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S1 Data availability by species

The table below displays basic information and data availability for each species in the inventory of 2014. The rows are

sorted by the species’ respective basal areas (including minor stems). The column “PFT” indicates the plant functional types

the species were assigned to; the PFT numbers correspond to those provided in section S2.2. The column “Allometry data

available” shows whether DBH-dependent data on allometric properties, such as tree height or crown length, were available.

The column “Biomass equation available” indicates whether we found a suitable DBH biomass relationship in Chojnacky et al.

(2014). Species not present in the inventory of 2014 were omitted.

The allometry dataset contained DBH values, heights, crown diameters, and crown lengths for individual trees. On average,

the dataset contained 73 individuals per species covered in the dataset.

Note that when fitting allometric equations for plant functional types (PFTs), the species were weighted according to their

share in the inventory (section S2.3). Hence, missing data are not expected to impact the fitted relationships significantly if the

corresponding species have a small share of basal area in the inventory. Furthermore, the biomass equations were only used to

approximate the relative share of each PFT in the inventory and estimate a single parameter per PFT based on this information

(section .S2.4.5). Therefore, missing data are not expected to impact the model results significantly.

Species
Basal area in

inventory
[

m2

ha

] PFT Shade tolerance
Allometry data

available

Biomass

equation

available

Tilia amurensis 12.556 6 Shade tolerant X X

Pinus koraiensis 9.870 4 Midtolerant X X

Quercus mongolica 6.748 3 Light demanding X X

Fraxinus mandshurica 6.098 4 Midtolerant X X

Acer mono 2.552 6 Shade tolerant X X

Ulmus japonica 1.867 4 Midtolerant X X

Acer pseudo-sieboldianum 1.254 5 Shade tolerant X X

Populus ussuriensis 1.212 2 Light demanding X X

Tilia mandshurica 0.345 6 Shade tolerant X X

Maackia amurensis 0.285 4 Midtolerant X –

Populus koreana 0.203 2 Light demanding X X

Acer barbinerve 0.199 5 Shade tolerant – –

Betula platyphylla 0.179 2 Light demanding X X

Corylus mandshurica 0.151 5 Shade tolerant – –
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Species
Basal area in

inventory
[

m2

ha

] PFT Shade tolerance
Allometry data

available

Biomass

equation

available

Acer triflorum 0.120 6 Shade tolerant X –

Acer tegmentosum 0.120 5 Shade tolerant X –

Syringa reticulata 0.110 1 Light demanding X –

Malus baccata 0.103 6 Shade tolerant X –

Phellodendron amurense 0.100 2 Light demanding X –

Acer mandshuricum 0.083 6 Shade tolerant X –

Prunus padus 0.073 6 Shade tolerant X –

Ulmus laciniata 0.068 4 Midtolerant X –

Betula costata 0.053 2 Light demanding X –

Populus davidiana 0.031 2 Light demanding X –

Pyrus ussuriensis 0.026 2 Light demanding X –

Abies nephrolepis 0.026 4 – X –

Rhamnus ussuriensis 0.017 5 Shade tolerant – –

Cerasus maximowiczii 0.010 1 Light demanding – –

Acer ginnala 0.009 5 Shade tolerant – –

Sorbus alnifolia 0.006 5 Shade tolerant X –

Philadelphus schrenkii 0.004 5 Shade tolerant – –

Rhamnus davurica 0.004 5 Shade tolerant – –

Crataegus maximowiczii 0.002 1 – – –

Euonymus pauciflorus 0.001 5 Shade tolerant – –

Euonymus alatus 0.001 5 Shade tolerant – –

Acanthopanax senticosus 0.000 5 Shade tolerant – –

Sambucus williamsii 0.000 1 Light demanding – –

Lonicera chrysantha 0.000 5 – – –

Viburnum sargenti 0.000 5 Shade tolerant – –

Actinidia kolomikta 0.000 5 – – –

Viburnum bureiaeticum 0.000 5 Shade tolerant – –

Rhamnus diamantiaca 0.000 5 Shade tolerant – –

Euonymus macropterus 0.000 5 Shade tolerant – –

Vitis amurensis 0.000 5 – – –

Aralia elata 0.000 5 Shade tolerant – –
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Species
Basal area in

inventory
[

m2

ha

] PFT Shade tolerance
Allometry data

available

Biomass

equation

available

Deutzia amurensis 0.000 5 – – –

Sorbaria sorbifolia 0.000 4 – – –

S2 Parameterization of the forest model FORMIND

The forest model FORMIND is described in detail by Bohn et al. (2014) and Fischer et al. (2016). Below we focus on those

aspects of the model that deviate from this description, and we provide details about the parameter choice and model fitting

procedure. We based our analysis on forest inventory data from an old-growth temperate forest in the Changbaishan National

Nature Reserve in northeastern China. The surveyed area consists of 25ha of conifer/broad-leaf mixed forest with 47 species, a

total biomass of 302 tODM/ha (Piponiot et al., 2022). The inventory data contain the position, diameter at breast height (DBH)

and species of each tree with DBH≥ 1cm for the census years 2004, 2009, and 2014. Each tree is uniquely identified with an

ID number. For trees that had multiple stems at breast height, we focused on the main stem (maximal DBH) in our analysis

and we disregarded minor stems.

Below we provide an overview of the parameterization procedure before describing each step in detail.

Overview

We started by assigning species to PFTs, which aggregate species dependent on their shade tolerance and sizes (section S2.2).

Where no shade tolerance data were available, we assigned species to a PFT based on the light demand of their saplings and

their median observed DBH increment. Next, we derived environmental parameters from the literature and public data sets

(section S2.10).

To incorporate species traits and allometric relationships into the model, we computed mean trait values / allometries for each

PFT based on independent species-specific data sets or the literature, weighting the species according to their basal area share

in the inventory. For size-dependent traits / allometries, we fitted simple functions mapping the DBH to the corresponding trait

value. We considered the following DBH-dependent traits: Tree height (section S2.3.1), crown length (section S2.3.2), crown

diameter (section S2.3.3), stem from factor (section S2.3.4), and LAI (section S2.4.3). Furthermore, we considered the follow-

ing constant traits: maximal DBH (section S2.4.1), wood density (section S2.4.2), light extinction coefficient (section S2.4.4),

and mean stem biomass proportion (mean taken over DBH values; section S2.4.5).

4



To parameterize the modelled processes, we used a combination of approaches. Where possible, we derived parameters by

comparing inventory data from two consecutive censuses. This applied to the parameters of the optimal potential growth of trees

(section S2.7.1) and tree mortality (section S2.9). Some further parameters could be derived by considering the light climate

that FORMIND obtains for the forest state observed in the inventory. That way, we could estimate the maximal incident radiation

of trees in the inventory (section S2.7.2) and constrain the carbon use efficiency (CUE) of trees (section S2.7.4). The remaining

process-related parameters were determined by fitting the results from dynamic model simulations to the observed inventory

data. With this approach, we obtained the parameters for the seed influx (section S2.5), ingrowth of saplings (section S2.6),

photosynthesis (section S2.7.3), carbon losses other than maintenance respiration (section S2.7.4), as well as another parameter

controlling the optimal growth of trees (section S2.7.1).

To fit the model to the inventory data by optimizing the latter parameters, we used a likelihood-based approach, maximizing

the likelihood with which the collected inventory data are observed according to the model (section S2.11). This method has the

advantage that it can be applied on small scales (here: 0.04ha), where forest data are highly stochastic and can have strongly

skewed distributions. The approach fits the model not only to spatially aggregated forest attributes but considers their entire

distribution. That is, it seeks to reproduce the frequency of each possible forest state, including uncommon or extreme states.

By considering the complete state distribution, more information is used in the fitting stage, and parameters can be estimated

with higher precision and accuracy.

Though we largely applied the same FORMIND version used in previous studies (Fischer et al., 2016), we also adjusted some

submodels to achieve higher realism and to assert that fitted parameters do not lead to unreasonable model behaviour. We made

the following procedural adjustments:

Individual-specific size limits (section S2.4.1): We allowed each individual tree to have a different DBH limit. That way,

we could account for (1) different size limits of the species within the PFTs and (2) heterogeneity in local conditions

constraining tree height. Without individual-specific size limits, all mature trees in a PFT would have had the same size,

potentially introducing model artifacts to the relationships between forest structure and tree maturity and hence forest

productivity.

Ingrowth (section S2.6): Rather than using sharp light thresholds to decide whether seeds can establish to saplings, we used

sigmoid curves that allow a small fraction of seeds to establish even under unfavourable conditions. This approach avoids

sudden strong changes in ingrowth dynamics, potentially leading to greater heterogeneity in forest patches.

5



Optimal DBH increment (section S2.7.1): We estimated the optimal growth of trees as a certain quantile of the DBH incre-

ment distribution. This approach is more robust than simply considering maximal observed DBH increments, as it is

insensitive to outliers and avoids the statistical bias that could occur if the tree size distribution is not uniform.

Reference light conditions (section S2.7.2): We assumed that the maximal DBH increments observed in the inventory were

achieved under shaded conditions for small trees. In earlier parameterizations of FORMIND, it was typically assumed

that the fastest-growing trees in the inventory were not shaded, irrespective of their size. For the Changbaishan forest,

this was not in line with the light climate that FORMIND estimated based on the inventory data.

