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S1. Chamber measurement details 

We installed the collars 48 hours prior to the flux measurements to minimise the potential disturbance caused by 

the installation. We sealed the edges of the collars using moist inert quartz sand to secure an air-tight closure. 

We installed two steel collars at each GHG flux plot: one for the CO2 flux measurements, and another one for 

the CH4 and N2O measurements. These two were placed in similar conditions ca. 0.4 to 2 meters away from 

each other. We used separate collars for the two measurements due to destructive sampling conducted in CO2 

flux collars after the measurements. 

We hypothesized that most of the N2O fluxes and CH4 uptake fluxes to be small in this landscape dominated by 

upland tundra, and therefore used a 50-min chamber enclosure time to detect small changes in these 

concentrations (for a similar closure time, see e.g. Marushchak et al., 2021; Voigt et al., 2017). We used an 

opaque chamber, covered by space tape that reflects the sun, and did not thus observe any clear signs of heating 

of the chamber. The chamber headspace temperature difference during the start and end of the measurement 

ranged from -2.3 to 0.5 ° C (25th and 75th quantiles). Despite the long chamber enclosure time, the relationship 

between CH4 concentrations and measurement time at sites with high CH4 emissions (wetlands) was linear, 

indicating no issues with the chamber closure time (see Fig. S9). 

Measurements were made under clear weather conditions but it also rained during the study period. Rainfall can 

impact the soil moisture conditions and thus GHG fluxes. It rained on 8 days during July 2018, and three of the 

days had heavier rain (>8 mm per day, FMI 2018). We made flux measurements during two of these days 

because during the measurement time, the conditions were sunny. Nevertheless, the three heavier rainfall days 

had clear but small impacts on soil moisture (volumetric water content (%) increased by 0.01-0.08 units) and it 

took approximately 0-3 days for soil moisture to return to the preceding soil moisture level after the rain (Fig. 

S10). Our data show that the range and mean of CH4 flux is similar both in the plots measured during or 1-3 

days after the rain and during other days, suggesting that rainfall events did not have a major influence on our 

results. The mean CH4 flux during or 1-3 days after the rain was -1.8, and range -4.7 and 0.2 mg C m-2 d-1 

(n=14), and during other days -1.5 (mean), and -4.9 and 0.1 (range) mg C m-2 d-1 (n=72); note that wetlands 

were not considered in this comparison because of their uneven distribution during these time periods which 

also impacts the summary statistics due to their high VWC% levels. In our upscaling framework, we control for 

the rainfall events as the GHG flux predictions are based on bi-hourly soil moisture and temperature maps that 

should reflect changes in soil moisture conditions after rain. 

Mean air temperatures in the chamber were 22 °C during the CH4 and N2O measurements, and 25 °C during the 

CO2 measurements, and the mean July temperature between 10 am and 5 pm from the temperature loggers (15 

cm above the soil surface) in the study domain was 20 °C.  Mean soil temperatures were 11 °C during CH4 and 

N2O measurements, and 13 °C during the CO2 measurements (range between 3 and 19 °C). Mean July soil 

temperature between 10 am and 5 pm from the temperature loggers in the study domain was 14 °C (range 

between 5 and 27 °C). Mean soil moisture was 27 % during the CH4 and N2O flux measurements and 24 % 

during the CO2 flux measurements. Mean July soil moisture between 10 am and 5 pm was 30 %. Note that not 

https://paperpile.com/c/hzMQzZ/GwWY+Exai
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all flux plots had continuous temperature and moisture loggers; the differences in the distribution of 

microclimate loggers might thus explain some of the differences between the means. 

