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Abstract. Relating forest productivity to local variations in
forest structure has been a long-standing challenge. Previ-
ous studies often focused on the connection between forest
structure and stand-level photosynthesis (gross primary pro-
duction – GPP). However, biomass production (net primary
production – NPP) and net ecosystem exchange (NEE) are
also subject to respiration and other carbon losses, which
vary with local conditions and life history traits. Here, we use
a simulation approach to study how these losses impact forest
productivity and reveal themselves in forest structure. We fit
the process-based forest model FORMIND to a 25 ha inven-
tory of an old-growth temperate forest in China and classify
trees as “mature” (fully grown) or “immature” based on their
intrinsic carbon use efficiency. Our results reveal a strong
negative connection between the stand-level carbon use effi-
ciency and the prevalence of mature trees: gross primary pro-
duction (GPP) increases with the total basal area, whereas net
primary production (NPP) and NEE are driven by the basal
area of immature trees. Accordingly, the basal area entropy,
a structural proxy for the prevalence of immature trees, cor-
related well with NPP and NEE and had a higher predictive
power than other structural characteristics, such as the Shan-
non diversity and height standard deviation. Our results were
robust across spatial scales (0.04–1 ha) and yield promising
hypotheses for field studies and new theoretical work.

1 Introduction

Understanding the drivers of forest productivity is key for
assessing forests’ ability to provide ecosystem services (e.g.
carbon sequestration or commercial wood production) and
to gauge their resilience against disturbances and global
change (Costanza et al., 1998; Anav et al., 2015; Jha et al.,
2019; Sheil and Bongers, 2020). Forests’ net primary produc-
tion (NPP) may be affected via two pathways: carbon sup-
ply, i.e. gross primary production (GPP), and carbon losses
due to respiratory costs and other limiting factors (Wiley
and Helliker, 2012). Forest structure (e.g. density, species
composition, age, and size distribution; McElhinny et al.,
2005) can be both a factor and result of processes acting
on either of these pathways (Waide et al., 1999; Forrester
and Bauhus, 2016; Sheil and Bongers, 2020). For example,
denser forests may exhibit a larger total leaf area and, hence,
higher stand productivity. Conversely, high productivity of
individual trees may lead to denser forests. Therefore, identi-
fying the connection between forest structure and productiv-
ity is key for a comprehensive understanding of forest pro-
ductivity.

Several studies have established links between forest
structure and carbon supply (Waide et al., 1999; Forrester
and Bauhus, 2016). For example, GPP is expected to benefit
from higher diversity via improved exploitation of ecologi-
cal niches and reduced competition, and vertically stratified
forests may allow for more efficient light use due to denser
leaf packaging (Forrester and Bauhus, 2016; Bohn and Huth,
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2017). Nonetheless, it has proven difficult to identify clear
relationships between forest structure and NPP (Chisholm
et al., 2013) as diverse factors, ranging from resource avail-
ability to the impact of biotic agents, affect forest dynamics
on different procedural levels (Forrester and Bauhus, 2016),
and NPP is subject to not only supply-related factors but also
loss-related factors. Therefore, a unified framework for for-
est productivity also needs to address the corresponding role
of losses. This is the subject of this study.

A tree’s ability to utilize acquired carbon to form biomass
can be expressed through its carbon use efficiency (CUE,
which is equal to NPP / GPP). In the absence of shading by
larger plants, the CUE is expected to decline with tree size,
as larger trees have a higher demand for respiration and non-
structural carbon (Collalti et al., 2020b; Binkley, 2023). Such
respiratory losses and other external factors may induce site-
dependent tree size maxima, at which biomass accumula-
tion is significantly reduced. The resulting decline in NPP
with forest age is well documented on the stand level (Gower
et al., 1996; Tang et al., 2014; Collalti et al., 2020a), but the
extent to which loss-induced limitations drive variations in
NPP on the local scale is less understood (Chisholm et al.,
2013; Rödig et al., 2018). This, however, would be necessary
for a mechanistic understanding of the impact of loss-related
factors in comparison to supply-related factors.

To evaluate the impact of loss-induced limitations on for-
est productivity, we suggest a simple classification frame-
work: we divide trees into fully grown (below: “mature”) and
growing (“immature”) trees based on their intrinsic optimal
CUE, i.e. the CUE the trees could attain if their GPP was not
limited by competition. We consider trees to be mature if in-
trinsic loss-related factors limit their CUE, even under other-
wise optimal growth conditions. Consequently, tree maturity
and competition are distinct processes reducing stand-level
forest productivity.

Forest productivity may be considered on different pro-
cedural levels: GPP, representing forests’ photosynthetic ca-
pacity; NPP, denoting their total wood production after respi-
ratory losses; and the net ecosystem exchange (NEE), mea-
suring the total forest carbon sequestration in the presence of
emissions from deadwood decomposition and soil respira-
tion. While studying the impact of loss-induced growth lim-
its, we focused on three questions:

1. How do GPP, NPP, and NEE depend on the prevalence
of mature and immature trees?

2. How can these relationships be linked to forest structure
and expressed via easily measurable forest characteris-
tics?

3. On which spatial scales can these relationships be ob-
served?

To answer these questions, local carbon fluxes must be iden-
tified. Though NPP may be estimated from forest inventory

data, field data for GPP and NEE (e.g. from eddy covariance
measurements) are typically only available for larger scales
(about 10 ha). Similarly, it can be difficult to determine which
trees have reached the mature stage. These challenges can
be addressed with process-based forest models, which repro-
duce the forest dynamics under controlled reference condi-
tions and provide full insight into carbon fluxes and the state
and growth limitations of each tree.

