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S1 Derivation of kinetic parameters 
We derived parameter ranges for multiplicative (𝑚) and reverse Michaelis-Menten (𝑟) kinetics from 

the parameter ranges given for forward Michaelis-Menten (𝑓) kinetics (Hararuk et al., 2015; Tao et 

al., 2023).  

Ranges of 𝑣𝑚
𝑖  (𝑖 = 𝑝, 𝑢) (expressed in g mgC−1 d−1) were obtained as [

min(𝑣𝑓
𝑖 )

max(𝐾𝑓
𝑖 )
,
max(𝑣𝑓

𝑖 )

min(𝐾𝑓
𝑖 )
] (where 𝑣𝑓

𝑖  

is expressed in d−1 and 𝐾𝑓
𝑖 in mgC g−1. 

As concentrations of 𝐸∗ are about five orders of magnitude lower than those of 𝑆∗ (Fig. 5 C-D in the 

main text), ranges of 𝑣𝑟
𝑝

 and 𝐾𝑟
𝑝

 were scaled accordingly from ranges of 𝑣𝑓
𝑝

 and 𝐾𝑓
𝑝

 to obtain 

depolymerization rates of similar order of magnitude for both kinetics (Table 3 in the main text). 

For density dependent mortality (Georgiou et al., 2017) a re-scaled decay rate of microbial biomass 

𝑑𝐵
′  (expressed in g mgC−1 d−1) was used as 𝑑𝐵

′ =
𝑑𝐵

0.1mgC g−1
 , where 𝑑𝐵 is expressed in d−1 and 

0.1 mgC g−1 is an estimate for the microbial biomass (Fig. 5 C-D in the main text). 

Likewise, for linear uptake kinetics, ranges for 𝑣𝑙
𝑢 (in d−1) were scaled from 𝑣𝑚

𝑢  as 𝑣𝑙
𝑢 = 𝑣𝑚

𝑢 ⋅

0.1 mgC g−1. 

Parameter ranges of the organic carbon input rate 𝐼 where obtained from Cotrufo and Lavallee 

(2022) summing up all OC input rates (excluding microbial biomass inputs) of low productive 

grasslands (lower bound) and highly productive forests (upper bound). Units were converted to 

mgC g−1 d−1 by assuming these inputs where distributed over 1 m depth, with soil bulk density 

ranging between 1 and 2 g cm−3 (upper and lower bound respectively). 

The parameter range of the DOC leaching rate coefficient 𝑙𝐷 was estimated. 

S2 Additional information on stability analysis 
Symbol groups are defined as in the main text (Table 3 and eq. 24) as 

𝛼 = 𝑑𝐸 + 𝑙𝐸 

𝛽 = 𝑑𝐵 +𝑚𝐸 

𝜂 = (𝑦𝑚 − 𝑦𝐵)𝑑𝐵 + 𝑦𝑚𝑚𝐸 > 0 

𝜔 = 𝛼𝛽 − 𝛼𝑦𝐵𝑟𝐵𝑑𝐵 − 𝜂𝑑𝐸 > 0 

𝜋 = (1 − 𝑦𝑚)𝑚𝐸 + (1 − 𝑦𝑚𝑟𝐵)𝑑𝐵 > 0 

(see main text Table 3 for definition of all symbols). All parameters and physically meaningful state 

variables have values ≥ 0.  

Importantly, we recall that:  0 < 𝑦𝐵 ≤ 𝑦𝑚 < 1 ;  0 ≤ (𝑓𝐼 , 𝑓𝐷, 𝑟𝐵) ≤ 1 ;  0 < 𝑥𝑖|∗,1 ≤ 1 (eq. A6). 

S2.1 𝑆𝐵𝐸 model 

“Abiotic” equilibrium (𝑄0) 

With 𝐸0
∗ = 0 for all 𝑖: 

𝜕𝑃𝑖

𝜕𝑆
|∗,0 = 0 and thus the Jacobian matrix at 𝑄0 is given by eq. A2 in the 

appendix to the main text (|∗,0 indicates a term taken at 𝑄0). 

The coefficients of the characteristic polynomial of 𝐽𝑖
𝑆𝐵𝐸|∗,0 are found as 
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𝑎1 = 𝛼 + 𝛽 + 𝑙𝑆 − (𝑦𝑚 − 𝑦𝐵⏟    
≥0

)
𝜕𝑃𝑖
𝜕𝐸

|∗,0 

𝑎2 = 𝛼𝛽 − 𝜂
𝜕𝑃𝑖
𝜕𝐸

|∗,0 + 𝑙𝑆 (𝛼 + 𝛽 − (𝑦𝑚 − 𝑦𝐵⏟    
≥0

)
𝜕𝑃𝑖
𝜕𝐸

|∗,0) 

