving-window approach described
above (Fig. la, b). Although computationally demanding,
this serves to create segmentation masks for UAV orthoim-
ages. In the second step, these segmentation masks are used
to train more efficient CNN-based image segmentation mod-
els with an encoder—decoder structure (Fig. 1¢). These more
efficient models could then be applied to larger spatial ex-
tents or to new UAV orthomosaics (e.g., of different sites or
time steps).

Hence, the present study addresses the following research
questions:

— Can we harness weak labels from citizen science plant
observations to train efficient state-of-the-art semantic
segmentation models?
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Figure 1. Schematic representation of the proposed workflow, in-
cluding (a, b) the moving-window approach by Soltani et al. (2022)
and (c) the use of state-of-the-art encoder—decoder segmentation al-
gorithms. The photographs in panel (a) are sourced from iNaturalist
(2023).

— Do those segmentation models also increase the ac-
curacy compared with the simple moving-window ap-
proach?

These questions are evaluated on a tree species dataset ac-
quired at an experimental site (MyDiv experiment, Bad
Lauchstidt, Germany), where 10 temperate deciduous tree
species were planted in stratified and complex mixtures. The
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selection of this location is attributed to its harmonious coex-
istence of various plant species within a compact area.

2  Methods
2.1 Data acquisition and preprocessing
2.1.1 Study site and drone data acquisition

The MyDiv experimental site is located in Bad Lauchstédt,
Saxony-Anhalt, Germany (51°23’'N, 11°53’ E). It comprises
80 plots with different configurations of 10 deciduous tree
species, including Acer pseudoplatanus, Aesculus hippocas-
tanum, Betula pendula, Carpinus betulus, Fagus sylvatica,
Fraxinus excelsior, Prunus avium, Quercus petraea, Sorbus
aucuparia, and Tilia platyphyllos (Ferlian et al., 2018). Each
plot measures 12 m x 12 m and contains 140 trees planted at
a distance of 1 m from one another (Fig 2). In total, all plots
combined accommodate a total of 11200 individual trees.
Each plot contains varying tree species compositions, includ-
ing one, two, and four tree species. This species variety, the
balanced species composition, and plots of different canopy
complexity (species mixtures) provide an ideal setting to test
the proposed species segmentation approach.

We collected UAV-based RGB aerial imagery over the
MyDiv experimental site using a DJI Mavic 2 Pro and the
DroneDeploy (version 5.0, USA) flight planning software.
Two flights were conducted in 2022 in July and September;
July corresponds to the peak of the growing season, whereas
September corresponds to the senescence stage (Fig 2). The
flight plan was set up with a forward overlap of 90 % and
a side overlap of 70 % at an altitude of 16 m (ground sam-
pling distance of approximately 0.22 cm per pixel). We used
the generated images and Metashape (version 1.7.6, Agisoft
LLC) to create orthoimages for both flight campaigns. Here-
after, the orthoimages for July and September are referred to
as Orthogyly and Orthogeptember, respectively.

To evaluate the performance of the CNN models for tree
species mapping, we created reference data by manually de-
lineating the tree species in the UAV orthoimages in QGIS
(version 3.32.3). To reduce the workload, we did not delin-
eate the species for the entire plot; rather, they were specified
for diagonal transects with a 20 m length and a 2 m width.

2.1.2 Citizen science training data

We queried citizen science plant observations of the iNatu-
ralist and P1@ntNet datasets via the GBIF database for our
target tree species using scientific names. For the iNatural-
ist data, we used the R package rinat (version 0.1.8), an ap-
plication programming interface (API) for iNaturalist. The
Pl@ntNet data for the selected tree species were acquired
using the tabulated observation data from GBIF and the in-
tegrated uniform resource locators (URLs) for the images.
The number of photographs available from iNaturalist and
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Pl@ntNet varied for the different tree species. Per species,
we were able to acquire between 582 and 10 000 photographs
(mean 7696) from the iNaturalist dataset and between 221
and 3304 images (mean 2238) from the Pl@ntNet dataset
(see Table A1 in the Appendix for details ).