There is a broad variety of forest models covering di-
verse sets of processes potentially impacting forest dynamics
(Bugmann and Seidl, 2022). Depending on their respective
main use cases, the models differ in their spatial resolution,
their representation of vertical forest structure, their physio-
logical detail, and their consideration of abiotic (e.g. soil con-
ditions, weather, and fire) and biotic (e.g. browsing and bark
beetle attacks) factors (Merganičová et al., 2019; Bugmann
and Seidl, 2022). In this study, we used the individual-based
forest gap model FORMIND (Bohn et al., 2014; Fischer
et al., 2016). The model features submodels on regeneration,
competition, growth, and mortality and has been applied to
study forest dynamics and carbon fluxes in a variety of both
temperate and tropical forests (Fischer et al., 2016). As the
model represents individual trees and the forest’s vertical leaf
distribution explicitly, FORMIND is particularly suited for
studying the relationship between forest structure and forest
productivity (Bohn and Huth, 2017). At the same time, the
gap model approach of aggregating the impacts of individual
trees at the local level leads to relatively high computational
efficiency in large-scale simulations (Shugart et al., 2018).

We parameterized the model to mimic the dynamics of a
species-rich, old-growth temperate forest in Changbaishan,
China. Located in a natural reserve, this forest offers unique
opportunities to study long-term forest dynamics without bi-
ases introduced by human interventions. We addressed the
research questions by computing GPP, NPP, and NEE on dif-
ferent spatial scales (0.04 and 1 ha) and setting them into
relation with the basal area of mature and immature trees
and different measures for structural diversity. For the second
question that was previously listed, we suggest the diameter
at breast height (DBH) entropy, which is a measure for the di-
versity of tree heights, as a general proxy for the prevalence
of immature trees and, therefore, forest productivity.

2 Materials and methods

We applied a data-driven modelling approach (Fig. 1) to
analyze the relationship between forest structure and forest
productivity. We fitted the process-based forest model FOR-
MIND to forest inventory data from Changbaishan, China,
and data on species’ traits and allometric relationships. Us-
ing the model, we then linked forest productivity to the preva-
lence of mature trees and other forest characteristics. We de-
scribe the individual steps in detail below.
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Figure 1. Summary of our approach. We use forest inventory data and data on species’ traits and allometric relationships to derive the
distribution of maximal plant sizes and parameterize a process-based forest model. This model, in turn, yields productivity metrics (GPP,
NPP, and NEE) and different forest characteristics, including the fraction of mature trees.

2.1 Field data

We based our analysis on forest inventory data from an
old-growth temperate forest in the Changbaishan National
Nature Reserve in northeastern China. The surveyed area
consists of 25 ha of conifer and broad-leafed mixed forest
with 47 species; it has a total biomass of 302 t ODM ha−1

(Piponiot et al., 2022). The inventory data contain the posi-
tion, diameter at breast height (DBH), and species of each
tree, with the DBH≥ 1 cm for the census years 2004, 2009,
and 2014. Each tree is uniquely identified with an ID number.
For trees that had multiple stems at breast height, we focused
on the main stem (maximal DBH) in our analysis and disre-
garded minor stems.

In addition to the inventory data, we used information on
traits and allometry of the species from field measurements.
These data included DBH-dependent heights, crown radii,
and crown base heights. Furthermore, the dataset included
the species’ wood densities and shade tolerance types (light-
demanding, mid-tolerant, or shade-tolerant species). Not all
of these data were available for all species; we provide details
in Supplement S1.

2.2 Model and parameterization

FORMIND is a process-based forest gap model featuring
processes including regeneration, competition, tree growth,
and mortality (Fischer et al., 2016). Trees are mainly charac-
terized by their DBH and species. Other properties, such as
plant height or crown size, are derived from the DBH via al-
lometric relationships. The model considers 20 m× 20 m for-
est patches, for which the vertical leaf distribution and the re-
sulting light climate are computed. The obtained incident ra-
diation is used to compute each tree’s GPP. The correspond-
ing NPP is computed by subtracting an individual’s respira-
tion and other carbon losses from its GPP. Here, the mainte-
nance respiration is determined by comparing the estimated
GPP of trees under unshaded reference conditions with cor-
responding biomass increments from field data. Growth res-
piration and other carbon losses are computed as a certain

fraction of the difference between GPP and maintenance res-
piration.

In the past, FORMIND was parameterized for managed
European temperate forests (Bohn et al., 2014), but the
Changbaishan forest has a different, richer species pool and
is old-growth, requiring a correspondingly parameterized re-
generation module. Therefore, we needed to develop an ad-
justed parameterization to apply FORMIND to this site. Be-
low we summarize how we parameterized the model and
highlight changes to the version described before in Fischer
et al. (2016). Details can be found in Supplement S2.

2.2.1 Basic parameterization

To reduce model complexity in the species-rich Chang-
baishan setting, we aggregated species into plant functional
types (PFTs) based on their maximal DBHs (below/above
30 cm) and light demand (light-demanding, mid-tolerant,
and shade-tolerant species). When data necessary for the
classification were not available, we assigned species via a
likelihood-based cluster analysis based on shade tolerance
(Niinemets and Valladares, 2006; Wang et al., 2010) and
observed tree growth (Supplement S2.2). Because Quercus
mongolica had a significantly different size structure than the
other light-demanding species, we divided the large light-
demanding species into two PFTs: one with all other large
light-demanding species and one only for Q. mongolica.
We obtained six PFTs: small light-demanding, large light-
demanding 1 and 2, large mid-tolerant, small shade-tolerant,
and large shade-tolerant species. There were no small mid-
tolerant species.

We estimated mean traits and allometric relationships for
the PFTs based on the trait and allometry data. When com-
puting the means, we weighted species according to their
shares in the inventory to best reflect the composition of the
species in the study area. Details can be found in Supple-
ment S2.3 and S2.4. We modelled the forest under constant
climatic conditions, which we derived based on data from the
literature (evapotranspiration from Sun et al., 2004; tempera-
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ture from Wang et al., 2020) and the WFDEI forcing dataset
(irradiance from Weedon et al., 2014). See Supplement S2.10
for details.