S2. Flux calculation statistics 

The median explanatory power (R2) of linear regression used to estimate CO2 fluxes was 0.91 and root mean 

square error (RMSE) 0.91 ppm CO2. Small fluxes from plots with little biomass had in general lower R2 

estimates but their RMSE was relatively similar to larger fluxes. For example, median R2 for CO2 fluxes 

between -0.5 and 0.5 g C m-2 d-1 was 0.11 and RMSE 0.89 ppm CO2, whereas the same values for fluxes larger 

than those (i.e. more negative and more positive) were 0.94 and 0.91 ppm CO2. We decided to keep all these 

fluxes in our data to guarantee that our measurements cover a broad range of fluxes and environmental 

conditions. The mean R2 of linear regression for CH4 was 0.87, and lower, 0.30 for N2O due to the high 

proportion of near-zero fluxes.  

S3. Microclimate data processing 

Due to logger failures and loggers that were lifted from the soil during the measurement period, some data are 

missing in the temperature time series. This was often caused by reindeer picking the loggers up, but could have 

also been related to frost heave or other disturbance. To fill these gaps we utilized all logger data from the 

broader site (a total of 250 loggers) from the whole measurement period from July 2016 to September 2019 

aggregated to daily mean values and combined these data with corresponding temperature records from nearby 

weather stations. This dataset was used to impute the missing values with the functions of Amelia R library 

(Honaker et al., 2011). Amelia provides multiple imputations for multivariate time series with a bootstrapped 

version of expectation maximisation algorithm to replace the missing values with draws from posterior 

distribution.  

S4. Remote sensing variables 

The remotely sensed data were extracted to our GHG flux and environmental data plots in their original spatial 

resolution, but they were resampled to a 2-meter resolution for the statistical upscaling. 

S4.1 Vegetation classification and NDVI 

For upscaling, we conducted a supervised classification of multitemporal satellite imagery (three PlanetScope 

scenes from dates 2018-07-02, 2018-07-29 and 2018-09-09; four spectral bands at 3-m resolution; georectified 

surface reflectance products). We stacked the images and calculated normalized difference spectral indices 

between all possible combinations of two spectral bands in the image stack resulting in 78 raster layers. As 

training data, we used the locations and vegetation classes of the GHG flux plots (n=101) and an additional set 

of 6034 plots within the study area classified in the field in summer 2016 matched with the five vegetation 

classes used in this study. After merging the plot data, the distribution of observations across the five classes 

was highly unbalanced. Thus, we collected 389 additional points covering mostly the less well covered 

vegetation classes (mainly barren and wetlands) based on the authors’ expertise from the study area and by 

https://paperpile.com/c/hzMQzZ/6QwEx
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interpreting high-resolution aerial imagery provided by the National Land Survey of Finland. We fitted a 

random forests classifier model (Breiman, 2001) with the vegetation classes treated as the response variable and 

used the spectral and index values from the satellite image stack of the corresponding locations as explanatory 

variables. The resulting model was then used to predict a spatially continuous vegetation classification map to 

the satellite imagery covering the entire study area. The internal out-of-bag cross-validation of the Random 

Forest model showed that 65.5% of the observations were correctly classified. The classification accuracy was 

highest in the deciduous shrub and wetland classes and lowest in barren. We used the same three PlanetScope 

images to calculate a Normalized Difference Vegetation Index (NDVI), a commonly used proxy for the amount 

of photosynthetic biomass.  

S4.2 Snow cover duration 

We used 94 PlanetScope images to construct a snow melting date map for the study area. The imagery is from 

April to September 2017-2018. We manually digitized a cloud mask for each image separately and created a 

training dataset from the masked images by selecting clear pixels manually and labeling them as land, water or 

snow. Then we fitted a Random Forests model (Breiman, 2001) and used the model to classify all the pixels in 

the 94 images and then reclassified the pixels either as snow or no-snow. We also predicted the class 

probabilities for each pixel. Then we stacked the binary snow images and created a pixel-wise binomial 

generalized linear model to determine the average melting date for each pixel separately (for more details on the 

methodology, see Niittynen and Luoto, 2018). The predicted class probabilities were used as weights in the 

models to give more weight for observations of high classification certainty. 

S4.3 Topography 

The topography variables were calculated from a digital terrain model (DTM; 2 m resolution) based on light 

detection and ranging (LiDAR) data from the open file service of the National Land Survey of Finland (2019). 

