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S1 Derivation of kinetic parameters

We derived parameter ranges for multiplicative (m) and reverse Michaelis-Menten (r) kinetics from
the parameter ranges given for forward Michaelis-Menten (f) kinetics (Hararuk et al., 2015; Tao et
al., 2023).

. . 1 9-1 . min(v}) max(v}) ;
Ranges of vy, (i = p,u) (expressed in gmgC~" d™ ') were obtained as =, ———=| (where vfl
max(K}) mln(K})

is expressed in d~* and K} in mgC g™ 2.

As concentrations of E* are about five orders of magnitude lower than those of $* (Fig. 5 C-D in the
main text), ranges of vf and Kf were scaled accordingly from ranges of v}’ and K}’ to obtain
depolymerization rates of similar order of magnitude for both kinetics (Table 3 in the main text).

For density dependent mortality (Georgiou et al., 2017) a re-scaled decay rate of microbial biomass
__ a4

0.1mgCg-1’
0.1 mgC g1 is an estimate for the microbial biomass (Fig. 5 C-D in the main text).

dy (expressed in gmgC~! d™1) wasused as d = where dj is expressed in d~1 and

Likewise, for linear uptake kinetics, ranges for v}* (in d1) were scaled from v as vj* = v} -
0.1 mgCg1.

Parameter ranges of the organic carbon input rate I where obtained from Cotrufo and Lavallee
(2022) summing up all OC input rates (excluding microbial biomass inputs) of low productive
grasslands (lower bound) and highly productive forests (upper bound). Units were converted to
mgC g~ d~! by assuming these inputs where distributed over 1 m depth, with soil bulk density
ranging between 1 and 2 g cm™3 (upper and lower bound respectively).

The parameter range of the DOC leaching rate coefficient [, was estimated.

S2 Additional information on stability analysis
Symbol groups are defined as in the main text (Table 3 and eq. 24) as

a=dg+lg
B =dg +mg
N=m—yp)dp +Ymmg >0
w=af —aygrgdg —ndg >0
T =1-yp)mg+ (1 —ynrg)ds >0

(see main text Table 3 for definition of all symbols). All parameters and physically meaningful state
variables have values > 0.

Importantly, we recall that: 0 <yp <y, <1; 0<(f}, fp,18) < 1; 0<x;].1 <1 (eq. Ab).

S2.1 SBE model
“Abiotic” equilibrium (Qy)
With E; = 0 for all i: % |0 = 0 and thus the Jacobian matrix at Qq is given by eq. A2 in the

appendix to the main text (|, o indicates a term taken at Q).

BE|

The coefficients of the characteristic polynomial of]l-s «o are found as
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and additionally

alaz—a3=(a+ﬁ—(J’m yB)aE|*0)(aﬁ ngg|*0+ls<a+ﬁ (Ym YB)0E|*0>+12)

o . ap
Fora; > 0and a;a, —az > 0, itis requ|red thata + 8 > (Y — yB) |*0 and aff > n % |*o We

can merge these two constraints on il I* 0 by finding the more restrictive one —i.e. which is smaller,
2B or @27 With the definitions of ﬁand 71 we obtain

Ym~=YB n

B dg + mg _ dg + mg

N dgWm—Y) +MegYm (m—ye)(dp +mg) + mgyp
and with mgyg = 0 we find that £ < . Thus, ot < and since —2 = 0 we find that

n m~YB n Ym~—YB Ym~—YB

2B > aﬂ Thus, the second condition aff > n I* oisatleastasstrictas a + f >
Ym~=YB 17 oE

(Y — yB) a_E «0 and thus

aPi (Zﬂ

— | <_
aEl'O n

is a sufficient and necessary condition to ensure stability of Q.