We estimated the DBH-dependent base mortality for each
PFT by applying a likelihood-based approach to the inven-
tory data (Supplement S2.9). To parameterize tree growth,
we focused on the carbon use efficiency (CUE is equal to
NPP / GPP) of trees under optimal growth conditions (Sup-
plement S2.7). We modelled the CUE based on the follow-
ing observations and assumptions: (1) the CUE decreases
as plants grow in size; (2) the CUE, under optimal condi-
tions, suffices for the observed DBH increments; (3) the CUE
of trees in the inventory suffices to satisfy their respiratory
needs; and (4) the order of magnitude of the CUE on the
stand level approximately matches field measurements (see
Supplement S2.7.4).

With the modelled CUE under optimal conditions and
FORMIND’s submodel for primary production, we com-
puted the GPP and NPP of trees under optimal conditions.
We then used corresponding estimates of optimal DBH in-
crements from the census data (Supplement S2.7.1), along
with allometric relationships for stem dimensions, to de-
rive how much biomass trees allocate to their stems and
crowns, respectively (Supplement S2.7.5). Finally, we ad-
justed the primary production model until enough biomass
was allocated to the crowns that FORMIND’s estimate of the
Changbaishan forest biomass matched an estimate based on
DBH–biomass relationships from the literature for each PFT
(Chojnacky et al., 2014; Piponiot et al., 2022; see Supple-
ment S2.7.5). Parameters that could not be determined via
this approach were fitted so that the model best reproduced
the inventory data (see below).

We assumed that trees compete only for light but included
crown defoliation as an additional process to account for the
limited capacity of a forest. Trees whose GPPs are insuffi-
cient for their respiratory needs to be satisfied lose crown
biomass until all remaining parts can be maintained. Here,
we assumed that, for a tree of given DBH, the maintenance
respiration is proportional to the biomass. We decreased the
leaf area index (LAI) of stressed trees along with their crown
completeness, i.e. the ratio between current (reduced) and
healthy crown biomass. Trees that have lost all their crown
biomass die.

To compute the soil respiration required to determine the
NEE, FORMIND uses the submodel for deadwood compo-
sition described by Sato et al. (2007), which involves a pool
of fast and slowly decomposing deadwood (Paulick et al.,
2017). The corresponding decomposition rates and the tran-
sition rates between the pools are derived from the mean ac-
tual evapotranspiration (Sato et al., 2007), for which we as-
sumed a value of 600 mm yr−1, in line with independent es-
timates for the Changbaishan region (Sun et al., 2004) and
earlier parameterizations of the model for temperate forests
(Bohn et al., 2014).

2.2.2 Model fitting

Some of the modelled processes depend on parameters not
directly inferable from the available data. This included the
following PFT-specific parameters: (1) the external influx of
new seeds, (2) the saturation parameters of the light response
curves, (3) the magnitudes of carbon losses other than main-
tenance respiration, and (4) the light required for seedling
establishment. Furthermore, we fitted a parameter control-
ling the magnitude of DBH growth under optimal conditions
and the sharpness of the light threshold for seedling input.

We fitted these 26 parameters using a likelihood-based ap-
proach, maximizing the approximate likelihood of the in-
ventory data estimated from a sample of simulation re-
sults. We determined each PFT’s biomass and stem count
in 20 m× 20 m forest patches. The combined information of
stem count and biomass yields basic insight into the size dis-
tribution of trees: a large stem count with a small biomass
indicates a young forest with many small trees, and a small
stem count with a high biomass indicates an old forest with
few large trees. Using these summary statistics instead of the
full tree size distribution reduced the dimension of the con-
sidered state space, allowing us to estimate the joint distribu-
tion of the highly stochastic small-scale forest states based on
a reasonable sample of simulation results. The inventory cov-
ered 625 forest patches, providing us with a similarly sized
sample of forest states.

To generate a forest state sample from the model, we first
simulated 1 ha of forest for a burn-in period of 2000 years.
Then, we sampled the forest 500 times in 5-year intervals.
We repeated this procedure 67 times in parallel, which is
equivalent to simulating 67 ha of forest, obtaining a sample
of 837500 forest states for each tested parameter combina-
tion.

We estimated the likelihood of the field data via kernel
density estimation (KDE; Wand and Jones, 1995). In KDE,
the probability density of an observation is estimated based
on how many model-generated sample points are similar
to the observation. Here, similarity is measured via kernel
functions, which depend on bandwidth parameters. We used
Gaussian kernels with bandwidths chosen corresponding to
the scales of the stem counts and biomasses in the inven-
tory data (see Table S11 in Supplement S2.11). To correct
for the bias introduced when log-transforming the KDE so
as to compute the log likelihood, we applied a bias correc-
tion function derived via a first-order Taylor approximation
(Supplement S2.11).

The resulting likelihood estimate converges to the true
likelihood as the size of the generated sample increases and
the bandwidth parameters decrease. Hence, optimizing the
KDE likelihood yields consistent parameter estimates and
avoids potential biases arising if the model was fitted via a
deterministic modelling framework (e.g. Lehmann and Huth,
2015; Rödig et al., 2017). However, as the log-likelihood es-
timate is based on a sample of stochastic model results, it is
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stochastic as well, making it difficult to optimize. We reduced
the stochasticity by decreasing the dimension of the sam-
ple space, avoiding the “curse of dimensionality” (Wand and
Jones, 1995) by considering the different PFTs to be mutu-
ally independent. The parameter estimates remain consistent
despite this composite likelihood approach (Varin, 2008).

We maximized the likelihood by repeatedly applying a
derivative-free optimization algorithm based on non-local
quadratic approximations (Cartis et al., 2019). To avoid get-
ting stuck in local minima, we used the basin-hopping al-
gorithm (Wales and Doye, 1997), which applies multiple lo-
cal optimizations with randomly perturbed initial conditions.
Throughout the fitting process, we constrained the parame-
ters to ecologically reasonable ranges. Details on model fit-
ting can be found in Supplement S2.11. The fitted parameter
values are provided in Supplement S2.

