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Abstract. Terrestrial biosphere models are a key tool in in-
vestigating the role played by land surface in the global cli-
mate system. However, few models simulate the geographic
distribution of biomes dynamically, opting instead to pre-
scribe them using remote sensing products. While prescrib-
ing land cover still allows for the simulation of the impacts of
climate change on vegetation growth and the impacts of land
use change, it prevents the simulation of climate-change-
driven biome shifts, with implications for the projection of
future terrestrial carbon sink. Here, we isolate the impacts of
prescribed vs. dynamic land cover implementations in a ter-
restrial biosphere model. We first introduce a new framework
for evaluating dynamic land cover (i.e., the spatial distribu-
tion of plant functional types across the land surface), which
can be applied across terrestrial biosphere models alongside
standard benchmarking of energy, water, and carbon cycle
variables in model intercomparison projects. After validating
simulated land cover, we then show that the simulated ter-
restrial carbon sink differs significantly between simulations
with dynamic vs. prescribed land cover for a high-CO2 fu-
ture scenario. This is because of important range shifts that
are only simulated when dynamic land cover is implemented:
tree expansion into the Arctic and Amazonian transition from
forest to grassland. In particular, the projected change in net
land–atmosphere CO2 flux at the end of the 21st century is
twice as large in simulations with dynamic land cover than
in simulations with prescribed land cover. Our results illus-

trate the importance of climate-change-driven biome shifts
for projecting future terrestrial carbon sink.

1 Introduction

Terrestrial biosphere models simulate the exchange of CO2,
water, and energy between the atmosphere and the land sur-
face under both current and future climatic and socioeco-
nomic conditions. The results from these models have led
to the critical understanding that the terrestrial biosphere
currently sequesters approximately a third of anthropogenic
CO2 emissions (Friedlingstein et al., 2022). Vegetation cur-
rently covers ∼ 75 % of global land area and plays a ma-
jor role in regulating the land–atmosphere exchange of CO2
(Fisher and Koven, 2020). Vegetation is a dynamic compo-
nent of the global climate system that responds and feeds
back to changes in environmental conditions at timescales
ranging from seconds to centuries. Stomata, pores through
which plants exchange CO2 and water with the outside air,
respond to changes in environmental conditions within sec-
onds (Vialet-Chabrand et al., 2017). Over the course of a
day, vegetation responds to diurnal cycles of energy. Season-
ality determines annual cycles of plant phenology, and in-
terannual climate variability regulates the land–atmosphere
exchange of CO2 over decades. Over decades to centuries,
the geographical distribution of natural vegetation can also
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change as the geographical distribution of different biomes
shifts with long-term climate variations (Pecl et al., 2017).
These changes to vegetation have critical implications for
the terrestrial carbon (C) sink and feedbacks to the climate
system. Because changes to the geographical distribution of
natural vegetation occur over such long timescales, terres-
trial biosphere models generally opt to prescribe the geo-
graphical distribution of natural vegetation rather than sim-
ulate it dynamically. This avoids the challenges associated
with accurately reproducing the geographical distribution of
natural vegetation, which introduces another degree of un-
certainty. However, when modelling the terrestrial biosphere
over longer timescales, changes to the geographical distribu-
tion of natural vegetation are magnified and become critically
important (Renwick and Rocca, 2015).

Terrestrial biosphere models generally represent vegeta-
tion using a set of plant functional types (PFTs) due to
the intractability associated with modelling ecosystem pro-
cesses for each plant species individually. This classifica-
tion scheme allows terrestrial biosphere models to simplify
the diversity in physiology and abiotic interactions across
plant species by clustering plant species by their fundamen-
tal structure and function (Box, 1996; Reich et al., 2003).
Models may choose to represent a set of PFTs that are dis-
tinguished based on leaf form (needleleaf or broadleaf), leaf
phenology (evergreen or deciduous), stature (trees, grasses,
or shrubs), photosynthetic pathway (C3 or C4), or geograph-
ical location (tropical, temperate, or boreal). When a ter-
restrial biosphere model prescribes land cover rather than
representing it dynamically, the spatial distribution of PFTs
across the land surface is specified using current observa-
tions of land cover based on remote sensing products (Na-
tional Research Council, 2008). Remote sensing products
are first reclassified into the PFTs that a given model rep-
resents (Hartley et al., 2017). Following this, historical in-
formation on land use change is incorporated: over the past
century, crop and pasture areas have increased, while natu-
ral vegetation area has correspondingly decreased (Chini et
al., 2021). The resulting land cover forcing allows for the
simulation of how deforestation and the conversion of natu-
ral vegetation to crop and pasture, i.e., land use change, im-
pact net terrestrial C sequestration (Houghton et al., 2012).
Because the expansion of crop and pasture areas has been
greater than climate-driven changes to the geographical dis-
tribution of natural vegetation over the historical period, pre-
scribing land cover using a forcing that only accounts for
land use change is a reasonable assumption for simulations
over the historical period (although historical climate-driven
changes to the geographical distribution of natural vegetation
are not negligible, Pecl et al., 2017). However, prescribing
land cover does not capture the shifting ranges of different
biomes driven by climate change and its subsequent impacts
on the net land–atmosphere CO2 flux. Changes to the geo-
graphical distribution of natural vegetation should be espe-
cially important for high-CO2 future scenarios with corre-

spondingly strong climate warming because these scenarios
exhibit the largest changes to vegetation productivity (Arora
et al., 2020; Koven et al., 2022) and thus the largest potential
changes to the ranges of different biomes.

In its simplest form, the dynamic behaviour of vegeta-
tion can be classified into two aspects: vertical and hori-
zontal changes. Vertical changes in vegetation structure in-
clude changes to leaf area index, vegetation height, rooting
depth, etc. given a certain spatial extent. Horizontal changes
in vegetation structure describe changes in this spatial ex-
tent. Global change influences both aspects of the dynamic
behaviour of vegetation: the response of plant growth to
global change drivers such as CO2 fertilisation and climate
variability (Dusenge et al., 2019; Huang et al., 2018; Wu
et al., 2011) and range shifts in different PFTs. The range
of a given PFT is modulated by competitive interactions
for space and resources with other PFTs and by the biocli-
matic limits within which a PFT can exist. Both competi-
tive interactions and bioclimatic limits are affected by cli-
mate change (Lenoir and Svenning, 2015; Thomas, 2010;
Walther, 2010). While a terrestrial biosphere model with pre-
scribed land cover can capture how global change modu-
lates plant growth of a given PFT within its specified range
(vertical changes), it cannot capture accompanying climate-
change-driven range shifts in its PFTs (horizontal changes)
aside from specified land use change. Conversely, a terres-
trial biosphere model with dynamic land cover can capture
both variation in plant growth (vertical changes) and range
shifts (horizontal changes) driven by climate change along-
side specified land use change.

The Global Carbon Project produces an annual quantifi-
cation of the global C budget, which includes an estimate
of the current terrestrial C sink (i.e., the positive global
atmosphere–land CO2 flux) from an ensemble of terrestrial
biosphere models (Friedlingstein et al., 2022). In the most
recent budget, only 3 out of the 16 contributing terrestrial
biosphere models implemented dynamic land cover. Further-
more, only 3 out of the 11 Earth system models contributing
to the Coupled Climate–Carbon Cycle Model Intercompari-
son Project (C4MIP) within the sixth phase of the Coupled
Model Intercomparison Project (CMIP), which coordinates
the analysis of C cycle interactions, included dynamic land
cover (Arora et al., 2020). Here, we isolate the impacts of
prescribed vs. dynamic land cover by comparing two ver-
sions of the Canadian Land Surface Scheme Including Bio-
geochemical Cycles (CLASSIC): a version with prescribed
land cover and a version with dynamic land cover. All other
aspects of the model are identical between the two versions,
including land use change, thereby isolating the effects of
land cover implementation (prescribed vs. dynamic). CLAS-
SIC has been contributing to the Global Carbon Project since
2016, and CLASSIC is the land component of the Canadian
Earth System Model (CanESM), which contributes to CMIP
and the assessment reports of the Intergovernmental Panel on
Climate Change (IPCC).
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We first demonstrate that CLASSIC with dynamic land
cover successfully reproduces the current geographical dis-
tribution of natural vegetation when compared to remote
sensing products following a statistical framework, which we
adapt for the first time to include an evaluation of the geo-
graphical distribution of natural vegetation. This framework
can be applied across terrestrial biosphere models alongside
standard benchmarking of energy, water, and carbon cycle
variables. We then analyse CLASSIC simulations of Shared
Socioeconomic Pathway 585 (SSP5-8.5), which describes a
“fossil-fuelled development scenario” from 2015–2100, and
examine how climate change could influence the future geo-
graphical distribution of natural vegetation. We identify dif-
ferences between projections with prescribed land cover vs.
dynamic land cover and examine how different land cover
implementations impact future terrestrial C sink.