CUE under optimal conditions (section S2.7.4) / size-dependent biomass allocation (section S2.7.5): We introduced a sub-

model for the optimal CUE of trees and used this along with biomass data to derive DBH-dependent stem and crown

biomass proportions and to scale the light response curve (c.f. the introduction of section S2.7). Without this approach,

GPP and respiration would have had to be parameterized independently of one antother, making it likely (sometimes

inevitable) to run into situations where for some trees either (1) the parameterized GPP does not suffice for the biomass

increment observed in the inventory, resulting in zero-estimates for the maintenance respiration of these trees or (2) the

parameterized GPP exceeds the observed biomass increment by orders of magnitude, resulting in maintenance respira-

tion estimates so high that even moderately shaded trees cannot satisfy their respiratory needs and die. These situations

cannot occur if the optimal CUE is fixed to reasonable values.

Defoliation (section S2.7.6): We created a new submodel for stress situations in which trees’ maintenance respiration exceeds

their GPP. In the new model, trees loose leaves and biomass until their remaining respiratory needs can be satisfied. As

the loss of leaves leads to a further decline of GPP, stress can result in a feedback loop leading to tree death. Hence,

the defoliation mechanism constrains the forest density in a mechanistic manner. The previous approach to model space

competition was based on stochastic crowding mortality and would have capped the forest density even if all trees had

a positive NPP and thus growth potential. By linking the maximal forest density to productivity and respiration, the

defoliation approach also helped to obtain realistic parameters for the corresponding submodels.

After providing an overview of the parameterization procedure, we list all parameterization details required to reproduce the

study results.
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S2.1 Time step and simulation area

We ran the model using a yearly time step. We simulated a square-shaped forest area of one hectare, subdivided into 25 patches

of 20m× 20m, in which light competition occurs. Plants in different patches interact via tree falling only. For this interaction,

we assume torus boundary conditions to minimize boundary effects.

S2.2 Classification of species to plant functional types (PFTs)

We assigned the 47 tree species into 6 plant functional types (PFTs) according to their shade tolerance and their maximal height.

In addition, we considered the species Mongolian Oak (Quercus mongolica) individually, as it had a unique DBH distribution

in the forest, making it difficult to assign it to other PFTs without major information loss. We considered the following 6 PFTs:

1. Small shade intolerant species (pioneers with maximal diameter at breast height (DBH) below 30cm).

2. Large shade intolerant species 1 (pioneers with maximal DBH exceeding 30cm).

3. Large shade intolerant species 2 (Mongolian oak).

4. Large mid-tolerant species (intermediate species with maximal DBH exceeding 30cm).

5. Small shade tolerant species (climax species with maximal DBH below 30cm).

6. Large shade tolerant species (climax species with maximal DBH exceeding 30cm).

We did not consider a PFT of small mid-tolerant species, because there were no mid-tolerant species with maximal DBH below

30cm.

Classification of species with unknown shade tolerance class

We assigned species for which shade tolerance classification data were not readily available to the PFTs via a likelihood-based

cluster analysis. For this analysis, we determined the median DBH change after 5 years for each species’ individuals observed

in the inventory. We used this value along with numerical shade tolerance data (Niinemets and Valladares, 2006; Wang et al.,

2010), indicating the fraction of sunlight that a sapling requires to grow, as covariates. A shade tolerance value of 1 corresponds

to a light requirement of > 50% of the full sunlight; 2 to 25%–50%; 3 to 10%–25%; 4 to 5%–10%; 5 to 2%–5%.

We assumed that the covariates follow a multivariate normal distribution N (µi, Σi) for each shade tolerance class i. We

estimated the means µi and covariance matrices Σi using the method of moments. For each shade tolerance group i, we
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Figure S1. Assignment of species to PFTs with unknown shade tolerance based on a cluster analysis. Each colour corresponds to a shade
tolerance type: shade intolerant (blue), mid-tolerant (green), shade tolerant (red). Quercus mongolica is drawn in a separate colour (orange),
as it is a PFT on its own. Circles indicate species with a known shade tolerance type. The size of the circles correspond to the respective
species’ basal area in the inventory. Crosses depict species for which the shade tolerance type was assigned via the cluster analysis. The
shade tolerance values indicate the fraction of sunlight that a sapling of the respective species requires to grow. Here, 1 corresponds to a light
requirement of > 50% of the full sunlight; 2: 25%–50%; 3: 10%–25%; 4: 5%–10%; 5: 2%–5%.

determined the mean values µij of the covariates j and covariances Σij1j2 between covariate j1 and j2. We assigned each

species s with unknown shade tolerance type to the class for which the likelihood based on the derived distributions was

maximized. That is, with xs being the covariate vector of species s and fN the density function of the two-dimensional

multivariate normal distribution, we set

class(s) = argmax
classes i

fN (xj ;µi,Σi). (S1)

Fig. S1 depicts the classification of the species into shade tolerance classes.
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S2.3 Allometric relationships

We determined allometric relationships for the six PFTs based on allometry data for the individual species. Specifically, we

estimated the relationships between DBH and the geometric properties tree height, crown length, and crown radius, respec-

tively. Let p be the index of a geometric property, i the considered PFT, θpi a parameter vector and xpi the value of allometric

property p for PFT i, d be the DBH and gp : R+→ R+ an injective function. Then we set

xpi = gp(d; θpi). (S2)

To estimate the parameter vectors θpi, we used a dataset containing tuples of tree DBH and tree height, crown length, and

crown radius for several species. As we desired to find the allometric relationships that best represent the considered forest in

Changbaishan, we weighted the data according to the frequency of trees with similar species and DBH in the inventory (see

subsection S6.1). Then we fitted the parameters θpi based on the weighted likelihood, assuming that the data were subject to a

normally distributed error with constant variance σ2
pi:

Xpi ∼N
(
gp(d; θpi), σ

2
pi

)
, (S3)

where Xpi denotes the observed geometry values. This reduces to a weighted least squares method. That is, the objective

function can be expressed as

¯̀(θpi) =−
∑
k∈Ai

(xpik − gp(dk; θpi))
2
wk, (S4)

where Ai is the set of entries in the allometry dataset corresponding to trees of PFT i, xpk is the observed value for the

geometric property p in entry k, dk is the corresponding DBH value, and wk is the weight. To maximize the likelihood, we

used a Newton-Raphson-type trust region approach (Conn et al., 2000) as provided in the Python library Scipy (Jones et al.,

2001).

For some species, no allometry data were available even though they were present in the inventory. Due to the lack of data,

these species were not taken into account when fitting the allometric relationships. However, they were responsible for only a

small share (4%) of the basal area in the inventory (cf. section S1), so that their impact on the fitted relationships would have

been small and we expect the lack of data not to bias the results significantly.
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Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

θheight,i,0
m
m

127.81 198.06 174.00 143.19 167.82 129.98

θheight,i,1 m 29.25 30.59 31.22 36.75 19.87 38.92

θcrown-l,i
m
m

0.35 0.33 0.36 0.36 0.37 0.35

θcrown-d,i,0
m

m
θcrown-d,i,1

12.01 13.35 14.34 11.27 15.72 12.72

θcrown-d,i,1 1 0.49 0.63 0.59 0.52 0.48 0.48

Table S2. Parameter values for allometric relationships.

S2.3.1 Height

For the relationship between DBH and tree height, we used the model

gheight(d; θheight,i) =
θheight,i,0θheight,i,1d

d · θheight,i,0 + θheight,i,1
, (S5)

where θheight,i,0 is the initial slope of gheight and θheight,i,1 is the height asymptote. The fitted parameter values are displayed

in Table S2; the fitted curves are shown in Fig. S2a..

S2.3.2 Crown length

We used a linear relationship to model the relationship between tree height and crown length:

g̃crown-l(h; θcrown-l,i) = θcrown-l,i ·h, (S6)

where h is the tree height. With equation (S5), equation (S6) can also be expressed as a function of the DBH:

gcrown-l(d; θheight,i,θcrown-l,i) = θcrown-l,i · gheight(d; θheight,i). (S7)

The fitted parameter values are displayed in Table S2; the fitted curves are depicted in Fig. S2b.
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S2.3.3 (Maximal) crown diameter

For the relationship between DBH and crown diameter, we used a power-law model:

gcrown-d(d; θcrown-d,i) = θcrown-d,0 · dθcrown-d,1 , (S8)

where θcrown-d,0 is the scaling factor and θcrown-d,1 is the exponent. The fitted parameter values are displayed in Table S2 and the

fitted curves in Fig. S2c.

Typically, the crown diameter of trees varies with height, and the available allometry data represent maximal crown diame-

ters. In this parameterization of FORMIND, however, crowns are assumed to have cylindrical shapes, with diameters constant

along the vertical axis. Hence, using the observed maximal crown diameters as diameters of the cylindrical shapes used in the

model would lead to an overestimation of crown volumes and, as a result, the LAI. To correct for this potential bias, we assumed

that the trees from which the data were taken had crowns shaped like ellipsoids, rotationally symmetric around the vertical axis.

A cylinder with the same volume and height as this ellipsoid must have a diameter scaled by factor
√

2
3 as compared to the

length of the horizontal semi-axis of the ellipsoid. Hence, we parameterized the model with the scaled DBH-crown-diameter

relationship

gcrown-d(d; θcrown-d,i) =

√
2

3
θcrown-d,0 · dθcrown-d,1 . (S9)

S2.3.4 Stem volume and form factor

To compute the stem volume Vstem,i, we used the formula

Vstem,i(d) =
π

4
d2gheight(d; θheight,i)νi(d), (S10)

where d is the DBH, gheight(d; θheight,i) is the height (see equation (S5)), and νi(d) is a DBH- and PFT-dependent form factor.