In addition to the tree species, we added a background
class to consider canopy gaps between trees. Training data
for this background class were obtained using the Google
Images API and queries of different keywords, e.g., “grass”,
“forest floor”, and “forest ground”. After cleaning the ob-
tained images for nonmeaningful results, the background
class included 1100 photographs.

We converted all photographs to a rectangular shape, by
cropping them to the shorter side, and resampled them to a
common size of 512 pixels x 512 pixels (the tile size used
later for the CNN model generation). Figure 3 shows ex-
amples of the downloaded photographs for the different tree
species and a comparison with their appearance in Orthoyyjy.

The acquisition settings of citizen science plant pho-
tographs are heterogeneous and differ considerably from the
typical bird’s-eye perspective of UAV orthoimages (Fig. 3).
For instance, from the UAV perspective, canopies are mostly
viewed from a relatively homogeneous distance, and the pho-
tographs represent mostly leaves and other crown compo-
nents. In contrast, the citizen science data include a lot of
close-ups, landscape imagery, or horizontal photographs of
trunks. Soltani et al. (2022) demonstrated that species recog-
nition in UAV images can be improved by excluding crowd-
sourced photographs that are exceptionally close (e.g., show-
ing individual leaf veins) or too far away from the plant
(e.g., landscape images). Therefore, we filtered the citizen-
science-based training photos according to the camera—plant
distance. Moreover, we filtered photos that exclusively con-
tained tree stems. Because such information is unavailable in
the citizen science datasets, we trained CNN-based regres-
sion and classification models to predict acquisition distance
and tree trunk presence for each downloaded photograph. To
train these CNN-based models, we visually estimated the ac-
quisition distance (4500 photographs) and labeled tree trunk
presence (1000 photographs). To ease the labeling process,
we used previously labeled training data from Soltani et al.
(2022) and added 150 additional tree photographs from the
tree species present at the MyDiv experimental site.

To evaluate the models with respect to predicting the ac-
quisition distance and trunk presence, we randomly split
the citizen-science-based plant photographs into training and
validation sets, with 80 % for training and 20 % for valida-
tion.

For the distance regression and the trunk classification, we
used the EfficientNetB7 backbone (Tan and Le, 2019). For
the distance regression, we used the following top-layer set-
tings: global average pooling, batch normalization, drop out
(rate 0.1), and a final dense layer with one unit and linear
activation function. We used the Adam optimizer (learning
rate of 0.0001) and a mean-squared error (MSE) loss func-
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Mixed Plots
- Fraxinus excelsior
- Sorbus aucuparia
- Carpinus betulus
- Fagus sylvatica

# of trees: 140
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Monoculture Plots
- Sorbus aucuparia

# of trees: 140

Mixed Plots
- Acer pseudoplatanus
- Fraxinus excelsior

# of trees: 140

Figure 2. Overview of the MyDiv experimental site with close-ups of three plots with different species compositions. The MyDiv site is

located at 51.3916° N, 11.8857°E.

tion. For the trunk classification, we used the following top-
layer settings: global max pooling, a final dense layer with
two units, and a softmax activation function. We used the
Adam optimizer (learning rate of 0.0001) and the categorical
cross-entropy loss function. Both models were trained using
a batch size of 20 and 50 epochs.

We used the model with the lowest loss from these epochs
(details on the model performance are given in Appendix A3)
to predict the acquisition distance and tree trunk presence
in all downloaded photographs for our target species. We
filtered training photographs prior to training CNN-based
species classification (see Sect. 2.2) with acquisition dis-
tances less than 0.2 m and greater than 15 m as well as pho-
tographs classified as trunk (probability threshold of 0.5).
Following this process, 82 628 of the 101 574 downloaded
citizen science photographs remained.