2.2.3 Size limitations

We assumed that each tree has a maximal DBH at which
it stops growing. As this maximal DBH may depend on lo-
cal conditions and the tree’s species, we randomly drew the
DBH limit for each tree individually (details below). Trees
that have reached their DBH limit are called mature below
and are assumed to use their entire primary production for
respiration.

We constructed the distributions of the DBH limits based
on the maximal DBHs of the species in each PFT: for
each species, we assumed that the site-dependent DBH lim-
its are uniformly distributed between the overall maximal
DBH and a value 20% below this maximum. We aggregated
these species-specific distributions, weighted according to
the species’ respective shares in the basal area of the inven-
tory. That way, we obtained the joint distribution of DBH
limits for each PFT. In Supplement S2.4.1, we describe the
approach in greater detail.

2.3 Model validation

We validated the fitted model by visually comparing the re-
spective marginal and joint distributions of the biomass and
stem count values for the considered PFTs with the corre-
sponding distributions observed in the field data. We cre-
ated corresponding one-dimensional and two-dimensional
histograms based on samples both generated via simula-
tions and computed based on the forest inventory data. We
observed that the simulated trajectory and distribution of
biomass and stem count matched the values from the inven-
tory (Fig. 2; Supplement S4).

To ensure the fitting algorithm did not terminate at a sub-
optimal local likelihood maximum, we repeated the model
fitting procedure three times. We compared the resulting pa-
rameter estimates to assess how well the individual parame-
ters are estimable. The differences between the correspond-

ing values were moderate for most parameters, except the
light threshold for seedling establishment (Supplement S4).

Furthermore, to validate the results on a broader scale
(25 ha), we compared the modelled biomass, NPP, GPP, and
LAI with values obtained for the same forest plot in inde-
pendent studies (Piponiot et al., 2022). The simulated forest
had a mean biomass of 270.5 t ODM ha−1 (estimated stan-
dard deviation for 25 ha: 4.38 t ODM ha−1). Our biomass es-
timates from the allometric equations by Chojnacky et al.
(2014) were 270.52 t ODM ha−1 if we only considered the
major stems and 284.48 t ODM ha−1 for all stems in the in-
ventory. This is below the estimate by Piponiot et al. (2022),
which was 302 t ODM ha−1. The simulated forest had an
aboveground wood production of 2.22 t ODM ha−1 yr−1

(standard deviation: 0.07 t ODM ha−1; Piponiot et al., 2022:
3.55 t ODM ha−1 yr−1) and GPP of 23.39 t ODM ha−1 yr−1

(standard deviation: 0.2 t ODM ha−1; Wu et al., 2009: 29.82–
33.86 t ODM ha−1 yr−1). The LAI of the simulated forest
was 5.18 (standard deviation of 0.05; Liu et al., 2007: a stan-
dard deviation of 5.08). See Supplement S4 for details.

2.4 Analysis

To analyze the effect of mature trees on forest productiv-
ity, we simulated 1 ha of the Changbaishan forest and sam-
pled forest characteristics and forest productivity over time
on the 0.04 ha and the 1 ha scale. After a burn-in period of
2000 years, we analyzed the forest 1000 times in 5-year time
intervals. We obtained a sample of 25000 forest states on the
smaller scale and 1000 states on the larger scale, correspond-
ing to 1000 ha.

To measure forest productivity, we computed the GPP,
NPP, NEE, and carbon use efficiency (CUE, which is equal
to NPP / GPP) of the considered forest areas. We character-
ized the corresponding forest states by determining the basal
area Aall of all trees in the forest area and the basal area
Agrow of only those trees that had not reached their indi-
vidual DBH limits. Based on these measures, we also de-
termined the basal area proportion Agrow/Aall of immature
trees and the corresponding proportion of mature trees. Fur-
thermore, we computed the DBH entropy (a measure for
the diversity of DBH values; there is a detailed explanation
in Sect. 2.5), basal-area-weighted height standard deviation,
and the Shannon diversity of PFTs on the two considered
scales. We weighted the plant heights by the basal areas when
computing the height standard deviation so as to account for
small plants having a minor impact on forest productivity.

For both considered spatial scales (0.04 and 1 ha), we plot-
ted GPP, NPP, and NEE against the mentioned forest charac-
teristics and computed the respective coefficients of determi-
nation (R2) to quantify the strengths of the relationships. In
a similar manner, we analyzed the relationship between the
basal area proportion of mature trees and the CUE. To under-
stand the role of the DBH entropy, we furthermore assessed
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Figure 2. Temporal evolution of (a, b) biomass and (c) stem count of the six PFTs on (a) the 25 ha scale and (b, c) the 1 ha scale. The
solid lines show the trajectory of the model simulation. For comparison, the shaded areas depict the ranges between the 25th and the 75th
percentiles of the biomasses and stem counts from the inventory data. The dashed lines represent the corresponding mean values.

its relationship with the basal area of mature and immature
trees.

To assess how sensitive our results are to the assumption
that mature trees completely stop growing, we computed the
NPP in hypothetical scenarios in which the CUE of trees is
reduced by only 50 %, 25%, or 0% when they enter the ma-
ture stage. To avoid refitting the model for each of these vali-
dation scenarios, we adjusted only the intrinsic carbon fluxes
and held the sizes of the mature trees constant. We then an-
alyzed the relationship of the obtained NPP values with the
covariates given above.