Following Kemppinen et al. (2021) we calculated elevation (m), topographic wetness index (twi), topographic 

position index (tpi), potential incoming solar radiation (kWh/m2), slope (radians), and aspect. 

TWI was calculated using Equation TWI = ln (SCA / local slope), in which the SCA refers to the specific 

catchment area. We calculated the total catchment area (TCA) from a filled DTM using the multiple flow–

direction algorithm (Freeman, 1991; Wang and Liu, 2006). Then we calculated the SCA assuming that flow 

width equals the grid resolution (2 m2) (i.e., SCA = TCA/2). We calculated the local slope and aspect following 

(Zevenbergen and Thorne, 1987). Aspect was transformed from a circular variable to a one-directional variable 

by taking a cosine of the aspect values. The final aspect variable represents northness, and values range from -1 

(at due south) to 1 (at due north). 

TPI describes the position of the plot on a topographic gradient at a given radius (Ågren et al., 2014). Positive 

values indicate that the plot is located on a ridge top, negative values that the plot is in a depression, and values 

close to zero that the plot is on a slope or flat ground. We used an unfilled DTM to calculate TPI using 5 m and 

30 m radii (Kemppinen et al. 2021). 

https://paperpile.com/c/hzMQzZ/rcPCw
https://paperpile.com/c/hzMQzZ/rcPCw
https://paperpile.com/c/hzMQzZ/Ud3zu
https://paperpile.com/c/hzMQzZ/k8ahZ+Fsh7I
https://paperpile.com/c/hzMQzZ/NBkEf
https://paperpile.com/c/hzMQzZ/dBfLQ
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Radiation was calculated for June, July, and August, which constitute the growing season. We used the 

“Potential incoming solar radiation” tool in SAGA GIS v. 2.3.2. using the sky view–factor option (Böhner and 

Antonić, 2009). The position of the Sun was calculated for every fifth day (4-h interval). The atmospheric 

transmittance was calculated using the lumped atmosphere option. 

S4.4 Surficial deposits 

Surficial deposits were classified following (Kemppinen et al., 2018) and were based on field observations and 

aerial images (0.5 m resolution) provided by the National Land Survey of Finland. The classes represent peat 

and fluvial deposits, glacial till, and boulders and rock outcrops. Finally, the data was rasterized to a 2-meter 

resolution. 

S4.5 ESA CCI land cover 

ESA CCI land cover product at 300 m was used in Fig. 1 to visualize the cover of key vegetation types across 

the Arctic. To produce the map, we grouped some classes to the four key vegetation types in the tundra. We 

used the following classes to the shrub class: mosaic tree, shrub, or herbaceous cover (100 and 110), shrubland 

(120-122). Bare vegetation was based on sparse vegetation (150-153) and bare area (200-202) classes. 

Grasslands (class 130) were used to represent meadows. Wetlands were defined based on the flooded vegetation 

classes (160-180). 

 

S5. Models 

S5.1 Light response model details 

All models were run in R with the package brms (Bürkner, 2017), which is an interface to the bayesian 

modelling platform Stan (Carpenter et al., 2017). We used weakly informative priors for the plot-specific 

intercept terms, informed by those reported in Williams et al. 2006 and Happonen et al 2022. The means and 

standard deviations for the priors were 1 and 2 for the logarithm of the ER (posterior mean: 0.65 and posterior 

standard deviation 0.13), 0 and 1 for the temperature effect on logarithm of the ER (posteriors: 0.02 and  0.01), 

10 and 10 for maximum GPP (posteriors: 8.54 and 0.52), and 6.2 and 0.3 for the logarithm of the half-saturation 

parameter (posteriors: 5.92 and 0.06). We used logarithms for some parameters to normalize their error 

distribution. The model was fit with 4 MCMC chains, which were run for 2000 iterations each. The first 1000 

iterations were discarded as warmup, leaving a total of 4000 samples of each parameter. We refer to these 

standardized variables as NEE, GPP, and ER. For more details on the model structure, see Happonen et al. 2022 

(section 2.4.1) and the code light_response_model.R in Virkkala et al. 2023. 

