

Supplement of

The influence of plant water stress on vegetation-atmosphere exchanges: implications for ozone modelling

Tamara Emmerichs et al.

Correspondence to: Tamara Emmerichs (t.emmerichs@fz-juelich.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Annual mean relative change of OH (a) and isoprene (b) mixing ratio at the surface (for regions with isoprene>50 ppt) (*LWPfrac-REF*).

S1 Description of the photosynthesis model

According to the established IFS model, A_n is derived from the saturation level A_m (among others) and is used for the calculation of g_s afterwards. The calculation of the net assimilation rate (A_n) distinguishes for a CO₂ limiting and the radiation limiting regime which changes at level A_m (from radiation to CO₂ limiting regime):

5
$$A_m = A_{m,max} \left[1 - \exp(-g_m (C_i - \Gamma) / A_{m,max}) \right]$$
 (S1)

The maximum photosynthetic capacity $A_{m,max}$ is calculated as follows:

$$A_{m,max}(T_s) = \frac{A_{m,max}(25)Q_{10Am,max}^{(T_s-25)/10}}{(1+e^{0.3(T_{1am,max}-T_s)})(1+e^{0.3(T_{2am,max}-T_s)})}$$
(S2)

with $T_{1am,max} = 8^{\circ}$ C, $T_{2am,max} = 38^{\circ}$ C and $A_{m,max} = 2.2mg(CO_2)m^{-2}s^{-1}$. The mesophyll conductance g_m is calculated:

10
$$g_m(T_s) = \frac{g_m(25^\circ C)Q_{10gm}^{(T_s-25)/10}}{(1+e^{0.3(T_{1gm}-T_s)})(1+e^{0.3(T_{2gm}-T_s)})}$$
 (S3)

with $T_{1gm} = 5^{\circ}$ C and $T_{2gm} = 36^{\circ}$ C. T_s is the leaf surface temperature (here 2m temperature) and the Q_{10} constant is 2. $g_m(25^{\circ}C)$ depends on soil moisture and is further described in ECMWF (2021). An exponential transition function represents A_n in dependence on radiation and A_m . According to Calvet et al. (1998, 2004), plants respond in the a complex way through the mesophyll conductance (g_m) to soil moisture stress:

15

$$g_m(25^\circ C) = g_m^N \frac{f(W_s)}{W_{crit}}$$
(S4)

$$g_m(25^{\circ}C) = g_m^N + g_m^0(25^{\circ}C) \frac{f(W_s) - W_{crit}}{1 - W_{crit}}$$
(S5)

where $g_m^0(25^{\circ}C)$ is a species-dependent parameter (here: 25 mm s⁻¹). g_m^N is the stressed value of g_m and described in ECMWF (2021).