2 Methods

2.1 CLASSIC overview

The Canadian Land Surface Scheme Including Biogeochem-
ical Cycles (CLASSIC) (Melton et al., 2020; Seiler et al.,
2021) is the successor to and is based on the coupled
Canadian Land Surface Scheme (CLASS; Verseghy, 1991;
Verseghy et al., 1993) and the Canadian Terrestrial Ecosys-
tem Model (CTEM; Arora and Boer, 2005a; Melton and
Arora, 2016). Older versions of CLASSIC (under the name
CLASS-CTEM) have served as the land component in the
family of Canadian Earth system models (CanESMs), in-
cluding CanESM5, which contributes to CMIP (Swart et al.,
2019).

The physical component of CLASSIC simulates fluxes of
energy, momentum, and water (Verseghy, 1991; Verseghy et
al., 1993). The structural attributes of vegetation are char-
acterised by leaf area index (LAI), canopy mass, vegetation
height, and rooting depth, all of which are dynamically sim-
ulated by the biogeochemical component of CLASSIC (de-
scribed below). The soil profile is represented by 20 soil lay-
ers, starting with 10 soil layers of 0.1 m thickness followed
by soil layers of increasing thickness up to a soil layer of
30 m thickness for a total depth of 61.4 m. The depth of per-
meable soil layers and thus the depth to bedrock soil lay-
ers vary geographically and are specified based on the Soil-
Grids250m dataset (Hengl et al., 2017). Soil temperature and
soil moisture content (liquid and frozen) are simulated for
each permeable soil layer. Where the climate permits snow
to exist, the temperature, mass, density, and albedo of a sin-
gle snowpack layer are simulated. The physical calculations
yield net radiation, soil heat flux, latent and sensible heat
fluxes, evapotranspiration, and runoff at the land–atmosphere
boundary. Each grid cell is simulated independently, and
there are no lateral transfers of energy or matter between grid
cells.

The biogeochemical component of CLASSIC simulates
the land–atmosphere exchange of CO2 via photosynthesis,
autotrophic respiration, heterotrophic respiration, land use
change, and fire (Arora and Boer, 2005a). CLASSIC prog-
nostically simulates the amount of C in vegetation, litter, and
soil organic matter pools for each PFT and over the bare
soil fraction in each grid cell. Vegetation C is represented
by leaf, stem, and root components, each of which consists
of structural and non-structural carbohydrate pools. Photo-
synthesis generates non-structural carbohydrates that are al-
located between the non-structural leaf, stem, and root C
pools. Autotrophic respiration occurs from the non-structural
leaf, stem, and root C pools (Arora and Boer, 2005a). Non-
structural C is converted to structural C within each vegeta-
tion component (Asaadi et al., 2018). Leaf, stem, and root
turnover transfer C from the vegetation C pool to the lit-
ter C pool. In addition to normal leaf turnover, leaf turnover
also occurs due to drought stress, cold stress, and shorter day
lengths, affecting leaf phenology (Arora and Boer, 2005a).
Land use change transfers C from the vegetation C pool to
land use change product C pools (with turnover times cor-
responding to pulp and paper products and wood products),
whereas fire emits C into the atmosphere and also transfers
C from the vegetation C pool to the litter C pool (Arora and
Boer, 2005b; Arora and Melton, 2018). Decomposition trans-
fers C from the litter C pool to the soil C pool. Finally, het-
erotrophic respiration occurs from both the litter pool and the
soil C pool (Melton et al., 2015). While CLASSIC includes a
representation of nitrogen cycling (Asaadi and Arora, 2021;
Kou-Giesbrecht and Arora, 2022), the interactions between
C and nitrogen cycling are not considered in this study.

2.2 CLASSIC land cover implementation

Biogeochemical processes in CLASSIC are modelled for
nine plant functional types (PFTs): needleleaf evergreen
(NE) trees, needleleaf deciduous (ND) trees, broadleaf ev-
ergreen (BE) trees, deciduous broadleaf cold (DBC) trees,
deciduous broadleaf dry (DBD) trees, C3 crops, C4 crops,
C3 grasses (C3Gs), and C4 grasses (C4Gs). These nine
PFTs map directly to four PFTs used for simulating phys-
ical processes (needleleaf trees, broadleaf trees, crops, and
grasses). When prescribed land cover is implemented, the
time-varying fractional coverage of each PFT in each grid
cell is specified by a land use forcing (described below). Land
use change is the only driver of variation in the fractional
coverage of PFTs over time. When crop area increases, natu-
ral vegetation area proportionally decreases. When crop area
decreases, natural vegetation area proportionally increases.
When dynamic land cover is implemented, the time-varying
fractional coverages of C3 crops and C4 crops in each grid
cell are specified by a land use forcing, and the fractional
coverages of natural PFTs in each grid cell evolve due to
competition and mortality within the non-crop area of each
grid cell. For both prescribed and dynamic land cover im-
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plementations, the fractional coverages of all PFTs and bare
ground in a grid cell sum to 1:

∑N+1
n=1

fn = 1, (1)

where fn is the fractional coverage of a given natural PFT
n ∈ {1, . . .,N}, and fN+1 is the fractional coverage of bare
ground in a given grid cell. Additionally, a land surface frac-
tion for each grid cell is specified to exclude waterbodies
(oceans and lakes), glaciers, and ice sheets.

When dynamic land cover is implemented, the fractional
coverage of a natural PFT is the result of colonisation and
mortality (described in detail in Melton and Arora, 2016,
and in the supplementary information). Competition between
natural PFTs is based on modified Lotka–Volterra equations
which describe the interactions between two populations us-
ing first-order nonlinear differential equations. In this case,
competition is for area in a grid cell rather than for popula-
tion size. The colonisation rate of natural PFT n (cn; d−1) is
determined by its net primary productivity and leaf area in-
dex (described in detail in Appendix A). The mortality rate
of natural PFT n (mn; d−1) is the sum of intrinsic or age-
related mortality, mortality due to reduced growth, mortality
due to fire, and mortality when a PFT exists outside its biocli-
matic limits. Intrinsic or age-related mortality is determined
by its maximum age (described in detail in Appendix A).
Mortality due to reduced growth is determined by its growth
rate over the previous year. Mortality due to fire is described
in detail in Arora and Melton (2018). Area burned, which
generates bare ground, depends on a PFT-specific fire spread
rate (where grasses have a higher fire spread rate than trees,
and needleleaf trees have a higher spread rate than broadleaf
trees), wind speed, and soil moisture as well as the probabil-
ity of fire occurrence (which depends on the availability of
vegetation biomass as a fuel source, the combustibility of the
fuel source based on soil moisture, and the presence of an ig-
nition source based on lightning and population density) and
fire suppression (which depends on population density).