 

The Bayesian R2 of the model was 0.96, all family- and population-specific mean parameters had an Rhat less 

than 1.03, and posterior predictive draws matched well with the observations, indicating model convergence and 

good predictive performance.  

 

https://paperpile.com/c/hzMQzZ/NwCqt
https://paperpile.com/c/hzMQzZ/NwCqt
https://paperpile.com/c/hzMQzZ/qdhxR
https://paperpile.com/c/hzMQzZ/H7oSV
https://paperpile.com/c/hzMQzZ/A2cPP
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S5.2 Machine learning model details 

We used several models because they treat the data differently and thus, may individually detect different 

patterns and relationships in the data, and because the best performing models are not always the same for 

different response variables. These models were based on regression trees (generalized boosted regression 

models, GBM; random forest, RF) and kernel methods (support vector machine regression, SVM). GBM splits 

the data internally several times into training and evaluation data, and builds trees recursively using the 

information from the previous ones to improve the accuracy of the current tree in a process called boosting 

(Elith et al., 2008). RF bootstraps the data several times and samples the predictor variables as candidates at 

each split during the tree building, after which it builds an ensemble prediction (Breiman, 2001). SVM projects 

vectors into a high-dimensional space with a kernel function and fits an optimal hyperplane for the final model 

(Drake et al., 2006). The user can control these models by defining different parameters related to the trees, 

splits and variables, or the kernel properties.  

For all the models, we assumed Gaussian error distribution. Parameters for machine learning models were tuned 

separately for each response variable with caret package (Kuhn, 2012) using the leave-one-out cross validation. 

We allowed the GBM to estimate the best model by testing different numbers of trees (50 to 1000), number of 

splits the model has to perform on a tree (5 to 13), learning rate (0.01 to 0.1), and the minimum number of 

observations in the trees’ terminal nodes (2 to 5). For RF, we defined the number of variables randomly sampled 

as candidates at each split from four options (number of predictors divided by three to number of predictors 

divided by three plus six). And for SVM, we tested different values between 2^-15 to 2^0 for the kernel width 

and values between 1 to 32 for the cost of constraints violation. The best model with the final set of parameters 

was chosen based on the lowest root mean square error (RMSE) values. 

We used partial dependence plots and estimated variable importance of the predictors from each of the models 

(Section Machine learning models in the main text). The values on the y axis of each partial dependence plot 

can be interpreted as followed: yhat is conditional on other predictors in the model and their relationships with 

the predictor in the plot in question. Therefore, yhat values should not be directly compared with observed or 

predicted values, rather the patterns in yhat should be explored more generally. The x-axis represents the actual 

predictor values and can be used to infer, for example, conditions that lead to drastic changes in yhat (tipping 

points). For the variable importance analyses, we ran the permutation-based importance 100 times and averaged 

the results to reduce the error introduced by the randomness in the permutation procedure. A highly influential 

variable is represented by high variable importance scores. 

We did not consider a cross-validation scheme that would have considered the potential spatial dependence of 

near-by GHG flux patterns as we did not find any spatial autocorrelation in the model residuals (see Fig. S8). 

 

Uncertainty in GHG flux predictions was derived by bootstrapping (fractional resampling with replacement 

based on vegetation type classes) to subset the model training data into 30 different data sets, all of which had 

the same number of observations as the original data itself. These 30 data sets were then used to produce 30 

individual predictions for a subset of the times with all three machine learning models and their ensemble for 

each response variable. We made these predictions to a subset of the time steps during the study period. We 

https://paperpile.com/c/hzMQzZ/15Val
https://paperpile.com/c/hzMQzZ/rcPCw
https://paperpile.com/c/hzMQzZ/QDfXG
https://paperpile.com/c/hzMQzZ/G1EhL
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randomly selected six time periods during each of the 5 weeks; three samples were selected from morning-noon 

