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Abstract. Improving the accuracy of monitoring cropland
CO2 exchange at heterogeneous spatial scales is of great im-
portance for reducing spatial and temporal uncertainty in es-
timating terrestrial carbon (C) dynamics. In this study, an
approach to estimate daily cropland C fluxes is developed
and tested by combining time series of field-scale eddy co-
variance (EC) CO2 flux data and Sentinel-2 satellite-based
vegetation indices (VIs) after appropriately accounting for
the spatial alignment between the two time series datasets.
The study was carried out for an agricultural field (118 ha) in
the lowlands of northeastern Germany. The ability of differ-
ent VIs to estimate daily net ecosystem exchange (NEE) and
gross primary productivity (GPP) based on linear regression
models was assessed. Most VIs showed high (> 0.9) and sta-
tistically significant (p < 0.001) correlations with GPP and
NEE, although some VIs deviated from the seasonal pat-
tern of CO2 exchange. By contrast, correlations between
ecosystem respiration (Reco) and VIs were weak and not
statistically significant, and no attempt was made to esti-
mate Reco from VIs. Linear regression models explained
generally more than 80 % and 70 % of the variability in
NEE and GPP, respectively, with high variability among
the individual VIs. The performance in estimating daily C
fluxes varied among VIs depending on the C flux component
(NEE or GPP) and observation period. Root mean square
error (RMSE) values ranged from 1.35 g C m−2 d−1 using
the green normalized difference vegetation index (GNDVI)
for NEE to 5 g C m−2 d−1 using the simple ratio (SR) for
GPP. This equated to an underestimated net C uptake of only
41 g C m−2 (18 %) and an overestimation of gross C uptake
of 854 g C m−2 (73 %). Differences between the measured

and estimated C fluxes were mainly explained by the diver-
sion of the C flux and VI signal during winter when C uptake
remained low, while VI values indicated an increased C up-
take due to relatively high crop leaf area. Overall, the results
exhibited similar error margins to mechanistic crop models.
Thus, they indicated the suitability and expandability of the
proposed approach for monitoring cropland C exchange with
satellite-derived VIs.

1 Introduction

Managed cropland soils extend over 15.1–18.8 Mkm2

(11.6 %–14.4 % of the global ice-free land area) (Luyssaert
et al., 2014). They store about 131.81 Pg of organic carbon
(C) in the first 30 cm of the soil profile (Zomer et al., 2017)
and constitute about 10 % of the total terrestrial soil organic
C stock (Jobbagy and Jackson, 2000). Cropland soils have
historically lost a large amount of the original soil organic
C (Guo and Gifford, 2002; Sanderman et al., 2017). This
deficit, however, represents a large potential for sequester-
ing C today and in the future (Lal et al., 2018; Zomer et
al., 2017). Therefore, croplands have been identified as the
most promising land use type to compensate for fossil fuel
emissions (“4 per mille” initiative; Minasny et al., 2017;
Rumpel et al., 2020). Whether cropland soils are a net C
source or sink, however, is determined by the total cropland
C balance. As opposed to natural ecosystems in which the
net C balance is mainly determined by the balance between
gross primary production (GPP) and ecosystem respiration
(Reco) (Chapin et al., 2006) only, the cropland net ecosys-
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tem C balance includes (lateral) C fluxes from harvest ex-
ports and manure imports (Ciais et al., 2010) and some mi-
nor C losses from C leaching, erosion, or fire. However, the
atmospheric exchanges of CO2 of croplands (GPP and Reco)
are the two largest and most uncertain fluxes in the regional
cropland carbon balance (Ciais et al., 2010). Regionally in-
tegrated estimates of GPP and Reco are difficult in highly
diverse and geographically patchy croplands, which results
in high uncertainty of spatially explicit estimates of crop-
land C stock changes (Pique et al., 2020). Robust knowl-
edge and dedicated monitoring of the delicate balance be-
tween these two fluxes, however, are important for guiding
climate change mitigation measures. Furthermore, mitigation
measures based on cropland soil C sequestration require high
accuracy of C flux estimates for monitoring, reporting, and
verification purposes.

The state-of-the-art method for measuring ecosystem–
atmosphere C exchanges is the eddy covariance (EC) method
based on micrometeorological theory (Baldocchi, 2003).
This method allows for direct net ecosystem exchange
(NEE) measurements which integrate C dynamics of spa-
tially highly variable soil organic carbon (SOC) stocks. Sub-
sequent flux processing partitions NEE into GPP and Reco
(Reichstein et al., 2005; Lasslop et al., 2010; Wutzler et al.,
2018). Although results are robust and commonly accepted,
they are confined to local, homogeneous footprint (FP) areas
(Smith et al., 2010).

To assess and monitor the spatial variability of C fluxes at
the local scale and across ecosystems, a global network of
EC flux sites (FLUXNET) has been established of which,
however, only 20 out of 212 sites (here, FLUXNET2015
Dataset) are cropland sites (Pastorello et al., 2020). They
are thus sparse relative to the vast diversity of existing crop-
lands. To overcome the spatial gap between local measure-
ments from a limited number of sites and regional to global
C exchange estimates, the combination of local EC data with
remote sensing products such as satellite-derived vegetation
indices (VIs) has been explored (Tramontana et al., 2016;
Jung et al., 2011; Fu et al., 2014; Bazzi et al., 2024; Mahade-
van et al., 2008; Xiao et al., 2008, 2010, 2011).

The light use efficiency (LUE) concept (Medlyn, 1998;
Yuan et al., 2014) and the relationship of fractional absorbed
photosynthetically active radiation (FPAR) with VIs (My-
neni and Williams, 1994) allow VIs to be used as proxies
for GPP (Running et al., 2004; Zhou et al., 2014). However,
GPP is only one part of the C exchange, and for estimations
of the full C budgets of the ecosystem, the net exchange of C
fluxes (NEE) is required. Therefore, the correlation of GPP
with Reco (Baldocchi, 2008; Baldocchi et al., 2015; Ma et
al., 2016) can be leveraged to directly link VIs with NEE
(Noumonvi et al., 2019; Wohlfahrt et al., 2010; X. Huang et
al., 2019).

Interestingly, a direct correlation between GPP and VIs,
rather than more complex approaches incorporating addi-
tional environmental drivers, can outperform LUE-type mod-

els such as the MODIS GPP (“MOD17”) product across
ecosystems (Sims et al., 2006), particularly for croplands
(X. Huang et al., 2019). The high variability in green biomass
during the phenological cycle seems to make croplands es-
pecially suitable for directly tracking GPP with VIs, without
the need to incorporate meteorological drivers (Tramontana
et al., 2015). The latter is attributed to the variability in plant
dynamics being determined rather by human interventions
such as fertilizing, tilling, sowing, and harvest dates (Tra-
montana et al., 2016). The goal of optimizing specific plant
performance locally can, to some extent, override environ-
mental conditions. This raises the question of whether a sim-
ple relationship between VIs and NEE can provide sufficient
accuracy for estimating C fluxes in croplands as opposed to
more complex approaches.

While numerous studies assess the direct link of GPP with
satellite-derived VIs (e.g., Badgley et al., 2017; X. Huang
et al., 2019; Peng and Gitelson, 2012; Joiner et al., 2018;
Liu et al., 2021; Rahman et al., 2005; Wang et al., 2004;
Juszczak et al., 2018; Lin et al., 2019), the number of studies
assessing the correlation of VIs with NEE is small (Olof-
sson et al., 2008; Noumonvi et al., 2019; Wohlfahrt et al.,
2010; X. Huang et al., 2019; Sims et al., 2006), and to our
knowledge there is no such study including or dedicated to
croplands.

With the increasing availability of higher-resolution satel-
lite imagery such as EnMAP, Sentinel-2C, and Landsat Next,
the link between these data and field-scale C fluxes can pro-
vide greater spatial accuracy and requires further investi-
gation. Except for the study by Madugundu et al. (2017),
most studies exploring the potential of satellite-derived VIs
to serve as proxies for estimating cropland C fluxes use
MODIS or MODIS-like resolution products. Although the
potential of finer-resolution satellite images such as Land-
sat or Sentinel-2 – as opposed to coarser, MODIS-like reso-
lution – for cropland C flux estimates at spatial scales has
been demonstrated (Gitelson et al., 2012; Fu et al., 2014;
Wolanin et al., 2019; Bazzi et al., 2024; Madugundu et al.,
2017; Chen et al., 2010; Spinosa et al., 2023; Pabon-Moreno
et al., 2022), a direct link between VIs and cropland NEE
has not been explored. All of these studies employ complex
approaches (process-based models, machine learning) which
demand high computational efforts and are heavy on auxil-
iary data requirements. Further, complex approaches always
introduce additional sources of uncertainty – model structure
and parameter uncertainty as well as input data uncertainty
(Wattenbach et al., 2006) – and can be difficult to parame-
terize (Sims et al., 2006). Exploring a direct and straightfor-
ward link would clarify the explanatory power of VIs them-
selves, enabling systematic examination of the conditions un-
der which additional data are truly necessary without under-
mining the comprehensive meaningfulness of the VIs. Fur-
thermore, except for Bazzi et al. (2024) and Fu et al. (2014),
all studies focus on GPP rather than on NEE, and most of the
aforementioned studies explore only a few VIs.
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Additionally, none of these studies are dedicated to exam-
ining the link between C fluxes and VIs along the phenologi-
cal cycle at the plot scale, which is imperative for evaluating
the robustness and accuracy of linking the two signals.

