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Abstract. Deadwood is an important yet understudied car-
bon pool in tropical ecosystems. Deadwood degradation to
CO2 through decomposer (microbial, termite) activities is
driven by wood moisture and temperature, which are in
turn strongly influenced by local climate. Thus, climate data
could be used to predict CO2 fluxes from decaying wood.
Given the increasing availability of gridded climate data,
this link would allow for the rapid estimation of deadwood-
related CO2 fluxes from tropical ecosystems worldwide. In
this study, we adapted a mechanistic fuel moisture model that
uses weather variables (e.g., air temperature, precipitation,
solar radiation) to simulate wood moisture and temperature
along a rainfall gradient in Queensland, Australia. We then
developed a Bayesian statistical relationship between wood
moisture and temperature and CO2 flux from pine (Pinus ra-
diata) blocks and combined this relationship with our sim-
ulations to predict CO2 fluxes from deadwood at 1 h tem-
poral resolution. We compared our pine-based simulations
to the moisture–CO2 relationships from stems of native tree
species deployed at the wettest and driest sites. Finally, we

integrated fluxes over time to estimate the amount of car-
bon entering the atmosphere and compared these estimates
to measured mass loss in pines and native stems. Our sta-
tistical model showed a positive relationship between CO2
fluxes and wood moisture and temperature. Comparing cu-
mulative CO2 with wood mass loss, we observed that carbon
from deadwood decomposition is mainly released as CO2 re-
gardless of the precipitation regime. At the dry savanna, only
about 20 % of the wood mass loss was decomposed within
48 months, compared to almost 100 % at the wet rainforest,
suggesting longer residence times of deadwood compared to
wetter sites. However, the amount of carbon released in situ
as CO2 is lower when wood blocks are attacked by termites,
especially at drier sites. These results highlight the impor-
tant but understudied role of termites in the breakdown of
deadwood in dry climates. Additionally, mass loss–flux re-
lationships of decaying native stems deviated from those of
pine blocks. Our results indicate that wood moisture and tem-
perature are necessary but not sufficient for predicting CO2
fluxes from deadwood degradation. Other factors, such as
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wood traits (wood quality, chemical composition, and stoi-
chiometry) and biotic processes, should be considered in fu-
ture modeling efforts.

1 Introduction

Tropical and subtropical forests are important ecosystems in
the global terrestrial carbon (C) cycle (Raich et al., 2006;
Mitchard, 2018; Taylor et al., 2017). In 2020, they made
up 61 % of the global tree cover by area (FAO, 2020).
Within tropical forests, deadwood, including fallen trees and
branches, stumps, and dead standing trees (Woldendorp and
Keenan, 2005), can account for more than 50 % of the above-
ground C stock (Progar et al., 2000; Pfeifer et al., 2015; Wu
et al., 2020). Deadwood is also considered a stable C pool
due to its long residence time (Pfeifer et al., 2015) and pro-
vides ecological services such as habitat for plants and soil
fauna (Gale, 2000; Woldendorp and Keenan, 2005; Yan et al.,
2006; Liu et al., 2006; Gómez-Brandón et al., 2017; Kumar
et al., 2017). Despite its global importance, deadwood re-
mains an understudied terrestrial carbon pool (Gale, 2000;
Pfeifer et al., 2015).

Tropical deadwood is mainly cycled biotically through
activities of wood-dwelling microorganisms, such as fungi,
and invertebrates, such as termites (Ulyshen, 2016; Griffiths
et al., 2019; Zanne et al., 2022). Invertebrates are respon-
sible for the mechanical breakdown of wood, while fungi
and other microbes secrete digestive enzymes to break down
wood chemically (Ulyshen, 2016). The activities of these de-
composers are controlled by site-specific environmental con-
ditions (Zhou et al., 2007). Moisture and temperature affect
microbial (Hu et al., 2017) and termite activity (Cheesman
et al., 2018; Clement et al., 2021; Kim et al., 2021; Zanne
et al., 2022), as well as fungal species composition and rich-
ness (Pouska et al., 2017; Olou et al., 2019; Dossa et al.,
2021), by modulating enzyme production and activity (Pich-
ler et al., 2012; Green et al., 2022) and defining microhab-
itats suitable for microbial and invertebrate activity (Yoon
et al., 2015). Thus, these two variables indirectly affect dead-
wood degradation by modifying degradation rates (Hage-
mann et al., 2010; Hu et al., 2018). Quantifying how envi-
ronmental conditions influence deadwood degradation rates
is necessary to understand the variation in CO2 fluxes from
tropical forests across time and space (Cornwell et al., 2009).

There is little consensus around which factors control
deadwood degradation and CO2 fluxes from decaying dead-
wood. Chambers et al. (2000) found that temperature is the
best predictor of CO2 fluxes from decaying wood in forests.
However, according to Rowland et al. (2013), this might only
be true for temperate forests where stronger temperature gra-
dients are observed, whereas moisture levels are more con-
sistent. The interaction of these two factors could also be im-
portant for controlling deadwood degradation rates (Forrester

et al., 2012). Precipitation, coupled with high moisture con-
tent, increases degradation rates only at high temperatures
(Seibold et al., 2021), and high temperatures compensate for
slower degradation rates under dry conditions by increasing
enzyme kinetics (A’Bear et al., 2014).

Most studies use climate variables, such as air temperature
and precipitation, to represent the microclimate where dead-
wood decay occurs and to predict CO2 fluxes from decaying
wood (Chambers et al., 2000; Zhou et al., 2007; Hu et al.,
2018; Cheesman et al., 2018; Kim et al., 2021). Even though
there is a clear coupling between climate variables and mi-
croclimate, unique conditions independent of climate may
occur under the forest canopy (Floriancic et al., 2023). Thus,
the microclimate of wood degradation may be better repre-
sented by directly considering wood moisture and tempera-
ture. Few studies in ecology have measured wood moisture
content and temperature directly, and those that have are lim-
ited to a low temporal resolution or impacted by wood degra-
dation processes if using sensors (Woodall et al., 2020; Green
et al., 2022). A low temporal resolution of wood moisture
and temperature might mask daily and seasonal variations in
these variables. Consequently, variations in CO2 fluxes from
deadwood decay will not be well represented (Green et al.,
2022), impeding our understanding of the C budget from for-
est ecosystems.