“Biotic” equilibrium (Qq ;)
The Jacobian matrix]fBEl*’l is given by eq. A9 in the appendix to the main text (note the re-
expressions through eq. A4-A8). The coefficients of the characteristic polynomial are given by:

mEyB>0

dP;
al = (1 _xil*,l) +ﬂ + == 65 |*1 + lS + axil*,l

=0

>0 >0
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0
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aS dp aS

aP;
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Additionally, a;a, — az is given by

a;a; —as

aPi 2 >0 >0
= (El*l) a—dg(Vm—yp)+B—dpTs Y5

20

d0P; Ty Y
+ =2 |@de (1= Om = ¥8) + xilos {Om = 8) = O =) 7222 + 2222 1})

a5 n n

20 >0 >0
+ CZ(IE + 20 + lS) (1 —xi|*11) + [ dg (1 — Tpp yB) +dg lS (1 — (ym _ yB))
>0
>0

Mgyp

+ dgls (2— 1ppyp) + xili1 @ dp pp V5 (1— >+BmE+ 2mgls+dgmegyg + g ls

Mg Yp

+ Xilaa(B + s + )|+ a(B +15)*(1 = x;l.1)
>0
28 (1 + x;]uq i)y — 2 YB(1—x,
+a ﬁ +xl|*,1 xll*,l +mE 77 ( xll*,l)
>0

+ a?l (1 + xil.1 [xil*,l -2+ mE};—B (2 — 2X;]uq + Xilin mE};—B>D +B 12 + B2

m
+ BV e (B+2B815) >0

Thus, the “biotic” equilibrium of the SBE model is without any conditions always stable for any
physically meaningful equilibrium point.

Exclusive stability of “abiotic” and “biotic” equilibria in the SBE model

A physically meaningful (i.e. all state variables have positive and real valued steady-states) “biotic”
equilibrium only exists if S;" < S35 (compare with Table 5 in the main text). In turn, for the “abiotic”
P; ap

R . . a
equilibrium to be stable, it is required that r [0 < o
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which contradicts with the stability criteria S5 < Kp

For Equilibrium Chemistry Approximation (e) kinetics
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Thus, for the “abiotic” equilibrium to be stable, it must be that Sg < S/ and hence the “abiotic”
equilibrium is stable only when the “biotic” equilibrium has (physically non-meaningful) negative
microbial biomass and extracellular enzyme concentrations.

S2.2 SDB model

The Jacobian matrix around the “biotic” equilibrium for the SDB model is given by eq. A10 in the
appendix to the main text. From this, the coefficients of the characteristic polynomial are given by
the following equations. Note that for conciseness these are formulated in a mixed form using

partial differential equations of rates (P** and U;) and of ODEs (i.e. B = i—l:).

>0
—apiqssl 20 aB| >0
M= s T op T TG
_, apﬁ”l aBl aPiq“l aBl
2=\ 55 TR | T Tas * B '
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and a,a, — az is given by
a1a; — az = Xy + Yixj

with
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Yi><j =_£|*,j<[ | ] 05 | ]
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+6D| 2 35S I +dp fo T8 Ym — Ym—F5— 6B | +T[+ID]> .

For [, = 0 this is equivalent to eq. A11-A13 in the appendix to the main text.

0B L
5 |.j is given by

dB

OBI

and as detailed in the main text (Appendix Sect. A2) | o) = 0,yielding Yixm 5y = 0 for Ugy fy.

Positivity of a;a, — as is thus only dependent on sz], which is always positive for dg fp 15 Ym +



qss qss
oP; ap; . - - . . . .
|, = Ym 55 |, ; i.e. the sufficient condition given by eq. 25 in the main text. At the same time

L
as
this ensures positivity of a,.
, G):
For any U; independent of B (such as U; = v;* D) £ l.j = —(dg + mg) and thus, Y;; helps to

ensure positivity of a;a, — a3 in these cases.

. —_ 0B .
With the above definitions ofﬁ |l.j: a1 > 0and azg > 0 in all of these cases and a, > 0 and a,a, —

as > 0 if the sufficient condition in eq. 25 in the main text is fulfilled.