Another advantage of using finer-resolution imagery is
the ability to match the spatial footprint of the two signals.
Large-area products of C fluxes which combine remotely
sensed VIs with EC-observed C dynamics (Jung et al., 2019)
(the FLUXCOM initiative: http://www.fluxcom.org/, last ac-
cess: 12 August 2024) can have a relatively low spatial reso-
lution of 0.0833°. Such a coarse resolution can cause a sys-
tematic mismatch between the satellite sensor and the EC
tower FP (Tramontana et al., 2016) and mostly does not dis-
tinguish individual agricultural fields well. To improve the
estimation of C exchange for croplands, the need for higher-
resolution remote sensing data such as Landsat has been
pointed out (Tramontana et al., 2016). Furthermore, Kong
et al. (2022) showed the superiority of FP-matched regres-
sion between GPP and high-resolution satellite near-infrared
(NIR) maps over in situ (NIR sensor location) regressions for
different cropping fields in California.

All of this highlights the need for and shows the promise
of further investigating the capabilities of high-resolution
satellite imageries in directly estimating carbon fluxes in
croplands and monitoring them by a rigorous evaluation of
comprehensive spectral indices derived from finer-resolution
satellite imageries while appropriately leveraging EC-based
C flux measurements.

The most commonly used VI in combination with NEE
is the normalized difference vegetation index (NDVI), fol-
lowed by the enhanced vegetation index (EVI) and the land
surface water index (LSWI). Noumonvi et al. (2019) addi-
tionally used the green NDVI (GNDVI), the normalized dif-
ference surface water index (NDSWI), the soil-adjusted VI
(SAVI), and the modified normalized difference water index
(MNDWI). Wohlfahrt et al. (2010) use the simple ratio (SR)
and Tramontana et al. (2016) the normalized difference water
index (NDWI). However, only Tramontana et al. (2016) link
VIs (NDVI, EVI, NDWI, and LSWI) to cropland NEE, GPP,
and Reco, while the other studies assess their suitability for
grassland C fluxes. Assuming the predictive performance of
GPP from VIs for croplands also holds true for cropland NEE
and Reco, our VI selection was based on the performance of
VI for GPP estimation in croplands. In this regard, typical
satellite-sensor-derivable VIs such as NDVI, EVI, EVI2, and
SR (C. J. Huang et al., 2019a; Peng and Gitelson, 2012) in-
dicate the highest potential for our study.

Here, we introduce a new agricultural EC measurement
site in northeastern Germany and present daily and annual
CO2 dynamics over two and a half growing seasons along
with the relevant site, meteorological, and management data.
We explore the capacity of high-resolution satellite imagery
in conjunction with a comprehensive range of VIs to esti-
mate daily NEE, GPP, and Reco. To overcome the problem of
the potential spatial mismatch of the two signals, the source

area of the two signals was matched to the same footprint
area. Instead of average NEE values (e.g., midday or 8 d av-
erages around acquisition dates), integrated daily NEE values
were used to allow for continuous full-C-budget calculations.
Challenges along the course of the phenological cycle were
analyzed to better understand the achievable accuracy and
uncertainties associated with this approach.

To summarize, the objectives of this paper were (1) to
present and evaluate the CO2 dynamics and C budgets of
a newly established EC cropland site in northeastern Ger-
many; (2) to assess the performance of a range of various
high-resolution imagery-derived VIs to estimate daily NEE,
GPP, and Reco at this site; and (3) to discuss and evaluate
the results of this simple approach in comparison with more
complex methods and future research requirements.

2 Data and methods

2.1 Site description

The net ecosystem exchange is measured with an eddy
covariance (EC) system located in an arable field in
the northeastern lowlands of Germany (53°52′05.7′′ N,
13°16′07.0′′ E) southeast of the village of Heydenhof
(Fig. 1). The site is situated in an Upper Pleistocene land-
scape with a temperate oceanic climate of yearly mean tem-
perature and precipitation of 8 °C and 580 mm during 1961–
1990 and 9.2 °C and 575 mm during 1991–2020, respectively
(nearby German Weather Service climate stations “Anklam”
and “Greifswald”). The soil is a clayey loam with more than
10 % clay and contains about 1.5 %–2 % organic C with a
high gradient across the field (personal communication with
land manager, Mortimer von Maltzahn, 19 January 2022).
The continuous half-hourly and ongoing EC measurements
started on 4 March 2020, 17:30 UTC, at a measurement
height of 7 m above ground level. The site has been under
arable cropping for at least 60 years, with a crop rotation of
1/3 winter rape (WR) and 2/3 winter wheat (WW) during
the past few years (personal communication with land man-
ager, Mortimer von Maltzahn, 19 January 2022). The details
of the crop rotation and management for the time and field
under investigation surrounding the EC tower (named “main
field” here) is outlined in Table 1. Exact dates of management
were not provided by the land manager and were delineated
from visual inspection of half-hourly imagery provided by
a tower-mounted camera overlooking the field facing north-
wards.

The EC tower is situated close to the border of an adja-
cent field to the east (distance: 120 m) and relatively close
to an adjacent field to the south (distance: 285 m) (Fig. 1).
The tower itself sits on the southern edge of a dry cattle hole
(north–south length 45 m, width 25) at an altitude of 22.7 m
above sea level.
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Table 1. Crop management information for the main field. Note that information about yield and straw amounts as well as crop and soil
management is based on long-term averages. Yearly field-scale data are confidential to the farmer.

Season 2019/2020 2020/2021 2021/2022

Crop winter rape winter wheat winter wheat
Sowing date approx. 12 Aug to 25 Aug approx. 15 Sep to 15 Oct 14 Oct 2021
Harvest date 23 Jul 2020 9 Aug 2021 21 Jul 2022
Yield [t C ha−1] 1.8 4.05 4.05
Straw [t C ha−1] 1.92 (left in the field) 1.92 (removed)

Fertilizer [kg N ha−1] 100 (cattle manure in autumn) 220 (urea in spring) 220 (urea in spring), partly
+140 (urea in spring) replaced by organic fert.

Soil cultivation/plowing 3× between harvest and sowing 3× between harvest and sowing 3× between harvest and sowing

Herbicides/pesticides 3–4× in spring 4× in spring 4× in spring

Figure 1. Setting and layout of the arable fields surrounding the EC tower in northeastern Germany. Isolines denote the cumulative contri-
bution of the source area to the flux signal over the measurement period (5 March 2020 to 23 August 2022) of the “Heydenhof” EC tower.
For more detailed information of the cumulative source area, please refer to Appendix B. The transparent gray area outlines the polygon for
which average satellite-derived vegetation indices were calculated. The outer borders of the respective field (as seen on the picture) surround
the area for which the homogeneous (in terms of crop dynamics) EC flux time series is calculated (main field; see text). (Original map
designed by Karl Kemper.)

2.2 Measurement equipment and raw flux data
processing

EC flux measurements were carried out with a 3D ultra-
sonic anemometer (HS-50, Gill Instruments, UK) and an
open-path infrared gas analyzer (LI-7500DS, LI-COR Bio-
sciences, USA). Data from these sensors were measured

with a frequency of 20 Hz. Half-hourly fluxes were calcu-
lated with the software EddyPro (version 7.0.7, LI-COR Bio-
sciences, USA). Meteorological data including air tempera-
ture and relative humidity (HMP155, Vaisala, FI), barometric
pressure (model 61302V, Young, USA), and incoming and
outgoing shortwave and infrared radiation (CNR4, Kipp &
Zonen, NL) and photon flux density (LI-190, LI-COR Bio-
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sciences, USA) were measured with a frequency of 1 Hz and
averaged to half-hourly values. The 15 min precipitation data
were collected with an RG Pro Adcon Rain Gauge (Itzerott
et al., 2018).

2.3 EC data processing

The handling of half-hourly NEE data, from 5 March 2020 to
23 August 2022, followed standard EC data processing steps
and is further detailed in Appendix A–C. Data were quality-
controlled (Appendix A) and filtered for spatial representa-
tion of the main field by footprint modeling (Appendix B).
The FP filter threshold was optimized according to data avail-
ability (i.e., acceptable number of gaps) and representative-
ness of the main field. Times of insufficient turbulence were
filtered by the u∗-threshold approach (Appendix C), and sub-
sequent gap filling (Appendix C) used only data of the high-
est quality, i.e., quality flag = 0 following the CarboEurope
IP flag convention (Mauder and Foken, 2004). Flux partition-
ing into GPP and Reco followed Reichstein et al. (2005).

Half-hourly C fluxes were subsequently aggregated to
daily sums for linking with satellite data. General data pro-
cessing, analysis, and visualization were carried out in R (R
Core Team, 2021). NEE sign notation followed the microme-
teorological sign convention, which denotes C gains by veg-
etation with negative values and C losses to the atmosphere
from auto- and heterotrophic respiration with positive val-
ues (Aubinet et al., 2009). When describing and discussing
C fluxes in the text, NEE and GPP are referred to by their
absolute values such that NEE and GPP “decrease” with a
decrease in C uptake.

2.4 C budget calculation and evaluation

To assess the magnitude of the C exchange as compared with
the other components of the cropland soil C budget, a simpli-
fied C budget (A4) for the two WW growing seasons (sowing
to harvest, Table 1) was calculated as follows:

C budget= NEE− import+ export,

where import is limited to the C of seeds, since no manure is
applied, and export refers to C harvest losses.