In this study, we predict CO2 fluxes from tropical dead-
wood degradation using wood moisture and temperature.
Taking advantage of gridded climate data from remote sens-
ing (Stackhouse, 2006; Nguyen et al., 2019) and mechanis-
tic fuel moisture content (FMC) models, typically used for
firefighting and forestry management (Matthews, 2014), we
simulate wood moisture and temperature across a precipita-
tion gradient in Australia. These models use weather vari-
ables (air temperature, rainfall, solar radiation, air humidity,
and wind speed) to estimate FMC and temperature (Nelson,
2000; Matthews, 2006), explaining up to 94 % of the variance
in measured FMC (van der Kamp et al., 2017). Considering
the importance of moisture in deadwood decay and given the
ability of FMC models to predict FMC from climate, FMC
models are a good candidate for downscaling weather vari-
ables to wood moisture and temperature for predictions of
CO2 fluxes from deadwood decomposition (Fig. 1).

To evaluate the link between weather data, wood moisture
and temperature, and CO2 fluxes from deadwood decompo-
sition, we adapted a mechanistic FMC model by van der
Kamp et al. (2017) to simulate these variables along a pre-
cipitation gradient spanning dry savanna to wet rainforest
ecosystems. Similar climate-based moisture content models
have also been developed for timber structure risk assessment
and successfully capture daily and seasonal moisture content
trends (Hansson et al., 2012). Our approach has the potential
to provide wood moisture and temperature at an hourly time
resolution. In this paper, we refer to deadwood moisture data
collected through processing experimental wood blocks as
moisture content and data collected by the Campbell CS506
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Figure 1. Conceptual model of interactions between wood moisture and temperature and CO2 fluxes from decaying wood. Weather variables
influence wood moisture and temperature, which in turn influences deadwood degradation and the release of CO2 back into the atmosphere.
Finally, altered CO2 concentration in the atmosphere affects local and regional climate as well as future climate patterns. In this study, we
used a mechanistic model to derive wood moisture and temperature from weather data and a statistical model to relate them to CO2 flux.

moisture sensor as FMC data. From the perspective of wood
integrity and durability, extensive literature in wood material
sciences suggests a positive correlation between wood de-
cay and wood moisture and/or temperature (Viitanen, 1997;
Brischke and Rapp, 2008a). Additionally, wood moisture and
temperature are better predictors of wood decay than macro-
climate (Brischke et al., 2006; Brischke and Rapp, 2008a, b;
van Niekerk et al., 2021). We extended this idea and fur-
ther hypothesized that cumulative mass loss of pine blocks
corresponds to CO2 flux predicted from wood moisture and
temperature. If other pathways of mass loss are active, such
as termite-mediated decay, then cumulative mass loss should
exceed predictions of cumulative CO2 flux from deadwood.
Likewise, we hypothesized that the strength of the relation-
ship between wood moisture and temperature and CO2 fluxes
should differ across our precipitation gradient. Finally, we
provide additional mechanistic explanations of factors influ-
encing deadwood decomposition in our study site.

2 Methods

2.1 Study site and experimental design

2.1.1 Site description

The study was conducted at five sites along a 75 km rainfall
gradient (960–4250 mmyr−1) in tropical northeastern Aus-
tralia from June 2018 to June 2022 (https://www.bom.gov.au,

last access: 6 March 2023, 1989–2019). From greatest to
least rainfall, the sites (Fig. 2) are as follows: James Cook
University’s Daintree Rainforest Observatory (wet rainfor-
est; 16.1012° S, 145.4444° E) and the Australian Wildlife
Conservancy’s Brooklyn Sanctuary Mt. Lewis Rainforest
(dry rainforest; 16.5933° S, 145.2743° E), Mt. Lewis Sclero-
phyll (sclerophyll; 16.5830° S, 145.2620° E), Station Creek
(wet savanna; 16.610° S, 145.2400° E), and Pennyweight
Outstation (dry savanna; 16.5746° S, 144.9163° E). Site de-
scriptors (e.g., wet, dry) are relative to our gradient.

2.1.2 Pine and common garden experimental setups

Two experiments were started in June 2018: a pine ex-
periment and a native species common garden experiment.
The pine experiment was set up to determine if CO2 fluxes
from deadwood differed across all five sites in the rain-
fall gradient. At each site, pine (Pinus radiata) blocks
(9 cm× 9 cm× 5 cm) were deployed in five plots. Pine
blocks were cut from pine planks obtained from a sawmill.
They were harvested from trees grown for timber, so the
blocks were likely heartwood. We used this method as we
followed a standard protocol for assessing termite activity
developed by Cheesman et al. (2018). For each time point,
two blocks enclosed in 280 µm lumite® mesh (BioQuip)
were deployed in each plot to represent two insect access
treatments: one completely closed to exclude insect activity
and another with 10 holes, 5 mm in diameter, in the mesh
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Figure 2. Study sites across the precipitation gradient in Australia. The five study sites are in northeastern Australia (a) along a 75 km rainfall
gradient. In (b), sites are numbered from wettest to driest (1. wet rainforest, 2. dry rainforest, 3. sclerophyll, 4. wet savanna, 5. dry savanna).
Images are obtained from Google Earth (https://earth.google.com/, last access: 13 June 2024).(c) Color schemes are used to differentiate the
sites. Lower precipitation is indicated by a lighter color. © Google Earth.

to allow insect access. Blocks were deployed and harvested
at 6, 12, 18, 24, 30, 36, 42, and 48 months to capture seasonal
variation in CO2 fluxes (2 insect access treatments× 8 har-
vests× 5 plots× 5 sites= 400 blocks deployed).