S2.3 SDBE model
The Jacobian matrix around the “biotic” equilibrium for the SDBE model J3%|, is given by eq. A17

in the main text. Wlth | wmfy = 0 (i.e. the entry at position (3,3) in J3£P7|,) the coefficients of the

characteristic polynomlal are given by

oP

U
7S L, +dg + 1p>0

%= D

aP, ou; ap,
—=|(dg +1p)+ dglp + 3D 21, (dE + dg(l—15ym)+mp +—<|.+dp fp7s )’m) >0

%2 = 35 as

aP, aP;

Uj
@3 = 5 b de b + 551 g 1 (me + ds (1 =15 ym))

U] 6Pl mEaPl
+ 5|* dg (7T+dBfD rBYm"’El* —}’maﬁls)

apP;, 0dU; aU;
ay = dSl c')jl dE}’m(a_BJ|*(1—}’m)+dB(1—TB))>0

The additional condition for stability of this EP a;aya; — a% — a?a, > 0 becomes analytically

intractable. However, we observe that det(]l DBEl ) = a4 > 0 and positivity of a; in SDBE model

and a, in the SDB model is conditional on the sign of the equivalent expressions (n +

ap’* 1 aP; mpg 9P;
. el 4 l
dg fp T8 Ym + alS l« = Ym aLB |*) respectively (T[ +dp fp T8 Ym + | ~—Ym dp OF

leads to the assumptions that the equivalent sufficient condition found for the SDB model might
also hold for the SDBE model and establish the stability of the equilibrium point. Furthermore, our
numerical simulations rigorously confirm this result.

| ).This

Full expression of the sufficient stability condition
Substituting the explicit formulations for — | and bi | even for the arguably simplest kinetic

formulation (m X m) yields somewhat compllcated terms. With the simplifications used for the
analytical analysis of the SDBE model (yz = ¥, and lg = [y = 0), the condition given by Z;,; = 0
(eq. 26) in the main text yields for m X m kinetics

meg
Zmxm = dg fp T8 Ym + Vrlrjl Emxm — Ym —— dy v Smxm 3 Zmxm =0

and with Ej,», and Sy,.m from Table 6 in the main text



* * -1
Zmxm = (VEmgym (I = lpDins)? — dg w2 f;1) (dgm( — IpDjyxm)) ~ =0

To simplify the analysis, we define (note that for all physically meaningful biotic equilibrium points
dgt(l — lpDpmxm) > 0)

Zme

dg(l = lpDpsm)

After substituting the parameter groups, we find

Z'xm = Ym Mg Vrlrjl(l - lDDr*nxm)Z —fildg % >0

2
, 2
Zmxm = Ym Mg Uﬁl(l—lp—y e ) —fIIdE(dB(l—TBYm)+mE(1—J’m)) =0

Since Z' ,xm defines the sign of Z,,, ., , and thus whether Z,,,«,, = 0 holds, we can gain some
insights into how individual parameters affect the sufficient condition for stability (Z,;,xm = 0) by
regarding Z,, xm. With all other parameters hold constant we find that:

1. anincreaseiny,,, vﬁl, vl or rg always increases Z';,xm

2. anincreasein lp, dg, dg or f; always decreases Z',,xm
3. forlp = 0 it becomes obvious that an increase in I always increases Z' ;5 -

In fact, for f; = 0 (all Cinput is DOC) or di = 0 (extracellular enzymes do not decay), Z',,xm is
always positive (for physically meaningful EPs).

For other kinetic formulations Z;, ;, becomes analytically too cumbersome to yield mathematical
insights.

We note that for f; = 0 it can be shown that for all physically meaningful EPs also Z¢y s = 0:
From eq. 26 in the main text Zs s is given by

Zxf = gh + Ym fp 18dp — ymd_Eﬁl*

For f; = 0 we find ysx (eq. 37 in the main text) as ysx s = fprpdpym and thus from Table 6 in the
main text S ¢, - as

p _1
S* _ Kp vf mE _ 1
Lr dgfpreds

opP S1 . .
With this, y, —=—ZL|, = ym%(vp &> is obtained as
E

dg 9E F KE+S5 pur
mE an
— |, = rgd
Ym dg 6E| YmfpT8dB
and thus
dP
f
Zesr = —|s
fxf aS |
a
Since for all physically meaningful EPs % |. = 0 for these also Z¢ s = 0. Compare Fig. S5 for a

numerical evaluation.



