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S1. Segment geometry estimation

a. Travel time model

We employ  the  travel  time  model  introduced  by  Scharfe  et  al.  (2009) to

estimate the travel time (𝜏) in the Elbe River:

(I)    τ (t )=
Q ref

Q (t )

τref
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where Qref is 270 m3/s, and 𝜏ref is 240 hours. While this model was developed

for  the  entire  German  Elbe  (585  km),  we  assume  the  flow  velocity  is

distributed homogeneously and adjust it for the length of our segment (111

km).

b. Channel area model

To predict channel area (A), we use a power law relationship, A(t) = aQ(t)b,

between  discharge  (Q)  and  channel  area  (Booker  and  Dunbar,  2008).  To

parameterize  this  relationship,  we  apply  the  Normalized  Difference  Water

Index (NDWI) algorithm (Gao, 1996) on Sentinel 2 images with a 10-meter

resolution,  taken during various discharge conditions (186-1020 m3 s-1) and

with a maximum of 10% cloud cover over the study area.

c. Channel depth model

To predict channel depth (Z), we also use a power law relationship of the form

Z(t)=aQ(t)b (Modi et al., 2022). We fit the parameters based on data from the

Elbe (Aberle et al., 2010).
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S2. Gaussian error propagation

We use gaussian error propagation to quantify the uncertainty for the mass

balance estimates

(II)     σ Robs
=√σ Lin

2 +σ Lout
2

where σ  is the absolute error of any term. The errors in L result from the errors

in C and Q

(III)     σ L=√σC
2 Q2+σQ

2 C 2

for σC and σQ we assume a constant value of 10 % of the current C or Q value.

We  did  not  assess  Robs on  days  where  Q  was  larger  than  the  90th  flow

percentile or where 
Qi n−Qout

Qi n
 was larger than 0.05 (18 % of all days). This led

to an exclusion of 18 % of all dates, most of which (84%) occurred during

high flows winter.
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S3. Interpolation of hourly dissolved oxygen time series

As daily DO curves are usually sinusoidal (Correa-González et al., 2014) and

data from the Elbe confirms this general assumption (Kamjunke et al., 2021;

their  Fig.  5) we use a sine wave based approach to  interpolate  hourly DO

concentrations from observed daily minimum, maximum, and mean values.

We use a sine wave of the form

(IV)        y ( x )=mean+amplitude∗cos( 2 π
period

( x−p hase ))
and base the parameters  mean,  amplitude,  period (τ ), and  phase (ϕ) on the

measured DO concentrations

(V)

DO (hour )=DOmean (day )+
DOmax (day )−D Omin (day )

2
cos ( 2π

τ (day ) (h our−ϕ (day )
24

τ ( day )))
where 𝜏 is the period of the sine chosen to satisfy that 𝜏/2 is the time between

the peak (ϕ) and low (ѱ) of DO concentrations.  ϕ and  ѱ, however, are only

available for 25 % of all days (n≈2000), so we derived transfer functions (Fig.

S6a, b) that estimates 𝜏 and ϕ for each day of the year based on daylight hours

(time between sunrise and sunset).

(VI) τ (day )=2 (i+m∗daylig h t h ours )

As ϕ follows a sinusoidal curve itself during the year, we approximate it using

a  sine  function

(VII) ϕ (day )=16+2cos 2 π
365 (day-180))

This approach leads to dates where the period of the sine  𝜏 is less than 24

hours  (especially  during  winter),  which  means  less  than  24  hours  of  DO

concentrations are simulated. We use linear interpolation for missing hours,

filling  a  maximum of  12 consecutive  hours.  We validate  this  approach by

comparing the simulated hourly DO concentrations with 2 years (2015, 2016)

high frequency (30-minute) sensor measurements from the same site (Fig. S7)

provided  by  the  Niedersächsischer  Landesbetrieb  für  Wasserwirtschaft,

Küsten- und Naturschutz (NLWKN).
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S4. Metabolism model

S4.1 k600 Estimation

We estimated gross primary production (GPP) and ecosystem respiration (ER)

using a maximum likelihood estimation (mle) method (e.g., Richardson et al.,

2017). We estimated the gas exchange velocity (k600) using a hydraulically

based equation from Raymond et al. (2012, their table 2, model equation 7)

(VIII) k600=a (V f S)b Q−c Dd

where a, b, c, and d, are the parameters fitted by Raymond et al., (2012), Vf is

the flow velocity [m s-1], S is the segment slope [m m-1], Q is discharge [m3 s-1]

and D is the depth [m].  We calculate  the flow velocity  Vf by dividing the

segment length (110 km) by the travel time (estimated as described in Section

S1). The resulting distribution of k600 values is shown in figure S8.

S4.2 Estimation of parameter uncertainties

To  estimate  the  uncertainty  in  the  parameters  k600,  DOmax and  Twater  of

equation IV, we assess their daily variability using different methods. In case

of Twater,  we use daily  minimal  and maximal  water  temperatures  which are

available  from the  site  Schnakenburg  for  20 years.  For  each day,  we then

estimate the standard deviation σTwater around the mean. Finding σTwater is highly

correlated with the day of the year, we use a sine model esitmating its value

for  each  day  of  the  year  (Figure  S9).  For  DOma,  the  dissolved  oxygen

concentration  at  saturation,  we  propagate  σTwater into  the  calculation  of  the

dissolved  oxygen  saturation  (as  described  in  Section  2.6)  and  model  the

resulting σDOmax values again as a function of the day of the year (Figure S9).