The native species common garden experiment included
a similar experimental setup to the pine experiment, with
wood stems only deployed in the driest and wettest sites. Na-
tive stems were harvested directly from our field sites and
include heartwood and sapwood (additional details in Law
et al., 2023). Stems (∼ 7 cm diameter and∼ 10 cm length) of
native trees were used to assess variation in decomposition
across sites. Native stems were harvested and placed in ei-
ther wet rainforest (10 species) or dry savanna (6 species) at
the sites where they were harvested. There were no overlap-
ping species between sites. Stems were harvested after 12,
18, 24, 30, 36, and 42 months (Table S3 in the Supplement).
Additional details of the experimental setup are described in
Law et al. (2023).

2.1.3 Harvest and CO2 flux measurements

During harvests, blocks and stems were removed from their
mesh bags, and any accumulated organic matter was re-
moved. Wood pieces were examined for termite and soil
presence. An initial field weight was taken, and CO2 flux
from the wood was measured with an infrared gas analyzer
(Los Gatos ultraportable greenhouse gas analyzer with a LI-
COR long-term chamber, model 8100–104). We used a soil
collar (20 cm diameter) to which we affixed a plexiglass
bottom. The bottom was used to create a closed chamber,
and we ensured there were no leaks. After the wood sam-

ple was equilibrated in the chamber for 60 s, CO2 concen-
tration (ppm) and chamber temperature (°C) were measured
over 180 s. Block or stem volume was then measured using
water displacement. Each wood sample was separated into
intact wood (wood pieces with structural integrity), carton
(created from termite activity), soil (any soil that entered the
bag), and excess (wood shavings and chips) with each com-
ponent weighed individually. As we were only interested in
CO2 fluxes coming from wood, samples which were major-
ity soil or carton were removed from analysis (Fig. S1 in
the Supplement). Final mass was determined after stems and
blocks were dried in an oven at 100 °C to a constant weight.
The proportion of mass loss was calculated using the follow-
ing formula:

Proportion mass loss=

Initial dry weight−
Harvest wood dry weight

Initial dry weight
. (1)

The CO2 flux rate was calculated using the formula de-
rived by Dossa et al. (2015):

RS =1CO2 ·
P

Pi
·M ·

(Vc−Vs)

Vi
·

Ti

(Ti− Tc)
·

1
Ws
, (2)

where RS is the respiration rate, 1CO2 is the change in the
concentration of CO2 over time,M is the molar mass of CO2
(44.01 gmol−1), P is the pressure, Pi is the standard pres-
sure (1013.25 mbar), Vc is the volume of the chamber (4.27
or 4.58 L), Vs is the volume of the stem, Vi is the standard
volume (22.4 L), Ti is the standard temperature (273.15 K),
Tc is the temperature of the chamber in degrees Celsius, and
Ws is the dry weight of the stems or wood blocks. 1CO2
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was determined by taking the slope of the linear fit to CO2
readings plotted over the first 170 s of the 180 s measurement
in case of time mismatches between the chamber and soft-
ware clocks. Samples with non-significant (p> 0.05) linear
fits were removed from the analysis (Fig. S1, 3 % of total
samples). Additionally, blocks harvested at 6 months were
excluded from analysis as block volume was not measured.
The final rates were represented in units of micrograms of
CO2 per second per gram of wood (µgCO2 s−1 g−1).

2.2 Wood moisture and temperature: observations and
modeling

2.2.1 Wood moisture and temperature observations

We considered wood moisture content and temperature dur-
ing flux measurements. We used the temperature of the LI-
COR chamber (Tc) to represent wood temperature. Wood
moisture content was calculated with fresh and dry weights
of intact wood using the following formula:

Moisture content=
Fresh weight−Dry weight

Dry weight
·100%. (3)

2.2.2 Wood moisture and temperature modeling

a. Model description.

We modeled wood moisture and temperature using the
fuel moisture model of van der Kamp et al. (2017).
Briefly, the model considers a standard wood dowel for
fuel moisture measurements to be divided into an inner
core (“c”) and an outer layer (“o”). The inner core and
the outer layer exchange energy and moisture, but only
the outer layer exchanges energy and moisture with the
environment.

The main components of the energy budget of the wood
dowel part of the sensor are (i) the incoming long-
wave radiation (Labs), (ii) diffuse (Kabs-diff) and direct
(Kabs-dir) shortwave radiation, (iii) emitted longwave
radiation (Lemit), (iv) sensible (Qh) and latent (Qe)
heat flux, and (v) heat conduction (C) to and from the
wood dowel core. The main components of the mois-
ture budget of the sensor are (i) the incoming precipi-
tation (Pabs), (ii) evaporation flux from the wood dowel
(E), and (iii) moisture diffusion (D) to and from the
wood dowel core. Model outputs include temperature
and moisture.

The original model expresses all energy fluxes in watts
per square meter and all moisture fluxes in kilograms
per second. However, because our climate dataset was
constructed at an hourly temporal resolution (Duan
et al., 2023), we adjusted all model energy and mois-
ture fluxes to be expressed in joules per square meter per
hour and kilograms per hour, respectively. Similarly, all
model parameters and time-dependent parameters are
expressed in units per hour (Table S3).

A detailed description of the model formulations can be
found in van der Kamp et al. (2017). We present the
following minor modifications.

1. Canopy emissivity (εc) – we introduced an empiri-
cal approach to simulate canopy emissivity depen-
dent on leaf and soil emissivity as proposed by
Francois et al. (1997):

εc = (1− cv) · εg+ cv · εv, (4)

where εg (–) is the ground emissivity fixed to 0.95
(Francois et al., 1997), εv (–) is the vegetation emis-
sivity fixed to 0.965 (Francois et al., 1997), and cv
is the contribution coefficient of the vegetation set
to 0.5.