2.5 DBH entropy as a proxy for the prevalence of
mature trees

It is difficult to know which trees have reached their site-
dependent growth limits in field studies. Hence, a proxy for
the prevalence of mature trees is needed in practice. Such
a proxy should be easy to compute from inventory data and
may account for the following working hypotheses: (1) forest
patches dominated by mature trees consist of a small num-
ber of large individuals preventing the existence of medium-
sized trees; (2) in old-growth forests, individuals typically
differ in age and size, but mature individuals of the same
species may have similar DBH values. The proxy should also
reflect that large trees have a higher impact on forest dynam-
ics than small trees.

As a proxy satisfying these requirements, we propose the
basal-area-weighted DBH entropy SDBH (simply “DBH en-
tropy” below), which is defined as the entropy of the distribu-
tion of DBHs in a forest patch (cf. Staudhammer and LeMay,
2001; Park et al., 2019). If we split the range of occurring
DBH values into equally sized intervals I and determined

the basal area share pI of trees in each size class I relative to
the total basal area, the DBH entropy could be approximated
as

SDBH =−
∑
I∈I

pI ln(pI ) . (1)

Here, I is the set of DBH classes and

pI =

∑
d∈Id

2∑
I∈I

∑
d∈Id

2 (2)

is the basal area share of trees in size class I .
The weights pI can be interpreted as probabilities indicat-

ing how likely we would be to obtain a tree from size class
I if we randomly selected trees from the forest patch with
probabilities proportional to their basal areas. The entropy is
higher the more evenly the DBHs are distributed (Fig. 3). If
the forest patch is dominated by one or a few large trees, it is
likely that we will draw one of their size classes, making the
entropy small. Similarly, if two trees have a similar DBH, the
probability of picking a tree from their size class increases,
decreasing the entropy. Since we weight the DBH distribu-
tion by the basal areas, adding small trees to the forest patch
does not significantly change the entropy.

As the approach presented above is sensitive to the spe-
cific choice of interval bounds, we used a more robust defini-
tion of the DBH entropy in our analysis (Supplement S3.1).
We applied kernel smoothing (Wand and Jones, 1995) with
an Epanechnikov kernel to obtain a continuous estimate of
the DBH distribution instead of discrete probabilities pI (see
Fig. 3), and we exchanged the sum in Eq. (1) with an in-
tegral. Kernel smoothing requires a bandwidth parameter
(here: 1 cm), which is comparable to the width of the DBH
intervals I and defines the scale on which two trees are re-
garded as similar.
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Figure 3. Basal-area-weighted DBH distributions for 0.04 ha forest patches with (a) low, (b) intermediate, and (c) high entropy. Each black
cross depicts the DBH of a plant. The height of the corresponding spike in the density function (blue line) corresponds to the plant’s share in
the basal area; the contributions of trees with similar DBH add up. The width of the spikes (2 cm here) is the scale on which different plants
are considered similarly sized. The entropy is higher the more uniformly the basal area is distributed across plants with different DBHs.
In panel (a), two similarly large plants dominate the forest patch, whereas in panel (c), there are many medium-sized plants with different
DBHs. Note that the standard deviation of the DBH distribution is not related to the DBH entropy.

Figure 4. Productivity measures (GPP, NPP, and NEE) dependent on different measures of basal area (BA) and heterogeneity. Each dot
corresponds to a 0.04 ha forest patch (sample size: 25000). The colour indicates the basal area proportion of mature trees (blue represents
only mature trees and yellow represents no mature trees). The GPP is mainly driven by the basal area, whereas NPP and NEE are driven
by the basal area of immature trees. The heterogeneity measures are generally poorer predictors than the basal area measures. Among the
former, the DBH entropy has the best predictive capacity for NPP and NEE and may serve as a valuable proxy if distinguishing between
mature and immature trees is not possible.
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Figure 5. Productivity measures dependent on different measures for basal area and heterogeneity. Each dot corresponds to a 1 ha forest patch
(sample size: 1000). The colour indicates the basal area proportion of mature trees (blue represents only mature trees and yellow represents
no mature trees). The correlation patterns resemble those observed on the finer scale (Fig. 4). Only the DBH entropy loses predictive power.

3 Results

The basal area of the forest stand was strongly correlated
with the GPP, irrespective of the spatial scale (R2

≥ 0.65;
Figs. 4a, 5a). For the NEE, these correlations were much
weaker (R2

≤ 0.1; Figs. 4f, 5f), and for the NPP, these cor-
relations were merely existent (R2

= 0; Figs. 4k, 5k). This
contrasts with the basal area of immature trees: here, the
correlations were small for the GPP (R2

≤ 0.15; Figs. 4b,
5b) but large for the NPP (R2

≥ 0.74; Figs. 4g, 5g) and the
NEE (R2

≥ 0.59; Figs. 4l, 5l). We obtained a similar but
slightly weaker result for the DBH entropy. On the small
scale (0.04 ha), it was weakly correlated with the GPP (R2

=

0.11; Fig. 4c) but strongly correlated with NPP (R2
= 0.47;

Fig. 4h) and NEE (R2
= 0.39; Fig. 4m). These correlations

decreased on the larger scale (1 ha; R2
≤ 0.26; Fig. 5c, h, and

m).
The weighted tree height standard deviation was strongly

and negatively correlated with the GPP (R2
≥ 0.56; Figs. 4d,

5d) but almost uncorrelated with NPP and NEE (
∣∣R2

∣∣≤ 0.03;
Fig. 4i and n and Fig. 5i and n) on both spatial scales. The
Shannon diversity of PFTs was moderately correlated with
the NPP (R2

∈ [0.17,0.19]; Figs. 4j, 5j), weakly correlated
with the NEE (R2

≤ 0.04; Figs. 4o, 5o), and weakly and neg-
atively correlated with the GPP (R2

≤ 0.07; Figs. 4e, 5e).