𝑎3 = 𝑙𝑆 (𝛼𝛽 − 𝜂
𝜕𝑃𝑖
𝜕𝐸

|∗,0) 

and additionally 

𝑎1𝑎2 − 𝑎3 = (𝛼 + 𝛽 − (𝑦𝑚 − 𝑦𝐵)
𝜕𝑃𝑖
𝜕𝐸

|∗,0) (𝛼𝛽 − 𝜂
𝜕𝑃𝑖
𝜕𝐸

|∗,0 + 𝑙𝑆 (𝛼 + 𝛽 − (𝑦𝑚 − 𝑦𝐵)
𝜕𝑃𝑖
𝜕𝐸

|∗,0) + 𝑙
2) 

For 𝑎𝑖 > 0 and 𝑎1𝑎2 − 𝑎3 > 0, it is required that 𝛼 + 𝛽 >  (𝑦𝑚 − 𝑦𝐵)
𝜕𝑃𝑖

𝜕𝐸
|∗,0 and 𝛼𝛽 > 𝜂

𝜕𝑃𝑖

𝜕𝐸
|∗,0. We 

can merge these two constraints on 
𝜕𝑃𝑖

𝜕𝐸
|∗,0 by finding the more restrictive one – i.e. which is smaller, 

𝛼+𝛽

𝑦𝑚−𝑦𝐵
 or 𝛼

𝛽

𝜂
? With the definitions of 𝛽and 𝜂 we obtain  

𝛽

𝜂
=

𝑑𝐵 +𝑚𝐸
𝑑𝐵(𝑦𝑚 − 𝑦𝐵) + 𝑚𝐸  𝑦𝑚

=
𝑑𝐵 +𝑚𝐸

(𝑦𝑚 − 𝑦𝐵)(𝑑𝐵 +𝑚𝐸) + 𝑚𝐸𝑦𝐵
 

and with 𝑚𝐸𝑦𝐵 ≥ 0 we find that 
𝛽

𝜂
≤

1

𝑦𝑚−𝑦𝐵
. Thus, 𝛼

𝛽

𝜂
≤

𝛼

𝑦𝑚−𝑦𝐵
 and since 

𝛽

𝑦𝑚−𝑦𝐵
≥ 0 we find that 

𝛼+𝛽

𝑦𝑚−𝑦𝐵
≥ 𝛼

𝛽

𝜂
. Thus, the second condition 𝛼𝛽 > 𝜂

𝜕𝑃𝑖

𝜕𝐸
|∗,0 is at least as strict as  𝛼 + 𝛽 >

 (𝑦𝑚 − 𝑦𝐵)
𝜕𝑃𝑖

𝜕𝐸
|∗,0 and thus 

𝜕𝑃𝑖
𝜕𝐸

|∗,0 <
𝛼𝛽

𝜂
 

is a sufficient and necessary condition to ensure stability of 𝑄0. 

 

“Biotic” equilibrium (𝑄1,i) 

The Jacobian matrix 𝐽𝑖
𝑆𝐵𝐸|∗,1 is given by eq. A9 in the appendix to the main text (note the re-

expressions through eq. A4-A8). The coefficients of the characteristic polynomial are given by: 

𝑎1 = 𝛼 (1 − 𝑥𝑖|∗,1⏟      
≥0

) + 𝛽 +
𝜕𝑃𝑖
𝜕𝑆
|∗,1 + 𝑙𝑆 + 𝛼𝑥𝑖|∗,1

𝑚𝐸  𝑦𝐵
𝜂

> 0 

𝑎2 = 𝛼𝛽 (1 − 𝑥𝑖|∗,1⏞      
≥0

) + 𝑑𝐸
𝜕𝑃𝑖
𝜕𝑆
|∗,1 (1 − (𝑦𝑚 − 𝑦𝐵)⏞        

>0

)

+ (1 − 𝑥𝑖|∗,1 +
𝑚𝐸𝑦𝐵
𝜂

𝑥𝑖|∗,1
⏞              

≥0

)[𝑑𝐸𝑙𝑆 + 𝑙𝐸 (𝑙𝑆 +
𝜕𝑃𝑖
𝜕𝑆
|∗,1)]

+ 𝑙𝐸
𝛽

𝜂
𝑥𝑖|∗,1 (𝑦𝑚 − 𝑦𝐵⏞    

≥0

)
𝜕𝑃𝑖
𝜕𝑆
|∗,1 + 𝑑𝐵

𝜕𝑃𝑖
𝜕𝑆
|∗,1 (1 − 𝑟𝐵𝑦𝐵⏞      

>0

) + 𝑑𝐵𝑙𝑆

+𝑚𝐸 (𝑙𝑆 +
𝜕𝑃𝑖
𝜕𝑆
|∗,1) > 0 
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𝑎3 =
1

𝜂
((𝑦𝑚 − 𝑦𝐵⏞    

≥0

) [𝑑𝐵
2  𝑑𝐸

𝜕𝑃𝑖

𝜕𝑆
|∗,1 (1 − 𝑦𝑚 + 𝑦𝐵(1 − 𝑟𝐵)