A form factor νi(d) = 1 corresponds to a cylindrical stem shape, νi(d) = 1
3 to a cone, νi(d) ∈

(
1, 1

3

)
to a convex cone-like

shape, and νi(d) ∈
(
1, 1

3

)
to a concave cone-like shape of the stem. In line with earlier parameterizations of FORMIND (Dislich

et al., 2009), we chose

νi(d) = θform,i,0d
θform,i,1 (S11)
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Figure S2. Size-dependent plant traits. The circles depict data points from the allometry dataset; their opacity shows their weight. Each
colour corresponds to a different PFT: small shade intolerant (blue), large shade intolerant 1 (orange) large shade intolerant 2 (green), large
mid-tolerant (red), small shade tolerant (purple), large shade tolerant (brown).



with θform,i,0 = 0.336m−θform,i,1 and θform,i,1 =−0.18 for all PFTs i.

S2.4 Plant traits

Besides geometric relationships, the FORMIND model requires information about the maximal size of trees, their wood density,

and their leaf area index (LAI).

S2.4.1 Maximal DBH

We assumed that each tree t has its own site-dependent maximal DBH dmax
t . As this value may depend on the tree’s species,

which is neglected when species are summarized to PFTs, we constructed the distribution of maximal heights based on each

species’ maximal DBH and the species’ frequency in the inventory. Below we provide a detailed description of our approach.

Let s be a species and As and Is the subsets of the allometry and inventory dataset, respectively, that correspond to species

s. We determine the maximal DBH of species s based on the maximal DBH observed in the allometry dataset and the 99.5th

percentile of the inventory:

d̄max
s = max

{
F−1
{dk,k∈As}(0.995),max

t∈Is
dt

}
, (S12)

where F−1
· (·) is the observed percentile function.

There were some cases in which the maximal DBH from the inventory dataset was more than 10% lower than the corre-

sponding maximum from the allometry dataset (here: 10%=̂15cm difference). This may indicate that for these species, local

conditions are unfavourable, which in turn should be reflected in the parameterization. In cases where we had enough (more

than 1000) trees in the inventory to suggest that the maximal DBHs in the inventory coincide with the maximal DBH reachable

the study site, we therefore used the value F−1
{dk,k∈As}(0.995)/0.9. These cases are shown in Table S3.

We determined the frequency of each species in the inventory based on its total basal area. Based on this, we constructed a

discrete probability distribution for the maximal tree height of a tree t. Let Si be the species belonging to PFT i. We obtained

the following probability mass function for the maximal height of a tree of PFT i:

pmax
i (d) =

∑
s∈Si I{d̄max

s }(d)ws∑
s∈Siws

(S13)
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Species Number of trees with

DBH ≥ 5cm in the

inventory

Maximal diameter

estimated from the

inventory data [m]

Maximal diameter

estimated from the

allometry data [m]

Value used in the model

[m]

Acer mono 2469 0.38 0.61 0.43

Acer pseudo-sieboldianum 1722 0.20 0.37 0.23

Pinus koraiensis 2236 0.79 0.98 0.88

Tilia amurensis 2115 0.76 1.04 0.85

Table S3. Maximal DBH values for species where the estimates from the inventory and the allometry data deviate strongly.

with

ws =
∑
t∈Is

d2
t (S14)

and the indicator function I{X}(x), which is 1 id x ∈X and 0 otherwise.

Since even trees of the same species may have different site-dependent growth limits and to reduce a potential model artifact

arising from drawing the maximal DBHs from discrete distributions, we constructed continuous distributions for the maximal

diameters by blurring the distribution below the maximal DBH values d̄max
s . That way, we obtained a continuous distribution

with probability density function

fmax
i (d) = c

∑
s∈Si

I[(1−β)d̄max
s ,d̄max

s ](d)
ws

2βd̄max
s

, (S15)

where β is a measure for the relative within-species variation of the maximal diameter and c is a normalization constant. We

assumed that the maximal diameter for each species can take values β = 20% below the observed maximum. The resulting

probability density functions are displayed in Fig. S3.

For technical reasons, we used a discretized version of distribution (S15). To that end, we considered 200 potential maximal

DBH values homogeneously distributed in the interval
[
min
s∈Si

(1−β) d̄max
s ,max

s∈Si
(1−β) d̄max

s

]
.

S2.4.2 Wood density

We computed the wood density of each PFT by taking a weighted average of species-specific wood densities. As weights, we

used each species’ basal area in the inventory. That is, with weights ws defined as in equation (S14), we computed the wood
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Figure S3. Distribution of the maximal DBH for the six PFTs.



density ρi of PFT i via

ρi =

∑
s∈Si ρsws∑
s∈Siws

, (S16)

where ρs is the wood density of species s.

S2.4.3 LAI

Both theoretical and empirical studies suggest that a tree’s leaf area is roughly proportional to its basal area (West et al., 1999;

Xu et al., 2021). However, as it is difficult and costly to determine the leaf area of individual trees, empirical individual-level

data on leaf area, leaf number, or LAI are sparse. Xu et al. (2021) estimated leaf numbers as functions of the DBH based on

measurements on different branch levels (Liu, 2009) for three species common in our study area. In the absence of more direct

measurements, we used a simple approximation based on results by Xu et al. (2021) to parameterize the PFTs to which the

species they considered belong and used generic estimates for the other PFTs.

As general ansatz for the relationship between DBH d and LAI L, we used the following function:

L(d) = θLAI,0,i + θLAI,1,i
dθLAI,2,i

Ai(d)
, (S17)

where θLAI,0,i, θLAI,1,i, θLAI,2,i are parameters for PFT i and

Ai(d) =
π

4
gcrown-d(d; θcrown-d,i)

2 (S18)

is the corresponding crown projection area (see also equation (S9)). The division by the crown projection areaAi(d) transforms

leaf area values to LAI values. The intercept parameter is necessary, because trees require a minimal LAI to growth as much as

observed in the field. As the crown projection area is roughly proportional to the DBH, the LAI would converge to 0 for small

trees if θLAI,0,i = 0.

We used the exponents θLAI,2,i reported by Xu et al. (2021) for Betula platyphylla, Pinus koraiensis and Tilia amurensis

for the large shade intolerant 1, large mid-tolerant, and large shade tolerant PFT, respectively. For the other PFTs, we assumed

a generic value of 2 (West et al., 1999). We computed the remaining parameters θLAI,1,i based on mean LAI values Lref,i

reported by Xu et al. (2021). For PFTs with unknown mean LAI, we used a generic value of 3. As it was unclear, to which

DBH values the reported mean values corresponded, we set reference DBH values dref,i dependent on the maximal tree sizes:
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Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

dref,i m 0.1 0.25 0.25 0.25 0.1 0.25

Lref,i
m2

m2 3 11.79* 3 3.717* 3 2.622*

θLAI,0,i
m2

m2 1 1 1 0.5 0.5 0.5

θLAI,1,i
m2

m
θLAI,2,i

1581 3373 671.1 654.9 3086 1191

θLAI,2,i 1 2 2.132* 2 1.847* 2 2.27*

Table S4. Parameter values for the relationship between DBH and LAI. Values marked with an asterisk (*) were taken from Xu et al. (2021).

0.1m for small PFTs and 0.25m for large PFTs. Setting L(dref,i) = Lref,i, we obtained θLAI,1,i with a simple manipulation of

equation (S17). The resulting parameter values are displayed in Table S4. The resulting curves are visible in Fig. S2d.

S2.4.4 Light extinction and transmission

To compute the light climate in the forest, parameters for the light extinction and light transmission of leaves are needed. We

assumed that these coefficients are independent of the PFTs. For the light extinction coefficients we assumed a value of 0.5 and

for the light transmission coefficients a value of 0.1.

S2.4.5 Mean stem biomass proportion

In FORMIND, the biomass of a tree is computed by scaling the stem biomass by an expansion factor, which reflects that some

biomass is allocated in branches and leaves. This expansion factor may depend on the tree size and PFT. In our parameterization,

we computed the factor based on a submodel described in section S2.7.5 below. However, to parameterize this submodel, we

needed information about the mean stem biomass proportions.

We determined the mean proportions of above-ground biomass in the tree crown (i.e., branches and leaves) by comparing

independent biomass estimates (Piponiot et al., 2022) for the Changbaishan forest plot with the biomass estimates obtained

via the allometric relationships estimated in the sections above. As the estimates by Piponiot et al. (2022) correspond to the

entire forest only, we reimplemented their approach, which is based on the allometric biomass equations presented in Table

5 in Chojnacky et al. (2014). We mapped the species found in the inventory data to the taxa found in the table and used the

corresponding biomass equations to estimate the species’ respective total biomasses in the study area. For species for which we

could not find a matching biomass equation, we used the equation corresponding to Aceraceae with specific gravity below 0.5.
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Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

Mean stem biomass prop. 0.8 0.5 0.6 0.7 0.7 0.75

Table S5. Estimated mean stem biomass proportion for the different PFTs.

Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

nseeds,i
1

ha·yr
1.297 9.997 1.28 4.346 2.603 3.409

θest,0 1 0.0714 0.202 0.0807 0.0091 0.0405 3.36·10−4

Table S6. Parameters for seed influx and establishment.

We then adjusted the mean stem biomass proportions until our biomass estimates matched the ones obtained via the equations

by Chojnacky et al. (2014). The resulting stem biomass proportions are displayed in Table S5.

S2.5 Seed production and seed mortality

We assume that there is a constant external seed influx to the forest. This assumption holds approximately if the considered

forest is part of a larger forest area and seed availability does not depend on local species abundances. The seeds are distributed

evenly among the patches. Seeds that do not establish to small trees accumulate in a “seed bank” and may establish in later

years. However, seeds in the seed bank are subject to a mortality of 50% per year.

We determined the number nseeds,i of incoming seeds of PFT i by fitting the model to forest inventory data (see section

S2.11 for details). The resulting values are displayed in Table S6.