2. Precipitable water content (w) – precipitable water
content was determined using Prata’s empirical ap-
proximation (Prata, 1996):

w = Ce ·HP, (5)

where Ce is an empirical parameter that, un-
like in van der Kamp et al. (2017), is set
to 46.5 cmKhPa−1 for robust predictions (Prata,
1996), and HP is the humidity parameter (hPaK−1):

HP=
e0

Ta
, (6)

where e0 (kPa) is the saturation vapor pressure cal-
culated with the Magnus-type equation described in
Alduchov and Eskridge (1996) and Koutsoyiannis
(2012). Ta (°C) is the ambient temperature.

3. Attenuation of shortwave radiation by the canopy –
we incorporated the effect of the canopy on short-
wave solar radiation using the approach of Mussel-
man et al. (2015):

Kabs =Kabs-diff · τdiff+Kabs-dir · τdir, (7)

where Kabs is the downwelling shortwave radia-
tion measured at the sub-canopy surface, τdir is the
canopy transmittance of the direct shortwave com-
ponent that equals the sky-view factor (sv) of the
canopy, and τdiff is the canopy transmittance of the
diffuse shortwave component calculated as follows:

τdiff = exp

− ξ ·φ · cos(φ) ·
(

exp
(
−

sv−0.45
0.29

))
sin(φ)

 , (8)

where ξ is an empirical coefficient calibrated for
pine and set to 1.081 (Pomeroy et al., 2009), and
φ is the solar elevation angle in radians.
The model was written in MATLAB (2019), and
the ode15s solver was used to solve the differential
equation system of the fuel moisture model.
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Table 1. Model parameters for calibration.

Model parameters Description Units Min Max

A Empirical constant [–] −8 20
B Empirical constant [–] −50 5
d∗s Bulk diffusion coefficient of the dowel m2 d−1 1.0× 10−7 1.0× 10−4

mmax Maximum moisture content of the dowel [–] 0.1 2.5
f Fraction between core and outer layer of the dowel [–] 0.05 0.95

∗ ds was expressed in log scale to facilitate model calibration. Ranges of the parameters were adjusted from van der Kamp et al. (2017).

b. Model calibration – data description.

Fuel moisture sensors (Campbell CS506, 10 h fuel
moisture sensor) were placed at each site to measure
fuel moisture content. To simulate the conditions blocks
were experiencing, the sensors were placed in mesh
bags directly on the ground and replaced annually to
avoid measurement errors due to decomposition of the
wood dowel part of the sensor. Due to the fuel mois-
ture sensors’ direct contact with the ground, we regu-
larly recorded moisture values above the normal operat-
ing range (0 %–70 %).

c. Model calibration – calibration process.

We followed a two-step calibration approach, in which
we first fitted moisture content measured from standard
fuel moisture sensors and then derived the wood mois-
ture and temperature of pine blocks at hourly resolution.

We performed a site-specific calibration for all sites ex-
cept for the wet rainforest site using hourly time series
of FMC (see model calibration – data description). Ob-
servations from 2019 were used for calibration, and the
remaining data were used for visual validation of the
model results. The wet rainforest site was excluded from
calibration due to malfunction of the fuel moisture sen-
sor. Instead, calibrated parameters from the dry rainfor-
est site were used to simulate fuel moisture in the wet
rainforest site.

We calibrated five model parameters as in van der Kamp
et al. (2017) (Table 1). Fixed parameters (Table S3) and
initial conditions of the state variables were taken from
van der Kamp et al. (2017) and were set equal for all
the sites. Forcing variables (see “Weather data” section)
were derived from weather data following the equations
suggested by van der Kamp et al. (2017). Parameter
ranges were initially taken from van der Kamp et al.
(2017), but we extended the parameter ranges to account
for the fact that sensors were placed directly on the
ground rather than raised above the ground, which may
alter original physical properties described in van der
Kamp et al. (2017), such as aerodynamic resistance.

We used the nonlinear optimization algorithm fmincon
in MATLAB (2019) to find the best possible fits of

the parameters (Table 1) and the root mean square er-
ror (RMSE) as the objective function to compare model
output with observations (Eq. 9):

RMSE=

√√√√ n∑
i=1

(simulationi − observationi)2

n
. (9)

The model output corresponding to the observations
was the average moisture of the wood dowel ms (unit-
less), calculated from the simulated moisture content in
the core and the outer layer of the wood dowel converted
to a fraction of the dry weight of the wood dowel:

ms =
(f ·mo+ (1− f ) ·mc) · 100

ρs ·Vs
, (10)

where mc (kg) is the moisture content of the core, mo
(kg) is the moisture content of the outer layer, f (unit-
less) is the fraction of the volume between the core
and outer layer of the wood dowel, ρs is the wood
dowel density fixed to 400 kgm−3 (Nelson, 2000), and
Vs (cm3) is the volume of the wood dowel.

d. Wood moisture and temperature simulations.

We simulated pine block moisture content and temper-
ature using the described mechanistic model and the
fitted model parameters for each site. Moisture con-
tent observations that were measured for pine blocks
throughout the experiment were used as the benchmark
reference for model performance. There was no addi-
tional automatic model calibration of the fuel mois-
ture mechanistic model previously described, only mi-
nor modifications to capture the benchmark observa-
tions. First, we adjusted equations for heat and water
transfer to represent the geometry of blocks as opposed
to cylindrical sticks (code available on https://doi.org/
10.5281/zenodo.11623043) and set the wood density to
480 kgm−3. Additionally, the parametermmax was man-
ually increased based on field moisture measurements
to allow the blocks to hold more water, and the param-
eter f was manually reduced to allow for a more sta-
ble moisture content compared to sensors due to the
higher contribution of the inner core to the final sim-
ulated moisture content. Latent heat flux was modified
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for two sites (dry forest and dry savanna) through ad-
justment of the empirical parameter A. Finally, we cal-
culated the Nash–Sutcliffe efficiency (NSE) (van der
Kamp et al., 2017) along with other standard model skill
metrics to assess the model performance.