⏞              
>0

) + 𝑑𝐵
2 𝜕𝑃𝑖

𝜕𝑆
|∗,1 𝑙𝐸 (1 − 𝑟𝐵𝑦𝐵⏞      

>0

)] +

 (1 − 𝑦𝑚⏞    
>0

)𝑑𝐸  
𝜕𝑃𝑖

𝜕𝑆
|∗,1 𝑚𝐸

2  𝑦𝑚 + (1 − 𝑥𝑖|∗,1⏞      
≥0

) [2𝑑𝐵
2  𝑑𝐸  𝑙𝑆 (𝑦𝑚 − 𝑦𝐵) + 

𝜕𝑃𝑖

𝜕𝑆
|∗,1 𝑙𝐸  𝑚𝐸

2  𝑦𝑚 +

𝑑𝐸  𝑙𝑆 𝑚𝐸
2  𝑦𝑚 + 𝑙𝐸  𝑙𝑆 𝑚𝐸

2  𝑦𝑚 + 𝑑𝐵 𝑑𝐸  𝑙𝑆 𝑚𝐸  𝑦𝑚 + 𝑑𝐵 𝑑𝐸  𝑙𝑆 𝑚𝐸  (𝑦𝑚 − 𝑦𝐵) + 𝑑𝐵 𝑙𝐸  𝑙𝑆 𝑚𝐸  𝑦𝑚 +

𝑑𝐵 𝑙𝐸  𝑙𝑆 𝑚𝐸  (𝑦𝑚 − 𝑦𝐵)] + 𝑑𝐵 𝑑𝐸  
𝜕𝑃𝑖

𝜕𝑆
|∗,1 𝑚𝐸  [(2𝑦𝑚 − 𝑦𝐵⏞      

>0

) (1 − 𝑦𝑚) + 𝑦𝐵𝑦𝑚 (1 − 𝑟𝐵⏞  
≥0

)] +

𝑑𝐵  
𝜕𝑃𝑖

𝜕𝑆
|∗,1 𝑙𝐸  𝑚𝐸  [𝑦𝑚(1 − 𝑟𝐵 𝑦𝐵) + (𝑦𝑚 − 𝑦𝐵)] +

𝜕𝑃𝑖

𝜕𝑆
|∗,1 𝑙𝐸  𝑚𝐸

2  𝑥𝑖|∗,1 𝑦𝑚) > 0  

Additionally, 𝑎1𝑎2 − 𝑎3 is given by  

𝑎1𝑎2 − 𝑎3

= (
𝜕𝑃𝑖
𝜕𝑆
|∗,1)

2

 (𝛼 − 𝑑𝐸(𝑦𝑚 − 𝑦𝐵)
⏞          

>0

+ 𝛽 − 𝑑𝐵 𝑟𝐵 𝑦𝐵⏞        
>0

)

+
𝜕𝑃𝑖
𝜕𝑆
|∗,1  [𝛼 𝑑𝐸 (1 − (𝑦𝑚 − 𝑦𝐵)  + 𝑥𝑖|∗,1  {(𝑦𝑚 − 𝑦𝐵) − (𝑦𝑚 − 𝑦𝐵)

𝑚𝐸  𝑦𝐵
𝜂

 +
𝑚𝐸  𝑦𝐵
𝜂

− 1})
⏞                                                

≥0

 

+ 𝛼(𝑙𝐸 + 2𝛽 + 𝑙𝑆) (1 – 𝑥𝑖|∗,1)
⏞      

≥0

+ 𝛽 𝑑𝐵 (1 − 𝑟𝐷𝐵 𝑦𝐵)⏞        
>0

+ 𝑑𝐸  𝑙𝑆  (1 − (𝑦𝑚 − 𝑦𝐵))
⏞          

>0

+ 𝑑𝐵 𝑙𝑆  (2 − 𝑟𝐷𝐵 𝑦𝐵)
⏞        

>0

+ 𝑥𝑖|∗,1 𝛼 𝑑𝐵 𝑟𝐷𝐵 𝑦𝐵  (1 − 
𝑚𝐸𝑦𝐵
𝜂

)
⏞        

>0

+ 𝛽 𝑚𝐸 +  2 𝑚𝐸  𝑙𝑆 + 𝑑𝐸  𝑚𝐸  𝑦𝐵 + 𝑙𝐸  𝑙𝑆

+
𝑚𝐸  𝑦𝐵
𝜂

𝑥𝑖|∗,1𝛼(𝛽 + 𝑙𝑆 + 𝑙𝐸)] +  𝛼(𝛽 + 𝑙𝑆)
2(1 − 𝑥𝑖|∗,1)

+ 𝛼2𝛽 (1 + 𝑥𝑖|∗,1 [𝑥𝑖|∗,1 − 2 +𝑚𝐸
𝑦𝐵
𝜂
(1 − 𝑥𝑖|∗,1)])

⏞                            
≥0

 

+ 𝛼2𝑙𝑆 (1 + 𝑥𝑖|∗,1 [𝑥𝑖|∗,1 − 2 + 𝑚𝐸
𝑦𝐵
𝜂
 (2 − 2𝑥𝑖|∗,1 + 𝑥𝑖|∗,1 𝑚𝐸

𝑦𝐵
𝜂
)])

⏞                                        
≥0

+ 𝛽 𝑙𝑆
2  + 𝛽2 𝑙𝑆

+
𝑚𝐸𝑦𝐵
𝜂

𝑥𝑖|∗,1𝛼 (𝑙𝑆
2 + 2 𝛽 𝑙𝑆) > 0 

Thus, the “biotic” equilibrium of the 𝑆𝐵𝐸 model is without any conditions always stable for any 

physically meaningful equilibrium point. 