Mortality when a PFT exists outside its bioclimatic limits
(mbioclim,n; d−1) ensures that a given natural PFT n does not
venture outside of its bioclimatic envelope. Six bioclimatic
indices are used to determine the spatial range of PFTs, rep-
resenting the physiological limits to their survival: air tem-
perature of the coldest month, air temperature of the warmest
month, aridity index (ratio of potential evaporation to precip-
itation), growing degree days (cumulative number of days
with air temperature above 5 °C), dry-season length (num-
ber of consecutive months with precipitation less than po-
tential evaporation), and precipitation surplus (difference be-
tween precipitation and potential evaporation). Each biocli-
matic index for each grid cell is updated annually on a 25-
year timescale using exponential smoothing:

X(t + 1)=X(t)e−1/25
+ x (t)

(
1− e−1/25

)
, (2)

where x (t) represents a bioclimatic index at year t , andX(t)
represents the smoothed bioclimatic index at year t . This ac-
counts for time lags in the response of vegetation to climate
change drivers (Wu et al., 2015). At the beginning of each
time step, each grid cell is assigned with a small fractional
coverage of each PFT (0.001). Whether the PFT persists is
determined by mbioclim,n :mbioclim,n = 0.25 when any bio-
climatic index is outside its corresponding bioclimatic limit
for a given PFT, and mbioclim,n = 0 when all bioclimatic in-
dices are inside their corresponding bioclimatic limits for
a given PFT. Bioclimatic limits for each natural PFT are
given in Table B1. These were derived by first calculating
the bioclimatic indices for each grid cell using the CRU-
JRA climate dataset averaged over 1900–1920 (Harris et al.,
2020). Then, the 1 % and 99 % quantiles of these bioclimatic
indices over all grid cells for each land cover type in the
Collection 5 MODIS Global Land Cover Type International
Geosphere-Biosphere Programme (IGBP) product (Friedl et
al., 2010) (time-averaged between 2001–2010) were calcu-
lated and associated with a CLASSIC PFT. Note that this
assumes that the current biome ranges are in equilibrium
with the 1900–1920 climate due to the migration lag that oc-
curs between climatic change and observed differences in es-
tablished plant species ranges, especially in long-lived plant
species such as trees (Corlett and Westcott, 2013). While this
approach accounts for slower range shifts due to climatic
change, it does not account for rapid range shifts due to fire
disturbance, which have influenced range shifts over recent
decades (Macander et al., 2022; Wang et al., 2020).

To simulate competition between PFTs, each natural PFT
is given a dominance rank (i) where PFTs with higher dom-
inance ranks invade PFTs with lower dominance ranks and
bare ground. Tree PFTs are given higher dominance ranks
than grass PFTs. Within tree PFTs and within grass PFTs, a
PFT with a higher cn is dominant over all PFTs with lower
cn. Each PFT is thus ranked from 1,2, . . ., i−1, i, i+1, . . .,N ,
where the PFT with dominance rank 1 is the most domi-
nant. Overall, the change in fractional coverage of a PFT with
dominance rank i is due to (1) its colonisation into the areas
of PFTs with lower dominance ranks (i+ 1, . . .,N) and bare
ground (N + 1), (2) colonisation by PFTs with higher domi-
nance ranks (i, . . ., i− 1) into its area, and (3) its mortality:

dfi
dt
= (cifi+1+ . . .+ cifN + cifN+1)

− (c1fi + . . .+ ci−1fi)−mifi . (3)

The change in fractional coverage of bare ground is due to
mortality of the PFTs and colonisation of bare ground by the
PFTs:

dfN+1

dt
=

∑N

n=1
mnfn−

∑N

n=1
cnfN+1. (4)
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The conceptual form of Eqs. (3) and (4) is different from
the standard Lotka–Volterra equation and allows coexistence
of PFTs (Arora and Boer, 2006).

2.3 Simulation descriptions

We use CLASSIC (offline) to simulate the principal aspects
of the land surface energy, water, and C cycles at the global
scale over the historical period (1851–2020) and over the
future period (2015–2100) for Shared Socioeconomic Path-
ways 585 (SSP5-8.5) at a spatial resolution of 1°. Simula-
tions are described in Table 1.

To evaluate dynamic land cover over the historical period
(1851–2020), we conducted three simulations: two simula-
tions with prescribed land cover (S1 and S2) and a simulation
with dynamic land cover (S3). These three historical sim-
ulations were initialised from corresponding pre-industrial
spin-ups (described below). Simulations with prescribed land
cover use land cover forcings specifying the fractional cov-
erage of the nine CLASSIC PFTs that are derived from
two remote sensing products: the Global Land Cover 2000
(GLC2000) product (S1) (Bartholomé and Belward, 2005)
and the European Space Agency Climate Change Initiative
(ESACCI) version 2 product (S2) (Defourny et al., 2023).
The process of generating a land cover forcing specifying
the fractional coverage of all PFTs has three steps. First, the
present-day fractional coverages of the model’s PFTs are ob-
tained from a remote sensing product, which involves reclas-
sifying the land cover classes in the remote sensing product
into the model’s PFTs. Wang et al. (2006) describe how the
22 land cover categories in the GLC2000 product are reclas-
sified into the nine CLASSIC PFTs. L. Wang et al. (2023)
show how the 37 land cover categories in the ESACCI prod-
uct from 2018 are reclassified into the nine CLASSIC PFTs.
Second, the fractional coverages of crop PFTs are replaced
with values from a land use change forcing for a given year in
the present day, and the fractional coverages of natural PFTs
are adjusted accordingly such that the total fractional cover-
age of vegetation is unchanged in that year. Third, the time
series of fractional coverages of crop PFTs from the land
use change forcing is incorporated by adjusting the fractional
coverages of natural PFTs over a given time period relative
to the single-year land cover forcing generated in the previ-
ous step. These three steps are used to generate a land cover
forcing specifying the fractional coverage of all model PFTs
derived from a remote sensing product over a given time pe-
riod. Simulations with dynamic land cover use land cover
forcings that only specify the fractional coverages of crop
PFTs.

S1–S3 follow the TRENDY protocol (used for contribu-
tions to the Global Carbon Project) (Friedlingstein et al.,
2022). The TRENDY protocol uses the merged monthly Cli-
mate Research Unit (CRU) and 6-hourly Japanese 55-year
Reanalysis (JRA-55) dataset from Harris et al. (2020), atmo-
spheric CO2 forcing from Lan et al. (2024), population den-

sity forcing from HYDE3.3 (Klein Goldewijk et al., 2017),
and land use change forcing from the Land-Use Harmoniza-
tion 2 (LUH2-)GCB2022 dataset (Chini et al., 2021; Hurtt
et al., 2020; Klein Goldewijk et al., 2017). S1–S3 were ini-
tialised from corresponding pre-industrial spin-ups (Table 1).
We conducted different pre-industrial spin-ups for each sim-
ulation that used the corresponding land cover implementa-
tion. Pre-industrial simulations used atmospheric CO2, land
cover, and population density forcings corresponding to the
year 1851. Pre-industrial simulations repeatedly used meteo-
rological forcings from 1901–1920. We ran the pre-industrial
spin-up until the C pools came into equilibrium. A threshold
of 0.05 Pg C yr−1 for the global net atmosphere–land CO2
flux was used to assess if equilibrium was achieved. Note
that all simulations exclude Antarctica and Greenland.

To examine prescribed vs. dynamic land cover over the fu-
ture period (2015–2100) for SSP5-8.5 (Riahi et al., 2017), we
conducted two simulations: one simulation with prescribed
land cover from the ESACCI-derived land cover product (S4)
and one simulation with dynamic land cover (S5). These fu-
ture simulations for SSP5-8.5 were initialised from the end
of their corresponding historical simulations, which were in
turn initialised from their corresponding pre-industrial spin-
ups (described below). S4 and S5 use bias-corrected me-
teorological forcings from CanESM5 (Buchner and Reyer,
2021). They use atmospheric CO2, land use change, and pop-
ulation density forcings from CMIP and the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP) (Warsza-
wski et al., 2014). Our study uses a single meteorologi-
cal forcing (from the corresponding model CanESM5). The
effects of different meteorological forcings have been ex-
plored elsewhere (Arora et al., 2023), as have the effects
of bias correction (Seiler et al., 2024). S4 and S5 were ini-
tialised from the end of their corresponding historical simu-
lations, which were in turn initialised from their correspond-
ing pre-industrial spin-ups (Table 1). We conducted differ-
ent pre-industrial spin-ups for each simulation. Pre-industrial
simulations used atmospheric CO2, land use change, and
population density forcings corresponding to the year 1851.
Pre-industrial simulations used pre-industrial meteorological
forcings provided by ISIMIP.