S2.6 Ingrowth

Seeds establish to small trees dependent on the light available at the forest’s ground and the length of the productive season.

The fraction φseed,i of seeds of PFT i that establish is computed using a Hill function:

φseed,i(φlight,j) =
φ
θest,1
light

φ
θest,1
light + θ

θest,1
est,0,i

, (S19)
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Figure S4. Ingrowth functions for the six PFTs. The fraction of seeds in the seedbank that establish depends on the fraction of irradiation
reaching the bottom of the forest as compared to the incoming irradiation.

where φlight,j ∈ [0,1] is the fraction of the incoming irradiance that reaches the ground in patch j, the parameter θest,0,i ∈ [0,1]

is the irradiance at which half of the seeds of PFT i germinate, and θest,1 is a parameter controlling how steep the transition

from unfavourable to favourable germination conditions is. We estimated the parameters θest,0,i and θest,1 by fitting the model

to forest inventory data (section S2.11). The resulting values for θest,0,i are displayed in Table S6; the threshold sharpness was

not fitted PFT-specifically and assumed a value of θest,1 = 3. The resulting curves are shown in Fig. S4.

The number nseedling,i,j of newly establishing trees of PFT i in patch j is computed by rounding the product of the number

nseedbank,i,j of seeds in the corresponding seed bank and the number of establishing seeds φseed,i(φlight,j):

nseedling,i,j := bnseedbank,i,jφseed,i(φlight,j) + 0.5c (S20)

All newly established trees have an initial DBH of 0.05m irrespective of the PFT.

S2.7 Growth

In FORMIND, the growth of a tree is modelled using multiple interacting submodels, which we calibrated partly jointly and

partly independently from one another (see Fig. S5 for an overview). The key idea of our approach was to focus on trees

growing under the best possible conditions found on site. Focusing on optimal conditions reduces the complexity while at the
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Figure S5. Overview of the model components and intermediate results used to fit the submodels for the growth of individual trees. Solid
arrows depict direct mathematical relationships, whereas dashed arrows denote constraints. Submodels and quantities that could be estimated
independently from the full model are drawn in green. Submodels with parameters that could only be estimated from the full model are shown
in blue. Quantities that were derived from other components are depicted in grey.

same time setting a frame for the possible model behaviour. Below we briefly summarize our approach before providing details

in the succeeding sections.

Based on the forest inventory data, we estimated the PFT- and DBH-dependent DBH increment under optimal conditions

(section S2.7.1) and used this along with the estimated allometric relationships (section S2.3) and plant traits (section S2.4)

to approximate the stem biomass increment under optimal conditions. At the same time, we used our model to estimate the

GPP (section S2.7.3) and carbon use efficiency (section S2.7.4) of trees under optimal growth conditions. In a second step,

we computed the aboveground wood production, which we could use along with the observed stem biomass increments to

deduce the biomass allocated to the crown (section S2.7.5). We compared these values with field estimates, in turn, to refine

the parameters that we used to compute the GPP. Parameters that could not be estimated with this procedure were estimated by

fitting the full forest model to the forest inventory data (section S2.11).

S2.7.1 DBH increment under optimal conditions

We estimated the DBH increment under optimal conditions based on the DBH increments observed in consecutive forest

inventory data. We modelled the DBH increment as observed in the inventory data via a simple stochastic model and used this

as a baseline to derive the optimal DBH increment.
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We assumed that the DBH increment ∆dik(dk) of a tree k with PFT ik and DBH dk follows a Gamma distribution. Specifi-

cally,

∆di(d)∼Gamma

(
µ∆DBH,i(d)

θ∆DBH
, θ∆DBH

)
, (S21)

where µ∆DBH,i(d) is the DBH-dependent mean DBH increment, and θ∆DBH is a scale parameter controlling the distributions

mean to variance ratio, which we assumed to be independent of the DBH. We assumed that

µ∆DBH,i(d) = θ∆DBH,i,0 + θ∆DBH,i,1d+ θ∆DBH,i,2d
2 + θ∆DBH,i,3d

3 (S22)

is a cubic polynomial satisfying the following constraints:

µ∆DBH,i(d
max
i ) = 0, (S23)

µ∆DBH,i(0)≥ 0, (S24)

µ′∆DBH,i(0)≥ 0, (S25)

µ′∆DBH,i(d
max
i )≤ 0, (S26)

where dmax
i is the maximal DBH a tree of PFT i can assume. Constraint (S23) reflects that trees with DBH dmax

i cannot grow

even under optimal conditions. Together with constraints (S24)-(S26), it follows that µ′∆DBH,i is always non-negative and at

most unimodal in the interval [0,dmax
i ]. Note that constraint (S23) implies that one of the parameters θ∆DBH,i,0, . . . ,θ∆DBH,i,3

can be expressed in terms of the other ones, reducing the degree of freedom when fitting the model.

We estimated the parameters by maximizing the likelihood given data from consecutive forest inventories, conducted in

intervals of five years. For each tree k that appeared in two consecutive inventories, we determined the observed DBH difference

∆dobs
k = dk,t2 − dk,t1 , (S27)

where dk,t is the observed DBH of tree k in year t and ∆t= t2−t1 = 5yr. As empirical data may always be prone to error, we

disregarded all data that were more than 5 standard deviations apart from the mean DBH increment, taken over all individuals of

the considered PFT. Afterwards, we also excluded all negative values ∆dobs
k < 0. We estimated the parameters for the optimal
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Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

θ∆DBH 1 7.607·10−4 9.939·10−4 1.361·10−3 1.110·10−3 6.554·10−4 1.171·10−3

θ∆DBH,i,0 m 1.013·10−3 1.299·10−3 5.552·10−4 1.276·10−3 7.098·10−4 9.300·10−4

θ∆DBH,i,1 1 3.354·10−3 0 0 0 7.866e·10−3 0

θ∆DBH,i,2
1
m

1.665·10−2 9.564·10−3 1.771·10−2 9.321·10−3 −2.317·10−2 1.324·10−2

θ∆DBH,i,3
1

m2 −2.084·10−1 −5.344·10−3 −1.848·10−2 −7.820·10−3 −3.957·10−2 −1.601·10−2

Table S7. Parameters for the DBH increment distributions.

DBH growth by fitting the distribution (S21) to the values

∆d̄obs
k =

∆dobs
k

∆t
. (S28)

The resulting parameter estimates are displayed in Table S7. In Fig. S6, we show histograms for the observed DBH increments

and the density functions of the corresponding fitted Gamma distributions.

The Gamma distribution can take arbitrarily large values. Our goal, however, was to determine some “maximal” DBH

increment. We assumed that the maximal DBH increment is given by some (high) quantile q∆DBH of the fitted DBH increment

distribution:

∆dmax,i(d) = F−1
∆di(d)(q∆DBH), (S29)

where F−1
∆di(d) is the inverse cumulative probability density function of ∆di(d). That is, the DBH under optimal conditions is

the value chosen so that a fraction of q∆DBH of the DBH increments of similar trees are expected to be lower. Whereas we

estimated the distribution of the DBH increments from forest inventory data, we fitted the parameter q∆DBH along with other

parameters based on a dynamic forest simulation (see section S2.11). We obtained a value of q∆DBH = 0.991. The resulting

curves for the DBH-dependent optimal DBH increment are displayed in Fig. S7.
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Figure S6. Histogram of observed DBH increments (blue histograms) and fitted DBH increment used in the model (black lines) for the six
PFTs and plant sizes. Each panel corresponds to a PFT (indicated in the row description) and a size class (range of considered DBH indicated
in the panel heading). The observed DBH increments are averages over five year periods. The plotted probability densities correspond to the
DBHs in the centre of the respective considered DBH interval.



Figure S7. Observed yearly DBH increments (blue dots) and maximal DBH increment used in the model (black lines) for the six PFTs.



S2.7.2 Reference conditions

We assumed that the estimated optimal DBH increments (section S2.7.1) were obtained under the best possible conditions

found at the Changbaishan site. To link these observed DBH increments to the modelled GPP, we needed to model these

reference conditions explicitly. We assumed that the optimal growth conditions correspond to the best light conditions observed

in the forest inventory. For large trees, this is equivalent to being unshaded by other trees. However, there may be no unshaded

small trees in the inventory for some PFT, requiring us to adjust the reference light conditions accordingly. This issue was not

considered in previous paramterizations of FORMIND. This may have led to underestimated growth of small trees.

Here, we made an ad-hoc correction to account for the range of light conditions found for trees in the inventory. We initialized

FORMIND with the forest inventory data, computed the incoming light for all trees (Fig. S8), and determined a simple piecewise

linear function that yields for each DBH the maximal fraction of incoming radiation observed for trees with this DBH

φlight(d) = min(θlight,0 + θlight,1d, 1)

where θlight,0 is the most favourable fraction of irradiance received by small plants and θlight,1 is the initial slope of the

reference light fraction. We fitted this curve via visual inspection, observing (1) the approximate maximal irradiance received

by small trees and (2) the DBH at which some trees received the full irradiance. We obtained the values θlight,0 = 0.5 and

θlight,1 = 1.5625m−1. The resulting relation is displayed in Fig. S8.