 

Exclusive stability of “abiotic” and “biotic” equilibria in the 𝑆𝐵𝐸 model   
A physically meaningful (i.e. all state variables have positive and real valued steady-states) “biotic” 

equilibrium only exists if 𝑆𝑖
∗ < 𝑆0

∗ (compare with Table 5 in the main text). In turn, for the “abiotic” 

equilibrium to be stable, it is required that 
𝜕𝑃𝑖

𝜕𝐸
|∗,0 <

𝛼𝛽

𝜂
. 

 

 



5 
 

For multiplicative (𝑚) kinetics: 

𝜕𝑃𝑚
𝜕𝐸

|∗,0 = 𝑣𝑚
𝑝
𝑆0
∗ <

𝛼𝛽

𝜂
   →      𝑆0

∗ <
𝛼𝛽

𝑣𝑚
𝑝
𝜂
= 𝑆𝑚

∗  

For forward Michaelis-Menten (𝑓) kinetics 

𝜕𝑃𝑓

𝜕𝐸
|∗,0 = 𝑣𝑓

𝑝 𝑆0
∗

𝐾𝑓
𝑝
+ 𝑆0

∗
<
𝛼𝛽

𝜂
   →    𝑆0

∗ < 𝐾𝑓
𝑝
 

𝛼𝛽

𝑣𝑓
𝑝
𝜂

1 −
𝛼𝛽

𝑣𝑓
𝑝
𝜂

= 𝑆𝑓
∗ 

For reverse Michaelis-Menten (𝑟) kinetics 

𝜕𝑃𝑟
𝜕𝐸

|∗,0 =
𝑣𝑟
𝑝

𝐾𝑟
𝑝 𝑆0

∗ <
𝛼𝛽

𝜂
   →     𝑆0

∗ < 𝐾𝑟
𝑝 𝛼𝛽

𝑣𝑟
𝑝
𝜂

 

 

 Positivity of the “biotic” equilibrium requires 𝑆𝑟
∗ < 𝑆0

∗: 

𝑆𝑟
∗ =

𝛼𝛽

𝑣𝑟
𝑝
𝜂

𝐾𝑟
𝑝
ω+ 𝐼𝜂

ω + 𝑙𝑆
𝛼𝛽

𝑣𝑟
𝑝

<
𝐼

𝑙𝑆
 

 After algebraic rearrangement this yields: 

𝛼𝛽

𝑣𝑟
𝑝
𝜂
𝐾𝑟
𝑝
<
𝐼

𝑙𝑆
= 𝑆0

∗ 

 which contradicts with the stability criteria 𝑆0
∗ < 𝐾𝑟

𝑝 𝛼𝛽

𝑣𝑟
𝑝
𝜂
 of the “abiotic” equilibrium. 

 

For Equilibrium Chemistry Approximation (𝑒) kinetics: 

𝜕𝑃𝑒
𝜕𝐸

|∗,0 = 𝑣𝑒
𝑝 𝑆0

∗

𝐾𝑒
𝑝
+ 𝑆0

∗
<
𝛼𝛽

𝜂
   →     𝑆0

∗ < 𝐾𝑒
𝑝

𝛼𝛽

𝑣𝑒
𝑝
𝜂

1 −
𝛼𝛽

𝑣𝑒
𝑝
𝜂

 

 Positivity of the “biotic” equilibrium requires 𝑆𝑒
∗ < 𝑆0

∗: 

𝑆𝑒
∗ =

𝛼𝛽

𝑣𝑒
𝑝
𝜂

𝐾𝑒
𝑝
ω+ 𝐼𝜂

ω − ω
𝛼𝛽

𝑣𝑒
𝑝
𝜂
+ 𝑙𝑆

𝛼𝛽

𝑣𝑒
𝑝

<
𝐼

𝑙𝑆
 

 After algebraic rearrangement this yields: 

𝛼𝛽

𝑣𝑒
𝑝
𝜂

1 −
𝛼𝛽

𝑣𝑒
𝑝
𝜂

𝐾𝑒
𝑝
<
𝐼

𝑙𝑆
= 𝑆0

∗ 

 which contradicts the requirement 𝑆0
∗ < 𝐾𝑒

𝑝

𝛼𝛽

𝑣𝑒
𝑝
𝜂

1−
𝛼𝛽

𝑣𝑒
𝑝
𝜂

 for stability of the “abiotic” equilibrium. 
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Thus, for the “abiotic” equilibrium to be stable, it must be that 𝑆0
∗ < 𝑆𝑖

∗ and hence the “abiotic” 

equilibrium is stable only when the “biotic” equilibrium has (physically non-meaningful) negative 

microbial biomass and extracellular enzyme concentrations. 