2.4 Model evaluation

We evaluated historical simulations using the Automated
Model Benchmarking R (AMBER) package developed by
Seiler et al. (2021), which quantifies model performance in
reproducing observation-based datasets using a skill score
system that is based on the International Land Model Bench-
marking (ILAMB) framework (Collier et al., 2018). Five
scores compare model output to a reference dataset for
a given variable, assessing the simulated time-mean bias
(Sbias), monthly centralised root mean square error (Srmse),
seasonality (Sphase), interannual variability (Siav), and spatial
distribution (Sdist) in comparison to the observation-based
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Table 1. Description of simulations. Simulations analysed (S1–S5) are indicated for the corresponding time period. Corresponding pre-
industrial spin-ups and/or historical simulations (to initialise simulations of the future period) are also indicated.

Land cover Protocol Pre-industrial Historical period Future period/SSP5-8.5
implementation period (1851–2020) (2015–2100)

GLC2000 (prescribed) TRENDY S1 spin-up S1 n/a
ESACCI (prescribed) TRENDY S2 spin-up S2 n/a
Dynamic TRENDY S3 spin-up S3 n/a
ESACCI (prescribed) ISIMIP S4 spin-up S4 historical simulation S4
Dynamic ISIMIP S5 spin-up S5 historical simulation S5

n/a: not applicable.

dataset. Scores are dimensionless and range from 0 to 1,
where higher values indicate better model performance. The
overall score for each variable (Soverall) is calculated as

Soverall =mean
(
Sbias,Srmse,Sphase,Siav,Sdist

)
. (5)

For variables with more than one observation-based dataset,
we calculated a benchmark score for the observation-
based datasets, which quantifies how well the indepen-
dently derived observation-based datasets agree with each
other, thereby providing an estimate of the uncertainty in
the observation-based datasets themselves. The benchmark
score was calculated by iteratively comparing pairs of in-
dependently derived observation-based datasets, where one
observation-based dataset is treated as model output, and the
other observation dataset is treated as the reference dataset. If
the two observation-based datasets were the same, the bench-
mark score would be 1. The calculation of each score and
benchmark scores is described in detail in Seiler et al. (2022).

We adapted this statistical framework, which operates at a
grid cell scale, to evaluate land cover fraction for each natu-
ral PFT within a grid cell. For simulations with dynamic land
cover, we evaluated the land cover fraction for each natural
PFT against both the GLC2000-derived land cover product
and the ESACCI-derived land cover product. We compared
the GLC2000-derived land cover product and the ESACCI-
derived land cover product to obtain a benchmark score that
quantifies the uncertainty in these land cover products. Note
that a qualitative assessment of dynamic land cover at a spa-
tial resolution of 2.81° in CLASSIC was presented in Melton
and Arora (2016).

Additionally, we evaluated the standard set of energy, wa-
ter, and C cycle variables following Seiler et al. (2022).
Specifically, we evaluated aboveground biomass C (AGB),
surface albedo (ALBS), area burned (BURNTAREA), soil
C (CSOIL), vegetation C (CVEG), fire emissions (FIRE),
gross primary productivity (GPP), soil heat flux (HFG), la-
tent heat flux (HFLS), sensible heat flux (HFSS), leaf area
index (LAI), runoff (MRRO), soil moisture (MRSLL), net
biome productivity (NBP), net ecosystem exchange (NEE),
ecosystem respiration (RECO), net surface longwave radia-
tion (RLS), net surface radiation (RNS), net surface short-

wave radiation (RSS), and snow water equivalent (SNW).
Observation-based datasets used for evaluation are sum-
marised in Table B2.

3 Results

3.1 Historical simulations and evaluation

CLASSIC with dynamic land cover successfully reproduces
the global area of trees, grasses, and total natural vege-
tation over the historical period, falling within the range
of ESACCI- and GLC2000-derived land cover products as
shown in Fig. 1. Simulated global tree, grass, and natural
vegetation areas are closer to the ESACCI-derived land cover
product than the GLC2000-derived land cover product for
the present day (2000–2020). Over the historical period, sim-
ulated global natural vegetation area decreases due to in-
creasing crop area, i.e., land use change (Fig. B1). Land use
change is the only driver of variation in natural vegetation
area in the ESACCI- and GLC2000-derived land cover prod-
ucts. CLASSIC with dynamic land cover simulates a smaller
decrease in natural vegetation area than that attributable to
land use change. This is because decreasing natural vegeta-
tion area due to land use change is partially offset by increas-
ing natural vegetation area driven by stimulated plant growth
from CO2 fertilisation and climate change over the historical
period.

CLASSIC with dynamic land cover also broadly repro-
duces the latitudinal distribution of the natural PFTs in com-
parison to ESACCI- and GLC2000-derived land cover prod-
ucts as shown in Fig. 2. However, there remain some dif-
ferences between simulations and observations. CLASSIC
does not simulate needleleaf evergreen trees between 20 and
40° N, whereas observations suggest that this PFT exists at
these latitudes (e.g., high-elevation tropical and subtropical
coniferous forests). Rather, CLASSIC simulates broadleaf
deciduous cold trees at these latitudes, whereas observations
suggest that this PFT declines between 40 and 20° N. Fur-
thermore, CLASSIC slightly overestimates C4 grass area and
slightly underestimates C3 grass area in the Northern Hemi-
sphere. Reasons for these disagreements are discussed below.
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Figure 1. Natural vegetation area over the historical period. (a) Global area of natural vegetation, trees, and grasses simulated by CLASSIC
with dynamic land cover in comparison to ESACCI- and GLC2000-derived land cover products. Natural vegetation fraction per grid cell
in the (b) ESACCI-derived land cover product and (c) GLC2000-derived land cover product and (d) simulated by CLASSIC with dynamic
land cover. Simulations and land cover products are averaged over 2000–2020 in (b)–(d). Natural vegetation includes seven natural PFTs
(described in Sect. 2.2), excluding crop area and bare ground.

Both CLASSIC with prescribed land cover (simulated
with ESACCI- and GLC2000-derived land cover products)
and CLASSIC with dynamic land cover capture the pri-
mary C, water, and energy cycle variables (Fig. B2) rea-
sonably well. The agreement between CLASSIC simulations
and observations is quantified by scores of model perfor-
mance in reproducing observation-based datasets for each
biogeochemical and biophysical variable. These scores indi-
cate that CLASSIC with dynamic land cover performed sim-
ilarly to CLASSIC with prescribed land cover (Fig. B3). Fig-
ure 3a and b show model scores (averaged across all CLAS-
SIC simulations, with both prescribed and dynamic land
cover) plotted against benchmark scores for biogeochemi-
cal and biophysical variables, respectively. Figure 3 shows
the correspondence between model performance in repro-
ducing observation-based datasets (i.e., model scores) and
the uncertainty in the observation-based datasets themselves
(i.e., benchmark scores). Model scores for both versions of
CLASSIC (prescribed and dynamic land cover) and bench-
mark scores are similar, falling close to the 1 : 1 line, which
indicates that model performance is comparable to the un-
certainty in the observation-based datasets themselves. Both
versions of CLASSIC perform slightly better for biophys-
ical variables (Fig. 3b) than for biogeochemical variables
(Fig. 3a). Finally, CLASSIC with both prescribed and dy-

namic land cover simulates the terrestrial C sink over the his-
torical period reasonably well in comparison to other mod-
els in the Global Carbon Project (Friedlingstein et al., 2022)
(Fig. B4).

When dynamic land cover is implemented in CLASSIC,
the ability of CLASSIC to reproduce land cover fractions of
each natural PFT can be assessed alongside C, water, and en-
ergy variables as shown in Fig. 3c. Additionally, benchmark
scores can be calculated for the land cover fractions of each
natural PFT by comparing the ESACCI-derived land cover
product to the GLC2000-derived land cover product. Model
scores tend to be lower than benchmark scores, especially for
tropical PFTs (broadleaf deciduous dry trees and C4 grasses).
For these PFTs uncertainty is introduced because remote
sensing products do not distinguish between cold and dry
broadleaf deciduous trees and between C3 and C4 grasses.
This distinction is made during the reclassification of the land
cover categories into the nine CLASSIC PFTs and introduces
some subjectivity (L. Wang et al., 2023). Specifically, de-
ciduous trees above 30° in both hemispheres are assumed to
be cold deciduous, deciduous trees below 20° in both hemi-
spheres are assumed to be dry deciduous, and the fraction
of trees that are cold vs. dry deciduous varies linearly be-
tween 0 and 1 with latitude for deciduous trees between 20
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Figure 2. Latitudinal distributions of each natural plant functional type (PFT) simulated by CLASSIC with dynamic land cover in comparison
to ESACCI- and GLC2000-derived land cover products. (a) Evergreen needleleaf, (b) deciduous needleleaf, (c) evergreen broadleaf, (d)
deciduous broadleaf cold, (e) deciduous broadleaf dry, (f) C3 grass, and (g) C4 grass. Simulations and land cover products are averaged over
2000–2020.

and 30°. The separation of grasses into C3 and C4 is based
on the time-invariant global product from Still et al. (2003).