S2.7.3 Light response curve

In FORMIND, a tree’s GPP is determined based on the light response curve mapping the incoming radiation Ileaf of a leaf of

PFT i to its photosynthetic rate Pleaf

Pleaf,i(Ileaf) =
θproduction,i,0Ileaf

θproduction,i,1 + Ileaf
, (S30)

where θproduction,i,0 is the maximal possible photosynthetic rate and θproduction,i,1 the irradiation at which half of the max-

imally possible photosynthetic rate is achieved. We fitted the parameters θproduction,i,1 based on model simulations and

the forest inventory data (section S2.11). For each given value of θproduction,i,1, we computed the corresponding parameter

θproduction,i,0 by determining how large the production needs to be to let the trees of PFT i attain their observed crown biomass

proportions based on our assumptions on the carbon use efficiency (see section S2.7.4) and stem biomass allocation. Details

are provided in section S2.7.5.

25



Figure S8. Reference light conditions dependent on the DBH. Each blue dot corresponds to a tree in the inventory and shows its DBH and
the irradiance that it received according to the shading model in FORMIND. The black line depicts the irradiance that is used as “optimal”
reference in the parameterization. As there are no unshaded small trees, the estimated maximal observed DBH increment (section S2.7.1)
does not correspond to unshaded trees. Therefore, the black curve starts at an irradiance 50% below the irradiance received by unshaded
trees.

Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

θproduction,i,0
µMolCO2

m2·s 13.677 4.864 5.274 3.459 3.215 11.553

θproduction,i,1
µMolphoton

m2·s 500 118.56 100 70.82 274.15 492.73

Table S8. Parameters for the light response curve.

S2.7.4 Carbon use efficiency and respiration

We define the carbon use efficiency (CUE; in formulas Ck) of a tree k as the fraction of its primary production (GPP; in

formulas Pk) that is used for net (aboveground) primary production (NPP, in formulas ∆Bk):

Ck =
∆Bk
Pk

. (S31)
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The NPP, in turn, can be written as the difference of GPP and respiration:

∆Bk = Pk −Rk. (S32)

We considered two types of respiratory losses: the maintenance respiration Rmaint,i(d), dependent on the tree size but inde-

pendent of the GPP, and other losses and limitations Rloss,k, proportional to the NPP but otherwise independent of the tree

size:

Rk =Rmaint,i(dk) +Rloss,k =Rmaint,k +
γik

1− γik
∆Bk =Rmaint,k + γik (Pk −Rmaint,k) ,

where γik is a PFT-dependent loss factor, modelling how much of the production not assigned to maintenance can be used for

production. It follows

Ck =
Pk −Rmaint,k − γik (Pk −Rmaint,k)

Pk

= (1− γik)

(
1− Rmaint,k

Pk

)
(S33)

Note that the maintenance respiration represents the tree’s minimal respiratory needs and thus cannot be reduced even if the

tree is under stress. Hence, if the maintenance respiration is large compared to the other losses, already a moderate reduction

of the GPP (e.g. due to shading) can entail that a tree cannot satisfy its respiratory needs and stops growing or dies.

As no data on the optimal CUE on single-tree level were available to us, we created a phenomenological model for the

optimal CUE (below: OCUE) based on a number of observations:

1. The OCUE decreases as trees grow in size.

2. The OCUE must be sufficiently large that trees can reach the estimated optimal biomass increment.

3. The CUE must suffice that most trees observed in the inventory can satisfy their minimal respiratory needs.

4. The order of magnitude of the OCUE must be chosen so that the values of GPP and NPP match field measurements on

the stand level approximately.

5. The OCUE is subject to additional limitations and carbon losses independent of the maintenance respiration. Hence the

OCUE cannot exceed 1− γi.
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As baseline for the OCUE model, we used the following formula:

Cbase,i(d) = θOCUE,0,i− θOCUE,1,id
θOCUE,2,i , (S34)

where i is the PFT, d is the DBH, and θOCUE,0,i, θOCUE,1,i, and θOCUE,2,i are parameters. However, to guarantee that constraint

2 is satisfied, we also computed the minimal required CUE so that the trees can grow as much as observed under optimal

conditions. Let

∆Bopt
stem,i(d) = ρi (Vstem,i(d+ ∆dmax,i(d))−Vstem,i(d)) (S35)

be the stem biomass increment under optimal conditions, where d is the current DBH, ρi is the wood density, Vstem,i the

stem volume, and ∆dmax,i the DBH increment under optimal conditions. We assumed that, under optimal conditions, at least

a factor κmin = 0.1 of the NPP is allocated to crown growth. Hence, the NPP under optimal conditions must be at least

1
1−κ∆B∆Bopt

stem,i(d). Consequently, we adjusted the OCUE correspondingly:

Copt,i(d) = max

(
Cbase,i(d),

1

1−κmin
∆Bopt

stem,i(d)

)
. (S36)

We assumed that the OCUE is monotonously decreasing as trees grow. With constraint 5, we obtain that θOCUE,0,i ≤ γi. At

the same time, constraint 3 requires that Rmaint,i(d) is small for small trees, as small shaded trees observed in the inventory

could not survive otherwise. Hence, we set

θOCUE,0,i = γi− 0.01. (S37)

Similarly, applying the shading module of FORMIND to the inventory data, we observed that the OCUE must decrease slowly

for small trees (Fig. S9), which in turn requires a sufficiently large exponent θOCUE,2,i. We therefore set θOCUE,2,i = 3 for all

PFTs i. Lastly, we determined θOCUE,1,i so that the largest possible trees of PFT i have an OCUE of 0 at their maximal DBH.

That is, if

dmax,i = sup{d; fmax
i (d)> 0} (S38)
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Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

γi 1 0.15 0.285 0.4 0.4 0.189 0.236

Table S9. Scaling factors relating the NPP to respiratory losses other than the maintenance respiration.

is the maximal DBH a tree of PFT i can attain (cf. equation (S15)), then

θOCUE,1,i = θOCUE,0,id
−θOCUE,2,i

max,i . (S39)

We estimated the loss factors γi by fitting the full model to the inventory data (section S2.11). However, to satisfy constraint

4, we constrained the loss factors γi to the interval [0.6,1] to match the relatively low CUE values observed in the Changbaishan

mountain area in independent studies (Piponiot et al., 2022). The resulting parameter estimates are displayed in Table S9

As we assume that the maintenance respiration is independent of a tree’s productivity, equation (S33) must in particular hold

for trees under optimal growth conditions. Hence, after inserting the fitted OCUE Copt,i(d) and GPP under optimal conditions,

equation (S33) can be manipulated to derive the maintenance respiration for a tree of given PFT and DBH.

S2.7.5 Growth allocation

Based on the OCUE and the GPP under optimal conditions, denoted Ci and P opt
i , respectively, we could compute the corre-

sponding NPP ∆Bopt
i (d) for trees of a given DBH and PFT. Based on the estimated DBH increment under optimal conditions,

determined the respective stem biomass increment ∆Bopt
stem,i(d) (see equation (S35)). If Bi(d) is the biomass of a tree of PFT

i with DBH d and ζi is the corresponding stem biomass proportion, then

∆Bopt
i (d) = Ci(d)P opt

i (d)

=Bi(d+ ∆dmax,i(d))−Bi(d)

=
Bstem,i(d+ ∆dmax,i(d))

ζi(d+ ∆dmax,i(d))
− Bstem,i(d)

ζi(d)
(S40)

⇐⇒

ζi(d+ ∆dmax,i(d)) =
ζi(d)Bstem,i(d+ ∆dmax,i(d))

Bstem,i(d) + ζi(d)Ci(d)P opt
i (d)

. (S41)
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Figure S9. The optimal carbon use efficiency OCUE for the different PFTs. The OCUEs used in the model are depicted as solid blue lines. The points show estimated lower
bounds for the required CUEs obtained for trees in the inventory via the shading module of FORMIND. Each point corresponds to a tree; the colour shows whether the tree could
satisfy its respiratory needs according to the model (green: yes; black: no). The OCUE curves were chosen so that as many of the points are below the blue curves. The sharp
transitions between the curve sections are due to constraint 2 imposing a different shape of the curve for large DBH values (see also equation (S36)).



We used this difference equation to compute the stem biomass proportion for all DBHs and PFTs. We provide details below.

Equation (S41) requires knowledge of the previous stem biomass proportion ζi(d). Hence, we needed initial values for the

interval [d0,d0 + ∆dmax,i(d)] with d0 being the stem diameter of new saplings. These initial values may be chosen arbitrarily.

Using a shifted exponential ansatz for the initial condition yielded well-behaved smooth results for ζi:

ζi(d) = a0,i + a1,i exp(a2,i · d) if d < d0 + ∆dmax,i(d0). (S42)

We chose the coefficients a0i, a1i, a2i so that the curve ζi(d) is continuous, approximately differentiable, and starts at a given

initial value ζ0i = ζi(d0).

To see how the coefficients were determined, first note that in practice, the curve ζi is computed numerically and hence

evaluated at a discrete set of sampling points only. We chose the sampling points so that they have a constant distance to one

another. Intermediate values were obtained via linear interpolation between these points. Now, let d1i = d0 + ∆dmax,i(d0), let

d̄1i > d1i be the smallest sampling point larger than d1i, and choose d̄0i so that d̄1i = d̄0i+∆dmax,i

(
d̄0i

)
. Furthermore, define

(evaluating equation (S41) at d0i and d̄0i)

ζ1i =
ζ0iBstem,i(d1)

Bstem,i(d0) + ζ0iCi(d)P opt
i (d0)

, (S43)

ζ̄1i =
ζ0iBstem,i

(
d̄1

)
Bstem,i

(
d̄0i

)
+ ζ0iCi(d)P opt

i

(
d̄0i

) . (S44)

Now we imposed the following conditions

ζi(d0) =a0i + a1i exp(a2i · d0) =ζ0i, (S45)

ζi(d1i) =a0i + a1i exp(a2i · d1i) =ζ1i, (S46)

ζi
(
d̄1i

)
=a0i + a1i exp

(
a2i · d̄1i

)
=ζ̄1i (S47)

and obtained

a1i =
ζ1i− ζ0i

exp(a2i · d1i)− exp(a2i · d0)
(S48)

a0i = ζ0i− a1i exp(a2i · d0). (S49)
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Figure S10. Stem biomass proportions of the six PFTs. The solid lines depict the stem biomass proportions used in the model (obtained via
the approach described in section S2.7.5). The dashed lines show the independently estimated mean values (see section S2.4.5).