 

S2.2 𝑆𝐷𝐵 model 
The Jacobian matrix around the “biotic” equilibrium for the 𝑆𝐷𝐵 model is given by eq. A10 in the 

appendix to the main text. From this, the coefficients of the characteristic polynomial are given by 

the following equations. Note that for conciseness these are formulated in a mixed form using 

partial differential equations of rates (𝑃𝑖
𝑞𝑠𝑠

 and 𝑈𝑗) and of ODEs (i.e. �̇� =
d𝐵

d𝑡
). 

𝑎1 =
𝜕𝑃𝑖

𝑞𝑠𝑠

𝜕𝑆
|∗ +

𝜕𝑈𝑗

𝜕𝐷
|∗ + 𝑙𝐷−

𝜕�̇�

𝜕𝐵
|∗,𝑗

⏞    
≥0

> 0 

𝑎2 = 𝑙𝐷 (
𝜕𝑃𝑖

𝑞𝑠𝑠

𝜕𝑆
|∗ −

𝜕�̇�

𝜕𝐵
|∗,𝑗) −

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗  
𝜕�̇�

𝜕𝐵
|∗,𝑗

+
𝜕𝑈𝑗

𝜕𝐷
|∗ (𝜋 + 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 +

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ − 𝑦𝑚

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝐵
|∗) 

𝑎3 =
𝜕𝑃𝑖

𝑞𝑠𝑠

𝜕𝑆
|∗ (−𝑙𝐷  

𝜕�̇�

𝜕𝐵
|∗,𝑗 + 𝜋

𝜕𝑈𝑗

𝜕𝐷
|∗ ) > 0 

and 𝑎1𝑎2 − 𝑎3 is given by 

𝑎1𝑎2 − 𝑎3 = 𝑋𝑖×𝑗 + 𝑌𝑖×𝑗 

with 

𝑋𝑖×𝑗 = (
𝜕𝑈𝑗

𝜕𝐷
|∗ +

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ + 𝑙𝐷)(𝑙𝐷

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ +

𝜕𝑈𝑗

𝜕𝐷
|∗ [𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 +

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ − 𝑦𝑚

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝐵
|∗])

+ 𝜋 
𝜕𝑈𝑗

𝜕𝐷
|∗ (
𝜕𝑈𝑗

𝜕𝐷
|∗ + 𝑙𝐷) 

and  

𝑌𝑖×𝑗 = −
𝜕�̇�

𝜕𝐵
|∗,𝑗 ([

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ + 𝑙𝐷] [

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ + 𝑙𝐷 −

𝜕�̇�

𝜕𝐵
|∗,𝑗]

+
𝜕𝑈𝑗

𝜕𝐷
|∗ [2 ⋅

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ + 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 − 𝑦𝑚

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝐵
|∗ + 𝜋 + 𝑙𝐷])   . 

For 𝑙𝐷 = 0 this is equivalent to eq. A11-A13 in the appendix to the main text. 

𝜕�̇�

𝜕𝐵
|∗,𝑗 is given by 

𝜕�̇�

𝜕𝐵
|∗,𝑗 = 𝑦𝑚

𝜕𝑈𝑗

𝜕𝐵
|∗ − (𝑑𝐵 +𝑚𝐸)  , 

and as detailed in the main text (Appendix Sect. A2) 
𝜕�̇�

𝜕𝐵
|∗,(𝑚,𝑓) = 0, yielding 𝑌𝑖×(𝑚,𝑓) = 0 for 𝑈(𝑚,𝑓). 

Positivity of 𝑎1𝑎2 − 𝑎3 is thus only dependent on 𝑋𝑖×𝑗, which is always positive for 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 +
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𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝑆
|∗ ≥ 𝑦𝑚

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝐵
|∗ ; i.e. the sufficient condition given by eq. 25 in the main text. At the same time 

this ensures positivity of 𝑎2. 

For any 𝑈𝑗  independent of 𝐵 (such as 𝑈𝑙 = 𝑣𝑙
𝑢 𝐷)  

𝜕�̇�

𝜕𝐵
|∗,𝑗 = −(𝑑𝐵 +𝑚𝐸) and thus, 𝑌𝑖×𝑗 helps to 

ensure positivity of 𝑎1𝑎2 − 𝑎3 in these cases. 

With the above definitions of 
𝜕�̇�

𝜕𝐵
|∗,𝑗: 𝑎1 > 0 and 𝑎3 > 0 in all of these cases and 𝑎2 > 0 and 𝑎1𝑎2 −

𝑎3 > 0 if the sufficient condition in eq. 25 in the main text is fulfilled. 