(8-14) and three from the afternoon-evening (16-20). Thus, we used 30 out of 231 time periods in our 

uncertainty estimation, producing in total 18,000 files. We calculated an average GHG flux across the time 

periods for each of the bootstrapped model training data sets, and then took the 2.5 and 97.5 quantiles across 

these average GHG flux estimates to quantify prediction uncertainty. We also produced an uncertainty map by 

estimating the prediction interval for each pixel by subtracting the quantiles from each other. This method does 

not consider the uncertainty in predictors, but gives an estimate of how the distribution of the flux data 

influences our conclusions about the GHG budgets.  

 

S5.3 Diagnosing model overfitting  

Our machine learning models showed some signs of overfitting as demonstrated by the high overall model fit 

statistics that were higher compared to predictive performance statistics (Table S3). Ideally, the metrics derived 

from both validation strategies would be similar - i.e., the model would predict both the training data and new 

test data in a similar way, however, in our case the cross validation led to lower performance compared to 

training data-based estimates which were high (e.g., cross-validated predictive performance R2 0.23 to 0.53 

versus model-fit based R2 0.33 to 0.94; excluding N2O flux models that all had poor performance). Our models 

were potentially overfitting because we had a relatively small dataset (n=101), and machine learning models can 

learn the patterns in the data extremely well. This is a common problem and has been described in many other 

studies, and can be an indication of high uncertainties when extrapolating outside the data domain; however in 

our case we were not predicting to new areas outside our study domain. Moreover, the relationships we 

observed were logical and comparable to those observed in earlier studies. 

 

Nevertheless, to decrease model overfitting, we tested models with less predictors (only three; biomass, soil 

moisture, and annual soil temperature), however this resulted in a similar mismatch with weaker performance, 

suggesting that decreasing the number of predictors does not help with model overfitting in our study (Table 

S3). We also tested generalized additive models (GAMs), a simpler and more traditional regression method 

(Hastie and Tibshirani 1987), where overfitting was clearly less pronounced (Table S3). We used gaussian 

distribution for all the fluxes and smooth responses for the continuous variables, and qq plots showed no issues 

with the residuals. However, when predicting to our full study domain, GAMs extrapolated significantly outside 

the observed flux data range (e.g., showing unrealistically low upscaled CH4 fluxes with -33 mg C m-2 d-1 

whereas the minimum in-situ fluxes were -5 g C m-2 d-1), leading to highly uncertain upscaled fluxes (data not 

shown). Thus, we kept our original set of models and predictors but note that our models might suffer from 

overfitting and should thus be treated with caution when extrapolating to areas outside our study domain or 

different time periods.  

 

 

  

https://paperpile.com/c/hzMQzZ/5UT5
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Supplementary Tables and Figures 

Table S1. The number of plots with field measurements for each variable used to explain GHG fluxes varied 

due to practical or analytical reasons. We used the spatial predictions of biomass, soil temperature, soil 

moisture, soil organic carbon stocks, and soil C/N to fill the gaps in the model training data. Specifically, we had 

the coordination information for all the plots, and extracted the missing information from the maps using the 

coordination information. 

 

Variable Number of plots  

Chamber CO2, CH4, and N2O flux measurements 101 

Coordinates of the chamber plot 101 

Vegetation type 101 (5413 for the environmental predictions) 

Biomass 74 (110 for the environmental predictions) 

Soil temperature 101 (139 for the environmental predictions) 

Annual soil temperature 80 (139 for the environmental predictions) 

Soil moisture 101 for CO2 flux measurements, 100 for CH4 and 

N2O flux measurements (50 for the environmental 

predictions) 

Soil organic carbon stock 99 (168 for the environmental predictions) 

Soil C/N 98 (147 for the environmental predictions) 
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Table S2. In-situ GHG flux and environmental summaries and areal extents of the vegetation types. Negative 

values in NEE, CH4 flux and N2O flux indicate net sink of CO2 from the atmosphere to the ecosystems. GPP and 

ER are given as positive values. 