2.3 Weather data

We previously constructed an hourly time series dataset of
weather variables across our 4-year (from June 2018 to
June 2022) field experiments using Vaisala Weather Trans-
mitters (WXT530), gap filled with publicly available weather
datasets (Duan et al., 2023) (detailed methods available
on https://github.com/Zanne-Lab/WTF-Climate, last access:
22 May 2023). For this project, we extracted from Duan
et al. (2023) soil surface air temperature, precipitation, air
pressure, wind speed, relative humidity, shortwave radiation,
longwave radiation, solar elevation, and solar azimuth as
forcing variables for simulations of fuel moisture of sensor
wood dowels and pine block temperature and moisture.

We also collected sky-view factor data (Table S2) by tak-
ing photos of the sky from 1 m above the ground at each site
with a fisheye lens and calculating the sky-view factor using
image binarization (Honjo et al., 2019).

2.4 Statistical analysis (wood moisture and
temperature vs. CO2 fluxes)

To simulate high-resolution CO2 fluxes for each site, we de-
veloped a mixed nonlinear model using CO2 flux as the re-
sponse variable; wood moisture content, temperature, and
moisture–temperature interaction as fixed effects; and site
as a random effect. This model performed better compared
to simpler models that excluded temperature and moisture–
temperature interaction (code available on https://doi.org/10.
5281/zenodo.11623043). We used the wood moisture mea-
surements from the pine experiment and the corresponding
chamber temperature observations to construct the model.
To account for simulation uncertainty, we used the Bayesian
inference package bmrs (Bürkner, 2017, 2018, 2021) in R
version 4.0.4 (R Core Team, 2021). The sampler used 5000
iterations, a warm-up period of 2500 simulations, and four
chains and assumed a beta distribution for the response vari-
able. A total of 10 000 post-warmup draws were performed.
We assessed convergence of the model parameters using the
R diagnostic (R̂= 1) and tracer plots (Fig. S2). Model pre-
dictions were obtained using 2000 draws of the parameter
posterior distribution. The Bayesian p-value equivalent is
calculated with the package bayestestR (Makowski et al.,
2019a, b).

Our statistical model of wood moisture and temperature
and CO2 fluxes was based on observations of Pinus radi-
ata blocks, a readily available non-native wood. To estimate
model skill in predicting CO2 fluxes of native species, we
plotted flux measurements of native species with our statis-
tical model and simulations. Natives were only deployed at

the two extremes of our precipitation gradient (wet rainforest
and dry savanna), and no species overlapped between sites.
We assessed if the relationship between wood moisture and
temperature and CO2 fluxes measured in pine blocks could
predict that of native stems at the wettest and driest sites.
Finally, we plotted the measured CO2 fluxes and wood mois-
ture and temperature of native stems together with the model-
predicted values.

2.5 Estimated wood mass loss

We estimated the cumulative mass loss of our pine blocks and
native stems at each biannual harvesting point by integrat-
ing hourly predicted CO2 fluxes over time. We used the area
under the curve (AUC) function and the trapezoid method
implemented in the R package DescTools (Signorell et al.,
2023). We then converted these values from micrograms of
CO2 per gram wood to grams of carbon per gram carbon as
follows:

µgCO2

g wood
·

1gCO2

1000µgCO2
·

12.01gC
44.01gCO2

·
100g wood

49.2gC
=

gC
gC

. (11)

First, micrograms of CO2 was converted to grams of car-
bon using the molecular weights of C and CO2. The carbon
percentage of Pinus radiata, 49.2 %, was used to convert
grams of wood to grams of carbon (Law et al., 2023). The
final unit, grams of carbon per gram carbon, is comparable
to the proportional mass loss measured in field experiments
at each harvest time point (Sect. 2.1.3).

3 Results

3.1 Wood moisture and temperature validation

We derived wood moisture and temperature from a fuel mois-
ture model (van der Kamp et al., 2017) calibrated with fuel
moisture sensor measurements along a precipitation gradient
in Australia (Fig. 3). Throughout the 4-year experiment, we
observed higher wood moisture content at sites with higher
precipitation (Fig. 3a). We obtained wood moisture content
and temperature simulations that captured major trends in the
empirical measurements. Our wood moisture content sim-
ulations were sensitive to annual rainfall seasons (Fig. 3a),
which was, in turn, reflected by a positive NSE in four out of
five sites (Table 2). Only the simulations of the dry savanna
slightly overestimated the observed moisture ranges but ex-
hibited lower overall moisture than the other sites. Mois-
ture values were calculated relative to the dry weight of the
wood (Eq. 3). For this reason, moisture can reach values over
100 %.

Wood temperature simulations were benchmarked against
air temperature at the soil surface. Simulated wood temper-
ature was higher than air temperature at each site and in-
creased with decreasing precipitation, i.e., at dry and wet sa-
vannas (Fig. 3b).
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Figure 3. Time series of comparisons between pine block simulations and climate observations. (a) Simulated moisture content is shown
in gray, and hourly precipitation is shown in blue. Different colors represent different sites, and triangles represent wood moisture content
measurements from field experiments used to calibrate simulations. (b) Simulated wood temperature is shown in gray, and soil surface air
temperature is shown in red. Triangles represent the temperature of the LI-COR chamber during flux measurements. Model skill metrics
(RMSE and bias) are presented in Table S6.

Table 2. Standard model skill metrics for the wood moisture model.

Sites Performance metrics

RMSE R2 MBE NSE

Wet rainforest 70.8 0.5 −44.9 0.1
Dry rainforest 71.2 0.1 −11.1 0.04
Sclerophyll 51.8 0.4 3.2 0.4
Wet savanna 23.2 0.3 −5.9 0.2
Dry savanna 6 0.01 −0.5 −2.8

RMSE – root mean squared error, R2 – coefficient of determination, MBE
– mean bias error, NSE – Nash–Sutcliffe efficiency.