3.2 Future simulations

For SSP5-8.5, CLASSIC with dynamic land cover simulates
the increasing global area of trees, grasses, and total natural
vegetation (Fig. 4a). Global natural vegetation area decreases
in the ESACCI-derived land cover product due to land use
change (increasing crop area), which is again the only driver
of variation in natural vegetation area in the ESACCI-derived
land cover product (Figs. 4a, B1). Decreasing natural vege-
tation area due to land use change occurs primarily in South
America, Africa, and Asia (Fig. 4b). CLASSIC with dynamic
land cover simulates increasing natural vegetation area be-
cause the loss of natural vegetation area due to land use

change is offset by increasing natural vegetation area, espe-
cially at high latitudes (Fig. 4c).

At high latitudes, CLASSIC with dynamic land cover
simulates increasing areas of needleleaf evergreen trees,
broadleaf deciduous cold trees, and C3 and C4 grasses, ex-
panding into what was previously bare ground (Fig. B5).
This corresponds to increasing temperatures at high latitudes
(Fig. B6). In particular, C4 grasses, which are currently pri-
marily found at low latitudes, expand into high latitudes due
to their dependence on temperature (Luo et al., 2024). At low
latitudes, CLASSIC with dynamic land cover simulates de-
creasing natural vegetation area in South America but vari-
ably decreasing and increasing natural vegetation area in
Africa and Asia. In the Amazon, the area of broadleaf ev-
ergreen trees decreases, while the areas of C3 and C4 grasses
increase (Fig. B5). This corresponds to decreasing precip-
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Figure 3. Model performance in reproducing observation-based datasets (model scores) relative to the uncertainty in the observation-based
datasets themselves (benchmark scores) for (a) biogeochemical variables, (b) biophysical variables, and (c) land cover fractions of each
natural plant functional type (PFT). Model scores are averaged across simulations of CLASSIC with prescribed land cover (with an ESACCI-
derived land cover forcing and a GLC2000-derived land cover forcing) and dynamic land cover for biogeochemical and biophysical variables.
Whiskers indicate the maximum and minimum model scores. Abbreviations for C, water, and energy variables and observation-based datasets
are described in the Methods section. Abbreviations for PFTs are evergreen needleleaf (EN), deciduous needleleaf (DN), evergreen broadleaf
(EB), deciduous broadleaf cold (DBC), deciduous broadleaf dry (DBD), C3 grass (C3G), and C4 grass (C4G).

itation in this region (Fig. B6). Conversely, in Africa and
Asia, the area of broadleaf evergreen trees increases, while
the areas of C3 and C4 grasses decrease (Fig. B5). This cor-
responds to increasing precipitation in this region (Fig. B6).
As an exception, in the Sahel, the areas of C3 and C4 grasses
increase, expanding into what was previously bare ground
(Fig. B5). This also corresponds to increasing precipitation
in this region (Fig. B6).

CLASSIC with prescribed land cover (simulated with an
ESACCI-derived land cover product) and CLASSIC with dy-
namic land cover both simulate increasing net primary pro-
ductivity (NPP) at higher latitudes for SSP5-8.5 (Fig. 5a–b).
NPP increases to a greater extent at higher latitudes in the
simulation with dynamic land cover because of increasing
natural vegetation area, especially that of broadleaf trees at

the expense of needleleaf trees (Figs. 5c–f and 6a–c). NPP
changes are similar at lower latitudes in both versions of
CLASSIC (Fig. 5a–b). Both versions of CLASSIC project
decreasing NPP in the Amazon (Fig. 5a–b). NPP decreases
in simulations with prescribed land cover due to decreas-
ing precipitation in the Amazon (Fig. B6). NPP decreases
slightly less in the simulation with dynamic land cover be-
cause decreasing tree area and NPP are offset by increasing
grass area and NPP in the Amazon (Figs. 5c–f and 6d–f). In
the Sahel, NPP increases slightly in the simulation with dy-
namic land cover but decreases slightly in the simulation with
prescribed land cover (Fig. 5a–b). NPP decreases in simula-
tions with prescribed land cover due to land use change in
the Sahel (Fig. 6h). NPP increases slightly in the simulation
with dynamic land cover because of increasing grass area,
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Figure 4. Change in natural vegetation area for SSP5-8.5 (2015–
2100). (a) Change in global area of natural vegetation, trees, and
grasses simulated by CLASSIC with dynamic land cover in com-
parison to the ESACCI-derived land cover product. Change in natu-
ral vegetation fraction per grid cell (b) in the ESACCI-derived land
cover product and (c) simulated by CLASSIC with dynamic land
cover. Differences reflect the change between the averages calcu-
lated over 1995–2015 and 2080–2100. Only grid cells with a sig-
nificant temporal trend are shown (P<0.05; assessed with a Mann–
Kendall trend test). Figure B5 shows the change in fraction per grid
cell for each PFT simulated by CLASSIC with dynamic land cover.
Figure B13 shows the absolute value of the natural vegetation frac-
tion per grid cell averaged over 1995–2015 and 2080–2100 simu-
lated by CLASSIC with prescribed land cover and CLASSIC with
dynamic land cover.

outweighing the effects of NPP in the Sahel (Figs. 5c–f and
6g–i). Both versions of CLASSIC simulate similar increases
in vegetation C (Figs. B7 and B8). CLASSIC with dynamic
land cover simulates a smaller decrease in soil C due to in-
creased natural vegetation area at high latitudes (Figs. B7 and
B9).

CLASSIC dynamically simulates fire (Arora and Melton,
2018). When prescribed land cover is implemented, fire re-
duces vegetation biomass density, whereas when dynamic
land cover is implemented, fire both reduces vegetation
biomass density and creates bare ground that can then be
colonised by a different plant functional type. CLASSIC with
dynamic land cover simulates slightly higher area burned
and fire CO2 emissions than CLASSIC with prescribed land
cover at the global scale due to higher natural vegetation
area (Fig. B10), but spatial patterns are relatively similar be-
tween both versions of CLASSIC (Figs. B11 and B12). In
particular, neither version of CLASSIC simulates substan-

tial changes in high-latitude fires, which CLASSIC underes-
timates (Arora and Melton, 2018). CLASSIC with dynamic
land cover simulates lower fire in the Amazon and higher
fire in the Sahel, corresponding to lower and higher natural
vegetation area in the Amazon and Sahel, respectively. This
suggests that there are minor differences in fire occurrence
between different PFTs, which should be improved in future
model development.

Net biome productivity (NBP), i.e., the net land–
atmosphere CO2 flux (which includes photosynthesis, au-
totrophic and heterotrophic respiration, fire emissions, and
land use change emissions), increases in CLASSIC simu-
lations of SSP5-8.5 with both prescribed and dynamic land
cover (Fig. 7a). The increase in NBP is almost 2-fold greater
in the simulation with dynamic land cover (5.28 Pg C yr−1

averaged over 2080–2100) than in the simulation with pre-
scribed land cover (2.29 Pg C yr−1 averaged over 2080–
2100). At the global scale, this increase in NBP is driven by
increasing NPP (Fig. 7b–c), which is primarily due to CO2
fertilisation in both versions of CLASSIC. In CLASSIC with
dynamic land cover, there is a stronger NPP increase at high
northern latitudes (Fig. 7c). NPP increases at low latitudes in
both versions of CLASSIC because increasing NPP in Africa
and Asia outweighs decreasing NPP in South America. The
change in NPP at low latitudes is similar between both ver-
sions of CLASSIC despite changing tree vs. grass areas as
described above due to offsetting effects. Surface albedo de-
creases due to snow loss driven by increasing temperature
in both versions of CLASSIC (Fig. 7d), but this decrease is
slightly stronger at high northern latitudes in CLASSIC with
dynamic land cover due to the expansion of natural vege-
tation into higher latitudes (Fig. 7e). Evapotranspiration in-
creases in both versions of CLASSIC (Fig. 7f), but this in-
crease is slightly stronger at high northern latitudes in CLAS-
SIC with dynamic land cover due to the expansion of natural
vegetation into higher latitudes (Fig. 7g).