We computed the remaining unknown coefficient a2i via a binary search on equation (S47) using the values for a0i and a1i

from equations (S48)-(S49).

We approximated the mean of the curves ζi(d) by taking the man of the functions values at 50 equidistant points in the inter-

vals [0.1m, dmax,i], respectively. We then conducted a binary search in the maximal possible photosynthetic rate θproduction,i,0

(see section S2.7.3) until the approximate mean values matched the mean stem biomass proportions estimated from the field

data (section S2.4.5).

S2.7.6 Defoliation

If trees are shaded, it can happen that their maintenance respiration exceeds their GPP. In these cases, we assumed that parts

of the crown die until the remaining tree can be maintained. Here, we assumed that for a tree of given DBH, the maintenance

respiration is proportional to its biomass. That is, a tree k with insufficient production Pk, maintenance respiration Rmaint,k,
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and biomass Bk will reduce its biomass to

B̃k =Bk
Pk

Rmaint,k
, (S50)

and its maintenance respiration will be set to Pk. As we assume the biomass is lost in the crown only, the stem biomass

proportion is adjusted accordingly to a value ζ̃k.

We assumed that the loss in crown biomass also affects the tree’s number of leaves and thereby the LAI. We reduced the

LAI proportional to the crown completeness

ηk =
B̃crown,k

Bcrown,ik(dk)

=
B̃k −Bstem,ik(dk)

Bik(dk)−Bstem,ik(dk)
, (S51)

where B̃crown,k is the reduced crown biomass andBik(dk) the biomass of a tree with complete crown and DBH dk. As a result,

trees with incomplete crowns have reduced GPP and shade other trees less. Trees without any crown biomass (ηk = 0) cannot

recover and die.

We assumed that if the light conditions for a tree with incomplete crown improve, the new biomass is first allocated to “refill”

the crown until ηk = 1. Any remaining new biomass is allocated to the usual tree growth with corresponding DBH increment.

S2.8 Competition

We assumed that trees solely compete for light. In particular, we did not apply crowding mortality. Instead, the forest density

is self-regulated via crown defoliation and the resulting tree death. This process has an effect similar to crowding mortality

(“full” forests lead to deadly overshadowing of small plants) but a better mechanistic justification. In particular, mortality via

light competition incorporates the traits of both the shadowing and the overshadowed trees, since the LAI of larger plants as

well as the respiratory demands of smaller plants are parameterized individually for each plant functional type (PFT).

S2.9 Stochastic mortality

We assumed that trees die randomly with probabilities dependent on their PFT and DBH. As model for the mortality, we used

a linear combination of exponentials:

pmort,i(d) = θmort,0,i + θmort,1,i exp(θmort,2,id) + θmort,3,i exp(θmort,4,id), (S52)
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Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

θmort,0,i 1 0 0 0.004 0 0 0

θmort,1,i 1 0.0568 0.0345 0.2415 0.0829 0.0106 0.0224

θmort,2,i 1 −9.5049 −12.6546 −43.2337 −10.6963 5.6635 −3.0862

θmort,3,i 1 0 0.0112 6.823·10−5 0.002 0 0

θmort,4,i 1 0 0.5339 5.0046 1.8684 0 0

Table S10. Parameters for the mortality probabilities.

where pmort,i(d) is the probability that a tree of PFT i and DBH d dies within a year. This model may take a variety of shapes

including mortality increasing or decreasing with plant size or a “bathtub” shape, where the mortality is lowest for plants with

intermediate sizes.

We estimated the parameters in equation (S52) using data from consecutive forest inventories. We determined which trees

died in the intermediate time by comparing which trees that were present in the first inventory were also present in the second

inventory. For simplicity, we assumed that the tree DBH does not change significantly during the 5 year period between two

censuses and that random mortality is the only death mechanism at play. If dk,t1 is the DBH observed in the inventory in year

t1, the probability that the tree survived until the year t2 of the second inventory is approximately

pobs
mort,ik

= (1− pmort,ik(dk,t1))
t2−t1 . (S53)

We used this to construct the likelihood for the observed death and survival events. We then estimated the parameters in

equation (S52) for the different PFTs. The resulting parameters are displayed in Table S10 and the resulting curves in Fig. S11.

Besides the random mortality, we trees may die due to strong light competition (see section S2.7.6) or by falling large trees.

We assumed that trees larger than 0.1m may fall with a probability of 0.4 and kill smaller trees. Details of this mechanism are

described in Fischer et al. (2016).
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Figure S11. Mortality by PFT (field data and model). The blue curves (primary axis) depict the modelled DBH-dependent probabilities that
a tree dies within a year. The blue bars correspond to field estimates of the death probabilities (number of dead trees divided by the total
number of trees in the inventory). The orange bars (secondary axis) are a histogram for the tree sizes, indicating where the mortality estimates
have the strongest empirical support.



S2.10 Climate

We used a static climate in our simulations. Advanced features such as the soil water module, temperature effects, and daily

changes to the climate were not included. Instead, we used averaged values, which we provide below.

Evapotranspiration. For the mean actual evapotranspiration, we used a value of 600mm
yr . This is in line with independent

estimates for the Changbaishan region (Sun et al., 2004) and earlier parameterizations of the model for temperate forests

(Bohn et al., 2014).

Growing season. We defined the growing season as the months with positive mean temperature. This were the months March

until October (Wang et al., 2020).

Irradiance. We computed the mean yearly light intensity (“PAR”) above the canopy during daytime in the growing season

based on the WFDEI forcing dataset (Weedon et al., 2014). We obtained a value of 768µMolphotons
m2 .

Day length. We computed the average length of a day in the growing season and obtained a value of 13.39h.

S2.11 Fitting procedure

Some parameters were not available from the literature and could not be determined directly from the available data. We

estimated these parameters based on dynamical forest simulations and the inventory data (see Fig. S12). After a burn-in period,

we generated a sample of forest states via simulations. Then, we used the generated sample to estimate the likelihood for the

parameters given the inventory data via kernel density estimation (KDE). We then optimized the parameters by maximizing

the likelihood. Below we provide details for each of the steps involved.

S2.11.1 Forest state characterization

We characterized the forest’s state by determining the stem count and the biomass in the considered patch for each PFT. That

is, the state space was 12-dimensional. The combined information of stem count and biomass yields basic insight into the size

distribution of trees, as a large stem count with small biomass indicates a young forest with many small trees, and a small stem

count with high biomass indicates an old forest with few large trees. Hence, these summary statistics provide relatively rich

information about the overall forest state.

We considered forest states on the 20m× 20m level. For the forest plot in Changbaishan, which has a size of 25ha, we

therefore obtained a sample of 625 observed forest states.
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Figure S12. Overview of the model fitting procedure.

S2.11.2 Sample generation

To generate a sample of forest states from the model, we first simulated 1ha of forest until it reached its limiting behaviour

(2000yr). Then, we generated a sample of forest states on the 20m× 20m scale by sampling the forest 500 times every

5yr. Via parallel simulations, we repeated this procedure 67 times. That way we obtained a sample of forest states with

nsample = 837,500 entries.

In FORMIND, the interactions between 20m× 20m patches are small (only via tree falling, which is a rare event). Further-

more, taking samples over a relatively long period of 2500yr reduces the temporal correlations between the generated samples.

Therefore, and because we also conducted 67 mutually independent simulations, the generated sample is approximately iden-

tically independently distributed.

S2.11.3 Likelihood estimation

The distribution of the forest states according to the forest model is not known in closed form and can only be studied via

simulations. Therefore, we estimated the probability density, and based on this the likelihood for the parameters given the

data, from the model-generated sample of forest states. To this end, we used kernel density estimation (KDE; Wand and Jones,

1995). In KDE, the probability density f of an element y of the state space is estimated as the mean of kernel functions centred

at the elements xi of the generated sample:

f
(
y; x1, . . . ,xnsample

)
≈ f̂

(
y; x1, . . . ,xnsample

)
=

1

nsample

nsample∑
i=1

ndim∏
j=1

K(yj ,xij ;hj), (S54)
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where f̂ is the estimated probability density, nsample is the number of generated sample points, ndim is the dimension of the

state space, K is the kernel function, and hj is a bandwidth parameter defining the (marginal) scale on which two points are

considered approximately similar. Due to its computational simplicity on the log-scale, we used a Gaussian Kernel. However,

since stem counts and biomasses are constrained to the non-negative range, we applied reflecting boundary conditions:

Kj(yj ,xij ;hj) =


1
wj

(
exp
(
− (xij−yj)2

2h2
j

)
+ exp

(
− (xij+yj)

2

2h2
j

))
if yj ≥ 0

0 else
(S55)

with wj =
√

2πhj . For the stem counts, we furthermore needed to normalized the kernel to correctly account for the discrete

nature of the data:

Kj(yj ,xij ;hj) =


1
wj

(
exp
(
− (xij−yj)2

2h2
j

)
+ exp

(
− (xij+yj+1)2

2h2
j

))
if yj ≥ 0

0 else
(S56)

with

wj = 2

∞∑
k=0

exp

(
− k2

2h2
j

)
− 1.

The bandwidths we used are displayed in Table S11.