3.2 Wood moisture and temperature vs. CO2 fluxes
across the precipitation gradient

We assessed the statistical relationship between wood mois-
ture and temperature and CO2 fluxes across our precipita-
tion gradient. Despite the high uncertainty likely attributable
to the high variability of the observations (Fig. 4a), our re-
sults indicated a positive relationship between CO2 fluxes
and wood moisture at each of the study sites (Fig. 4a and
Table S1, p value< 0.001). However, the strength of this
relationship decreased with decreasing precipitation levels

(Table S1). Thus, the savanna sites exhibited lower CO2
fluxes from decaying wood than the rainforest sites. Wood
temperature was also positively correlated with CO2 fluxes
(Fig. S3), but the correlation was not significant (Table S1,
p value= 0.4). On the other hand, the interaction between
wood moisture content and temperature was a significant
factor in our statistical model (Fig. 4b and Table S1, p
value= 0.001), showing that temperature is relevant, but only
when there is sufficient moisture. Therefore, at dry sites, like
dry and wet savanna, the temperature is not strongly corre-
lated to CO2 flux due to low moisture levels.

3.3 Time series of CO2 fluxes across the precipitation
gradient

We observed patterns in CO2 fluxes that matched seasonal
precipitation patterns (Fig. 5). For example, the higher CO2
peaks between 2021 and 2022 in the wet rainforest corre-
sponded to large precipitation events recorded in the area
(Fig. 3a). Similarly, in 2022, little precipitation was observed
for the dry savanna, which corresponded to lower CO2 fluxes
(Fig. 5). This seasonal pattern was present at all sites regard-
less of precipitation regime, although seasonality was more
visible at the wetter sites. Wood temperature affected CO2
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Figure 4. Mixed model of CO2 fluxes (µgCO2 s−1 g−1) from decaying wood, with wood moisture content and temperature as fixed effects
and site as a random effect. (a) Flux predictions against wood moisture content. (b) Flux predictions against interaction between wood
moisture and temperature using three different simulated temperature levels. Triangles represent pine block measurements used to construct
the model. An outlier in the dry savanna was kept, as there was no indication that there was an error in measurement.

Figure 5. High-resolution time series of CO2 fluxes across the precipitation gradient derived from high-resolution time series of simulated
wood moisture content and temperature of pine blocks. Solid lines represent model means. Uncertainties were not displayed so as to make
seasonal trends more apparent (Fig. S4).

flux at a daily timescale at all sites, which may have ampli-
fied seasonality (Figs. 3b and 5).

3.4 Simulated and measured wood moisture and
temperature: pines vs. native species across the
precipitation gradient

Generally, we observed that most native species exhibited a
positive relationship between the wood moisture and tem-
perature and CO2 fluxes (Figs. 6 and S5). This relationship
is captured by our statistical model, as measured native CO2
fluxes are within the uncertainty regions of the CO2 estima-

tions (Fig. 6a and c). Our simulations generally matched the
magnitude of CO2 fluxes from decaying wood from native
trees in the wet rainforest and dry savanna (Fig. 6b and d).
An exception was the species Melaleuca viridiflora (MEVI)
in the dry savanna, for which wood respiration rates were
more sensitive to increasing moisture content than predicted.
In temperature–flux comparisons, our simulations captured
a wider range of wood temperature values in both sites
(Fig. S5b and d).
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Figure 6. Measured native stem moisture content and CO2 fluxes plotted with estimates from the statistical model (a, c) and time-resolved
simulations (b, d) for native species from the wet rainforest (a, b) and dry savanna (c, d). The species name for each code is given in Table S4.

Figure 7. Simulated mean cumulative carbon flux (gg−1) compared with mean measured wood mass loss (gg−1) of pine blocks. Each point
represents a time point at which pine block mass loss was measured (12, 18, 24, 30, 36, 42, and 48 months). The mean carbon loss between
blocks at each time point is plotted, and bars represent the standard error of the mean. Colors indicate whether a termite attack was recorded
(red) or not (black). Regression lines and R2 are shown for blocks without termite discovery (black) or all blocks, including those discovered
(red).

3.5 Simulated cumulative carbon flux and measured
wood mass loss over time

Measured mass loss was positively related to simulated cu-
mulative C flux (Fig. 7), with a stronger correlation at wet-

ter sites (R2: 0.86, 0.95, 0.95, 0.61, and 0.54, from wettest
to driest). We observed a slight overestimation of CO2 flux
from decaying wood at wetter sites (dry rainforest and scle-
rophyll) and a strong overestimation at the wet rainforest.
Our simulations showed nearly 100 % mass loss to CO2 af-
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ter 48 months in the rainforest, suggesting an acceleration
of decomposition by about 8 weeks compared to observa-
tions. In the dry savanna, about 20 % of the total mass was
released as CO2. When wood blocks that termites discovered
were included in the analysis, we observed a decrease in the
strength of the mass loss–flux correlation (R2: 0.29, 0.86,
0.59, 0.30, and 0.41, from wettest to driest) and a deviation
from the 1 : 1 line. These weaker correlations suggest that
termites promote C loss from decaying wood through other
pathways besides atmospheric CO2 flux. More termite at-
tacks were recorded at the two driest sites (wet and dry savan-
nas), suggesting a higher effect of termite activity at dry sites
(Fig. 7). We additionally ran a linear regression and found
a marginally significant interaction between carbon loss and
termite activity (p = 0.067, Table S5).

We observed a similar positive relationship between cu-
mulative CO2 and mass loss for the native woody species;
however, cumulative flux sometimes differed from mass loss
(Fig. 8). The relationship varied among species, suggesting
that native species’ wood was lost in ways other than as CO2
fluxes or that our model based on pine is not sufficient to
capture the behavior of native species.