2.2 CNN-based creation of plant species segmentation
masks using a moving-window approach

The segmentation masks were obtained using a CNN im-
age classification model trained on crowd-sourced plant pho-
tographs and simple species labels using a moving-window
method (hereafter CNNyindow; Fig. 1b). Based on the results
of previous studies, we chose a generic image size of 512 pix-
els x 512 pixels for the CNN classification model (Schiefer
et al., 2020; Soltani et al., 2022). Using the moving-window
approach, the orthoimage is sequentially cropped into tiles of
512 pixels x 512 pixels; the image classification is then ap-
plied to these tiles to predict the species for each location.
This procedure is applied with a dense overlap between tiles
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defined by a step size, resulting in a dense, regular grid of
species predictions. We chose a vertical and horizontal dis-
tance of 51 pixels as the step size. The resulting predictions
were then rasterized to a continuous species distribution grid
with a spatial resolution of 8.31 cm per pixel (see Soltani
et al., 2022, for details). The CNNyindow model was imple-
mented as a classification task with 11 classes, including the
10 tree species and the background class.

The number of available photographs varied widely across
tree species (see Sect. 2.1.2), potentially biasing the model
towards classes with more photographs. To address this im-
balance, we equally sampled 4000 photographs for each
class with replacement. Sampling with replacement ran-
domly duplicates the existing photographs for underrep-
resented classes — in this case, classes with fewer than
4000 photographs. We applied data augmentation to increase
the variance of the duplicated images. The augmentation con-
sisted of random vertical and horizontal flips, random bright-
ness with a maximum delta of 10 % (40.1), and contrast al-
teration within a range of 90 % to 110 % (0.9 to 1.1) of train-
ing photographs. We randomly partitioned the training data
into validation and training sets to ensure unbiased evalua-
tion. From the training set, we allocated a holdout of 20 %
for model selection, while the remaining 80 % was used for
model training. Subsequently, we assessed the accuracy of
the selected model using the validation set.

After testing different architectures as model back-
bones, including ResNet50V2, EfficientNetB07, and Effi-
cientNetV2L, we selected EfficientNetV2L because it re-
sulted in the highest classification accuracies. The follow-
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iNaturalist & Pl@ntNet photos UAV Orthos

Acer
pseudoplatanus -

Aesculus
hippocastanum

Betula pendula

Carpinus betulus

Fagus sylvatica

Fraxinus excelsior

Prunus avium

Quercus petraea

Sorbus aucuparia

Tilia
platyphyllos

Figure 3. Example citizen-science-based photographs derived from iNaturalist and tiles of UAV orthoimages (512 pixels x 512 pixels) for
the 10 tree species in the MyDiv experiment. Photographs in the left column are sourced from iNaturalist (2023).

ing layers were added on top of the EfficientNetV2L back- regularizer (0.001), a rectified linear unit (ReLU) activation
bone: dropout with a ratio of 0.5, average pooling, dropout function, and a final dense layer with a softmax activation
with a ratio of 0.5, a dense layer with 128 units, L2 kernel function and 11 units (corresponding to the 10 tree species
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and the background class). We used root-mean-square prop-
agation (RMSprop) as the optimizer with a learning rate of
0.0001 and categorical cross-entropy as a loss function. We
trained the configured model with a batch size of 15 over 150
epochs. The model with the lowest loss (based on the 20 %
holdout) was selected as the final model. This model was
used to predict the tree species (probabilities) in the UAV
orthoimages using the abovementioned CNNyingow method
(Fig. 1b). To filter uncertain predictions (predominantly in
canopy gaps or at crown shadows), we only considered a tree
species as predicted above a threshold higher than 0.6; other-
wise, it was assigned to NA (not available), which accounted
for approximately 7.8 % of the UAV orthoimages. To smooth
the predictions and remove noise, we applied a sieve opera-
tion on the output of the CNNyindow (threshold = 50, consid-
ering horizontal, vertical, and diagonal neighbors, using the
R package terra, version 1.7).