 

 

Vegetation type  Barren Deciduous 

shrub 

Evergreen 

shrub 

Gramin

oid 

Wetland 

Number of plots  8 14 38 26 15 

The proportional area of the 

vegetation type in the landscape 

 0.12 0.36 0.48 0.08 0.03 

NEE g C m-2 d-1 Mean -1.18 -1.61 -0.91 -3.06 -2.44 

 Median -1.03 -1.21 -0.75 -3.06 -2.33 

 25th q -1.37 -2.15 -1.94 -3.99 -2.82 

 75th q -0.06 -0.75 0.06 -1.51 -1.79 

GPP g C m-2 d-1 Mean 3.67 5.47 4.32 7.57 5.41 

 Median 2.81 4.72 3.82 7.13 5.42 

 25th q 1.84 4.26 2.83 4.73 4.23 

 75th q 3.94 5.27 5.37 9.74 7.22 

ER g C m-2 d-1 Mean 2.49 3.86 3.41 4.51 2.97 

 Median 1.9 3.35 2.85 4.26 2.92 

 25th q 1.63 3.03 2.31 3.62 2.28 

 75th q 2.58 4.07 4.54 5.85 3.65 

CH4 flux mg C m-2 d-1 Mean -1.27 -2.41 -1.57 -1.09 46.55 
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 Median -1.32 -2.53 -1.35 -0.59 23.16 

 25th q -1.63 -2.88 -1.83 -1.54 3.56 

 75th q -0.45 -2 -0.66 -0.13 43.68 

N2O flux μg N m-2 d-1 Mean -0.24 -26.96 -4.25 -2.5 12.77 

 Median 5.73 -8.27 -3.18 -3.5 7.64 

 25th q -7 -41.05 -19.41 -38.82 -3.82 

 75th q 10.98 2.7 28.8 31.5 25.46 

Soil moisture VWC % Mean 11.6 12.16 14.24 36.45 67.65 

 Median 14.45 10.95 10.75 36.5 65.2 

 25th q 6.15 8.25 7.7 26.9 63.85 

 75th q 16.1 16.12 18.65 44.9 70.25 

Soil temperature °C Mean 11.81 10.14 10.59 11.37 13.77 

 Median 11.6 10.8 11 11.9 14.2 

 25th q 10.1 8.25 8.65 9.85 13.6 

 75th q 13.88 11.8 12.43 13.28 14.75 

Annual soil temperature °C Mean 0.32 1.82 0.9 1.72 1.78 

 Median -0.16 1.81 1.33 1.82 1.78 

 25th q -0.87 1.42 -0.1 1.24 1.7 

 75th q 1.99 2.21 1.84 2.26 1.86 
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Soil organic carbon stock kg C 

m-2 

Mean 3.91 5.76 5.42 10 21.69 

 Median 3.43 5.8 3.92 6.41 20.06 

 25th q 3.2 3.74 2.92 4.13 19.01 

 75th q 4.17 7.09 7.44 13.39 24.56 

Dissolved organic carbon mg C 

g-1 

Mean 1.73 2.01 1.98 1.61 2.84 

 Median 1.95 2 1.86 1.59 2.88 

 25th q 1.07 1.71 1.45 0.99 1.91 

 75th q 2.32 2.72 2.52 1.95 3.45 

Soil C/N Mean 25.3 22.44 24.32 14.49 14.68 

 Median 25.26 21.85 24.66 14.04 14.19 

 25th q 22.4 19.42 20.47 13.39 13.22 

 75th q 29.67 24.67 28.31 15.67 15.23 

Soil pH Mean 4.69 4.54 4.54 5.2 5.55 

 Median 4.77 4.53 4.57 5.11 5.46 

 25th q 4.44 4.38 4.32 4.85 5.3 

 75th q 4.93 4.72 4.8 5.42 5.72 

Soil nitrogen stock kg N m-2 Mean 0.32 0.41 0.37 0.81 1.56 

 Median 0.31 0.43 0.29 0.57 1.52 

 25th q 0.27 0.25 0.19 0.32 1.15 
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 75th q 0.32 0.49 0.55 1.06 1.8 