For k600, we have no data  available  and so use the parameter  uncertainty

presented in Raymond et al., 2012 to estimate a daily standard deviation of

k600, which we simplify by modeling as an exponential  function based on

discharge (Figure S9).

To assess the sensitivity of using the MLE approach to estimate GPP and ER
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towards  those  uncertainties,  we  calculate  the  changes  in  GPP and  ER  by

adding and subtracting σTwater,  σDOmax and k600 to the daily assumed values

(Fig S11).  This  analysis  does  not  consider  critical  parameter  combinations

(e.g.  high k600,  high  Twater)  nor  does  it  capture  the  entire  input  parameter

space. However, it reveals the high importance of k600 for both ER and GPP

estimates.

 S4.3 Areal extent of the metabolic signal An important consideration when

interpreting  metabolic  estimates  is  the  areal  extent  over  which  the  single

station method integrates.  Following Chapra and Di Toro (1991), this can be

estimated as follows

(IX)        ae= 3 v
k 600 z

where v is the flow velocity [m d-1], k600 is the gas exchange coefficient [m d-

1] and z is the channel depth [m]. By using median the median flow velocity

(74.000 m d-1), median k600 (2.9 m d-1), and median channel depth (2.8 m),

we arrive at an areal extent of 196 km covered by this approach, which is 76

% longer  than the investigated  segment.  However,  Kamjunke et  al.  (2022)

showed that ER and NPP rates did change relatively little during the last 200

km of the Elbe compared to its entire length during periods of high biological

activity,  so we assume the single station metabolism estimation reflects  the

spatial scale of the DIN balance.
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S5. Figures

Figure S1.  Fraction of the Havels (Gage: Havelberg-Stadt) discharge divided by the 
discharge of the Elbe (Gage: Neu-Darchau) (Fig.1a, b). Circles show raw data, and 
the red line is the multi-year mean for each day.
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Figure S2: Unprocessed time series of nitrate-N and ammonium-N 
concentrations at the input sampling site (in) and output sampling site 
(out) of the two-station mass balance.
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Figure S3: Fraction of NO2-N from dissolved inorganic DIN for the 
input (Schnackenburg) and output (Geesthacht) sampling sites of the 
mass balance in %.
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Figure S4: Measured vs WRTDS simulated daily N concentrations for the Elbe at the
outlet of the investigated river segment (Geesthacht).
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Figure S5. The discharge-based transfer function for channel depth, travel time, and channel 
surface area. The dashed red lines show the 5th and the 95th, and the solid red line shows the 
50th flow percentile for the period 1978-2021 from the Gage Neu Darchau. In panel b), both the 
travel time along the entire Elbe (left y-axis) and the travel time along the investigated segment 
(right y-axis) are shown.

Figure S6. a) Transfer function to predict the time between dissolved oxygen (DO) 
minimum and maximum ( /2) based on the hours between sunrise and sunset. b) 𝜏
Transfer function to predict the hour of maximum DO concentrations (ɸ) as a 
function of the day of the year. Circles show raw data from ~2000 days.
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Figure S7. a) Scatter plot between predicted and observed 30 minute dissolved 
oxygen (DO) concentrations (aggreated to one hour) with the goodness of fit metrics
root mean square error (RMSE), mean absolute error (MAE), and correlation 
coefficient R2. The red line represents a perfect correlation. b) Histogram of the 
differences between simulated and observed hour of the day with maximum DO 
concentrations (ɸ). c) Scatter plot between predicted and observed daily amplitude 
of DO. The red line represents a perfect correlation.
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Figure S8 Distribution of simulation gas 
exchange coeffcient for oxygen (k600) after
Raymond et al., 2012 (their table 2, 
equation 7).
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Figure S9: Estimated (blue circles) and modeled (red dashed lines) daily standard 
deviations of the parameters Twater, DOconc and k600.
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Figure S10: Correlation coefficient R2 (left) and root mean square error 
(right) for simulated vs. observed dissolved oxygen concentrations, 
considering seasons and periods (before or after 1990).
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Figure S11: Results of the simplified one-factor-at-a-time sensitivity analysis. a) 
shows how changes in the parameter Twater, k600 and DOsat affect GPP rates. 
b) shows the change in ER rates for the same parameter changes. Parameters 
have been increased or decreased by one standard deviation for each day of the
years 1984 and 2008.
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S6. Tables

Table S1. The goodness of fit metrics for different approaches of travel time corrections of

the water quality time series. For the first three approaches, the outlet time series was shifted

by n days  as  indicated.  For the  last  approach,  the  travel  time estimations  were  used  to

determine which shift (1 or 2 days) had to be applied. The root mean square error (RMSE),

mean  absolute  error  (MAE),  and  correlation  coefficient  R2 were  then  computed  by

comparing the discharge in- and outflows.

RMSE [m3/s] MAE [m3/s] R2

0-day shift 73 44 0.99

1-day shift 53 33 0.99

2-day shift 66 38 0.99

𝜏-based shift 108 63 0.97
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