2.3 CNN-based plant species segmentation using an
encoder—decoder architecture

As the encoder—decoder segmentation architecture (hereafter
CNNiegment), wWe chose U-Net (Ronneberger et al., 2015),
which is the most widely applied segmentation method in re-
mote sensing image segmentation (Kattenborn et al., 2021).
The U-Net architecture is a CNN-based algorithm that per-
forms semantic segmentation by predicting a class for each
pixel of the input image. The architecture consists of an
encoder—decoder structure with skip connections. The con-
figured architecture has four levels of convolutional blocks.
Each convolutional block consists of two convolutional lay-
ers and is followed by batch normalization and ReL.U acti-
vation. The encoder gradually compresses feature maps and
reduces their spatial dimensions via max pooling operations,
while the decoder increases the feature map resolution by
transposed convolution. The encoder and decoder blocks are
connected through skip connections, which transfer the spa-
tial context of the encoder feature maps to the decoder, en-
abling a segmentation at the resolution of the input imagery
in the last layer. The final layer has 11 units (corresponding to
the 10 tree species and a background class). A corresponding
softmax activation function maps the features to class proba-
bilities. Using a max function, the pixels of the segmentation
output are assigned to the class with the highest probability
(Fig. A12).

The segmentation masks for training CNNiegment Were ob-
tained from the predictions of the CNNyingow method ap-
plied to both UAV orthoimages (Orthoyyry and Orthoseptember;
Sect. 2.2). At first, we resampled the CNNyingow prediction
maps to the original spatial resolution of the orthoimages
(0.22 cm pixel size). Afterward, we cropped the orthoimages
and the prediction maps into nonoverlapping tiles, each with
a size of 512 pixels x 512 pixels, resulting in a total of 44 980
and 37113 tiles from Orthoyyy and Orthoseptember, Tespec-
tively.
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The training data obtained from the CNNyindow approach
were filtered to avoid training the CNNgegment model with
uncertain predictions. Thereby, we assumed that predictions
for a tile are uncertain when the model predicts multiple
classes with low relative cover. Thus, after initial tests, we
included only those tiles in which the cover of at least one
class exceeded 30 %. The number of training tiles per class
after filtering varied between 1257 and 16 894 samples: Acer
pseudoplatanus (6581), Aesculus hippocastanum (2054), Be-
tula pendula (4955), Carpinus betulus (1535), Fagus syl-
vatica (16894), Fraxinus excelsior (7901), Prunus avium
(1257), Quercus petraea (1302), Sorbus aucuparia (5473),
Tilia platyphyllos (1982), and background (5408).

Similar to the previous CNNyindow classification task, the
availability of training tiles varied greatly across the tree
species. This class imbalance may have partially stemmed
from the more systematic misclassification of certain classes
during the CNNyindow prediction. To reduce the unfavor-
able effects of a class imbalance on model training, we sam-
pled 4000 tiles per class with replacement (similar to the
CNNyindow procedure). We applied the same data augmen-
tation strategy as that used for the CNNyipdow Workflow to
increase variance among duplicates. A total of 20 % of the
training data were withheld for model selection.

We trained the U-Net architecture (CNNgegment) using
RMSprop as the optimizer with a learning rate of 0.0001 and
an adapted Dice loss function. We adapted the Dice loss to
ignore the weights coming from pixels with NA mask val-
ues. The models were trained with a batch size of 20 over
150 epochs.

The CNNgegment Was then applied to Orthoy,y and
Orthoseptember- To  reduce uncertain predictions  of
CNNgegment, we assigned the pixels where predicted
probabilities for any of the tree species did not exceed 30 %
to the background class. Thereby, we assumed that uncertain
predictions predominantly occur in canopy gaps. As image
segmentation typically suffers from increased uncertainty
at tile edges, we repeated the predictions with horizontal
and vertical shifts of 256 pixels, which were subsequently
aggregated using a majority vote.

The final model performance of CNNgegment Was assessed
and compared to CNNyindow using the independent reference
data (transects) obtained from the visual interpretation of the
UAV orthoimages.