The DBH entropy was positively correlated with the basal
area of immature trees (R2

= 0.33 on the small scale; Fig. 6a)
and weakly and negatively correlated with the basal area of
mature trees (R2

= 0.09; Fig. 6c). For the latter, the DBH en-
tropy was a poor predictor in forest patches with large over-
all basal area. On the hectare scale, the relationships became
weaker for immature trees (R2

= 0.23; Fig. 6b) but stronger
for mature trees (R2

= 0.19; Fig. 6d).
The CUE was proportional to the proportion of imma-

ture trees in the forest (Fig. 7a). The regression analysis
yielded an intercept of 3.16× 10−3 on the small scale and
2.182× 10−4 on the large scale, with R2 values of 0.88 and
0.82, respectively. The proportionality constants (slopes of
the fitted curves) were 0.29 and 0.28. The relationship be-
tween the CUE and DBH entropy was also significant but
weaker (R2

= 0.3 on the small scale and R2
= 0.28 on the

large scale; Fig. 7). The GPP and the tree respiration and car-
bon losses did not show a strong correlation with the propor-
tion of immature trees (R2

= 0 and R2
= 006, respectively,

on the small scale; Fig. 7b, c).
Decreasing the CUE reduction in mature trees in compar-

ison to similar immature trees decreased the correlation be-
tween the basal area of immature trees and the NPP. How-
ever, the predictive performance remained high (R2

≥ 0.53),
even if the CUE of mature trees was only reduced by 25%
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Figure 6. Relationship between the DBH entropy and the basal area of immature (a, b) and mature trees (c, d), depicted on the 0.04 ha (a, c)
and the 1 ha scale (b, d). Each dot corresponds to a forest patch of the respective scale. The colour corresponds to the total basal area (dark
colours represent a low basal area and light colours represent a high basal area). The DBH entropy correlates positively with the basal area
of immature trees, which drive the NPP, and negatively with the basal area of mature trees, which do not contribute to the NPP and compete
with immature trees. The relationships are stronger on the small scale.

Figure 7. Relationship between the basal area proportion of immature trees and the CUE (a), GPP (b), and tree respiration and carbon losses
(c). The CUE is proportional to the basal area of immature trees. Though the CUE can be directly computed from the GPP and respiration,
a similar relationship is not visible for these, indicating that they are not the drivers behind the proportionality. (d) Relationship between the
DBH entropy and the CUE. Though this relationship is weaker than that between the proportion of immature trees and the CUE, the DBH
entropy may serve as a proxy for the CUE. Each dot corresponds to a 0.04 ha forest patch. The colour corresponds to the basal area (dark
colours represent a low basal area and light colours represent a high basal area).

(Fig. S18 in Supplement S5). The DBH entropy was even less
sensitive to a change in the CUE reduction. However, when
the CUE was reduced by less than 50%, the DBH entropy
computed with cubic DBH weights had a stronger correlation
with NPP than the basal-area-weighted version and achieved
an even higher R2 of 0.57 and 0.55 when the CUE was re-
duced by only 25% and 0%, respectively. Details and further
results regarding the CUE reduction scenarios are presented
in Supplement S5.

4 Discussion

We suggested a simple framework of mature and immature
trees to disentangle the impact of competition and intrin-
sic growth limitations on forest productivity in old-growth
forests. Thereby, we found that the drivers of NPP and NEE
were distinct from those determining GPP. While the latter

was strongly correlated with the total basal area, NPP and
NEE were only related to the basal area of immature trees.
This indicates that the increased respiratory losses of mature
trees play the major role in the carbon balance of forests; de-
spite having a significant GPP, mature trees contribute less to
wood production but rather reduce the productivity of other
trees via competition. Hence, tree maturity may be a major
driver of the difference between NPP and GPP, making GPP-
related covariates, such as light competition, insufficient to
explain local variations in NPP and NEE.

This conclusion is supported by the observed proportion-
ality between the CUE and the basal area share of immature
trees: carbon usage was more efficient the more the forest
was dominated by immature trees. The proportionality can
be explained by noting that (1) the individual-level GPP is
strongly and positively correlated with basal area, irrespec-
tive of the maturity stage, and (2) only immature trees con-
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tribute to the NPP. On the stand level, neither the GPP nor
the respiration was correlated with the proportion of imma-
ture trees, showing that the proportionality was not driven by
the decreased GPP or increased respiration of forests with a
high share of mature trees.

These findings are based on a maturity definition that con-
siders the individual trees’ growth potential in the absence
of competition. This potential can be challenging to deter-
mine in field studies, as it requires identifying the causes of
individuals’ growth limitations. Hence, alternative maturity
definitions, based on tree size or signs of senescence, may
be used (Gibbons et al., 2008). Applying such alternative
maturity definitions will yield qualitatively similar results if
the considered characteristics are strongly correlated with the
trees’ growth potential. Otherwise, other structural forest at-
tributes may be considered.

To that end, we suggested the DBH entropy as a proxy
for the prevalence of immature trees and, thereby, the NPP
and NEE. The DBH entropy was positively correlated with
the basal area of immature trees and negatively correlated
with the basal area of mature trees, but its relationships to
NPP and NEE were even stronger. This indicates the fact that
the predictive capacity of the DBH entropy stems not only
from its correlation with the prevalence of immature trees
but also from other mechanisms. In line with this observa-
tion, the DBH entropy remained a good predictor for NPP
even in the validation scenario where we did not reduce the
CUE of mature trees (Supplement S5). These findings sup-
port previous studies identifying structural diversity as a ma-
jor driver of forest productivity (Dănescu et al., 2016; Bohn
and Huth, 2017; Silva Pedro et al., 2017; Bohn et al., 2018;
Park et al., 2019; LaRue et al., 2023). Note that our DBH en-
tropy index differs from the classic entropy-based measures
for structural diversity (Staudhammer and LeMay, 2001) by
the basal-area-based weighting (Park et al., 2019), which im-
proved its predictive power (Supplement S3.2).