KDE provides unbiased estimate of probability densities. For likelihood optimization, however, we need the log-likelihood,

because working with the original likelihood would require us to handle extremely small numbers, which is numerically

infeasible. As taking the logarithm of a random variable changes its distribution and, in particular, expected value, we applied a

bias correction. First, note that for a Gaussian kernel, the KDE’s expected value µKDE and variance σ2
KDE can be approximated

as follows (Wand and Jones, 1995):

µKDE ≈ f(y) (S57)

σ2
KDE ≈

µKDE

2
√
πnh

. (S58)

We desired to find a bias correction function g so that

E
(
g
(
f̂(y)

))
= lnµKDE. (S59)
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State

variable
Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

Stem

count
1

400m2

Mean 0.48 0.376 1.278 6.381 3.17 8.229

Range [0,7] [0,8] [0,7] [0,21] [0,17] [0,25]

Bandw. 0.4 0.4 0.6 1 0.6 2

Biomass tODM
400m2

Mean 0.06 0.457 2.633 4.617 0.062 3.047

Range [0,0.1] [0,10.945] [0,17.346] [0,13.133] [0,0.607] [0,10.909]

Bandw. 0.005 0.05 0.1 0.5 0.02 0.5

Table S11. Ranges and KDE bandwidths for the considered state variables. The bandwidth is the scale in the state space on which a data
point in the simulated sample is considered “similar” to a point in the inventory dataset.

Applying a Taylor expansion about µKDE, we find

E
(
g
(
f̂(y)

))
≈ g(µKDE) +

1

2
g′′(µKDE)E

((
f̂(y)−µKDE

)2
)

︸ ︷︷ ︸
σ2
KDE

= g(µKDE) +
σ2

KDE

2
g′′(µ)

!
= lnµKDE. (S60)

We solved differential equation (S60) to obtain the bias correction function, into which we inserted the original results (S54)

from the KDE. To avoid numerical issues, we performed all these steps on the log scale.

To fit the model, we considered a 12-dimensional state space. As a result, the products of the kernel functions in equation

(S54) can become very small and very sensitive to stochastic differences between simulation runs. We therefore estimated

the probability density for each PFT independently and multiplied the results to obtain the joint density. This is equivalent to

assuming that the states of different PFTs are mutually independent. Though this assumption is inaccurate in general, using the

resulting composite likelihood still yields consistent parameter estimates (Varin, 2008).

S2.11.4 Parameter optimization

A challenge when maximizing the kernel density estimate of the likelihood is that this estimate is stochastic. This requires the

applied optimizers to be robust against stochastic fluctuations. We applied the algorithm PY-BOBYQA (Cartis et al., 2019)
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Parameter Unit Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

nseeds,i
1

ha·yr

Range [0.001,50] [0.001,50] [0.001,50] [0.001,50] [0.001,50] [0.001,50]

Guess 2 2 2 2 2 2

θest,0 1
Range [0.01,0.4] [0.01,0.4] [0.01,0.4] [0.001,0.4] [0.0001,0.3] [0.0001,0.3]

Guess 0.15 0.15 0.15 0.05 0.01 0.01

θproduction,i,1
µMolphot.

m2·s

Range [100,500] [100,500] [100,500] [50,500] [20,300] [20,500]

Guess 300 300 300 150 100 100

γi 1
Range [0.15,0.4] [0.15,0.4] [0.15,0.4] [0.15,0.4] [0.15,0.4] [0.15,0.4]

Guess 0.3 0.3 0.3 0.3 0.3 0.3

q∆DBH 1
Range [0.2,0.9999]

Guess 0.99

θest,1 1
Range [3,20]

Guess 5

Table S12. Parameter bounds and initial guesses used for parameter optimization.

on a preconditioned version of the log-likelihood function. To reduce numerical issues, we optimized all parameters on the

log-scale except for q∆DBH, for which we applied an inverse logit transform to constrain it to the open interval (0,1). Then,

we evaluated the log-likelihood function 10 times at the initial parameter guess (Table S12) to estimate its standard deviation.

Based on this, we conducted for each parameter individually a rough binary search to find the scale of change on which the

log-likelihood function changed by at least 2 standard deviations but not more than 10 standard deviations. We scaled the

parameters accordingly for an efficient search. This scaling process is called preconditioning.

We constrained the parameters to ecologically reasonable ranges, respectively. The bounds we applied are displayed in Table

S12. To avoid getting stuck due to stochastic deviations, we terminated the search algorithm after 200 likelihood evaluations

and restarted the search until a total of 8 runs was completed. To minimize the risk of converging to a local minimum, we

furthermore applied basin-hopping (Wales and Doye, 1997) as implemented in Scipy. This algorithm performs repeated local

optimizations with randomly perturbed initial conditions. For the perturbation, we applied a step size of 4 on the preconditioned

parameter scale. We ran the algorithm for 5 iterations. After finishing this optimization process, we repeated it, using the result

as initial value and baseline for preconditioning for the repetition.
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S3 DBH entropy

S3.1 Derivation of the DBH entropy

We used the basal-area-weighted DBH entropy as a proxy for the prevalence of large trees in a forest patch. The entropy of the

weighted DBH distribution is defined as follows:

S̃DBH =−
∑
d∈D

pd ln(pd), (S61)

where D is the set of distinct DBH values occurring in the forest patch and

pd =

∑
k∈I:dk=d d

2
k∑

k∈I d
2
k

. (S62)

is the probability to randomly select a tree with DBH d from the forest patch if the probabilities were proportional to the trees’

respective basal areas. Here, I is the set of trees in the inventory and dk is the DBH of tree k.

Formula (S61) is sensitive to arbitrarily small changes in DBH values, as trees need to have exactly the same DBH values

to be considered similar in equation (S62). This is inappropriate, as DBH values come from a continuous domain, and will

never be exactly equal in practice. To make the measure more robust, we could consider DBH intervals instead of individual

DBH values, as suggested in the main text. However, this approach is sensitive to the choice of interval bounds and can lead

to strongly different results for slight changes of DBH values (cf. Wand and Jones, 1995). We therefore used kernel density

estimation to obtain a continuous distribution of tree sizes from the inventory. Then, we considered the entropy of the resulting

distribution:

SDBH =−
∞∫

0

fd(δ) lnfd(δ)dδ, (S63)

where

fd(δ) =
∑
d∈D

wdK(d,δ;h) (S64)
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with weights

wd =
dη∑
d∈D d

η
(S65)

is the smoothed DBH distribution in the forest patch,

K(d,δ;h) =


3

4h

(
1−

(
d−δ
h

)2)
if |d− δ| ≤ h

0 else

is the Epanechnikov kernel, η is the exponent parameter and h is a bandwidth parameter, defining the scale on which two trees

are regarded similar.

S3.2 DBH entropy parameterization

The DBH entropy depends on the exponent parameter η and the bandwidth parameter h. In line with our requirements for

a proxy for the prevalence of mature trees, we chose η = 2 to obtain weights by basal area and h= 1cm for a sufficiently

fine-grained resolution to distinguish tree sizes well. To validate this choice of parameters and compare it to parameters used

in other studies, we assessed the relationship between GPP, NPP, and NEE and the DBH entropy computed with different

parameter values: η = 0 (no weighting), η = 2 (weighting by basal area), η = 3 (higher-order weighting, potentially similar to

biomass) with h= 1cm, respectively, and η = 0 and η = 2 with h= 10cm. We used the same methods as for the analysis of

the other diversity measures.

The results are displayed in Figs. S13 and S14 for the 0.04ha and the 1ha scale, respectively. It is visible that weighting

the entropy by the basal area strengthened the relationhip with the GPP and NEE on the fine scale; for the 1ha scale the

relationship to the NEE became slightly weaker compared to the unweighted version of the entropy. However, weighting with

a higher exponent (η = 3) worsened the results. Using a larger bandwidth, i.e., counting more trees as similar, worsened the

connection between entropy and NPP and NEE. This is notable, as many studies using the DBH entropy as a measure for

structural diversity consider the 1ha scale (or larger), use a large bandwidth (e.g. 10cm; Silva Pedro et al., 2017) and do not

weight the trees by basal area (e.g. Dănescu et al., 2016; Silva Pedro et al., 2017; Park et al., 2019).
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S4 Model validation

To verify that our optimization procedure reliably yields good fitting results, we repeated the fitting procedure three times. We

obtained estimated log-likelihood values of −4850.32, −4853.39, and −4866.18, respectively. Though already log-likelihood

differences of 2 are significant in likelihood ratio tests and for confidence intervals, we consider the fitting procedure successful,

because the stochastic optimization problem we needed to solve to fit the model is computationally difficult.

The parameter estimates we obtained in the three optimization runs are displayed in Table S13. For most parameters, the

results remained in similar orders of magnitude, suggesting that the parameters are estimable despite remaining uncertainties

resulting from the difficulty of the optimization problem. Only the parameter θest,1 which controls the sharpness of the light

threshold for seedling establishment took on vastly different values. This suggests that this parameter may not be estimable

and may be set to a predefined value without affecting the goodness of fit significantly.

To validate that our model fits the biomass and stem count distributions from the forest inventory well, we compared a

model-generated sample of these values to the sample from the inventory data that was also used in the fitting procedure. We

simulated 1ha of forest for a burn-in period of 2000yr and sampled 25 patches (0.04ha) of the simulated forest 1000 times in

time intervals of 5yr. We repeated this procedure 8 times, obtaining a sample with 200,000 entries, corresponding to a forest

of 8000ha.