3 Results

For the CNNyindow method, F1 scores differed considerably
across the tree species, although these differences were rel-
atively consistent across the two orthoimages, i.e., Orthoyyy
and Orthogepember (Fig. 4a, b). At the plot level, compara-
bly high model performance (mean F1 > 0.6) was found
for Acer pseudoplatanus and Fraxinus excelsior; followed
by intermediate performance (mean F1 score 0.35-0.55) for
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Aesculus hippocastanum, Sorbus aucuparia, Tilia platyphyl-
los, Betula pendula, and Carpinus betulus; and low perfor-
mance (mean F1 score < 0.35) for Quercus petraea, Fagus
sylvatica, and Prunus avium. Averaged across species, there
was a slight decrease in model performance from Orthoyyly,
with a mean F1 score of 0.44, to Orthoseptember, With a mean
F1 score of 0.4 (Fig. 4a, b). Note that Orthoyy1y corresponded
to the peak of the season, where leaves and canopies were
still fully developed.

The CNNgegment model performance across species was
similar but generally higher compared with the CNNyindow
method. For Orthoyyly, F1 scores increased from 0.44 to 0.48
(Fig. 4a vs. ¢), while F1 scores increased from 0.40 to 0.46
for Orthoseptember (Fig. 4b vs. d).

We observed notable differences in model performance
(mean F1) across different species mixtures: plots with one,
two, or four species per plot (Fig. 5). For both CNNyindow
and CNNgegment, the model performance strongly increased
for a lower number of species per plot (Fig. A13; the results
for CNNyindow are given in the Appendix).

The model performance of CNNgegment €xceeded the
model performance of CNNyindow, particularly in plots
with an increased number of species: for monocultures,
the relative increase in model performance (F1 score)
amounted to 2.5 %; for two species plots, the relative in-
crease in model performance amounted to 6.9 %; and in
plots with four species, the relative increase in model
performance amounted to 20.9 % (averaged for Orthoyyly
and Orthogeptember)- This increased performance can be at-
tributed to the advantages of the encoder—decoder princi-
ple of the CNNgegment method, enabling a pixel-wise and
contextual prediction at the original resolution of the or-
thomosaics. These advantages are also visible in Fig. 6,
where CNNgegment resulted in more detailed and accurate tree
species segmentation (particularly for plots 26 and 29).

The highest model performance for CNNgegment Was found
in monoculture plots, where F1 scores > 0.5 were found for
8 out of 10 species for both Orthoyyly and Orthogeptember. A
considerably lower performance for the July and September
acquisition was found for Prunus avium, which may corre-
spond to similarities in leaf and canopy structure with Fagus
sylvatica and Fraxinus excelsior (a confusion matrix is given
Fig. A1l in the Appendix). The decreased performance for
Carpinus betulus and Prunus avium in Orthogeptember Can be
attributed to the very advanced senescence and leaf loss.

In addition to the increase in model performance, our
analysis revealed that the prediction on orthoimagery us-
ing CNNgegment only required 10 % of the computation time
compared with CNNyingow. The duration of applying the
models to the whole MyDiv orthomosaics covering an area
of (3.02ha; 0.22cm ground sampling distance) took ap-
proximately 27.05h with CNNgegment and 264.88h with
CNNyindow (NVIDIA A6000 with 48 GB RAM).

Biogeosciences, 21, 2909-2935, 2024

4 Discussion

4.1 Filtering of citizen science data for drone-related
applications

To achieve better correspondence between plant features vis-
ible in the citizen science photographs and the UAV images,
we filtered the crowd-sourced photographs based on their ac-
quisition distance (less than 0.3 m or greater than 15m) to
exclude macro and landscape photographs. Moreover, we ex-
cluded photographs that predominantly displayed tree stems,
facilitating a foliage-centric perspective, as intrinsic to high-
resolution UAV images (Fig. 3). In the future, more criteria
may be considered for filtering citizen science imagery, in-
cluding metadata (labels) on the presence of specific plant
organs within an image (e.g., fruits and flowers), which are
provided as a by-product by some citizen science plant iden-
tification apps (e.g., Pl@ntNet).