 

S2.3 𝑆𝐷𝐵𝐸 model 
The Jacobian matrix around the “biotic” equilibrium for the 𝑆𝐷𝐵𝐸 model  𝐽𝑖×𝑗

𝑆𝐷𝐵𝐸|∗ is given by eq. A17 

in the main text. With 
𝜕�̇�

𝜕𝐵
|∗,(𝑚,𝑓) = 0 (i.e. the entry at position (3,3) in 𝐽𝑖×𝑗

𝑆𝐷𝐵𝐸|∗) the coefficients of the 

characteristic polynomial are given by 

𝑎1 =
𝜕𝑃𝑖
𝜕𝑆
|∗  +  

𝜕𝑈𝑗

𝜕𝐷
|∗  +  𝑑𝐸  +  𝑙𝐷 > 0 

𝑎2 =
𝜕𝑃𝑖
𝜕𝑆
|∗(𝑑𝐸  + 𝑙𝐷) + 𝑑𝐸𝑙𝐷 +

𝜕𝑈𝑗

𝜕𝐷
|∗ (𝑑𝐸 + 𝑑𝐵(1 − 𝑟𝐵 𝑦𝑚) + 𝑚𝐸  +

𝜕𝑃𝑖
𝜕𝑆
|∗ + 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚) > 0 

𝑎3 =
𝜕𝑃𝑖
𝜕𝑆
|∗ 𝑑𝐸  𝑙𝐷  +

𝜕𝑃𝑖
𝜕𝑆
|∗  
𝜕𝑈𝑗

𝜕𝐷
|∗(𝑚𝐸 + 𝑑𝐵(1 − 𝑟𝐵 𝑦𝑚))

+ 
𝜕𝑈𝑗

𝜕𝐷
|∗ 𝑑𝐸  (𝜋 + 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 +

𝜕𝑃𝑖
𝜕𝑆
|∗ − 𝑦𝑚

𝑚𝐸
𝑑𝐸

𝜕𝑃𝑖
𝜕𝐸

|∗) 

𝑎4 =
𝜕𝑃𝑖
𝜕𝑆
|∗  
𝜕𝑈𝑗

𝜕𝐷
|∗ 𝑑𝐸  𝑦𝑚 ( 

𝜕𝑈𝑗

𝜕𝐵
|∗(1 − 𝑦𝑚) + 𝑑𝐵(1 − 𝑟𝐵)) > 0      . 

The additional condition for stability of this EP 𝑎1𝑎2𝑎3 − 𝑎3
2 − 𝑎1

2𝑎4 > 0 becomes analytically 

intractable. However, we observe that det( 𝐽𝑖×𝑗
𝑆𝐷𝐵𝐸|∗) = 𝑎4 > 0 and positivity of 𝑎3 in 𝑆𝐷𝐵𝐸 model 

and 𝑎2 in the 𝑆𝐷𝐵 model is conditional on the sign of the equivalent expressions  (𝜋 +

𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 +
𝜕𝑃𝑖

𝑞𝑠𝑠

𝜕𝑆
|∗ − 𝑦𝑚

𝜕𝑃𝑖
𝑞𝑠𝑠

𝜕𝐵
|∗) respectively (𝜋 + 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 +

𝜕𝑃𝑖

𝜕𝑆
|∗ − 𝑦𝑚

𝑚𝐸

𝑑𝐸

𝜕𝑃𝑖

𝜕𝐸
|∗). This 

leads to the assumptions that the equivalent sufficient condition found for the 𝑆𝐷𝐵 model might 

also hold for the 𝑆𝐷𝐵𝐸 model and establish the stability of the equilibrium point. Furthermore, our 

numerical simulations rigorously confirm this result. 

Full expression of the sufficient stability condition 

Substituting the explicit formulations for 
𝜕𝑃𝑖

𝜕𝑆
|∗ and 

𝜕𝑃𝑖

𝜕𝐸
|∗ even for the arguably simplest kinetic 

formulation (𝑚 ×𝑚) yields somewhat complicated terms. With the simplifications used for the 

analytical analysis of the 𝑆𝐷𝐵𝐸 model (𝑦𝐵 = 𝑦𝑚 and 𝑙𝑆 = 𝑙𝐸 = 0), the condition given by 𝑍𝑖×𝑗 ≥ 0 

(eq. 26) in the main text yields for 𝑚 ×𝑚 kinetics 

𝑍𝑚×𝑚 = 𝑑𝐵 𝑓𝐷 𝑟𝐵 𝑦𝑚 + 𝑣𝑚
𝑝
 𝐸𝑚×𝑚
∗ − 𝑦𝑚

𝑚𝐸
𝑑𝐸
𝑣𝑚
𝑝
 𝑆𝑚×𝑚
∗      ;      𝑍𝑚×𝑚 ≥ 0 

and with 𝐸𝑚×𝑚
∗  and 𝑆𝑚×𝑚

∗  from Table 6 in the main text 
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𝑍𝑚×𝑚 = (𝑣𝑚
𝑝
𝑚𝐸𝑦𝑚(𝐼 − 𝑙𝐷𝐷𝑚×𝑚

∗ )2 − 𝑑𝐸  𝜋
2𝑓𝐼𝐼) (𝑑𝐸𝜋(𝐼 − 𝑙𝐷𝐷𝑚×𝑚

∗ ))
−1
≥ 0     . 