2.5 Satellite-based vegetation indices

Average values of VIs (Table 2) of satellite imagery pixels
were calculated from within the borders of the main field
(transparent polygon in Fig. 1). The source area of the satel-
lite signal thus matches the source area of the EC tower.
The L2A products of the Sentinel-2 multi-spectral instru-
ment provided by the Copernicus program of the EU and the
European Space Agency were used. Sentinel-2 image pro-
cessing was carried out on the Google Earth Engine plat-
form (Gorelick et al., 2017). The quality map SCL (scene
classification) of the Sentinel-2 L2A product is used to fil-
ter cloud, cloud shadow, and saturated pixels to ensure only

high-quality scenes were selected for the calculation of the
vegetation indices. Satellite overpass time is approximately
10:00 (local solar time) for Heydenhof.

A continuous time series of daily satellite data was con-
structed by linear interpolation for the days between acquisi-
tion dates.

2.6 Correlation between daily C fluxes and vegetation
indices

Correlations and linear regressions between daily C fluxes
and VIs were calculated for the days on which reliable satel-
lite data were available. The correlation was used to iden-
tify which VIs were most suitable for estimating C fluxes.
Higher correlations indicate a higher coincidence and thus
higher suitability of a VI to estimate C fluxes.

2.7 Estimation and evaluation of daily C fluxes from
VIs by linear regression

Simple linear regressions of the type

C flux= a×VI+ b (1)

were fitted to the 73 data pairs to subsequently estimate daily
C flux values from interpolated satellite data. Resulting lin-
ear regressions were tested for statistical significance, and
the coefficient of determination (R2) indicates the amount of
variability in the dependent variable (i.e., C flux) explained
by the regression.

As a measure of accuracy for the final estimation of daily
C fluxes (902 data points), the correlation coefficient ρ was
used for association (trend similarity) and the R2 and RMSE
for coincidence, i.e., percentage variability explained by the
regression and total difference between measured and es-
timated value, respectively. Additionally, the “model effi-
ciency” factorE (Nash and Sutcliffe, 1970) was calculated to
characterize the ability of the linear models to replicate daily
C fluxes. Values range from −∞ to 1, where 1 indicates a
near-perfect fit, 0 denotes that the approach is not better than
taking the mean of the observations, and any value below 0
rates the estimation approach as poor.

Linear models were set up for three different evaluation
periods: (1) the whole observation period ranging from the
first to last satellite image, (2) for the two WW growing peri-
ods ranging each from sowing to harvest, and (3) for the first
WW growing period (WW1). The last one was subsequently
used to estimate daily C fluxes of the second WW grow-
ing period (WW2) as an evaluation of the temporal transfer-
ability of this approach and associated absolute errors. Our
linear-regression-based WW2 C flux estimates were subse-
quently evaluated by comparing our results with simulation
results of mechanistic crop models and with satellite data–
model fusion approaches estimating cropland C fluxes at var-
ious (other) sites.
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Table 2. List of vegetation indices calculated from Sentinel-2. BLUE, GREEN, RED, RE1–3 (red edge), NIR (near-infrared), and SWIR
(shortwave infrared) refer to the respective spectral bands of Sentinel-2 (B2–B7, B8A, B11).

Index Formula Name, range, purpose

NDVI (NIR−RED) / (NIR+RED) Normalized difference vegetation index. This character-
izes the density/green biomass of vegetation (Rouse et
al., 1974).

EVI 2.5×((NIR−RED) /
(NIR+ 6×RED− 7.5×BLUE+ 1))

Enhanced vegetation index. This reduces soil and at-
mospheric contamination of vegetation signals and op-
timizes the vegetation signal in areas with a high leaf
area index (LAI) where NDVI would saturate (Liu and
Huete, 1995).

EVI2 2.5× ((NIR−RED) /
(NIR+ 2.4×RED+ 1))

2-band enhanced vegetation index. This has the highest
similarity with the EVI but without using the blue band
at which surface reflectance values can be sensitive to
residual errors in atmospheric correction (Jiang et al.,
2008).

GNDVI
(i.e., −NDWIMcFeeters)

(NIR−GREEN) / (NIR+GREEN) Green NDVI. This is an indicator of the photosynthetic
activity of vegetation assessing the moisture content and
nitrogen concentration in plant leaves; it is more sensi-
tive to chlorophyll concentration than NDVI (Gitelson
et al., 1996). The GNDVI is the inverse of the NDWI as
defined by McFeeters (1996).

NDSVI (SWIR1−RED) / (SWIR1+RED) Senescence index (0–1). This detects senescent vegeta-
tion (Qi et al., 2002).

NDWI (or LSWI) (NIR−SWIR1) / (NIR+SWIR1) Normalized difference water index/land surface water
index (−1 to 1). This is used to monitor changes in the
water content of leaves; it should be used as comple-
mentary to NDVI and not to substitute it (Chandrasekar
et al., 2010; Gao, 1996).

MNDWI (GREEN−SWIR1) /
(GREEN+SWIR1)

Modified normalized difference water index. This is
modified from NDWIMcFeeters to enhance open water
features (Xu, 2006).

SAVI ((NIR−RED) / (NIR+RED+L))×
(1+L), where L= 0.5

Soil-adjusted vegetation index. This transformation of
NDVI nearly eliminates soil-induced variations in the
VI (Huete, 1988).

SR NIR /RED Simple ratio. Leaves absorb more red than infrared
light; thus, the ratio increases with more green biomass
(Jordan, 1969).

S2REP 705+ 35× ((((RE3+RED) / 2)−RE1) /
(RE2−RE1))

Sentinel-2 red-edge position (REP). REP is the point of
the maximum slope along the red edge (RE); it has been
used to enhance estimates of leaf and canopy chloro-
phyll content (Frampton et al., 2013; Guyot and Baret,
1988).

3 Results and discussion

3.1 Evaluation of C exchange dynamics and C budgets

In total, 902 d of half-hourly flux data contributed to this
analysis. Since only measurements of the highest quality
were kept for subsequent processing (see Sect. 2.3), only

44 % of half-hourly data were available for further process-
ing.

This was further reduced by the integration of the FP
model results. Filtering the dataset for the main field (FP
modeling) reduced the available “qc0 data” to 18.7 % and
12.8 % for an FP filter threshold of 0.7 and 0.8, respectively.
The higher threshold renders very long and continuous gaps
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during winter, which makes the gap filling highly uncertain
and was the main reason for the deviations between the two
gap-filled time series using 0.7 or 0.8 as the threshold for FP
filtering (data not shown). While using the FP model thresh-
old of 0.8 valid fluxes might have been more representative
for the main field, the time series employing the threshold of
0.7 was concluded to be more reliable and good at balancing
the loss of some representativeness. Still, the available data
coverage was quite low compared to other studies (Schmidt
et al., 2012). The proportion of missing data is higher dur-
ing the nighttime (defined as fluxes at < 20 W m−2 global
radiation) than during the daytime, i.e., 93 % versus 70 %,
respectively (for the threshold of 0.7).

The final time series was gap-filled using a single u∗

threshold of 0.2 as estimated by REddyProc (Wutzler et al.,
2018). The large proportion of gaps did not allow for season-
specific u∗-threshold estimation. Moureaux et al. (2008) also
used a single value for a WW crop in Belgium, which was
very similar to ours, i.e., 0.22. They further suggested that
u∗ uncertainty had a very low impact on fluxes. Figure 2 de-
picts the gap-filled NEE, GPP, and Reco curves along with
relevant meteorological variables.

Generally, growing conditions were more favorable in the
second growing season than in the first and last (see “climate
growing season” parameters in Fig. 2), which was reflected in
the higher absolute values of all fluxes in 2021 than in 2020
and 2022. Overall, NEE, GPP, and Reco flux dynamics at our
cropland site showed a typical pattern of European WR and
WW cropping. An in-depth description of C flux dynamics
at our cropland site is presented in the Supplement.

The total C budget during the observation period
amounted to a total loss of 4.46 t C ha−1, accounting for
C exports through WR and WW harvests and straw re-
moval after the last harvest, ignoring C import via seeds.
However, C import via seeds typically ranges between 0.02
and 0.08 t C ha−1 for WW (Aubinet et al., 2009; Schmidt
et al., 2012; Waldo et al., 2016), which is negligible com-
pared with the other C budget components. C export through
harvest and straw removal amounts to 11.82 t C ha−1. C
losses from the systems thus outbalance the total net up-
take of −7.36 t C ha−1. Uncertainty as provided by the
u∗-bootstrapping procedure of REddyProc ranged from
−7.53 t C ha−1 (0.05 percentile) to −7.37 t C ha−1 (0.95 per-
centile) for the net atmospheric C exchange. The C budget
of the two individual WW seasons amounted to a net C up-
take in 2020/2021 of −1.34 t C ha−1 and to a net C loss in
2021/2022 of 3.68 t C ha−1 due to the removal of straw. They
were well within the range of respective C budgets of Euro-
pean WW sites, ranging from −4.45 to 2.54 t C ha−1 (Waldo
et al., 2016; Anthoni et al., 2004; Aubinet et al., 2009; Béziat
et al., 2009; Li et al., 2006; Schmidt et al., 2012; Wang et
al., 2015). Individual C budget components are reported in
Table 3.

3.2 Satellite vegetation indices

In total, 73 scenes with good-quality surface reflectance data
were obtained for our main field for the period 5 March 2020
to 23 August 2022. Standard deviations of VIs within the
main field per image were small, indicating low spectral het-
erogeneity of the main field, and were thus considered negli-
gible for the purpose of this study (Fig. 3).