4 Discussion

Dynamic land cover is rarely implemented in terrestrial bio-
sphere models (e.g., in only 3 out of 11 models contributing
to C4MIP within the sixth phase of CMIP), and the simulated
geographical distribution of natural vegetation has not yet
been evaluated robustly as it lacked the methodology to do
so. The Global Carbon Project uses a statistical framework to
evaluate the ability of its models to reproduce observations
of the C, water, and energy cycles – the International Land
Model Benchmarking (ILAMB) framework (Collier et al.,
2018) – which has since been expanded to include a method
to quantify the uncertainty in the observation-based datasets
themselves (Seiler et al., 2022). We build on this to intro-
duce a framework with which the dynamically simulated ge-
ographical distribution of natural vegetation can be quantita-
tively evaluated against observations. We use this framework
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Figure 5. Change in net primary productivity (NPP) simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land
cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). (a, b) Total NPP, (c, d) tree NPP, and (e, f) grass NPP.
Differences reflect the change between the average over 1995–2015 and 2080–2100. Only grid cells with a significant temporal trend are
shown (P<0.05; assessed with a Mann–Kendall trend test).

to show that CLASSIC with dynamic land cover successfully
simulates the geographical distribution of its natural PFTs for
the present day, reproducing observations (Figs. 1–3). This
framework can be applied across terrestrial biosphere mod-
els to evaluate dynamic land cover alongside evaluations of
the principal C, water, and energy cycle processes.

Future projections for Shared Socioeconomic Pathway 5-
8.5 (fossil-fuelled development scenario, SSP5-8.5) differ
significantly between simulations with prescribed and dy-
namic land cover because in the latter the geographical dis-
tribution of natural vegetation is able to respond to chang-
ing environmental conditions. The net land–atmosphere CO2
flux (or net biome productivity, NBP) is nearly twice as large
in the simulation with dynamic land cover (5.28 Pg C yr−1

averaged over 2080–2100) than in the simulation with pre-

scribed land cover (2.29 Pg C yr−1 averaged over 2080–
2100) (Fig. 7). This difference is attributed to three important
range shifts that are only simulated when dynamic land cover
is implemented: (1) the expansion of trees into high latitudes,
which increases NBP; (2) the recession of trees accompanied
by the expansion of grasses in the Amazon, which decreases
NBP; and (3) the expansion of grasses into the Sahel, which
increases NBP (Figs. 5, 6, and 7). These responses occurred
over the historical period as well but to a much smaller extent
(Fig. 1). We now discuss each of these range shifts in greater
detail.

“Greening of the Arctic” describes the expansion of veg-
etation into high-latitude regions, which occurs as previ-
ously uninhabitable regions become habitable due to increas-
ing temperatures (Chen et al., 2011; Elmendorf et al., 2012;
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Figure 6. Change in natural vegetation area and net primary productivity (NPP) at high latitudes, the Amazon, and the Sahel by CLASSIC
with prescribed land cover (with an ESACCI-derived land cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100).
(a) Map of high latitudes. (b) Change in global area of natural vegetation, broadleaf trees, needleleaf trees, and grasses in high latitudes.
(c) Change in NPP in high latitudes. (d) Map of the Amazon. (e) Change in global area of natural vegetation, broadleaf trees, needleleaf
trees, and grasses in the Amazon. (f) Change in NPP in the Amazon. (g) Map of the Sahel. (h) Change in global area of natural vegetation,
broadleaf trees, needleleaf trees, and grasses in the Sahel. (i) Change in NPP in the Sahel.

Myers-Smith et al., 2020; Pearson et al., 2013; Piao et al.,
2020; Tape et al., 2006). While terrestrial biosphere models
with prescribed land cover capture increasing plant growth at
high latitudes within their present-day range due to increas-
ing temperatures (J. Wang et al., 2023), these models are
not able to simulate range shifts. Our results suggest these
range shifts could make a sizeable contribution to the ter-
restrial C sink via C sequestration in vegetation and soils at
high latitudes due to the northward expansion of trees and
grasses. Fire alongside rising temperature is known to drive

a transition from needleleaf trees to broadleaf trees (Hisano
et al., 2021). Because broadleaf trees are less flammable
than needleleaf trees, this transition could reduce fire activ-
ity (Baltzer et al., 2021; Johnstone and Chapin, 2006; Mack
et al., 2021). These processes are not represented explicitly
here but warrant further study, especially given their impor-
tance and significant biases across land surface models at
high latitudes (Braghiere et al., 2023; Wang et al., 2021).
Although the greening of the Arctic drives increased terres-
trial C sequestration at high latitudes, it also drives other
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Figure 7. Change in (a) net biome productivity (NBP), (b, c) net primary productivity (NPP), (d, e) surface albedo, and (f, g) evapotranspi-
ration simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) and CLASSIC with dynamic land
cover for SSP5-8.5 (2015–2100). For the latitudinal distributions, CLASSIC simulations were averaged over 2080–2100. Thin lines indicate
the annual value, and thick lines indicate the moving average over 10 years.

important feedbacks to the climate system, such as reduced
albedo (Chapin et al., 2005) and enhanced evapotranspiration
(Swann et al., 2010).

“Amazonian dieback” describes the combination of defor-
estation and the increased mortality of trees in the Amazon
rainforest due to changing climate in the region (Malhi et
al., 2008; Parry et al., 2022). Tree mortality occurs as previ-
ously habitable regions become inhabitable due to the sensi-
tivity of trees to drought and heat stress (Aleixo et al., 2019;
Phillips et al., 2009). While the direct effects of reduced pre-
cipitation and elevated temperature on plant growth as well
as deforestation are captured by terrestrial biosphere mod-
els with prescribed land cover, these models are incapable
of simulating transitions from forest to grassland. Fire mod-
ulates these transitions, as grasses rapidly regenerate post-
fire and are more flammable than trees, thereby intensify-
ing fire activity (Davidson et al., 2012). Finally, Amazonian

dieback self-amplifies via feedbacks to the climate system, as
decreased forest cover decreases evapotranspiration, which
could amplify regional drought (Zemp et al., 2017). The ef-
fects of these feedbacks and the feedbacks associated with
the greening of the Arctic are not evaluated in our offline
simulations and warrant further study.

Finally, the “greening of the Sahel” describes the expan-
sion of vegetation into the Sahara, which occurs as previ-
ously uninhabitable regions become habitable due to increas-
ing precipitation (Brandt et al., 2015; Herrmann et al., 2005;
Olsson et al., 2005). This range shift is not captured in terres-
trial biosphere models with prescribed land cover. However,
there is large uncertainty in future projections of precipitation
in this region (Monerie et al., 2020). While less explored than
the previous two effects, greening of the Sahel is regionally
important and could make a non-trivial contribution to the
global C, water, and energy cycles, warranting further study.
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These responses are consistent with those of other terres-
trial biosphere models that implement dynamic land cover.
Both Scholze et al. (2006) and Alo and Wang (2008) simu-
lated increasing tree area at high latitudes and the replace-
ment of trees with grasses in the Amazon. Sitch et al. (2008),
who compared four models with dynamic land cover, found
similar results, although the magnitudes of the responses dif-
fered between models. Port et al. (2012) conducted and ex-
amined a fully coupled simulation with a land model with
dynamic land cover and similarly observed both greening of
the Arctic and Amazonian dieback. Because there is large
uncertainty in climate projections in the Sahel region, green-
ing of the Sahel is often but not always simulated (Sitch et
al., 2008). Our results follow the consistent pattern simulated
by these other models, but our unique experimental design
allows us to isolate the impact of dynamic land cover im-
plementation (vs. prescribed land cover implementation) and
compare it against the effects of other global change drivers.