Biomass g m-2 Mean 231.71 328.73 332.59 105.16 142.36 

 Median 172.59 299.61 242.82 94.79 139.77 

 25th q 86.21 187.82 171.37 69.91 120.31 

 75th q 259.84 421.92 313.58 138.74 150.75 

 

 

Table S3. Model fit and predictive performance statistics of the final individual models (generalized boosted 

regression models, GBM; random forest, RF; and support vector machine regression, SVM) and models trained 

with three predictors, including the generalized additive model (GAM) estimates as a comparison against 

machine learning-based estimates. 

 

   Model fit 

statistics 

  Predictive 

performance statistics 

(cross validation-

based) 

Model 

structure 

Machine 

learning 

model 

Response variable RMSE R2 MAE  RMSE R2 MAE 

Final full 

model 

         

 GBM NEE g C m-2 d-1 1.1 0.81 0.85  1.78 0.34 1.35 

 GBM GPP g C m-2 d-1 1.26 0.89 0.94  2.32 0.5 1.76 

 GBM ER g C m-2 d-1 0.7 0.87 0.56  1.28 0.38 1 

 GBM CH4 flux mg C m-2 

d-1 

12.88 0.85 4.4  21.49 0.44 7.71 
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 GBM N2O flux mg N m-

2 d-1 

0.07 0.54 0.04  0.08 0 0.05 

 RF NEE g C m-2 d-1 0.84 0.92 0.61  1.78 0.34 1.32 

 RF GPP g C m-2 d-1 1.04 0.94 0.77  2.36 0.48 1.81 

 RF ER g C m-2 d-1 0.61 0.93 0.48  1.33 0.35 1.06 

 RF CH4 flux mg C m-2 

d-1 

12.06 0.85 4  22.03 0.42 7.89 

 RF N2O flux mg N m-

2 d-1 

0.05 0.86 0.03  0.08 0 0.05 

 SVM NEE g C m-2 d-1 1.51 0.57 1.05  1.77 0.35 1.37 

 SVM GPP g C m-2 d-1 1.91 0.68 1.32  2.27 0.53 1.73 

 SVM ER g C m-2 d-1 0.94 0.69 0.63  1.32 0.38 1.02 

 SVM CH4 flux mg C m-2 

d-1 

24.69 0.33 6.52  25.59 0.23 7.67 

 SVM N2O flux mg N m-

2 d-1 

0.08 0.03 0.05  0.08 0.09 0.05 

 GAM NEE g C m-2 d-1 1.52 0.52 1.15  1.97 0.26 1.53 

 GAM GPP g C m-2 d-1 1.93 0.65 1.4  2.46 0.45 1.81 
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 GAM ER g C m-2 d-1 1.03 0.61 0.78  1.3 0.39 1.01 

 GAM CH4 flux mg C m-2 

d-1 

14.6 0.74 5.3  29.41 0.22 11.2 

 GAM N2O flux mg N m-

2 d-1 

0.07 0.19 0.04  0.09 0 0.05 

Model with 3 

predictors 

GBM NEE g C m-2 d-1 1.24 0.74 0.92  1.8 0.32 1.32 

 GBM GPP g C m-2 d-1 1.6 0.81 1.16  2.47 0.42 1.86 

 GBM ER g C m-2 d-1 0.72 0.83 0.58  1.35 0.33 1.09 

 GBM CH4 flux mg C m-2 

d-1 

6.18 0.96 2.45  19.39 0.55 8.48 

 GBM N2O flux mg N m-

2 d-1 

0.07 0.68 0.04  0.08 0 0.05 

 RF NEE g C m-2 d-1 0.84 0.89 0.61  1.81 0.32 1.34 

 RF GPP g C m-2 d-1 1.16 0.9 0.85  2.51 0.41 1.89 

 RF ER g C m-2 d-1 0.62 0.91 0.49  1.4 0.27 1.12 

 RF CH4 flux mg C m-2 

d-1 

11.23 0.86 3.72  20.08 0.51 7.17 
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 RF N2O flux mg N m-