The temporal dynamics of satellite-derived VIs generally
matched well with the seasonal pattern of NEE and GPP
(Fig. 3) – except for NDSVI and MNDWI, where an increase
in absolute VI values concurred with an increase in absolute
NEE and GPP values. One marked deviation occurred dur-
ing the onset of the winter seasons, which coincided with
longer gaps in satellite images (winter months are generally
characterized by higher cloud cover causing gaps in satel-
lite imagery time series). Here, the gap in winter VI data
was characterized by a presumably initial increase in abso-
lute VI values without indication of a maximum and by rel-
atively high absolute VI values at the onset of spring in the
following year. However, a respective dynamic (increase in
absolute GPP or NEE) could not be observed. GPP values
showed low C uptake (about −1 g C m−2 d−1) from October
to February, while net C uptake increased only slightly (due
to decreasing Reco). The increase in absolute VI values to-
ward the end of the years 2020 and 2021 for WW, which is
not common (Itzerott and Kaden, 2006a, b), was observed at
our site in the years prior to our study period as well (data
not shown). Similar patterns were also observed for WW
in Kansas, USA (Masialeti et al., 2010), and an immediate
increase in “greenness” after crop emergence was also cor-
roborated by the “Greenness Index” of the PhenoCam pic-
tures of Heydenhof (https://phenocam.nau.edu/webcam/roi/
heydenhof/AG_1000/, last access: 12 August 2024). It was
thus hypothesized that the diversion between the NEE and
GPP signals and the VI signals can be explained in analogy
to the phenological development of winter crops. After emer-
gence, the plants quickly developed a relatively high leaf area
index (LAI) with a high specific leaf area (cm2 g−1) before
winter dormancy. They assimilated less C into biomass (i.e.,
GPP) per leaf area than during the warmer part of the grow-
ing season (Korres et al., 2014; Van Oosterom and Acevedo,
1993; Weaver et al., 1994). Under light-limiting conditions,
plants invest in leaf area rather than leaf biomass (Rawson
et al., 1987). This presumably caused the mismatch between
the course of GPP and NEE and the VIs. This winter de-
viation counteracted the straightforward linear correlation
which was noted for the rest of the observation period. It
denoted a systematic discrepancy in the linear relationship
between VIs and GPP and NEE.

It should be noted, however, that Sentinel-2 VIs were able
to pick up the decline in NEE and GPP during WR flowering
(from around 23 April to around 27 May 2020). The sensitiv-
ity of VIs to WR flowering has also been reported by Itzerott
and Kaden (2006b) for NDVI.
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Figure 2. Gap-filled time series of daily sums of NEE (gray dots), GPP (gray squares), and Reco (gray triangles) [g C m−2 d−1]; 10 d rolling
means of NEE (solid black line in top panel), GPP (dashed black line), and Reco (dotted black line); and auxiliary meteorological variables
(daily mean air temperature [°C], daily mean vapor pressure deficit (VPD) [hPa], daily sum of global radiation (Rg) [W m−2], daily sum of
precipitation [mm]). Numbers in the C flux panels denote the seasonal (sowing to harvest) cumulative C fluxes. “Flowering of WR” in the
top panel illustrates the duration of the flowering of winter rape (WR) from 23 April to 27 May. Gray boxes in the meteorological data panels
denote the time period of the “climate growing season” for which descriptive climate parameters were calculated. They start on 5 March each
year to match the first growing season in which EC measurements only started on 5 March 2020. They end on the days of harvest each year:
23 July 2020, 9 August 2021, and 21 July 2022. Dates for field management actions were determined from the inspection of tower-mounted
field camera photos, since the respective information was not given by the farmer. Numbers in the gray boxes denote mean air temperature,
temperature sums with base temperature 0, sum of VPD, Rg, and precipitation for the climate growing seasons, respectively.
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Table 3. C budget components for the two WW growing seasons. Sums of C fluxes from sowing to harvest are reported in t C ha−1. Values
in brackets denote the 0.05 and 0.95 percentile from the uncertainty estimation based on bootstrapping (Wutzler et al., 2018).

WW NEE GPP Reco Harvest Straw C budget

2020/2021 −5.4 −19.47 14.08 4.05 – −1.34
(−5.47 to −5.34) (−19.44 to −18.63) (13.17–14.1) (−1.42 to −1.29)

2021/2022 −2.29 −11.65 9.36 4.05 1.92 3.68
(−2.292 to −2.3) (−11.68 to −11.35) (9.05–9.38) (3.67–3.68)

Figure 3. Course of NEE (gray dots) and GPP (gray squares) plotted against Sentinel-2-derived vegetation indices. C flux measurements
are aggregated to daily sums superimposed with a 10 d rolling mean (black curves). Note that vegetation indices (black and blue dots) are
plotted inversely to facilitate the comparison of the dynamic pattern of the two types of signals. Error bars (gray) of VIs indicate the standard
deviation across the main field. Dashed black and blue lines connect the individual VIs to facilitate visually the course of VIs over time.

A less obvious deviation seemed to occur during senes-
cence of WR. While the VI signals of NDVI, GNDVI, EVI,
EVI2, SAVI, and NDSVI pick up the senescence-related drop
in NEE for WW immediately, these VIs lag about 18 d (av-
erage across VIs based on the observation that VI values had
reached a plateau at the same time as max C uptake (i.e., min
NEE) and did not drop at the same time as NEE decreased;
another similarly high VI value is observed about 18 d later

before the next VI value is much lower) behind the NEE sig-
nal for the senescence period of WR.

Most VIs were sensitive to the distinctly different C up-
take dynamics of the summers of 2021 and 2022. C uptake
is lower in 2022, and most VIs, except S2REP, MNDWI, and
NDSVI, reach different levels of maximum absolute values.
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3.3 Correlations between daily C fluxes and vegetation
indices

Since the 73 data points of NEE, GPP, and Reco were
not normally distributed (Shapiro–Wilk normality test, p <
0.05), the non-parametric Spearman’s rank correlation coef-
ficient ρ was used to determine linear correlations. The lin-
ear correlations (Spearman’s ρ) and respective significance
levels among C fluxes and VIs were generally high and sig-
nificant for NEE and GPP but low and less significant for
Reco (Fig. 4). Correlations among NEE, GPP, and Reco were
all significant (p < 0.001). GPP and Reco as well as GPP
and NEE had ρ values of −0.8 and 0.88, respectively. Bal-
docchi (2008) and Baldocchi et al. (2015) reported correla-
tions between GPP and Reco across ecosystems of 0.89 and
−0.83, respectively. Please note that Baldocchi (2008) re-
ports GPP (“FA”) with a positive sign and not with a nega-
tive sign as we do and as Baldocchi et al. (2015) do. Thus,
his correlation value between GPP and Reco is positive as
opposed to ours and to that of Baldocchi et al. (2015). The
correlations can still be compared based on the absolute val-
ues. NEE and Reco correlated by −0.47 only.

There was a highly significant correlation of NEE and GPP
(p < 0.001) with all VIs except MNDWI, which showed a
lower level of significance (p < 0.01). There was a highly
significant correlation of GPP (p < 0.001) with all VIs ex-
cept MNDWI (p < 0.01) and NDSVI (p < 0.05), and both
correlations showed a lower level of statistical significance.
NEE correlated best with EVI2 and SAVI (ρ =−0.93),
followed by EVI, NDVI, GNDVI, SR (ρ =−0.92), and
S2REP (ρ =−0.9), while NDWI showed a ρ value of−0.82.
NDSVI and MNDWI had lower correlations of −0.51 and
−0.23 only. GPP generally showed lower correlations with
VIs and a different ranking in the following order: EVI,
EVI2, and SAVI with a ρ value of−0.84, followed by NDWI
(−0.83), S2REP (−0.81), NDVI (−0.8), SR (−0.79), and
GNDVI (−0.77) and then MNDWI and NDSVI with −0.38
and −0.26, respectively. Reco showed significant but lower
correlations with VIs except NDSVI, which showed no sig-
nificant correlation. The highest correlation was observed
for NDWI with 0.58 followed by S2REP with 0.5 and EVI,
EVI2, and SAVI with 0.47. The low correlation between
Reco and VIs was not surprising, however, because respira-
tion and its underlying auto- and heterotrophic processes are
not directly connected with any surface reflectance character-
istics (Wohlfahrt et al., 2010). While autotrophic respiration
is closely linked with crop productivity (GPP) (Suleau et al.,
2011) and has been shown to dominate total Reco in cropland
systems during the growing season (60 %–90 %) (Suleau et
al., 2011; Zhang et al., 2013), the processes and environmen-
tal factors governing heterotrophic processes are more com-
plex (Grace et al., 2007) and not yet fully understood. While
temperature had low explanatory power for autotrophic res-
piration, it is a strong driver of heterotrophic respiration
(Suleau et al., 2011), which can dominate total Reco on an

annual basis (Zhang et al., 2013). The other main factor in-
fluencing heterotrophic respiration rates is the availability of
organic substrate, while soil moisture might have a negligi-
ble impact in this context when soil water content is between
wilting point and field capacity (Zhang et al., 2013). We spec-
ulate that the low correlation between Reco and VIs is mainly
due to the heterotrophic component of Reco. Additional in-
formation on temperature and soil organic matter content
could contribute toward improving this simple approach, al-
though data availability for separating heterotrophic and au-
totrophic respiration might be a limiting factor.