Based on the simulated data and the field data, we created one-dimensional histograms of the biomass and stem count for

each PFT. Then we plotted these histograms to study how well they overlap. The results are displayed in Figures S15 and S16,

respectively. The distributions match reasonably well, indicating a good model fit in light of the model’s complexity and the

large number of model features fitted simultaneously.

To also evaluate the model’s ability to reproduce the joint distributions of biomass and stem count for the six PFTs, we

created corresponding two-dimensional histograms, displayed in Fig. S17. The distributions from the model generally matched

the patterns observed in the field data. However, the field data often covered a broader range of values than observed in the

model simulation. This indicates that some sources of variation are still missing in the model.

In addition to comparing the simulation results with forest inventory data, we also computed stand-level forest characteristics

(biomass, NPP, GPP, and LAI), which we then compared to estimates from independent studies (see main text). We considered

a forest area of the same size (25ha) as the area where the inventory was conducted. We simulated this forest for a burn-in

period of 1,000yr. Then, we determined the forest characteristics of interest in each year for a simulation period of 3,000yr,

yielding a quasi-independent sample with 3,000 entries. We then determined the sample mean and standard deviation of each

of the considered characteristics and used the resulting values for model validation.
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Figure S15. Comparison of the simulated biomass distribution with field data. The figure displays the marginal biomass distribution by PFT on the 0.04ha scale. The orange
bars form histograms of the biomass estimates generated based on the field data from Changbaishan. The blue bars form histograms of the biomass distributions generated from
the model. The blue curves depict the kernel-smoothed density of the distribution used to estimate the likelihood. The distributions obtained from the model generally match the
corresponding distributions of the field data well.
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Figure S16. Comparison of the simulated stem count distribution with field data. The figure displays the marginal stem count distribution by PFT on the 0.04ha scale. The
orange bars form histograms of the stem count estimates generated based on the field data from Changbaishan. The blue bars form histograms of the stem count distributions
generated from the model. The blue curves depict the kernel-smoothed density of the distribution used to estimate the likelihood. The distributions obtained from the model generally
match the corresponding distributions of the field data well.
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Parameter Unit Optimiza-

tion run

Small shade

intolerant

Large shade

intolerant 1

Large shade

intolerant 2

Large

mid-tolerant

Small shade

tolerant

Large shade

tolerant

nseeds,i
1

ha·yr

1 1.297 9.997 1.28 4.346 2.603 3.409

2 1.721 7.384 0.492 4.019 2.863 3.415

3 1.288 12.061 1.358 4.367 2.941 3.318

θest,0 1

1 0.0714 0.202 0.0807 0.0091 0.0405 3.36·10−4

2 0.0786 0.1626 0.0432 0.0066 0.0449 1·10−4

3 0.0737 0.1962 0.0864 0.0116 0.048 0.002

θproduction,i,1
µMolphot.

m2·s

1 500 118.56 100 70.82 274.15 492.73

2 499.49 112.94 100 61.11 217.99 500

3 497.23 107.87 100 61.05 245.69 401.76

γi 1

1 0.15 0.285 0.4 0.4 0.189 0.236

2 0.15 0.168 0.4 0.4 0.15 0.307

3 0.15 0.151 0.376 0.4 0.193 0.392

q∆DBH 1

1 0.991

2 0.99

3 0.985

θest,1 1

1 3

2 20

3 3.547

Table S13. Parameter estimates resulting from the three optimization runs. For most of the parameters, the estimates remained in the same
order of magnitude, indicating that they are estimable. Only the parameter θest,1 took on largely different values. This suggests that this
parameter is not estimable.

S5 Variation of the CUE of mature trees

To analyze how much our results depend on the assumption that the CUE of mature trees is reduced by 100%, we considered

three alternative scenarios, in which the CUE of mature trees was reduced by 50%, 25%, and 0% compared to immature trees

of the same size. For each of the scenarios, we determined how the NPP depends on the covariates considered in the other parts

of this paper. Note that as we assumed that a tree’s maturity status does not affect its GPP, the considered scenarios would not

yield different results with respect to the GPP.
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The basal area of immature trees continued to be the best considered predictor, with a reasonable predictive performance

(R2 ≥ 0.53) even when the CUE of immature trees was only reduced by 25% (Fig. S18). When the CUE was not reduced at

all, the complete basal area and the basal area of immature trees had similar predictive capacity (R2 ≈ 0.35), and the DBH

entropy became the best predictor (R2 = 0.4). When the trees were weighted by their cubic diameter when computing the

DBH entropy (η = 3; see section S3.2), the R2 values remained consistently above 0.5 even when the CUE was not reduced

(Fig. S19). The correspondingly adjusted DBH entropy became the best considered predictor if the CUE of mature trees was

reduced by 25% or less.

These results suggest that the maturity stage of trees remains significant even if their CUE is only mildly reduced. However,

the consistently high predictive capacity of the DBH entropy even in cases where mature trees did not have a reduced CUE

shows that the DBH entropy captures more productivity-related forest attributes than just the fraction of mature trees.

S6 Further technical details

S6.1 Computing the weights of the tree species in the inventory

To derive allometric relationships for the different PFTs, we used data available for individual species, weighted according to

their respective prevalence in the inventory. Here we describe how we computed these weights.

For every sufficiently large tree K in the forest inventory, we added one unit of weight to the data points in the allometry

dataset that corresponded to trees of the same species with most similar DBH. Trees with DBH below 5cm were ignored, as

they are not considered in the model (see section S2.6). Let A be an index set for the allometry dataset (ignoring entries with

DBH below 5cm) and sk be the species corresponding to k ∈ A. Let furthermoreA+
k =

{
k̃ ∈ A : k̃ = sk, dk̃ > dk

}
the entries

in the allometry dataset that correspond to the same species and a larger DBH, and define A=
k =

{
k̃ ∈ A : k̃ = sk, dk̃ = dk

}
and A−k =

{
k̃ ∈ A : k̃ = sk, dk̃ < dk

}
correspondingly for entries with equal or smaller DBH, respectively. Define

d+
k =


min
k̃∈A+

k

dk̃ if A+
k 6= ∅

dk else

(S66)
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and

d+
k =


max
k̃∈A−

k

dk̃ if A−k 6= ∅

dk else

(S67)

as the smallest larger and the largest smaller DBH of an entry in the allometry dataset corresponding to the same species. The

contribution vKk of tree K in the inventory to the weight of entry k in the allometry dataset is given by

vKk =



1 if dK = dk,

1 if dK > dk = dmax
sk

,

1 if dK < dk = dmin
sk

,

d+k−dK
d+k−dk

if dK ∈
(
dk,d

+
k

)
,

dK−d−k
dk−d−k

if dK ∈
(
d−k ,dk

)
,

0 else.

(S68)

That is, the contribution is 1 if the diameters are equal or if the the tree diameter is outside the range of diameters covered in the

allometry dataset and the allometry data entry has maximal or minimal diameter, respectively. The weights are then computed

as follows:

wk = cclass(sk)

∑
K∈Isk

vκk
|A=

k |
, (S69)

where cclass(sk) is a normalization constant for the PFT class(sk) to which species sk belongs, Isk is the subset of trees in

the inventory that are of species sk, and |·| denotes the counting norm. The division by the cardinality of A=
k distributes the

contribution of tree K evenly among all allometry entries with similar species and diameter. As a result, each tree in the

inventory makes the same total contribution to the weights.

The normalization constants cclass(sk) do not affect parameter estimation, but we chose

cj =
|Aj |∑

k∈Aj
∑
K∈Isk

vκk
|A=
k |

(S70)
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so that the sum of the weights corresponds to the size of the dataset used to fit the allometry curve for PFT j. As a result, the

likelihood computed using the weights may be of the same order of magnitude as the unweighted likelihood, which can be

helpful for model comparison and selection.

To compute the weights efficiently, we sorted both the allometry dataset and the inventory by tree DBH and species. Then, the

weights can be computed in linear time of the inventory dataset size (assuming that there are only few entries in the allometry

dataset that have both the same species and DBH).

S6.2 Assignment of new seeds to patches

Each year, a constant number of seeds is distributed evenly to the different modelled forest patches. If the provided seed number

is not an integer divisible by the number of simulated patches, the seed number is rounded stochastically for each patch so that

the expected number of seeds per hectare and PFT matches the provided seed number. That is, if nseeds,i is the number of seeds

per hectare for PFT i and npatches the number of simulated patches, then the number of seeds for a patch j is given by

nseeds,i,j =

⌊
nseeds,i

npatches

⌋
+Bpseed , (S71)

where

Bpseed ∼ Bernoulli(pseed) (S72)

is a Bernoulli distributed random variable with success probability

pseed =
nseeds,i

npatches
−
⌊
nseeds,i

npatches

⌋
. (S73)

54



References

Bohn, F. J., Frank, K., and Huth, A.: Of Climate and Its Resulting Tree Growth: Simulating the Productivity of Temperate Forests, Ecological

Modelling, 278, 9–17, https://doi.org/10.1016/j.ecolmodel.2014.01.021, 2014.

Cartis, C., Fiala, J., Marteau, B., and Roberts, L.: Improving the Flexibility and Robustness of Model-Based Derivative-Free Optimization

Solvers, ACM Transactions on Mathematical Software, 45, 1–41, https://doi.org/10.1145/3338517, 2019.

Chojnacky, D. C., Heath, L. S., and Jenkins, J. C.: Updated Generalized Biomass Equations for North American Tree Species, Forestry, 87,

129–151, https://doi.org/10.1093/forestry/cpt053, 2014.

Conn, A. R., Gould, N. I. M., and Toint, P. L.: Trust-Region Methods, MPS-SIAM Series on Optimization, Society for Industrial and Applied

Mathematics, Philadelphia, PA, 2000.
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