2 d-1 

0.04 0.87 0.02  0.08 0.01 0.05 

 SVM NEE g C m-2 d-1 1.78 0.38 1.25  1.82 0.34 1.3 

 SVM GPP g C m-2 d-1 2.44 0.47 1.66  2.61 0.38 1.85 

 SVM ER g C m-2 d-1 1.23 0.44 0.9  1.31 0.37 1 

 SVM CH4 flux mg C m-2 

d-1 

22.1 0.52 6.74  23.55 0.39 7.65 

 SVM N2O flux mg N m-

2 d-1 

0.08 0.04 0.04  0.08 0.01 0.05 
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Fig. S1. Remotely sensed data used in machine learning models predicting environmental conditions. The first 

seven variables are based on light detection and ranging (LiDAR) data, whereas ndvi and snow are based on 

Planet Imagery and surficial deposits on field observations and high-resolution (0.5 m) aerial images. LiDAR 

data and aerial images are provided by the National Land Survey of Finland (2019). Surface deposits 
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representing soil types are 1=glacial till, 2=boulders, rock outcrops, bare soils, 5=peat or fluvial material. 

Vegetation types are 1=barren, 2=deciduous shrub, 3=evergreen shrub, 4=meadow, 5=wetland. 

 

 

 

 

 

Fig. S2. Time series of day-time (8 am to 8 pm) average daily GHG fluxes and soil temperature and moisture 

conditions based on the upscaled maps. 

 

Fig. S3. Predictive performance of models used to predict environmental conditions. The soil moisture and 
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temperature models represent the performance of the model from July 16th, 2018 at 12 pm, but the performance 

remains somewhat similar throughout the growing season. 

 

 

Fig. S4. The partial dependence plots for GPP and ER.  
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Fig. S5. Uncertainty in GHG flux predictions, estimated by bootstrapping the model training data and creating 

2,700 different predictions for each flux. High prediction interval estimates reflect large differences in model 

predictions across the model ensembles. 

 

 

 

 

Fig. S6. Growing season mean and percentile (0.025 and 0.975) GHG flux contributions based on in-situ data 

and upscaled flux predictions, averaged across the entire study period (only daytime variability between 8 am 

and 8 pm considered) and across vegetation types. Note that the scale for the x axis is different for each gas 

species, and that the uncertainties in in-situ versus predicted mean fluxes cannot be directly compared with each 

other. The uncertainty in wetland CH4 continues up to 11.2 but was cropped for visualization purposes. CO2 

equivalents were calculated using the sustained GWP approach. 
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Fig. S7. A visualization of the fine-scale variation in soil moisture and the upscaled CH4 flux within and across 

vegetation types, and in particular within the wetland class. Some parts of the wetland are wet (i.e. soil moisture 

around 70 % VWC) while others are drier (i.e. close to 50 % VWC), and these differences are important for the 

resulting CH4 flux patterns. These are zoomed-in figures from Fig. 1 and 8.  
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Fig. S8. Spatial autocorrelation of model residuals for ER, as an example. As indicated by the lack of clear high 

or low index values on the y axis, the models did not suffer from spatial autocorrelation that should have been 

acknowledged in the model evaluation phase. 

 

 

Plot 12223:     Plot 12207: 

 
 

Plot 12215:      Plot 12209: 

 
Fig S9. Example graphs showing the development of CH4 concentrations at some of the wetland sites during 

the 50-minute chamber closure. 
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Fig S10. A figure showing the soil moisture variation during the study period from 5 example plots representing 

the vegetation types, and an example demonstration of a period with high rain. The subplot shows how soil 

moisture changes after the rain. Vegetation types are b=barren, ds=deciduous shrub, es=evergreen shrub, 

g=meadow, w=wetland. 
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