A correlation analysis using data points from the WW
growing periods solely indicated very similar correlations,
which varied only by 0.1 or 0.2, but the overall pattern stayed
the same (data not shown). Additionally, when running the
correlation analysis using only half-hourly flux data for the
time of satellite overpass, i.e., flux data of 10:00–10:30 UTC,
the correlations of C fluxes with satellite VIs slightly de-
creased in correlation intensity, but again the overall pattern
and significance levels stayed the same (data not shown).
This supported the applicability of daily accumulated fluxes
for the approach presented here, as the aim was to estimate
total C exchange over time.

Similarly high and significant correlations had been found
between VIs and daily GPP/NEE for grasslands (Noumonvi
et al., 2019; Wohlfahrt et al., 2010) and between VIs and
daily GPP for WW crops (Juszczak et al., 2018). Noumonvi
et al. (2019) also showed a lower correlation of NDSVI with
NEE and GPP as compared with other VIs. While the corre-
lations between VIs and daily GPP were found to be gener-
ally higher than with NEE for grasslands in previous studies
(Noumonvi et al., 2019; Wohlfahrt et al., 2010), as opposed
to our results for croplands, Noumonvi et al. (2019) showed
that the correlations with NEE during dry phases were higher
than with GPP for nearly all the VIs tested. Their definition
of “dry phase” (VPD > 1500 Pa), however, did not apply to
the weather conditions of our site for the time of observation.
Further investigations are needed to understand the causes of
the differences in the efficacy of VIs to estimate GPP versus
NEE and the impact of dry/wet conditions on the efficacy.
Generally, our correlations for NEE and GPP were high com-
pared with the correlation of VIs with other crop vegetation
parameters such as biomass, LAI, chlorophyll a and b, or
total nitrogen content (Boegh et al., 2002; Lilienthal, 2014),
which are common parameters inferred from VIs for crop
growth monitoring.

Overall, VIs based on the red, green, NIR, or red-
edge spectral bands of the satellite sensors, such as NDVI,
GNDVI, EVI, EVI2, SAVI, and SR, showed better corre-
lations with NEE than VIs containing shortwave infrared
(SWIR) band information, such as NDSVI, NDWI, and
MNDWI. This did not hold true for correlations between VIs
and GPP, where NDWI showed the second-highest correla-
tion with GPP. Reco even correlated best with NDWI. VIs
using red, green, NIR, or red-edge spectral bands were de-
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Figure 4. Rank correlation matrix of NEE, GPP, and Reco with EVI, EVI2, NDVI, GNDVI, NDSVI, SAVI, S2REP, MNDWI, NDWI, and
SR from Sentinel-2. Numbers indicate the correlation coefficient ρ; the size of the number is scaled by the degree of correlation. Red stars
denote the statistical significance levels: ∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, . < 0.1, and “ ” < 1. Scatterplots display a fitted line (red).

veloped and are extensively used to evaluate the “greenness”
or photosynthetic activity of plants. It was thus surprising
that VIs correlated better with the NEE signal than with GPP,
which is more directly related to photosynthetic plant activ-
ity, while NEE is composed of the two opposing fluxes of
GPP and Reco.

3.4 Linear models to estimate daily C fluxes

For the linear modeling, the analyses were confined to NEE
and GPP, since correlations between VIs and Reco were com-
parably low and Reco could also be calculated by deduct-
ing GPP from NEE. The curved relationship of NEE and
GPP with VIs required a data transformation. EVI2 was cho-
sen to determine the type of transformation because EVI2
showed one of the highest correlations with NEE (Fig. 4).
Here, transforming NEE values to log(−NEE+10) gave the
best linear regression between EVI2 and NEE (R2

= 0.86,
p < 0.001, residual standard error= 0.14). GPP values were
transformed likewise with log(GPP+10) (R2

= 0.78, p <
0.001, residual standard error = 0.18).

Interception and slope parameters as well as the coefficient
of determination (R2 value) of VIs and NEE data were all
statistically significant at the level of p < 0.001 (Table 4).

Linear regressions explained on average 81 % of the vari-
ability in observed daily NEE values for the whole obser-
vation period, ranging from 65 % for SR to 87 % for EVI2
and SAVI. Linear regressions for the two WW growing pe-
riods showed higher explanatory power, with an average R2

value of 0.84, and, again, EVI2 and SAVI had the highest ex-
planatory power as with the whole observation period with
an R2 value of 0.91. For the first WW growing period only
(WW1), linear regressions explained on average 92 %, rang-
ing from 77 % for SR to 96 % for EVI2 and NDWI. For the
second WW growing period (WW2), linear regressions ex-
plained on average 81 %, ranging from 62 % for NDWI to
92 % for EVI and SR. However, average intercept, slope, and
R2 values were not significantly different among evaluation
periods, except for R2 between the whole observation pe-
riod and WW1 and between WW1 and WW2. Overall, EVI2
seemed to be the VI which explained most robustly the vari-
ability in observed daily NEE values across different crops
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Table 4. Statistics of linear regression models of NEE and GPP versus VIs for 73 (whole observation period), 37 (both WW growing periods),
13 (first WW growing period – WW1), and 24 (second WW growing period – WW2) data pairs. All parameters were statistically significant
at the level of p < 0.001, except where explicitly stated: p < 0.01 (∗∗).

Whole observation period WW WW1 WW2

C flux VI Intercept Slope R2 Intercept Slope R2 Intercept slope R2 Intercept Slope R2

NEE* EVI 1.87 1.29 0.84 1.91 1.36 0.88 1.82 1.44 0.92 1.91 1.4 0.92
EVI2 1.85 1.49 0.87 1.89 1.56 0.91 1.78 1.64 0.96 1.86 1.71 0.86
NDVI 1.67 1.4 0.86 1.56 1.63 0.88 1.56 1.61 0.9 1.52 1.72 0.82
GNDVI 1.3 2.06 0.85 1.17 2.28 0.88 1.17 2.24 0.94 1.05 2.51 0.8
SAVI 1.79 1.7 0.87 1.8 1.82 0.91 1.7 1.91 0.95 1.79 1.93 0.86
NDWI 2.26 1.04 0.76 2.35 1.09 0.77 2.14 1.57 0.96 2.39 0.92 0.62
S2REP −33.61 0.05 0.76 −33.8 0.05 0.81 −37 0.05 0.92 −31.54 0.05 0.66
SR 2.15 0.05 0.65 2.27 0.04 0.68 2.26 0.04 0.77 1.98 0.11 0.92

Mean – – 0.81 – – 0.84 – – 0.92 – – 0.81

GPP* EVI 2.28 1.24 0.77 2.15 1.52 0.83 2.28 1.38 0.8 2.12 1.56 0.78
EVI2 2.26 1.41 0.78 2.13 1.75 0.84 2.27 1.54 0.8 2.06 1.89 0.81
NDVI 2.16 1.22 0.65 1.87 1.65 0.67 2.16 1.36∗∗ 0.61∗∗ 1.8 1.69 0.61
GNDVI 1.83 1.8 0.64 1.45 2.34 0.69 1.79 1.95 0.68 1.34 2.46 0.6
SAVI 2.21 1.6 0.77 2.04 2.01 0.82 2.21 1.76 0.77 1.98 2.12 0.8
NDWI 2.63 1.04 0.76 2.63 1.3 0.81 2.59 1.48 0.82 2.63 1.14 0.74
S2REP −32.88 0.05 0.64 −38.1 0.06 0.77 −38 0.06 0.94 −32.47 0.05 0.54
SR 2.53 0.05 0.61 2.56 0.04 0.62 2.71 0.03∗∗ 0.62∗∗ 2.22 0.12 0.76

Mean – – 0.7 – – 0.76 – – 0.76 – – 0.71

∗ Note: NEE and GPP were both log-transformed; see text. To increase readability, the best-performing VIs (as indicated by R2) within a group are formatted in bold and
worst-performing VIs within a group are formatted in italic.

and growing seasons; however, different VIs performed dif-
ferently with varying crops or growing conditions.

For GPP, interception and slope parameters and the coeffi-
cient of determination were highly significant (p < 0.001),
except the slope and R2 of NDVI and SR in the WW1
growing period (p < 0.01). Among evaluation periods, the
mean values of interception, slope, and R2 were not signifi-
cantly different. Linear regressions explained (significantly)
less than for NEE, i.e., about 10 % (p < 0.05) for the whole
observation period, 8 % for the two WW growing periods,
16 % (p < 0.05) for WW1, and 10 % for WW2. None of the
mean values of the regression parameters were significantly
different between NEE and GPP within one evaluation pe-
riod. This suggested that GPP could be estimated with one
generic regression model which is valid for different win-
ter crops and different growing periods. However, this small
dataset might not allow for this general conclusion.

As with NEE, EVI2 seemed to explain most of the vari-
ability in the GPP data for the whole observation period, the
two WW growing periods, and the second WW growing pe-
riod. S2REP showed the highest coefficient of determination
for the WW1 period of 0.94, while it was rather low for the
whole observation period, with a value of 0.64.