4.2 The creation of segmentation masks from simple
image labels

One of the challenges of generating segmentation masks
for the encoder—decoder method (CNNgegmene) With the pro-
posed workflow may be error propagation between the differ-
ent steps. Firstly, the CNN image classification trained on the
citizen science data has varying uncertainty for the different
species, resulting from noisy citizen science observations or
limitations with respect to the identification of some species
solely by photographs (Van Horn et al., 2018). Secondly, the
moving-window approach (CNNyindow), Which predicts one
species for an entire tile, may be too coarse to resemble very
complex canopies (e.g., in highly diverse plant communi-
ties). However, although the fact that the segmentation labels
created with the CNNyindow approach are partially inaccu-
rate (Figs. 4a, 6), we found that the CNNgegment procedure
indeed resulted in higher performance than the CNNyindow
procedure. This is in line with other studies (Kattenborn
et al., 2021; Cloutier et al., 2023; Schiller et al., 2021) which
have reported that deep-learning-based pattern recognition
can partially overcome noisy labels, whereas the intentional
use of noisy reference data, also known as weakly super-
vised learning, is generally very promising in the absence of
high-quality labels (Cherif et al., 2023; Zhou, 2018; Schiller
et al., 2021). Here, we filtered the training data (masks) for
regions where we expected extreme noise levels — that is, for
tiles where none of the classes exceeded a relative cover of
30 %. These regions were, according to our observation, of-
ten canopy gaps and shadowed areas, where one naturally ex-
pects lower model performance, as species-specific textures
are less visible (Lopatin et al., 2019; Milas et al., 2017; De Sa
etal., 2018).

The enhanced segmentation performance of the
CNNgegment  approach compared with CNNyjindow can
be attributed to the spatially explicit and more finely re-
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Figure 4. F1 scores by tree species and background class for Orthoyyly and Orthogeptemper derived from CNNyjndow and CNNsegment:
(a) CNNyindow on Orthogyly, with a mean F1 score of 0.44; (b) CNNyindow 0n Orthogeptember, With a mean F1 score of 0.42; (¢) CNNgegment
on Orthoyyy, with a mean F1 score of 0.48; (d) CNNgegment 0n Orthogeptembers With a mean F1 score of 0.46.

solved predictions of the U-Net segmentation algorithm
(encoder—decoder principle), enabling a segmentation of the
tree species at the native resolution of the orthoimagery.
The CNNgegment approach resulted in improved prediction
results compared with the CNNyingow method in plots with
more species and, hence, more complex canopies. Thus,
the presented two-step approach of creating segmentation
masks from simple class labels (CNNyindow), as provided
by iNaturalist and Pl@ntNet platforms, can indeed be used
to create segmentation masks required for state-of-the-art
image analysis methods (CNNgegment) and, thereby, result in
high value for remote sensing applications. The increased
value of these segmentation masks enables the training of
algorithms with higher performance in species recognition.
It greatly enhances the computational efficiency of applying
the models on orthoimagery (approximately 10 times faster).
Especially for recurrent applications, such as monitoring or
large-scale undertakings, the two-step approach involving

https://doi.org/10.5194/bg-21-2909-2024

the creation of segmentation masks and encoder—decoder
architectures is recommended.

4.3 The role of canopy complexity

Overall, the segmentation performance declined with in-
creasing species richness per plot. We expect that this can
mainly be attributed to the small size of individual trees
at the MyDiv site, where there is a lower chance that a
512 pixel x 512 pixel tile includes clearly visible species-
specific leaf and branching patterns in species-rich mixtures.
This also explains why, in particular, trees with lower relative
canopy height (e.g., Quercus petraea and Fagus sylvatica)
were less likely to be accurately segmented in species mix-
tures. The observed effect of canopy complexity is in line
with previous findings from Soltani et al. (2022), Lopatin
etal. (2017), Fassnacht et al. (2016), and Fricker et al. (2019),
who reported that smaller patches of individual species were
less likely to be accurately detected. Visual inspection also
confirmed that false predictions were more likely at canopy

Biogeosciences, 21, 2909-2935, 2024
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Figure 5. The model performance (F1 score) of the CNNgegment model across a gradient of canopy complexity in Orthogyly and
Orthogeptember- F1 scores decrease with increasing canopy complexity in plots. Panel (a) shows performance across species mixtures on
Orthoyyly with mean F1 scores for one species (0.51), two species (0.44), and four species (0.41). Panel (b) displays performance across
species mixtures on Orthogeptember With mean F1 scores for one species (0.58), two species (0.51), and four species (0.42).