Remarkably, the height standard deviation, another mea-
sure for structural diversity, did not have a significant posi-
tive correlation with any of the productivity measures. The
height standard deviation depends on the width of the height
spectrum, i.e. the difference between the height of the small-
est and the largest tree. Hence, forests can exhibit a high
standard deviation even if their diversity of tree heights is
low. This contrasts with the entropy, which measures how
many different tree sizes there are without regarding their
actual values. The strong negative relationship between the
height standard deviation and GPP can be explained by the
weighting we applied. Weighting the tree heights by basal
area decreases the standard deviation in forest stands with
many large trees, which, in turn, have a large GPP.

The Shannon diversity of PFTs was not strongly related
to any of the forest productivity measures. This was due to
the differences between stem count and biomass of the PFTs.
Four PFTs contributed significantly to the forest’s stem count
and, thus, the Shannon diversity. In contrast, the biomass

was dominated by only two PFTs, which consequently con-
tributed most to the production. Hence, the Shannon diver-
sity of PFTs was a poor predictor for productivity. However,
if the Shannon diversity was computed based on tree species
rather than PFTs, it could yield useful information on the di-
versity of the DBH limits, as these are species dependent.
Setting this diversity of limits into relation with the actual di-
versity (or entropy) of DBH values could therefore improve
NPP estimates.

Changing the spatial scale from 0.04 to 1 ha did not al-
ter most of the relationships we considered. By construction,
the coefficient of determination is insensitive to the addition
of independently identically distributed random variables. As
the interactions between forest patches were weak and the
basal area, GPP, NPP, and NEE are additive measures, their
respective correlations were not affected by the scale. The
same applied to the height standard deviation, which is ad-
ditive if the weighted mean height is approximately constant
in all small-scale patches. The Shannon diversity of PFTs
did not show strong patterns on any scale. The DBH en-
tropy, however, was most informative on a small scale (e.g.
0.04 ha). On large scales (e.g. 1 ha), the entropy increases
and varies less between forest sections, since more trees
are considered. This is a significant finding, as many pre-
vious studies considered entropy-based diversity indices on
larger scales (often ≥ 0.5 ha; Dănescu et al., 2016; Silva Pe-
dro et al., 2017; Park et al., 2019). In line with our results, a
loss of information on larger scales was noticed by Chisholm
et al. (2013) with respect to the Shannon index. Nonetheless,
if the scale is smaller than that of plant interactions, the DBH
entropy cannot reflect information on competition and dom-
inance, and the similarities between mature trees cannot be
reflected.

4.1 Model parameterization and limitations

Being an individual-based and process-based model, FOR-
MIND is designed to attain high mechanistic realism while
achieving the computational performance required to study
forest dynamics on large spatial and temporal scales (Fis-
cher et al., 2016). Hence, some processes, such as plant-
internal signalling, dynamics of nonstructural carbon, below-
ground carbon dynamics, interactions with mycorrhiza, or
pest-induced stress, are not covered explicitly, but they are
implicitly incorporated into high-level processes. As a result,
not all aspects of forest community dynamics may be repro-
ducible with the model. Nonetheless, the main carbon fluxes
are covered, allowing us to differentiate immature trees from
those that have reached their maximal sizes and to analyze
carbon fluxes on small spatial scales.

Measuring GPP and NEE on small scales is challenging
because eddy covariance measurements, for example, typi-
cally apply only to the whole stand level, are costly, and are
bound to one location due to the immobility of the measure-
ment towers. The model-based approach required some in-
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novations in model design and parameter estimation. For ex-
ample, the likelihood-based fitting method allowed us to es-
timate parameters based on small-scale (here: 0.04 ha) forest
characteristics despite their stochastic variations. The small-
scale distribution of stem counts and biomass contains in-
formation on local interactions and, consequently, the range
and diversity of local states a forest can attain. This informa-
tion is typically lost on larger scales. Circumventing the need
to reduce stochasticity via aggregation over several hectares
of forest (see e.g. Rödig et al., 2017) enabled us to estimate
parameters affecting the small-scale forest dynamics and al-
lowed us to optimize 26 parameters on regeneration, light
response, optimal growth, and respiration. Applying a pa-
rameterization framework focusing on the tree-level carbon
use efficiency guaranteed a balanced parameterization of the
individual-level NPP and GPP.

Our fitting approach also circumvented challenges typi-
cally arising in the Bayesian framework. Bayesian methods,
such as approximate Bayesian computation (ABC; Beau-
mont et al., 2002; Csilléry et al., 2010), require the eval-
uation of many parameter combinations. This is computa-
tionally costly in models for old-growth forests, as the entire
succession has to be simulated. Furthermore, the stochastic
search performed in ABC and classical Markov chain Monte
Carlo methods may fail to find good parameter combinations
when the parameter space is large. Hence, our methodologi-
cal advances can also benefit future forest models.

The good match between the biomass and stem count dis-
tributions in the simulated forest and the inventory indicates
that the model replicates the forest structure well. Further
validation via independent estimates of biomass, GPP, NPP,
and LAI showed that the model reproduces major forest dy-
namics. Nonetheless, the model underestimated the mean
biomass, GPP, and NPP. The underestimated biomass re-
sulted partially from our focus on the main stems in the
inventory, neglecting additional minor stems. Including the
secondary stems as separate trees would have led to overesti-
mated LAI values, causing forest thinning and making it dif-
ficult to fit the dynamic model to the field data. The biomass
bias, along with the assumption that mature trees stop grow-
ing, may have also caused the underestimated NPP and GPP.
Nonetheless, these quantitative differences do not invalidate
the strong qualitative results we obtained.

The strong correlation we observed between the basal area
and GPP may stem from our assumption that the leaf area
and basal area are proportional within a PFT. Though this
assumption is in line with theoretical and empirical findings
(West et al., 1999; Xu et al., 2021), local conditions and com-
petition can blur this relationship in practice, weakening it in
field observations. As an alternative, the GPP could be esti-
mated from stand-level LAI values (see e.g. Xie et al., 2019).