Juszczak et al. (2018) found an R2 value for the linear
regression between ground-based and spectroscopy-based
NDVI and SAVI, respectively, and GPP of WW of 0.56 and
0.59 (p < 0.0001), respectively. Madugundu et al. (2017)

achieved R2 values of 0.81 (p = 0.04), 0.86 (p = 0.02),
and 0.76 (p = 0.33) for the linear regressions between GPP
measurements during an irrigated maize-growing season
and Landsat 8-derived NDVI, EVI, and LSWI, respectively.
These values are based on only 11 d of measurements, which
might be the reason for not showing high statistical signif-
icance. X. Huang et al. (2019) reported R2 values of 0.27
and 0.69 for NDVI and BRDF (bidirectional reflectance dis-
tribution function)-corrected NDVI, 0.83 and 0.03 for EVI
and BRDF-corrected EVI, and 0.81 and 0.56 for EVI2 and
BRDF-corrected EVI2 for the annual GPP of five cropland
sites in the USA (rainfed maize) and Finland (spring barley
on peat). When accounting for temperature, moisture stress,
and photosynthetically active radiation, these values gener-
ally increased from between 0.4 and 0.6 to between 0.6 and
0.8 at the monthly scale. Overall, these results indicate a
highly variable performance of linear regressions between
VIs and cropland GPP, but EVI and EVI2 seem to outper-
form other VIs as proxies for GPP, as in our case and that of
X. Huang et al. (2019).

Overall, our regressions for daily NEE and GPP showed
a better fit to the C flux data than a similar study for grass-
land (Noumonvi et al., 2019). This might be attributable to
the matched source area of EC and satellite data here; but
more importantly, managed crops have a very distinct grow-
ing cycle which might also explain the better regression re-
sults. Still, our GPP regression model of NDVI and SAVI ex-
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plained about 10 % more than the GPP regression models of
Juszczak et al. (2018). The study by Madugundu et al. (2017)
might not be considered robust enough for comparison of the
hardly significant R2 values based on only 11 data pairs.

Further, our dataset allowed us to conclude that different
crops could benefit from linear regression models based on
different VIs for NEE, but this needs to be verified with more
data.

3.5 Evaluation of estimated daily C fluxes

Continuous daily C fluxes were estimated by applying the
linear regression models (Table 4) to daily interpolated VI
values. The evaluation is discussed in terms of three aspects:
(1) statistical measures of association and coincidence be-
tween estimates and measurements, for the different VIs,
among observation periods, and between NEE and GPP;
(2) comparing statistical measures for the temporal transfer-
ability (regressions of WW1 to estimate WW2 C fluxes); and
(3) absolute errors in terms of the amount of seasonal accu-
mulated C of NEE and GPP for WW2, from linear regres-
sions based on WW1 to results from dedicated crop ecosys-
tem models simulating WW and satellite data–model fusion
approaches estimating cropland C fluxes.

3.5.1 Association and coincidence

Overall, the order of statistical performance among VIs (Ta-
ble 5) changed slightly compared with the evaluation of the
linear regressions (Table 4).

Estimates of daily NEE values showed a better fit to the
measured data than GPP estimates. However, only mean cor-
relations (ρ) and RMSEs were systematically statistically
different between NEE and GPP when comparing within ob-
servation periods (Welch two-sample t test, R). Individual
statistical measures did not vary systematically, i.e., showing
consistent improvements or downgrades, among evaluation
periods (Table 5).

The mean coincidence of NEE estimates in terms of R2,
RMSE, and E improved from the whole observation period
over WW to WW2; however, this improvement was only
significant for mean R2 and RMSE values and only from
the whole observation period to WW2. This supported the
hypothesis that different VI models are needed to estimate
C fluxes of individual crops. For the whole observation pe-
riod, NEE was best estimated by EVI2, GNDVI, and SAVI
with an average RMSE of 2.13 g C m−2 d−1 and a model-
ing efficiency of 0.73. For the two WW growing periods,
estimates with S2REP produced the lowest RMSE and the
best modeling efficiency of 1.72 g C m−2 d−1 and 0.81, re-
spectively. The lowest performance was achieved with SR
for all observation periods, except for R2 for WW2. For
WW2, GNDVI gave the lowest RMSE of 1.35 g C m−2 d−1,
the second-highest R2 value of 0.87, and a modeling effi-
ciency of 0.86. Wohlfahrt et al. (2010) modeled daily NEE

values of two grassland sites for 1 and 2 years, respectively,
using a light response model for GPP and a simple linear re-
lationship between measured air temperature and measured
Reco. The parameter estimates of maximum GPP and the
apparent quantum yield of the light response model were
based on the linear relationship to NDVI. This model ex-
plained 60 % and 80 % of measured daily NEE at two dif-
ferent grassland sites, respectively. However, NDVI values
were derived from ground-based light sensors rather than
satellites, thus exhibiting a different spatial resolution and
representativeness than the satellite-derived VIs of our ap-
proach. Furthermore, the model was driven by half-hourly
photosynthetically active radiation measurements, and NEE
values were simulated for the same years which were used
for their model parameterization. Still, despite using half-
hourly radiation measurements to simulate daily NEE, the
fraction of data variability explained was similar to or less
than our results for NDVI.

Individual statistical evaluation measures for GPP esti-
mates did not differ significantly among evaluation periods,
except ρ and R2 between the whole observation period and
WW2. Here, only R2 increased from the whole observation
period to WW2, and as with NEE, the individual perfor-
mance of VIs varied among evaluation periods. For the whole
observation period, EVI, EVI2, and SAVI had a very similar
performance for all statistical measures, and only the corre-
lation (ρ) of S2REP showed the highest values of 0.79 for
this evaluation period.

3.5.2 Evaluation of temporal transferability by
comparing statistical measures

The mean coincidence of our NEE estimates for WW2 in
terms of R2 and RMSE was 0.86 and 1.64 g C m−2 d−1, re-
spectively (Table 5). These were very similar to simulation
results from a dedicated crop model (SAFY-CO2) driven
by satellite data for WW with R2 values of 0.78–0.9 and
RMSE values of 1.09–1.59 g C m−2 d−1 (Pique et al., 2020).
Pique et al. (2020) simulated 8 cropping years of WW at two
agricultural sites in southwest France, with observed annual
NEE values ranging from−208±19 to−410±45 g C m2 yr1.
Arora (2003) simulated NEE of one WW growing season
(doy 51–151) at an agricultural site in north-central Okla-
homa (USA) using a coupled land surface terrestrial ecosys-
tem model. RMSE values of 2.37 and 2.69 g C m−2 d−1 and
R2 values of 0.7 and 0.76 were achieved (Arora, 2003),
which indicated a slightly lower accuracy than our approach.
The ORCHIDEE-STICS (dynamic global vegetation model
with the process-oriented crop model STICS) and the SPA
(soil plant atmosphere) models showed lower mean R2 val-
ues of 0.75 and 0.83 and similar to higher RMSE values of
between 1.2 and 3.1 and 1.47 g C m−2 d−1, respectively (Sus
et al., 2010; Vuichard et al., 2016), compared with our val-
ues. ORCHIDEE-STICS and the SPA model were used to
simulate seven WW growing seasons at seven agricultural
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Table 5. Statistical evaluation of the final estimation of daily NEE and GPP from interpolated daily VI values for the whole observation
period from the first to the last satellite image, i.e., 22 March 2020 to 16 August 2022, for the two WW growing periods (WW; from sowing
to harvest) and the statistical evaluation of the estimation of the NEE and GPP fluxes for the second WW growing period (WW2) using the
linear model from the first WW growing period (Table 4). All ρ and R2 values were statistically significant at the level of p < 0.001 (∗∗∗).
To increase readability, the best-performing VIs (as indicated by R2) within a group are formatted in bold and worst-performing VIs within
a group are formatted in italic.

C flux VI ρ R2 RMSE E ρ R2 RMSE E ρ R2 RMSE E

Whole observation period WW WW2

NEE EVI 0.86 0.73 2.25 0.7 0.89 0.89 1.82 0.76 0.79 0.84 1.52 0.83
EVI2 0.87 0.75 2.15 0.73 0.9 0.83 1.89 0.77 0.8 0.87 1.45 0.84
NDVI 0.8 0.75 2.23 0.7 0.9 0.78 2.11 0.72 0.83 0.86 1.36 0.86
GNDVI 0.88 0.77 2.13 0.73 0.9 0.8 1.98 0.75 0.86 0.87 1.35 0.86
SAVI 0.87 0.76 2.12 0.73 0.9 0.83 1.88 0.78 0.81 0.88 1.38 0.86
S2REP 0.84 0.74 2.39 0.66 0.86 0.82 1.72 0.81 0.88 0.82 1.73 0.77
SR 0.87 0.53 3 0.47 0.89 0.59 2.75 0.52 0.81 0.89 2.72 0.44

Mean 0.86 0.72 2.32 0.67 0.89 0.79 2.02 0.73 0.83 0.86 1.64 0.78

GPP EVI 0.76 0.76 3.32 0.71 0.74 0.8 3.24 0.74 0.68 0.85 2.8 0.72
EVI2 0.76 0.76 3.26 0.72 0.73 0.8 3.25 0.74 0.69 0.88 2.6 0.75
NDVI 0.68 0.63 4.1 0.57 0.66 0.65 4.05 0.6 0.67 0.77 4.17 0.38
GNDVI 0.7 0.64 3.96 0.58 0.69 0.69 3.75 0.66 0.7 0.78 3.73 0.5
SAVI 0.75 0.75 3.34 0.71 0.73 0.78 3.32 0.73 0.69 0.87 2.75 0.73
S2REP 0.79 0.73 3.33 0.71 0.83 0.85 2.48 0.85 0.74 0.81 2.72 0.74
SR 0.69 0.53 4.53 0.46 0.69 0.55 4.64 0.47 0.65 0.84 5.05 0.09

Mean 0.73 0.69 3.69 0.64 0.72 0.73 3.53 0.68 0.69 0.83 3.4 0.56

sites and eight WW growing seasons at six agricultural sites
in central Europe, respectively (Sus et al., 2010; Vuichard
et al., 2016). The simulations were carried out at mostly
the same European sites where observed NEE values ranged
from−529 to−169 g C m2 (Sus et al., 2010) and from−451
to 15 g C m2 (Vuichard et al., 2016).