4 Discussion

4.1 Climate variables as predictors of wood moisture
and temperature

We estimated wood moisture and temperature using a mecha-
nistic fuel moisture model (van der Kamp et al., 2017) driven
by weather data measured with portable weather stations or
retrieved from gridded databases. We followed a two-step
calibration approach, in which we first fitted moisture content
measured from standard fuel moisture sensors and then de-
rived wood moisture and temperature for our blocks at hourly
resolution. Despite the potential uncertainty in the simula-
tions, this calibration approach was chosen due to the low
density of wood moisture observations that limited represen-
tation of hourly dynamics of wood temperature and moisture
in a single simulation.

Our simulated wood moisture and temperature reproduced
the major patterns of the empirical observations (Fig. 3) and
showed a positive NSE in four out of five sites, suggesting
that our simulations perform better than just the mean value
of the observations (Knoben et al., 2019). However, the simu-
lations missed some of the measured moisture content peaks
in the wettest sites and failed to reproduce very low moisture
values in the dry savanna, where the NSE was negative. Al-
though NSE may not be the most suitable performance met-
ric for a highly dynamic variable like wood moisture (Schae-
fli and Gupta, 2007; Moriasi et al., 2015), representing other
physical processes may improve simulations. For example,
our blocks were placed in mesh bags and directly on the
ground, which may have resulted in moisture uptake and re-

lease by capillary action, while our mechanistic model does
not account for this process (van Niekerk et al., 2021; Thy-
bring et al., 2022). Surface runoff, in combination with the
topography of the site, could also either increase or decrease
the likelihood of high wood moisture content (Shorohova and
Kapitsa, 2016). Additionally, the moisture retention capacity
of wood differs among stages of decay (Pichler et al., 2012)
and could explain the low moisture content in the dry sa-
vanna. However, adding an additional degradation term in
the mechanistic model is not typical for fuel moisture models
and would have added more uncertainty to our simulations.
Finally, to simulate the conditions experienced by deadwood
more closely, sensor dowels were similarly placed in bags on
the ground and not above ground as per standard practice.
These conditions may have influenced energy and moisture
transport, as described by van der Kamp et al. (2017). Dur-
ing calibration, we allowed our parameters to take on values
beyond the range proposed by van der Kamp et al. (2017) to
account for this issue.

Nevertheless, our simulated wood moisture and temper-
ature were robust, even in the dry savanna, where the low
moisture values still correlate with low CO2 fluxes. More-
over, our simulations showed higher wood temperatures than
soil surface air temperature, especially in the hotter and drier
sites (Fig. 4). This result is consistent with wood thermody-
namics, in which wood is heated by incoming radiation dur-
ing the day, and heat is stored and slowly released at night.
Sites with higher canopy cover experienced smaller tempera-
ture ranges as shade buffers temperature extremes (Brischke
and Rapp, 2008b).

4.2 Climate-derived wood moisture and temperature
as a predictor of CO2 fluxes from decaying wood

We found a positive relationship between CO2 fluxes and
wood moisture and temperature across the precipitation gra-
dient, with the strength of this relationship decreasing at low-
precipitation sites. This result was expected as wood mois-
ture and temperature are known to be important drivers of
deadwood degradation (Viitanen, 1997; Mackensen et al.,
2003; Brischke and Rapp, 2008a; Kahl et al., 2015; Wang
et al., 2023), influencing microbial- and invertebrate-driven
decay (Progar et al., 2000; Zanne et al., 2022). Moisture and
temperature modulate enzyme production and activity and
determine microhabitats suitable for microbial and inverte-
brate activity (Yoon et al., 2015).

As observed in other tropical ecosystems (Wang et al.,
2023), we found that wood moisture was an important limit-
ing factor of deadwood degradation at our sites (Table S1, p
value< 0.001). Wood moisture controls saprophytic micro-
bial activity (Cheesman et al., 2018) and determines the dom-
inant fungi in decaying wood (Progar et al., 2000; Barker,
2008; Thybring et al., 2018). Bond-Lamberty et al. (2002)
found a similar strong correlation between wood moisture
and CO2 respiration fluxes but only below a moisture content
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Figure 8. Simulated mean cumulative carbon flux (gg−1) and mean measured wood mass loss (gg−1) of native species at two ends of the
precipitation gradient. Each point represents a time at which pine block mass loss was measured (12, 18, 24 or 36, and 30 or 42 months, Law
et al., 2023). Points represent mean carbon loss at each time point, and bars represent the standard error of the mean. Colors indicate whether
a termite attack was recorded (red) or not (black). Regression lines and R2 are shown for blocks without termite discovery (black) or all
blocks, including those discovered (red). Species from the wet rainforest have a blue title background, while species from the dry savanna
have a yellow background.

of 43 %. Similarly, we observed increasing uncertainty in our
CO2 predictions with increasing wood moisture content. As
wood moisture content increases, its relative importance de-
creases, and other factors, such as wood traits (wood quality,
chemical composition, and stoichiometry), become more rel-
evant (González et al., 2008; Risch et al., 2022; Law et al.,
2023). Additionally, high wood moisture contents close to
saturation can slow wood decay rates due to anaerobic pro-
cesses becoming dominant (Piaszczyk et al., 2022).

Chambers et al. (2000) suggested that temperature is a bet-
ter predictor of CO2 fluxes in temperate forests than mois-
ture, arguing that sufficient moisture must be available for

trees to grow in the first place. However, in contrast to tem-
perate forests, where wood degradation is limited by temper-
ature, our tropical sites (from wet rainforest to dry savanna)
experience relatively similar mean temperatures throughout
the year (Fig. 3b) but are subject to very different moisture
conditions (Fig. 3a). For this reason, moisture is a limiting
factor across our sites and is thus the best predictor of CO2
fluxes. Similarly, Rowland et al. (2013) found that moisture
is the limiting factor for deadwood decay in tropical and
subtropical forests. However, temperature variation can in-
teract with moisture and cause CO2 fluxes to be nonlinear
(Viitanen, 1997; Wang et al., 2002; González et al., 2008;
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Forrester et al., 2012). This pattern is consistent with what
we observed: the interaction between wood moisture con-
tent and temperature was significant at all sites (Table S1, p
value< 0.001), and the relative role of temperature in wood
decay increases after a certain moisture threshold is reached
(Fig. 4b).