The relationship between basal area and GPP could also
be weakened by competition for water and other resources,
which might also yield other interactions between mature
and immature trees. Added competition may strengthen the

negative effect of mature trees on forest productivity. As a
result, the relationship between the proportion of immature
trees and the CUE would become non-linear, with a dispro-
portionally low CUE in stands dominated by mature trees.
Consequently, the basal area of mature trees would need to
be considered in addition to the basal area of immature trees
to accurately estimate NPP and NEE.

In special cases, mature trees could also have positive ef-
fects on smaller trees, for example by providing shelter (Lett
and Dorrepaal, 2018) and improving soil conditions (Yunusa
and Newton, 2003). In forests whose dynamics are driven by
sink limitations (i.e. limitations affecting carbon allocation to
growth) rather than source limitations (limitations affecting
carbon supply), such effects could induce a positive effect of
mature trees on NPP.

Our analysis built on the assumption that trees have maxi-
mal sizes. We modelled this via an abrupt transition from the
growing to the mature stage, which is a common approach in
forest modelling (Shugart et al., 2018). In reality, this tran-
sition can be gradual, and trees may require minimal DBH
increments to maintain the function of their vascular system
(Prislan et al., 2013). However, our results remained con-
sistent even if the CUE of mature trees was only reduced
by 25% compared to immature trees of the same size, sug-
gesting that life-stage-dependent carbon losses have a domi-
nant impact on the forest dynamics even if they have a mod-
erate magnitude. Though the concept of growth limitations
acting on the individual scale is subject to an ongoing de-
bate (Stephenson et al., 2014; Foster et al., 2016; Sheil et al.,
2017; Forrester, 2021; Anderson-Teixeira et al., 2022), there
is strong evidence that the NPP and/or CUE decrease with the
age of forest stands (Gower et al., 1996; Tang et al., 2014;
Collalti et al., 2020a), indicating that tree age or size has
a significant effect on individual biomass increment (West,
2020).

We considered a forest under spatially and temporally uni-
form environmental conditions to study the within-stand pro-
ductivity variations and their connection with forest struc-
ture. Temporal climatic variations and the changing occur-
rence of diseases and pests could increase the variance of
GPP, NPP, and NEE and weaken their correlations with forest
attributes. Though the external factors could become a major
driver of forest dynamics, temporal averaging could reduce
the resulting productivity variations so that data obtained on
longer timescales might show patterns similar to those pre-
sented here. This could be confirmed via further simulation
studies, for example, with an extended FORMIND parame-
terization incorporating variable climate.

Similarly, spatial heterogeneity in climate, soil, species
composition, and other factors could affect forest productiv-
ity on larger scales (Munné-Bosch, 2018; West, 2020; Gea-
Izquierdo and Sánchez-González, 2022). To appropriately
account for these variations, our results would need to be
combined with appropriate stand-level covariates to obtain
productivity estimates on regional scales. Nevertheless, our
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findings may be applicable to extended areas with compara-
ble environmental conditions.

4.2 Outlook

Using the concept of the potential CUE to characterize tree
maturity could become a useful framework to understand for-
est productivity on local scales. The identification of mature
trees, whose growth is primarily limited by intrinsic factors,
may be conducted irrespective of the mechanism behind the
limitations, be it increased respiratory losses (O’Leary et al.,
2019), sink limitations (Potkay et al., 2022), limited nutrient
or water availability (Munné-Bosch, 2018), or even genetic
predisposition (Liu et al., 2016). As we used a generic forest
model, and our results were robust across scales, our obser-
vations may hint towards a universal relationship between
tree maturity and forest productivity. This connection could
be used to develop new theory that could eventually lead to
accurate predictions of NPP and NEE based on general for-
est characteristics. Such predictions have proven difficult in
the past (Chisholm et al., 2013; Rödig et al., 2018) but could
be highly relevant for a broad spectrum of applied and theo-
retical questions in forest ecosystem science. Here, the DBH
entropy could prove particularly useful, as it can be easily
obtained from inventory data and may serve as both a mea-
sure for forests’ structural diversity on the local scale and a
proxy for net forest productivity in old-growth forests.

Confirming and generalizing the observed relationships
between tree maturity, DBH entropy, NPP, and NEE is a
promising endeavour for both theoretical and field studies.
Further modelling studies could assess the expected strength
of the relationships in forests in different successional stages,
under varying environmental conditions, and in the presence
of additional stressors such as the competition for nutrients
and water. Field studies could attempt to validate these find-
ings. Typical DBH maxima are documented for many species
from temperate forests and could serve as a first proxy for
maturity (Aiba and Kohyama, 1997; Kohyama et al., 2003;
Russell and Weiskittel, 2011; del Río et al., 2019). Combin-
ing the gained insights with large-scale predictors for forest
productivity could then lead to a unified theory of forest pro-
ductivity.

5 Conclusions

We applied a modelling approach to investigate how the
prevalence of mature (fully grown) trees and forest struc-
ture explain within-stand variations in forest productivity. We
found that NPP and NEE are mainly driven by the basal area
of immature trees, whereas the GPP depends on the total
basal area. This suggests that loss-induced limitations rather
than variations in GPP determine NPP and NEE.

The forest stand CUE was proportional to the basal area
share of immature trees. We suggested and tested the basal-

area-weighted DBH entropy as an easy-to-compute proxy for
the prevalence of mature trees as well as NPP and NEE.
Other measures for structural diversity, namely the height
standard deviation and the Shannon entropy of functional
types, had much smaller predictive power. Our results were
robust across spatial scales, and, due to their solid mecha-
nistic foundation and our generic model, our findings yield
promising hypotheses for field studies and new theoretical
work. For example, we hypothesize that within-stand NPP
increases with the DBH entropy and that focusing on im-
mature (not fully grown) trees could yield more accurate
structure–productivity relationships.
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