A comprehensive crop model inter-comparison study, car-
ried out at the aforementioned European cropland sites, how-
ever, showed a very high variability in model performances
simulating C fluxes of WW. The τ values (Kendall correla-
tion coefficient; as used in Wattenbach et al., 2010) ranged
from 0.28 to 0.81 (mean = 0.58) for growing season NEE
and modeling efficiency (E) values spread between 0.31 and
0.87 (mean = 0.55) (Wattenbach et al., 2010), while our re-
spective mean E values ranged from 0.44 to 0.86. Our GPP
estimates showed lower accuracy than the modeling exer-
cise that was previously mentioned in which R2 and RMSE
values were 0.86–0.96 and 0.9–2.79 g C m−2 d−1 for GPP
(Pique et al., 2020) as compared with our mean values of
0.83 and 3.4 g C m−2 d−1 for WW2, respectively. GPP was
simulated similarly well with the models in Wattenbach et
al. (2010) compared to our approach. Our mean ρ for GPP
estimates for WW2 was 0.69, and the mean E was 0.56; the
respective mean values from Wattenbach et al. (2010) were
0.58 for τ and 0.65 forE. ORCHIDEE-STICS showedR val-
ues over 0.7 for the growing season GPP of WW (Vuichard
et al., 2016).

The differences between observed and estimated NEE and
GPP in this study are visually exemplified for EVI2 in Fig. 5.

We also put our results into perspective with a number of
studies which use high-resolution satellite-based VIs in com-
bination with mechanistic or machine learning approaches to
estimate daily C fluxes for croplands. Fu et al. (2014) diag-
nosed cropland NEE using a regression tree model in combi-
nation with highly processed Landsat imagery and NDVI and
EVI. At the four cropland sites (rainfed maize, USA) in their
study, they achieved R2 and RMSE values of 0.66–0.91 and
1.95–2.34 g C m−2 d−1, respectively, where observed and di-
agnosed NEE were −0.68 (0.24 standard deviation) and
−1.4 (0.28 standard deviation) g C m−2 d−1, respectively.
They speculated that the overestimation of C uptake is due to
the “ill parameterization” of their statistical model because
of the low number of cropland sites. They do not leverage
the information about the different site characteristics to fur-
ther explore the large variability in the model performance
between the different sites. Bazzi et al. (2024) evaluated
the performance of a modified vegetation–photosynthesis–
respiration model supported by Sentinel-2 LSWI and EVI,
simulating NEE, GPP, and Reco at 12 European cropland
sites (range of crops including WW) for the period 2018–
2020. The R2 values ranged from 0.72 to 0.86 for daily
NEE, 0.81 to 0.86 for daily GPP, and 0.38 to 0.77 for daily
Reco. It should be noted, however, that this accuracy mea-
sure was not a cross-validation result but was for the same
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Figure 5. Measured (gray points and lines) and estimated daily NEE and GPP for the whole period (dotted black) for the two WW growing
periods (dashed black) and for the second WW growing period (solid black). Estimated NEE and GPP values for the whole period were
imputed from the linear regression from the whole observation period, NEE and GPP values for the two WW growing periods were calculated
from the linear regression based on the two WW growing periods, and NEE and GPP of the second WW growing period were based on the
linear regression from the first WW growing season only.

site years as used for parameter optimization. A combina-
tion of mechanistic modeling, Sentinel-2 or Landsat 8 optical
remote sensing data, and machine learning algorithms was
actually needed to achieve R2 values of 0.91 and 0.82 with
Sentinel-2 and Landsat 8 data, respectively, for daily GPP
estimates for 6 cropland site years (soybean, winter wheat,
winter barley, clover) (Wolanin et al., 2019).

While all these approaches do generally show a similar or
higher accuracy compared with our approach, a much higher
effort is needed to derive NEE and GPP estimates.

3.5.3 Absolute errors of temporal transferability

Absolute deviations between the measured seasonal C fluxes
of NEE and GPP and our estimates for every VI are dis-
played in Table 6. Total NEE estimates ranged from an
underestimation of C uptake of 195.8 g C m−2 (85.66 %,
S2REP) to an overestimation of 57.24 g C m−2 (25.04 %,
SR) (Table 6). The best estimates were achieved with
NDVI and GNDVI, with an overestimation of C up-
take of 33.36 g C m−2 (14.59 %) and an underestimation of
40.98 g C m−2 (17.93 %), respectively. Both VIs had the low-

est RMSE values of 1.36 and 1.35 g C m−2, respectively,
when estimating daily C fluxes (Table 5).

The model ensemble of Wattenbach et al. (2010) exhib-
ited simulation errors of total annual C sums ranging from an
overestimation from the measured C uptake of 204 g C m−2

to an underestimation of C uptake of 217 g C m−2 across the
5 WW site years and three crop models used in their study.
The simulated seasonal C uptake (NEE) by ORCHIDEE-
STICS ranged from an overestimation of C uptake of
251 g C m−2 (1673 %) to an underestimation of C uptake of
321 g C m−2 (108 %) (Vuichard et al., 2016). The SPA model
had a tendency to overestimate C uptake (NEE) ranging from
5 (0.9 %) to 289 g C m−2 (92 %) for 8 WW site years in Eu-
rope (Sus et al., 2010). This comparison highlights again that
sophisticated mechanistic ecosystem models are not a priori
superior to simple regression approaches.

Discrepancies in our best NEE estimations were in
the same range as our estimated uncertainty of 0.8 and
13 g C m−2 for 2020–2021 and 2021–2022, respectively, and
reported NEE uncertainties of 40 g C m−2 of WW crops
(Aubinet et al., 2009; Béziat et al., 2009). Further, estimation
uncertainty is smaller than the difference of the total growing
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Table 6. Differences in observed and estimated cumulated C fluxes for the second WW growing period (WW2) using WW1-based regression
models. For the interpretation of NEE results, negative absolute values and positive percent values denote an underestimation of C uptake
compared with the observed C uptake. For the interpretation of GPP results, negative absolute values and negative percent values denote an
overestimation of C uptake compared with the observed C uptake. Note that numbers in bold indicate regression models which produce the
lowest error for estimating NEE and GPP.

C flux (measured) VI Estimates (g C m−2) Total difference (g C m−2) Difference (%)

WW2

NEE EVI −117.00 −111.58 48.81
−228.58 EVI2 −62.48 −166.10 72.67

NDVI −261.93 33.36 −14.59
GNDVI −187.60 −40.98 17.93
SAVI −86.38 −142.19 62.21
S2REP −32.78 −195.80 85.66
SR −285.81 57.24 −25.04

Mean −147.71 −80.86 35.38

GPP EVI 1712.15 −547.18 −46.97
1165 EVI2 1663.08 −498.12 −42.76

NDVI 2090.09 −925.12 −79.41
GNDVI 1945.69 −780.73 −67.02
SAVI 1723.97 −559.01 −47.98
S2REP 1458.13 −293.17 −25.17
SR 2018.80 −853.84 −73.29

Mean 1801.7 −636.74 −54.66

season NEE between the two WW growing periods 2020–
2021 and 2021–2022, respectively, which was 311 g C m−2

(i.e., 3.11 t C ha−1, Table 3).
Larger differences occurred between the measured and es-

timated GPP fluxes. Estimated GPP overestimated absolute
measured flux values from 25 % up to 79 %. The latter was
due to the overestimation of C uptake during winter (as ex-
emplified in Fig. 5) when VI values indicated a vital crop
growth inferred from relatively high crop greenness values as
explained earlier (see Sect. 3.2). Here, the previously men-
tioned issue of diverting NEE and VI signals after sowing
and during winter (Sect. 3.2) showed its effect, causing a
larger discrepancy between observed and estimated GPP for
the WW growing period. Deviations of our estimated GPP
values were higher than simulated GPP values of the mech-
anistic crop model ORCHIDEE-STICS, ranging from an un-
derestimation of 42 % to an overestimation of 20 % for the
WW growing seasons (Vuichard et al., 2016).

A variety of explanations are discussed for the ecosystem
models failing to simulate C exchange over growing sea-
sons. Models face problems in representing phases of low
C fluxes (such as winter) (Dietiker et al., 2010; Wattenbach
et al., 2010), or the models assume post-harvest phases to
be bare soil, ignoring regrowth from weeds and/or leftover
seeds and thus underestimating C uptake (Lu et al., 2017;
Vuichard et al., 2016). The importance of capturing spon-
taneous regrowth, which can usually not be simulated by
mechanistic crop growth models unless specifically param-

eterized for, has been pointed out in relation to the advan-
tages of using remote sensing data in crop modeling. Espe-
cially the knowledge of key dates, such as time of emergence,
maximum vegetation, start of senescence, and harvest, deter-
mines the accuracy of model estimations (Pique et al., 2020).
While our approach struggled with the low-flux time during
winter as well, the high resolution of Sentinel-2 imagery, es-
pecially during non-winter seasons, is well suited to pick up
the plant growth dynamics on the respective key dates with-
out knowing them explicitly. In conjunction with the good
performance of our estimates using linear regression only,
our approach constitutes a promising alternative of very low
data demand to estimate C exchange of a highly dynamic and
heterogeneous small-parceled landscape.