4.3 Deadwood fate under a precipitation gradient in
Australia

An essential question in tropical forest ecosystems is whether
the mass loss of deadwood is released into the atmosphere as
CO2 or stored in microbial and/or invertebrate biomass or
some other stable form of C (Cornwell et al., 2009). We ad-
dressed this question by combining our linear mixed model
and high-temporal-resolution simulations of wood moisture
and temperature. Despite high uncertainty at any given time,
when summing CO2 flux estimates over long periods of time,
the fine-scale variation averages out, and estimated cumula-
tive flux was comparable to mass loss of pine blocks (Fig. 7).
We observed that deadwood has longer residence times in
dry, hot sites (wet and dry savanna), and wood decay is en-
hanced by moisture in wet sites (wet and dry rainforest). Af-
ter 48 months, almost 100 % of the deadwood was degraded
and released as CO2 in the wet rainforest, but 20 % was re-
leased in the dry savanna (Fig. 7).

Our model predictions based on wood moisture and tem-
perature do not capture invertebrate activity influencing
deadwood decay. When termites are involved in the decay
of pine blocks, termite activity leads to deviations from the
linear relationship between cumulative CO2 flux and wood
mass loss. This suggests that C is lost through other pro-
cesses, which might include leaching, volatilization (Read
et al., 2022), and fragmentation (Yoon et al., 2015). These
processes may eventually release carbon at locations other
than the wood block, for example, at termite mounds (Jamali
et al., 2013; Clement et al., 2021).

The underprediction of cumulative CO2 flux relative to
mass loss observed in some native stems (Fig. 8) sug-
gests that other biotic factors should be included in statis-
tical models when extrapolating beyond wood used for cal-
ibration (here, pine) (Jomura et al., 2008). The strength of
wood moisture content and temperature influence is likely
to vary among tree species (Herrmann and Bauhus, 2013;
Wu et al., 2021). Wood traits such as wood nutrient con-
tent, quality, and woody debris geometry can be important
drivers of deadwood decomposition (Zhou et al., 2007; Wee-
don et al., 2009; Hu et al., 2018; Risch et al., 2022; Kip-
ping et al., 2022). They influence the relative contribution
of wood-degrading organisms (bacteria, fungi, and inverte-
brates such as termites) and CO2 from wood decomposi-
tion. Cornwell et al. (2009) and Law et al. (2023) suggest
that wood traits are likely the main determinants of dead-
wood fate in tropical forests. We found that a positive rela-
tionship between cumulative CO2 and mass loss holds for

most of the native species; however, some species release
less CO2 per unit mass loss. This result suggests that the in-
terplay between weather, site conditions, biotic interactions,
and specific wood traits (wood quality, chemical composi-
tion, and stoichiometry) is essential to determine CO2 fluxes
from tropical ecosystems (Law et al., 2023). For example,
mass loss in tree species with dense wood was not fully
captured in our flux predictions (Fig. 8: Eucalyptus cullenii
(EUCU), Eucalyptus chlorophylla (EULE), Terminalia aridi-
cola (TEAR)), likely due to the lower capacity of dense struc-
tures to hold water (Thybring et al., 2022). There are also
similar discrepancies for tree species with a high syringyl
to guaiacyl (S/G) ratio (Cardwellia sublimis (CASU), Nor-
manbya normanbyi (NONO)) and species with high nitrogen
content (Rockinghamia angustifolia (ROAN), Petalostigma
banksii (PEBA)).

5 Conclusions and implications for global carbon
cycling

Wood moisture and temperature are essential drivers of dead-
wood degradation in forest ecosystems. We found that wood
moisture content and the interaction between wood moisture
content and temperature are the main drivers determining the
fate of deadwood degradation along a precipitation gradient
in Australia. Because of the high variability in ecosystems
and climates within this tropical region, it is essential to con-
sider wood moisture and temperature to improve CO2 pre-
dictions from decaying deadwood. Ecosystem-scale carbon
models like the YASSO model (Liski et al., 2005) and the
CLM soil module (Lawrence et al., 2019) have already in-
corporated deadwood decomposition as a function of micro-
bial activity affected by climate variables but have not yet ex-
plored the effects of wood moisture and temperature on mi-
crobial processes related to wood decay. More progress has
been achieved in the field of wood material sciences, where
the positive correlations between wood moisture and tem-
perature and wood decay have been demonstrated (Brischke
et al., 2006; Brischke and Rapp, 2008a, b; van Niekerk et al.,
2021). Our work extends these findings by quantifying the
strength of the relationship between wood moisture and tem-
perature and CO2 fluxes from deadwood in response to pre-
cipitation and microbial and insect activities. Our approach
can advance our understanding of CO2 dynamics, as using
climatic variables allows us to simulate deadwood decompo-
sition at high temporal and spatial resolution. However, we
found that wood moisture and temperature alone are insuffi-
cient to predict the CO2 fluxes, especially from diverse native
woody species. Wood traits are likely to be important drivers
of deadwood fate in tropical forests (Cornwell et al., 2009;
Law et al., 2023) and may improve CO2 predictions in trop-
ical forest ecosystems. Factors such as termite, fungal, and
bacterial activity and their climate sensitivity (Zanne et al.,
2022) as well as wood traits, such as wood quality, chemi-
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cal composition, and stoichiometry (Law et al., 2023), and
their interplay with climate need to be implemented in fu-
ture ecosystem models to more accurately predict the fate of
deadwood in tropical forests and its contribution to the global
carbon cycle (Cornwell et al., 2009).
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