edges between different tree species (Fig. 6). However, it
should be noted that the small-scale canopy complexity of
the plots used here is exceptionally high (Fig. 3). Most tree
crowns in the MyDiv experiment do not exceed a diameter
of 1.5m, and the transition among tree crowns of multiple
species is often very fuzzy. Thus, we expect reduced perfor-
mance in canopy transitions to be less relevant in real-world
settings, where tree species appear in more extensive, homo-
geneous patches and where individual crowns are commonly
larger. Thus, the model performance in these species mix-
tures can be interpreted as a rather conservative estimate. The
results obtained for the monocultures might be more repre-
sentative in terms of real-world applications, as mature trees
in temperate forests typically have crown diameters 5-20
times larger. Application tests of the presented approach in
real forests are desirable. However, acquiring such a dataset
is a logistical challenge because temperate forest stands com-

Biogeosciences, 21, 2909-2935, 2024

monly do not feature a comparably high and balanced occur-
rence of that many tree species.

4.4 Spatial resolution of the UAV imagery is key

According to the results obtained in the monocultures, the
CNNgegment model successfully classified 7 out of 10 tree
species (F1 > 0.7). The lower F1 scores for Quercus pe-
traea (mean F1 0.57), Prunus avium (mean F1 0.2), and Tilia
platyphyllos (mean F1 0.53) may result from the spectral and
morphological similarity at the current spatial resolution of
the UAV imagery (0.22cm) (Fig. 3). Hence, these species
were often confused with each other (see confusion matri-
ces in Appendix A2). Such confusion among plants with a
similar appearance has been confirmed by other studies (e.g.,
Cloutier et al., 2023; Schiefer et al., 2020) and matches our
experience based on the generation of reference data via vi-
sual interpretation, where a separation between these species
was sometimes challenging. Initial CNN-based segmentation

https://doi.org/10.5194/bg-21-2909-2024
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Figure 6. The 2m x 20m transects of selected plots, including the orthoimage, the reference, CNNyjpdow predictions, and CNNgegment
predictions. Visualizations for the remaining plots are given in the Appendix (Sect. Al).

attempts (results not shown) in the preparation of this study
were based on an orthoimage with a resolution of 0.3 cm,
instead of a 0.22 cm resolution, resulting in clearly lower
model performance. This aligns with the reported importance
of the spatial resolution of UAV imagery for CNN segmen-
tation found earlier studies (Schiefer et al., 2020; Schmitt
et al., 2020; Ma et al., 2019; Braga et al., 2020). Thus, while
the current orthoimages with a 0.22 cm resolution delivered
promising results, further increasing the spatial resolution
might be very promising for species in which characteristic
leaf forms are only visible at fine spatial resolutions.
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4.5 Model transferability across seasons and
orthoimage acquisition properties

The variability in human behavior and electronic devices
makes citizen-science-based plant photographs very hetero-
geneous. This can be a challenge for deep learning appli-
cations, such as species recognition or plant trait charac-
terization (Schiller et al., 2021; Van Horn et al., 2021; van
Der Velde et al., 2023; Affouard et al., 2017), in which mod-
els have to identify features that hold across various viewing
angles, distances, or illumination conditions. However, this

Biogeosciences, 21, 2909-2935, 2024
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heterogeneity might also be of great value, given that citi-
zens depict the appearance of plants under various site, en-
vironmental, and phenological conditions. This, in turn, of-
fers a unique setting for training models that are generic and
transferable across these conditions. Here, we evaluated the
transferability of our models across different datasets by ap-
plying them to two orthoimages acquired in different seasons
(peak growing season and autumn). Both the CNNyindow and
CNNjgegment models could identify deciduous tree species in
the orthoimages with surprising accuracy, suggesting that the
models are transferable to different conditions.