S3 Numerical evaluation of proposed sufficient stability condition of
the SDBE model for other kinetics than f X f
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Fig. S1 Numerical evaluation of the proposed sufficient condition for stability of the SDBE

model with m X m (a) and r X f (b) kinetics and only constitutive ENZ production. 100 000 Monte
Carlo calculations of equilibrium points were produced sampling the parameter space in Table 3.
Plots illustrate the separation of all physically meaningful equilibrium points by their positive and
negative terms of Z;, ; (the proposed sufficient condition for stability, eq. 26). Points on and below
the black 1:1 line (indicates Z;, ; = 0) fulfill the condition Z;, ; = 0. The color-code indicates the
value of the damping coefficient ¢.



S4 Changes in damping coefficient with individual model parameters
in the SDBE model with f X f kinetics
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Fig. S2 Changes in the damping coefficient with changes in individual model parameters of the

SDBE model with f X f kinetics and constitutive ENZ production. Baseline parameter values (Table
3 in main text) are indicated by vertical dashed lines. Note that the range of my was extended
compared to the range in Table 3 in the main text. Different line styles indicate scenarios with
different DOC leaching rate coefficients (compare panel (a)); different line colors indicate scenarios
with different OC input rates: 1e-2 mgC gt d? (blue), 1e-3 mgC g d? (yellow), and 5e-4 mgC gt d?
(red), respectively.
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Fig. S2 continued.



S5 Stable and unstable EPs of the SDBE model for other kinetics than
fxf
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Fig. S3 Physically meaningful (positive & real) steady states solutions from 10 000 Monte Carlo
computations of equilibrium points of the SDBE model withm X m (a), r X f (b), m X [ (c), and
f X L (d) kinetics (all considering only constitutive ENZ production with [, > 0. Color-coded points
are stable and plausible steady state solutions, the color code indicating the value of the damping
coefficient. Grey points are stable but not plausible steady state solutions, and black points are
physically meaningful but unstable steady state solutions. Legends indicate the numbers of
physically meaningful and stable (stable + stable & plausible) or unstable EPs. Note that SOC
contents > 1000 mgC g* are mathematically possible but unphysical model outcomes, as we neglect

soil volume changes.
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S6 Density dependent mortality

Density dependent mortality was only tested in the SDBE model for cases with b = 2 and in
combination with only constitutive ENZ production (yg = y,;,) for L = Lg = 0. Only form X m
kinetics could DOC leaching be considered, for all other cases also L, = 0.
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Fig. S4 Physically meaningful (positive & real) steady states solutions from 10 000 Monte Carlo
simulations of the SDBE model with density-dependent mortality withm X m (a & b), f X f (c), and
r X f (d) kinetics (all considering only constitutive ENZ production). L, > 0 is considered in (a), and
Lp = 0 for (b-d). Color-coded points are stable and plausible steady state solutions, the color code
indicating the value of the damping coefficient. Grey points are stable but not plausible steady state
solutions, and black points are physically meaningful but unstable steady state solutions. Legends
indicate the numbers of physically meaningful and stable (stable + stable & plausible) or unstable
Eps. Note that SOC contents > 1000 mgC g* are mathematically possible but unphysical model
outcomes, as we neglect soil volume changes.
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S7 Numerical evaluation of stability of the SDBE model with only
DOC input (f; = 0)
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Fig. S5 Numerical evaluation of the proposed sufficient condition for stability of the SDBE
model with f X f kinetics and only constitutive ENZ production for f; = 0. 100 000 Monte Carlo
calculations of equilibrium points were produced sampling the parameter space in Table 3 (but
holding f; = 0). Plots illustrate the separation of all physically meaningful equilibrium points by their
positive and negative terms of Z¢, ¢ (the proposed sufficient condition for stability, eq. 26). Points on

and below the black 1:1 line (indicates Z¢, r = 0) fulfill the condition Z¢, s = 0. The color-code
indicates the value of the damping coefficient {.
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