5 Conclusions

Our results illustrate the potential effects of range shifts
alongside variation in plant growth that is driven by climate
change. While all terrestrial biosphere models account for the
influence of global change drivers such as CO2 fertilisation,
increasing temperatures, and variable precipitation regimes
on plant growth, terrestrial biosphere models with prescribed
land cover cannot capture range shifts that are driven by
climate change. However, few terrestrial biosphere models
incorporate dynamic land cover. Importantly, the shifting
ranges of biomes have critical feedbacks to climate change
and critical consequences for biodiversity and human well-
being (Pecl et al., 2017) alongside their consequences for the
global C cycle.

Appendix A: Detailed description of dynamic land cover
in CLASSIC

When dynamic land cover is implemented, the fractional
coverage of a natural PFT is the result of colonisation and
mortality (described in detail in Melton and Arora, 2016).
The colonisation rate of PFT n (cn; d−1) is determined by its
net primary productivity (NPP):

cn =min
[
max

[
λ1,n,λ2,n

]
,0.1

]
NPPn

1
ssap,nmax

[
0.25,min

[
Cveg,n,5.0

]] , (A1)

where NPPn is the NPP of PFT n, and Cveg,n is the vege-
tation C biomass of PFT n. ssap,n is a factor for converting
vegetation C biomass to seedling C biomass of PFT n (unit-
less) (Table B3). λ1,n and λ2,n determine the fraction of NPP
that is used for spatial expansion within a given grid cell of

PFT n (unitless):

λ1,n =


0,LAIn ≤ LAImin,n

0.1 LAIn−LAImin,n
LAImax,n−LAImin,n

,LAImin,n

< LAIn < LAImax,n
0.1,LAImax,n ≤ LAIn,

(A2)

λ2,n =


0,LAIn ≤ 0.25LAImin,n
cosh

(
0.115

(
LAIn− 0.25LAImin,n

))
−1,0.25LAImin,n < LAIn.

(A3)

LAImin,n and LAImax,n are the minimum and maximum leaf
area index thresholds of PFT n (m2 m−2), respectively (Ta-
ble B3).

The mortality rate of PFT n (mn; d−1) is the sum of in-
trinsic or age-related mortality (mintr,n; d−1), mortality due
to reduced growth (mge,n; d−1), mortality due to fire (mdist,n;
d−1), and mortality when a PFT exists outside its bioclimatic
limits (mbioclim,n; d−1):

mn =mintr,n+mge,n+mdist,n+mbioclim,n, (A4)

mintr,n = 1− exp
(
−4.605
Amax,n

)
, (A5)

mge,n =
mge,max,n

1+
(
300m2 kgC−1

) (
max

[
0,gen

]) , (A6)

mdist,n = ςr,n
fburned,n

fn
, (A7)

where Amax,n is the maximum age of PFT n (year) (Ta-
ble B3), and mge,max,n is the maximum growth-related mor-
tality rate occurring when no growth occurs in PFT n (d−1)
(Table B3). gen is the growth efficiency over the previous
year of PFT n (kg C m−2):

gen =
1Cs,n+1Cr,n

Lmax,n
, (A8)

where 1Cs,n is the stem C increment over the previous year
of PFT n (kg C m−2), 1Cr,n is the root C increment over
the previous year of PFT n (kg C m−2), and Lmax,n is the
maximum LAI over the previous year of PFT n (m2 m−2).
ςr,n is the susceptibility to stand-replacing fire of PFT n

(fraction) (Table B3). fburned,n is the fractional area burned
within a day of PFT n and depends on wind speed, soil mois-
ture, and the probability of fire occurrence (which depends
on the availability of vegetation biomass as a fuel source,
the combustibility of the fuel source based on soil moisture,
and the presence of an ignition source based on lightning
and population density) and suppression (which depends on
population density). This is described in detail in Arora and
Melton (2018).

Six bioclimatic indices are used to determine the spatial
range of PFTs, representing the physiological limits to their
survival: air temperature of the coldest month, air temper-
ature of the warmest month, aridity index (ratio of poten-
tial evaporation to precipitation), growing degree days (cu-
mulative number of days with air temperature above 5 °C),
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dry-season length (number of consecutive months with pre-
cipitation less than potential evaporation), and precipitation
surplus (difference between precipitation and potential evap-
oration). Bioclimatic indices for each grid cell are updated
annually on a 25-year timescale using exponential smooth-
ing:

X(t + 1)=X(t)e−1/25
+ x (t)

(
1− e−1/25

)
, (A9)

where x (t) represents a bioclimatic index at year t , andX(t)
represents the smoothed bioclimatic index at year t . This ac-
counts for time lags in the response of vegetation to climate
change drivers (Wu et al., 2015). At the beginning of each
time step, each grid cell is assigned with a small fractional
coverage of each PFT (0.001). Whether the PFT persists is
determined bymbioclim,n :mbioclim,n = 0.25 when any biocli-
matic index is outside its corresponding bioclimatic limit for
a given PFT, and mbioclim,n = 0 when all bioclimatic indices
are inside their corresponding bioclimatic limits for a given
PFT. Bioclimatic limits for each PFT are given in Table B1.
These were derived by first calculating the bioclimatic in-
dices for each grid cell using the CRUJRA climate dataset
averaged over 1900–1920 (Harris et al., 2020). Then, the 1 %
and 99 % quantiles of these bioclimatic indices over all grid
cells for each land cover type in the Collection 5 MODIS
Global Land Cover Type International Geosphere-Biosphere
Programme (IGBP) product (Friedl et al., 2010) were calcu-
lated and associated with a CLASSIC PFT. Note that this as-
sumes that the current biome ranges are in equilibrium with
the 1900–1920 climate.

Each natural PFT is given a dominance rank (i), where
PFTs with higher dominance ranks invade PFTs with lower
dominance ranks and bare ground. Natural PFTs cannot in-
vade crop area. Tree PFTs are given higher dominance ranks
than grass PFTs. Within tree PFTs and within grass PFTs, a
PFT with a higher cn is dominant over all PFTs with lower
cn. Each PFT is thus ranked from 1,2, . . ., i−1, i, i+1, . . .,N ,
where the PFT with dominance rank 1 is the most domi-
nant. Overall, the change in fractional coverage of a PFT with
dominance rank i is due to (1) its colonisation into the areas
of PFTs with lower dominance ranks (i+ 1, . . .,N) and bare
ground (N + 1), (2) colonisation by PFTs with higher domi-
nance ranks (i, . . ., i− 1) into its area, and (3) its mortality:

dfi
dt
= (cifi+1+ . . .+ cifN + cifN+1)

− (c1fi + . . .+ ci−1fi)−mifi . (A10)

The change in fractional coverage of bare ground is due to
mortality of the PFTs and colonisation of bare ground by the
PFTs:

dfN+1

dt
=

∑N

n=1
mnfn−

∑N

n=1
cnfN+1. (A11)