4.6 Outlook

Overall, our results indeed highlight the value of citizen sci-
ence photographs with simple class labels to create training
data for state-of-the-art segmentation approaches. A great ad-
vantage of this citizen-science-based approach is that it often
does not require costly training data obtained from visual in-
terpretation or field surveys (here, reference data were only
used to validate the models). This particularly highlights the
potential of citizen science data for applications in which
many species are of interest, such as biodiversity-related
monitoring (Chandler et al., 2017; Johnston et al., 2023). In
this regard, data or models of species-recognition platforms
that incorporate excessive numbers of plant species and re-
spective imagery are very promising, including iNaturalist
(Boone and Basille, 2019), Pl@ntNet (Affouard et al., 2017),
Obsldentify (Molls, 2021), or Flora Incognita (Méder et al.,
2021). However, based on the current work and an aforemen-
tioned precursor study (Soltani et al., 2022), we expect that a
preselection of citizen science photograph databases consid-
ering images more representative of the common UAV-based
perspective is required to unleash the potential of these het-
erogeneous data.

Biogeosciences, 21, 2909-2935, 2024

5 Conclusions

The transfer learning approach presented here demonstrates
the value of freely available crowd-sourced plant pho-
tographs for remote sensing studies. This heterogeneous
dataset can provide valuable training data for transferable
CNN-based segmentation models. Here, this potential was
highlighted via a very complex task, i.e., the differentiation
of 10 temperate deciduous tree species in mixed-vegetation
stands with a complex structure. The presented two-step
approach demonstrated how we can transfer and harness
generic knowledge gathered by citizens on how plants “look”
to the bird’s-eye perspective of high-resolution drone im-
agery. The presented moving-window approach overcomes
the limitation of citizen-science-based photographs having
only simple species labels. The segmentation maps derived
from an image classification model applied in a moving-
window setting can be harnessed to create segmentation
masks for encoder—decoder-type segmentation models. The
latter not only allows higher accuracy with respect to species
segmentation but is also considerably more efficient. By
building on the effort of thousands of citizens, this frame-
work enables the mapping of plant species without any train-
ing data obtained from visual interpretation or ground-based
field surveys. Due to the large number of plant photographs
acquired under different conditions, such models can be as-
sumed to have good transferability.
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Figure A1. The 2m x 20 m transects of selected plots, including the orthoimage, the reference, CNNyinqow predictions, and CNNgegment
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A2 Confusion matrix
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A3 Data preprocessing

To reduce the heterogeneity of crowd-sourced photographs
and match them with the UAV perspective, we filtered the
photographs based on their acquisition distance and plant
leaf visibility. The model achieved an R> = 0.7 and F1 = 0.8
on independent test data for both variables. Using predicted
acquisition distance and tree trunk presence information for
each photograph, we tested different filtering thresholds and
combinations prior to training the CNNyipdow model for
plant species classification. The best result was achieved by
filtering out photographs taken from distances outside the
range of 0.3—15 m and excluding photographs that were iden-
tified by the trained CNN classifier as containing tree trunks
with a probability > 0.5.

A4 Citizen science data availability

Table A1l. Number of downloaded photographs for selected tree
species from the iNaturalist and Pl@ntNet datasets.

No. Species iNaturalist ~Pl@ntNet
1 Acer pseudoplatanus 9999 3205
2 Aesculus hippocastanum 9998 1444
3 Betula pendula 9998 1308
4 Carpinus betulus 7165 2633
5 Fagus sylvatica 9981 3304
6 Fraxinus excelsior 7745 3130
7 Prunus avium 9999 3022
8 Quercus petraea 1491 221
9 Sorbus aucuparia 10000 2730
10 Tilia platyphyllos 582 1449

A5 Segmentation model architecture
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Figure A12. A modified version (adapted from Schiefer et al., 2020) of the U-Net CNN architecture for segmenting plant species from UAV

orthoimages (Ronneberger et al., 2015).
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A6 CNN window species mixture box plot
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Figure A13. The model performance (F1 score) of the CNNyipdow model across a gradient of canopy complexity in Orthoyyjy (a) and
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