To simplify the analysis, we define (note that for all physically meaningful biotic equilibrium points 

𝑑𝐸𝜋(𝐼 − 𝑙𝐷𝐷𝑚×𝑚
∗ ) > 0) 

𝑍𝑚×𝑚
𝑑𝐸𝜋(𝐼 − 𝑙𝐷𝐷𝑚×𝑚

∗ )
= 𝑍′𝑚×𝑚 = 𝑦𝑚 𝑚𝐸  𝑣𝑚

𝑝 (𝐼 − 𝑙𝐷𝐷𝑚×𝑚
∗ )2 − 𝑓𝐼 𝐼 𝑑𝐸  𝜋

2 ≥ 0     . 

After substituting the parameter groups, we find  

𝑍′𝑚×𝑚 = 𝑦𝑚 𝑚𝐸  𝑣𝑚
𝑝
(𝐼 − 𝑙𝐷

𝑑𝐵 +𝑚𝐸
𝑦𝑚𝑣𝑚

𝑢 )
2

− 𝑓𝐼 𝐼 𝑑𝐸(𝑑𝐵(1 − 𝑟𝐵𝑦𝑚) + 𝑚𝐸(1 − 𝑦𝑚))
2
≥ 0    . 

Since 𝑍′𝑚×𝑚 defines the sign of 𝑍𝑚×𝑚 , and thus whether 𝑍𝑚×𝑚 ≥ 0 holds, we can gain some 

insights into how individual parameters affect the sufficient condition for stability (𝑍𝑚×𝑚 ≥ 0) by 

regarding 𝑍𝑚×𝑚
′ . With all other parameters hold constant we find that: 

1. an increase in 𝑦𝑚, 𝑣𝑚
𝑝
, 𝑣𝑚

𝑢  or 𝑟𝐵 always increases 𝑍′𝑚×𝑚 

2. an increase in 𝑙𝐷 , 𝑑𝐵 , 𝑑𝐸 or 𝑓𝐼 always decreases 𝑍′𝑚×𝑚 

3. for 𝑙𝐷 = 0 it becomes obvious that an increase in 𝐼 always increases 𝑍′𝑚×𝑚 . 

In fact, for 𝑓𝐼 = 0 (all C input is DOC) or 𝑑𝐸 = 0 (extracellular enzymes do not decay), 𝑍′𝑚×𝑚 is 

always positive (for physically meaningful EPs). 

For other kinetic formulations 𝑍𝑖×𝑗, becomes analytically too cumbersome to yield mathematical 

insights.  

We note that for 𝑓𝐼 = 0 it can be shown that for all physically meaningful EPs also 𝑍𝑓×𝑓 ≥ 0: 

From eq. 26 in the main text 𝑍𝑓×𝑓 is given by  

𝑍𝑓×𝑓 =
𝜕𝑃𝑓

𝜕𝑆
|∗ + 𝑦𝑚 𝑓𝐷 𝑟𝐵𝑑𝐵 − 𝑦𝑚

𝑚𝐸
𝑑𝐸

𝜕𝑃𝑓

𝜕𝐸
|∗ 

For 𝑓𝐼 = 0 we find 𝛾𝑓×𝑓 (eq. 37 in the main text) as 𝛾𝑓×𝑓 = 𝑓𝐷𝑟𝐵𝑑𝐵𝑦𝑚 and thus from Table 6 in the 

main text 𝑆1,𝑓×𝑓
∗  as  

𝑆1,𝑓×𝑓
∗ = 𝐾𝑓

𝑝
(
𝑣𝑓
𝑝
𝑚𝐸

𝑑𝐸𝑓𝐷𝑟𝐵𝑑𝐵
− 1)

−1

 

With this, 𝑦𝑚
𝑚𝐸

𝑑𝐸

𝜕𝑃𝑓

𝜕𝐸
|∗ = 𝑦𝑚

𝑚𝐸

𝑑𝐸
(𝑣𝑓

𝑝 𝑆1,𝑓×𝑓
∗

𝐾𝑓
𝑝
+𝑆1,𝑓×𝑓

∗ ) is obtained as 

𝑦𝑚
𝑚𝐸
𝑑𝐸

𝜕𝑃𝑓

𝜕𝐸
|∗ = 𝑦𝑚𝑓𝐷𝑟𝐵𝑑𝐵 

and thus 

𝑍𝑓×𝑓 =
𝜕𝑃𝑓

𝜕𝑆
|∗     . 