Appendix B: Supplemental figures and tables

Figure B1. Crop area over the historical period (1850–2015)
and SSP5-8.5 (2015–2100) from the Land-Use Harmonization 2
(LUH2-)GCB2022 dataset (Chini et al., 2021; Hurtt et al., 2020;
Klein Goldewijk et al., 2017).
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Figure B2. Latitudinal distributions of (a) gross primary productivity (GPP), (b) aboveground biomass C, (c) soil C, (d) area burned, (e) fire
CO2 emissions, (f) soil moisture, (g) surface net latent heat flux, (h) surface net sensible heat flux, (i) net surface radiation, and (j) surface
albedo simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing and a GLC2000-derived land cover
forcing) and CLASSIC with dynamic land cover in comparison to present-day observations. CLASSIC simulations were averaged over 2000–
2020. Observation-based datasets are described in the Methods section. Figure B2 shows the scores of model performance in reproducing
observation-based datasets for each variable.
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Figure B3. Scores of model performance in reproducing observation-based datasets of principal C, water, and energy variables as well as land
cover fractions of each natural plant functional type (PFT) for simulations of CLASSIC with prescribed land cover (with an ESACCI-derived
land cover forcing and a GLC2000-derived land cover forcing) and dynamic land cover. Abbreviations for C, water, and energy variables and
observation-based datasets are described in the Methods section. Abbreviations for PFTs are evergreen needleleaf (EN), deciduous needleleaf
(DN), evergreen broadleaf (EB), deciduous broadleaf cold (DBC), deciduous broadleaf dry (DBD), C3 grass (C3G), and C4 grass (C4G).
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Figure B4. Net biome productivity (NBP) simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing
and a GLC2000-derived land cover forcing) and CLASSIC with dynamic land cover. Boxes indicate estimates from the suite of models in
the Global Carbon Project, where dark horizontal lines indicate the mean, and the extent indicates 1 standard deviation (Friedlingstein et al.,
2022). Thin lines indicate the annual value, and thick lines indicate the moving average over 10 years.
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Figure B5. Fraction per grid cell in the historical period (averaged over 1995–2015), in SSP5-8.5 (averaged over 2080–2100), and change
between the historical period and SSP5-8.5 for each plant functional type (PFT) simulated by CLASSIC with dynamic land cover. (a) Ever-
green needleleaf, (b) deciduous needleleaf, (c) evergreen broadleaf, (d) deciduous broadleaf cold, (e) deciduous broadleaf dry, (f) C3 grass,
and (g) C4 grass. Differences reflect the change between the average over 1995–2015 and 2080–2100.
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Figure B6. Temperature and precipitation in (a, c) the historical period (averaged over 1995–2015) and (b, d) SSP5-8.5 (averaged over
2080–2100) and (e, f) temperature and precipitation difference between the historical period and SSP5-8.5.
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Figure B7. (a, b) Change in vegetation C and (c, d) soil C simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land
cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). For the latitudinal distributions, CLASSIC simulations
were averaged over 2080–2100. Thin lines indicate the annual value, and thick lines indicate the moving average over 10 years.
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Figure B8. Change in vegetation C simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) and
CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). (a, b) Total vegetation C, (c, d) tree vegetation C, and (e, f) grass vegetation
C. Differences reflect the change between the average over 1995–2015 and 2080–2100.

Figure B9. Change in soil C simulated by (a) CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) and
(b) CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). Differences reflect the change between the average over 1995–2015 and
2080–2100.
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Figure B10. Change in (a, b) area burned and (c, d) fire CO2 emissions by CLASSIC with prescribed land cover (with an ESACCI-
derived land cover forcing) and CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). For the latitudinal distributions, CLASSIC
simulations were averaged over 2080–2100. Thin lines indicate the annual value, and thick lines indicate the moving average over 10 years.

https://doi.org/10.5194/bg-21-3339-2024 Biogeosciences, 21, 3339–3371, 2024



3362 S. Kou-Giesbrecht et al.: The impacts of modelling prescribed vs. dynamic land cover

Figure B11. Change in area burned simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing) and
CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). (a, b) Total area burned, (c, d) tree area burned, and (e, f) grass area burned.
Differences reflect the change between the average over 1995–2015 and 2080–2100.
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Figure B12. Change in fire CO2 emissions simulated by CLASSIC with prescribed land cover (with an ESACCI-derived land cover forcing)
and CLASSIC with dynamic land cover for SSP5-8.5 (2015–2100). (a, b) Total fire CO2 emissions, (c, d) tree fire CO2 emissions, and (e, f)
grass fire CO2 emissions. Differences reflect the change between the average over 1995–2015 and 2080–2100.
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Figure B13. Natural vegetation fraction per grid cell (a, b) in the ESACCI-derived land cover product and (c, d) simulated by CLASSIC
with dynamic land cover over (a, c) the historical period (averaged over 1995–2015) and (b, d) for SSP5-8.5 (averaged over 2080–2100).

Table B1. Parameters associated with bioclimatic indices.

Parameter EN DN EB DBC DBD C3G C4G

Maximum air temperature of the coldest month −2 −27 17

Minimum air temperature of the coldest month 1 −33 15

Maximum air temperature of the warmest month 28 19 30

Minimum air temperature of the warmest month 20

Maximum aridity index 8 8 8 8 8 8 8

Minimum aridity index 0.5

Minimum growing degree days 370 340 1320 430 4920

Maximum dry-season length 8

Minimum dry-season length 5

Precipitation surplus 150 150 150 150 150
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Table B2. Observation-based datasets used in AMBER. Described in detail in Seiler et al. (2022). Datasets are globally gridded or in situ
(specified).

Variable Variable abbreviation Observation-based dataset

Aboveground biomass carbon AGB FOSXue (in situ) (Schepaschenko et al., 2019; Xue et al., 2017),
GEOCARBON (Avitabile et al., 2016; Santoro et al., 2015),
Zhang (Zhang and Liang, 2020)

Albedo ALBS CERES (Kato et al., 2013), GEWEXSRB (Stackhouse et al., 2011),
MODIS (Schaaf and Wang, 2015)

Area burned BURNTAREA ESACCI (Chuvieco et al., 2018), GFED4S (Giglio et al., 2010)

Soil carbon CSOIL HWSD (Todd-Brown et al., 2013; Wieder, 2014), SG250m
(Hengl et al., 2017)

Vegetation carbon CVEG Huang2021 (Huang et al., 2021)

Fire emissions FIRE CT2019 (Jacobson et al., 2020)

Gross primary productivity GPP FLUXCOM (Jung et al., 2020), GOSIF (Li and Xiao, 2019), MODIS
(Zhang et al., 2017), FLUXNET (in situ)
(Pastorello et al., 2020)

Soil heat flux HFG CLASSr (Hobeichi et al., 2020), FLUXNET (in situ)
(Pastorello et al., 2020)

Latent heat flux HFLS CLASSr (Hobeichi et al., 2020), FLUXCOM (Jung et al., 2019),
FLUXNET (in situ) (Pastorello et al., 2020)

Sensible heat flux HFSS CLASSr (Hobeichi et al., 2020), FLUXCOM (Jung et al., 2019),
FLUXNET (in situ) (Pastorello et al., 2020)

Leaf area index LAI AVHRR (Claverie et al., 2016), CEOS (in situ) (Garrigues et al., 2008),
Copernicus (Verger et al., 2014), MODIS (Myneni et al., 2002)

Streamflow MRRO CLASSr (Hobeichi et al., 2020), GRDC (in situ)
(Dai and Trenberth, 2002)

Soil moisture MRSLL ESA (Liu et al., 2011)

Net biome productivity NBP CAMS (Agustí-Panareda et al., 2019), CarboScope (Rödenbeck et al.,
2018), CT2019 (Jacobson et al., 2020)

Net ecosystem exchange NEE FLUXNET (in situ) (Pastorello et al., 2020)

Ecosystem respiration RECO FLUXNET (in situ) (Pastorello et al., 2020)

Net surface longwave radiation RLS CERES (Kato et al., 2013), GEWEXSRB (Stackhouse et al., 2011)

Net surface radiation RNS CERES (Kato et al., 2013), CLASSr (Hobeichi et al., 2020), FLUX-
COM (Jung et al., 2019), FLUXNET (Pastorello et al., 2020),
GEWEXSRB (Stackhouse et al., 2011)

Net surface shortwave radiation RSS CERES (Kato et al., 2013), GEWEXSRB (Stackhouse et al., 2011)

Snow water equivalent SNW Mortimer (Mortimer et al., 2020)
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Table B3. Parameters associated with the calculation of colonisa-
tion and mortality rates for each PFT.

Parameter EN DN EB DBC DBD C3G C4G

ssap,n 0.30 0.10 0.10 0.14 0.30 0.10 0.10
LAImin,n 1.0 0.25 1.5 1.5 1.5 0.5 0.5
LAImax,n 4.0 2.0 6.0 6.0 6.0 3.0 3.0
Amax,n 250 400 600 250 500 0 0
mge,max,n 0.005 0.005 0.005 0.005 0.005 0.1 0.1
ςr,n 0.20 0.20 0.50 0.20 0.15 0.25 0.25

Code availability. The source code for CLASSIC is available
on the CLASSIC community Zenodo page (https://zenodo.org/
communities/classic?q&l=list&p=1&s=10&sort=newest, Melton et
al., 2019). AMBER is available at https://gitlab.com/cseiler/
AMBER (Seiler, 2024).

Data availability. The model outputs are available at Zenodo
(https://doi.org/10.5281/zenodo.11520769, Kou-Giesbrecht, 2024).
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