Vuichard et al. (2016) and Sus et al. (2010) further dis-
cussed issues related to the representation of phenology in
the models, which is a determining factor for the subsequent
calculation of C fluxes. Now, using the actual spectral opti-
cal properties of crops directly – as in our approach – might
constitute an advantage in tracking the actual phenology and
thus the associated evolution of C fluxes.

3.6 Strengths and weaknesses of the approach

Finally, the strengths and weaknesses of the approach are
briefly discussed. Weaknesses were the use of simple linear
regression models, which are empirical and not mechanisti-
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cal, and considerable evaluation and proof of concept are still
needed before the approach can be applied spatially.

As explained in the Introduction, NEE is only indirectly
linked to spectral VIs via the direct correlation of GPP with
spectral VIs and the observed correlation between GPP and
Reco. Since the sum of negative GPP and positive Reco gives
NEE, the direct link of NEE to spectral VI was justified.
In our study, GPP and Reco were significantly (p < 0.001)
correlated by −0.63 (Spearman’s correlation), but GPP and
NEE had an even better correlation by 0.95 (p < 0.001; using
cases with NEE qc = 0 measurements only). Furthermore,
correlations between NEE and VIs were stronger than cor-
relations between GPP and VIs (Fig. 4). Considering these
highly significant and strong correlations, a direct empirical
and linear link between GPP and VIs and even more between
NEE and VIs seemed justified and sufficiently proven.

However, the high correlation between NEE and VI hides
the problematic diversion of signals during winter. Here, the
very few VI images during winter showed a better correlation
than might have been observed with more winter VI data.
Thus, the decoupling of the signals needs to be further ad-
dressed. Theoretically, the lowest VI values should be linked
with bare soil or very little vegetation and thus mainly Reco.
This assumption is invalidated by the winter increase in VI
values. If this non-active-growing period were treated differ-
ently than the spring–summer period, it could be cut out from
the correlations and would need to be replaced by another
assumption, such as assuming a baseline winter C flux. The
associated questions would be how variable baseline respi-
ration at croplands is, what the proportion of winter fluxes
to the total is, and what impact that would have on the total
results if it varies.

The most prominent question which now remains is
whether the linear regressions fitted here hold for crops other
than winter grains, such as maize or root crops, or are they
grain-crop-type specific? Juszczak et al. (2018) argue that
a generic single relationship between VI and C flux can be
valid for a range of different crops.

The strengths of this approach are the low data de-
mand, the straightforwardness, and the accuracy compared
with ecosystem models and satellite data–model fusion ap-
proaches, which are the most sophisticated approaches for
estimating spatial C exchange, and, by monitoring plant
“greenness” directly, the highly complex plant growth is in-
tegrated into a representative signal.

4 Conclusions and outlook

The observed CO2 dynamics of the cropland site presented
here were representative of a typical winter rape and win-
ter wheat cropland in Europe. The site was thus suitable
for developing a generic approach of linking remote sensing
data with EC measurements. A linking approach consisting
of multiple evaluation steps was developed by appropriately

accounting for spatial alignments between EC measurement
footprints and remote sensing data of fine spatial resolutions.
This rigorous linking approach was applied to a range of VIs
to evaluate their strengths and weaknesses in estimating daily
CO2 fluxes for the search of the most promising VIs. The
general validity of the approach was shown by the high and
statistically significant linear correlations between C fluxes
and VIs. However, the ranking of the suitability of VIs dif-
fered among the evaluation by the linear correlation, the lin-
ear regression, and the temporal transferability, indicating
no single stable or universally superior VI for daily CO2
flux estimation. While linear regressions suggested S2REP
as the most promising VI for estimating WW NEE, NDVI
and GNDVI were the best for the temporal transferability of
WW NEE estimations. Overall, the approach leads to results
similar to those of complex ecosystem models or sophisti-
cated satellite data–model fusion approaches, which justifies
the data-driven and data-lean approach. Relatively small es-
timation errors at this stage of research further suggest that
this approach is a promising method for tracking C exchange
remotely over croplands. Future work should mainly address
three questions: does one generic relationship between VIs
and C fluxes hold for other crop types and/or climate con-
ditions as well? Which VIs are most suitable for estimating
which C flux? And, does any additional information, such
as temperature or radiation for light use efficiency modeling,
further improve accuracy? Or from a more overarching per-
spective, which processes or data uncertainties explain the
gap between measured and estimated C fluxes?

Appendix A: EC data quality control

To assure a robust time series of half-hourly flux measure-
ments, “qc0 data” were further screened for outliers by cal-
culating half-hourly median and standard deviations of a 30 d
moving window and testing each half-hour flux measurement
against the respective half-hour statistics. Fluxes exceeding
the median ±2 (daytime) and ±3 (nighttime) standard de-
viations were excluded from the time series (similarly to
Goodrich et al., 2015). This was followed by a visual inspec-
tion of plotting diurnal half-hourly fluxes against monthly di-
urnal means. This yielded some extreme values which were
within the previously defined bounds but which still strongly
biased the median and standard calculation in the previous
step in times of high occurrence of gaps. These values were
removed, and the 30 d moving window statistics loop was re-
iterated.

Appendix B: Filtering fluxes of main field with FP
modeling

Figure 1 (in the main text) shows the cumulative source
area of the EC measurements extending over adjacent fields.
To construct a spatially representative NEE time series of
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Figure B1. Land use image of Heydenhof used for applying the
analytical FP model. Different colors distinguish the different fields
and land use types used to determine source area contributions. The
+ indicates the location of the EC tower. The green field in the
middle where the + symbol is located is the main field.

the main field excluding surrounding areas, measured fluxes
were combined with FP modeling following the approach of
Göckede et al. (2004). The source area of the flux measure-
ments is heterogeneous in space (Fig. 1) and time, and its
distribution varies with changing meteorological conditions.
Stable atmospheric conditions enlarge the FP, usually during
the nighttime, while unstable conditions during the daytime
decrease the size of the FP. Thus, each flux measurement car-
ries a mixed signal of fluxes originating to a variable degree
from different surface areas. To quantify the contribution of
different surface areas to the total half-hourly flux, analyti-
cal FP models are employed (Göckede et al., 2004). Here the
analytical FP model by Kormann and Meixner (2001) was
used. The land use map was constructed by classifying visi-
ble homogeneous land use areas from a Google Earth image
(same as in Fig. 1 of the main text) in the form of a discrete
matrix (Fig. B1).

Gaps in wind direction measurements caused respective
gaps in the FP results. The 0.6 % missing wind direction mea-
surements, with the longest gap of 9 h, were filled by linear
interpolation. In turn, the gaps in the FP results were filled
by assigning the gaps the average values of FP results of re-
spective 1° wind direction bins.

According to Göckede et al. (2008), fluxes with a 95 %
contribution of a specified source area to the total flux are
termed “homogeneous measurements”, while fluxes with an
80 %–95 % contribution are still regarded as “representative

measurements”. However, these limits were set based on in-
tensive pre-analyses and practicability.

Appendix C: Gap filling and partitioning of flux data

For calculating C budgets from NEE data, a continuous time
series is required. To avoid periods of insufficient turbu-
lence which violate EC assumptions and could bias nighttime
fluxes, i.e., ecosystem respiration, data were filtered by a u∗

threshold that determines low-turbulence conditions. Here,
the u∗ threshold was calculated by the moving point method
(Papale et al., 2006). Subsequently, the NEE time series was
gap-filled by the marginal distribution sampling (MDS) ap-
proach of Reichstein et al. (2005), which has been widely
used for arable EC flux measurements (Béziat et al., 2009;
Pastorello et al., 2020).

The u∗ estimation, gap-filling, uncertainty estima-
tion by bootstrapping, and flux partitioning were car-
ried out with the R package “REddyProc” (Wutzler
et al., 2018) available from https://cran.r-project.org/
web/packages/REddyProc/index.html (last access: 12 Au-
gust 2024).

Appendix D

A comprehensive cropland soil C budget encompasses a
number of C flows in addition to GPP, Reco, manure and
seed inputs, and harvest exports. These include C losses due
to fire, wind, and water erosion; leaching of dissolved organic
C (DOC) and volatile organic compound (VOC) losses (Ciais
et al., 2010); exchange in the form of CO and CH4; and C in-
put from deposition (Waldo et al., 2016). Losses due to fire
can be ignored for our field. Erosion and deposition can be
assumed to be canceled out due to the surrounding area being
of the same nature as our main field. CO, CH4, and VOC can
be considered negligible for a regular cropping field (Waldo
et al., 2016) as can leaching losses of DOC (Siemens et al.,
2012).

Code availability. The MATLAB, R, and JavaScript codes for
flux and satellite data processing including quality control, anal-
yses, and visualization as produced for this paper are available
via https://doi.org/10.5880/GFZ.1.4.2024.002 (Gottschalk et al.,
2024a).

Data availability. Half-hourly flux data and auxiliary meteorolog-
ical data for this article in standard EddyPro output, a shape file
outlining the main field borders, and the TERENO precipitation
data are available via https://doi.org/10.5880/GFZ.1.4.2024.001
(Gottschalk et al., 2024b). Continuous half-hourly eddy covari-
ance and micrometeorological data are available on request via the
European Fluxes Database Cluster (http://www.europe-fluxdata.eu/
home/site-details?id=DE-Hdn, last access: 13 August 2024).
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