Since for all physically meaningful EPs 
𝜕𝑃𝑓

𝜕𝑆
|∗ ≥ 0 for these also 𝑍𝑓×𝑓 ≥ 0. Compare Fig. S5 for a 

numerical evaluation. 
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S3 Numerical evaluation of proposed sufficient stability condition of 

the 𝑆𝐷𝐵𝐸 model for other kinetics than 𝑓 × 𝑓 
 

Fig. S1 Numerical evaluation of the proposed sufficient condition for stability of the 𝑆𝐷𝐵𝐸 
model with 𝑚 ×𝑚 (a) and 𝑟 × 𝑓 (b) kinetics and only constitutive ENZ production. 100 000 Monte 
Carlo calculations of equilibrium points were produced sampling the parameter space in Table 3. 
Plots illustrate the separation of all physically meaningful equilibrium points by their positive and 
negative terms of 𝑍𝑖×𝑗 (the proposed sufficient condition for stability, eq. 26). Points on and below 

the black 1:1 line (indicates 𝑍𝑖×𝑗 = 0) fulfill the condition 𝑍𝑖×𝑗 ≥ 0. The color-code indicates the 

value of the damping coefficient 𝜁. 
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S4 Changes in damping coefficient with individual model parameters 

in the 𝑆𝐷𝐵𝐸 model with 𝑓 × 𝑓 kinetics 
 

 
Fig. S2 Changes in the damping coefficient with changes in individual model parameters of the 

𝑆𝐷𝐵𝐸 model with 𝑓 × 𝑓 kinetics and constitutive ENZ production. Baseline parameter values (Table 

3 in main text) are indicated by vertical dashed lines. Note that the range of 𝑚𝐸 was extended 

compared to the range in Table 3 in the main text. Different line styles indicate scenarios with 

different DOC leaching rate coefficients (compare panel (a)); different line colors indicate scenarios 

with different OC input rates: 1e-2 mgC g-1 d-1 (blue), 1e-3 mgC g-1 d-1 (yellow), and 5e-4 mgC g-1 d-1 

(red), respectively. 
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Fig. S2 continued. 
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S5 Stable and unstable EPs of the 𝑆𝐷𝐵𝐸 model for other kinetics than 

𝑓 × 𝑓 
 

Fig. S3 Physically meaningful (positive & real) steady states solutions from 10 000 Monte Carlo 

computations of equilibrium points of the 𝑆𝐷𝐵𝐸 model with 𝑚×𝑚 (a), 𝑟 × 𝑓 (b), 𝑚 × 𝑙 (c), and 

𝑓 × 𝑙 (d) kinetics (all considering only constitutive ENZ production with 𝑙𝐷 > 0. Color-coded points 

are stable and plausible steady state solutions, the color code indicating the value of the damping 

coefficient. Grey points are stable but not plausible steady state solutions, and black points are 

physically meaningful but unstable steady state solutions. Legends indicate the numbers of 

physically meaningful and stable (stable + stable & plausible) or unstable EPs. Note that SOC 

contents > 1000 mgC g-1 are mathematically possible but unphysical model outcomes, as we neglect 

soil volume changes. 
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S6 Density dependent mortality 
 

Density dependent mortality was only tested in the 𝑆𝐷𝐵𝐸 model for cases with 𝑏 = 2 and in 

combination with only constitutive ENZ production (𝑦𝐵 = 𝑦𝑚) for 𝐿𝐸 = 𝐿𝑆 = 0. Only for 𝑚×𝑚 

kinetics could DOC leaching be considered, for all other cases also 𝐿𝐷 = 0. 

Fig. S4 Physically meaningful (positive & real) steady states solutions from 10 000 Monte Carlo 

simulations of the 𝑆𝐷𝐵𝐸 model with density-dependent mortality with 𝑚×𝑚 (a & b), 𝑓 × 𝑓 (c), and 

𝑟 × 𝑓 (d) kinetics (all considering only constitutive ENZ production). 𝐿𝐷 > 0 is considered in (a), and 

𝐿𝐷 = 0 for (b-d). Color-coded points are stable and plausible steady state solutions, the color code 

indicating the value of the damping coefficient. Grey points are stable but not plausible steady state 

solutions, and black points are physically meaningful but unstable steady state solutions. Legends 

indicate the numbers of physically meaningful and stable (stable + stable & plausible) or unstable 

Eps. Note that SOC contents > 1000 mgC g-1 are mathematically possible but unphysical model 

outcomes, as we neglect soil volume changes. 
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S7 Numerical evaluation of stability of the 𝑆𝐷𝐵𝐸 model with only 

DOC input (𝑓𝐼 = 0) 

Fig. S5 Numerical evaluation of the proposed sufficient condition for stability of the 𝑆𝐷𝐵𝐸 
model with 𝑓 × 𝑓 kinetics and only constitutive ENZ production for 𝑓𝐼 = 0. 100 000 Monte Carlo 
calculations of equilibrium points were produced sampling the parameter space in Table 3 (but 
holding 𝑓𝐼 = 0). Plots illustrate the separation of all physically meaningful equilibrium points by their 
positive and negative terms of 𝑍𝑓×𝑓 (the proposed sufficient condition for stability, eq. 26). Points on 

and below the black 1:1 line (indicates 𝑍𝑓×𝑓 = 0) fulfill the condition 𝑍𝑓×𝑓 ≥ 0. The color-code 

indicates the value of the damping coefficient 𝜁. 
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