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S1 Fractionation followed by mixing, or mixing followed by fractionation?

We simulated N2O isotopic composition using the endmembers given in Table 1 of the main article to explore differences

between the two scenarios (SI Figures S1 and S2):

1. Mixing followed by fractionation due to reduction (MR):

δMR = fDδD + fNδN + ϵ ln(r) (S1)5

where D = denitrification, N = nitrification and r = fraction of total N2O remaining following reduction

2. Fractionation due to reduction followed by mixing (RM):

δRM = (fD × rD)(δD + ϵ ln(rD))+ fNδN (S2)

where rD is the fraction of N2O from denitrification remaining after reduction, whereby rD = r
fD

(SI Figure S1).

In the RM scenario, r cannot be larger than the fD, or rD would be > 1, which implies at least some degree of mixing10

before fractionation. The 1σ uncertainty in resulting isotopic composition was estimated using error propagation with the 1σ

uncertainties in δD, δN and ϵ as given in Table 1 of the main article.

Comparing these simulations show that both scenarios deliver the same general trend, whereby isotopic composition increases

as the fraction of N2O remaining following reduction decreases. In both cases, there is a significant difference between the

scenarios only when the fraction of N2O remaining is very low. For N2O, the major uncertainty is contributed by the isotopic15

endmembers rather than the fractionation model; isotopic endmembers for different source or emission categories are similarly

uncertain for other trace gases such as CH4 Eyer et al. (2016); Röckmann et al. (2016). This is further shown in the ‘boma’

case study, where static source apportionment using the MR and RM models gave very similar results (Section 4.3 of the

main article). Studies show that a large proportion of the range in endmember values is due to true variability rather than

measurement uncertainty, for example due to different rate-limiting steps and microbial enzymes under different conditions,20

thus even with instrumental development, the endmembers are likely to continue to contribute this level of uncertainty Yu et al.

(2020) except in specific cases such as pure culture studies.

For TimeFRAME, we opt to use the MR model rather than the RM model. In reality, mixing and fractionation are occurring

simultaneously, however to represent this in a model would add an extra level of complexity that would introduce too many

degrees of freedom to be constrained with isotopic data timeseries. The MR model is a better approximation of the ‘true’25

situation, because it is clear mixing occurs to some degree in real scenarios. This is illustrated for example by observations of

net N2O uptake, showing N2O produced by other pathways is consumed in complete denitrification. Moreover, many microbes

producing N2O by denitrification cannot produce nitrous oxide reductase, thus in this case mixing must occur before reduction

and Eq. S2 does not apply. Users of TimeFRAME should exercise caution in the interpretation of results when the fraction

of N2O (or other trace gas) remaining is very low, and when other factors suggest that reduction before mixing could be30

predominant.
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Figure S1. δ15Nbulk values simulated across a range of 0 to 1 for the contribution of denitrification to N2O production (contribution of

nitrification = 1 - f (N2O from denitrification) and 0 to 1 for the fraction of N2O remaining after consumption. a) and b) show δ15Nbulk and

its uncertainty simulated with SI Eq. S1. c) and d) show δ15Nbulk and its uncertainty simulated with SI Eq. S2. e) and f) show the absolute

difference in δ15Nbulk between the two simulations and its uncertainty. The dotted region in e) indicates where there is no significant

difference between the two scenarios.
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Figure S2. δ15NSP values simulated across a range of 0 to 1 for the contribution of denitrification to N2O production (contribution of

nitrification = 1 - f (N2O from denitrification) and 0 to 1 for the fraction of N2O remaining after consumption. a) and b) show δ15NSP

and its uncertainty simulated with SI Eq. S1. c) and d) show δ15NSP and its uncertainty simulated with SI Eq. S2. e) and f) show the

absolute difference in δ15NSP between the two simulations and its uncertainty. The dotted region in e) indicates where there is no significant

difference between the two scenarios.
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S2 Sampling software

Bayesian models can be implemented using different sampling strategies. The most commonly used sampling libraries are

JAGS, using Gibbs sampling, and Stan, using Hamiltonian Monte Carlo sampling. We compared two implementations in

three different settings:35

– Using the original stationary FRAME estimator for one single time step given in Eq. 9 of the main article,

– For the time series model using independent time steps described in Eq. 12 of the main article,

– For the hierarchical Dirichlet-Gaussian process model described in Eq. 16 of the main article, with joint estimation of

the correlation length for source contributions and fractionation.

The general example GenE (Section 2.5.1 of the main article) served as fixed truth value for f∗t and r∗t to apply the models in40

the above mentioned three settings. The time series were sampled with N = 64 points, and for the stationary case the average

over time is chosen as fixed value. Each implementation is run for S = 10000 sampling steps and the resulting effective sample

size, total runtime in seconds and resulting effective samples per second are noted in Table 1. The effective sample sizes are

computed using the calculation described by Kruschke (2014) and the reported number are averages over all parameters.

Table S1. Effective sample size, runtime in seconds and effective samples per second for the Stan and JAGS sampler over S = 10000

sampling steps for three different model set ups.

Neff Time (s) Neff /s

Stationary Stan 4 482 10 454

JAGS 5 131 0.5 9 162

Independent Stan 6 350 66 97

JAGS 6 559 22 292

Hierarchical Stan 11 538 1 477 8

JAGS 10 1527 -

JAGS outperforms Stan for the stationary and independent case by having more effective samples in the shorter amount of45

time. However, the hierarchical model could only be efficiently sampled by Stan, although it took a comparatively long time.

These findings are consistent with results on linear models using different numbers of parameters (Beraha et al., 2021). Stan

appears to be a good option for time series models which inherently have a lot of parameters. The cases where JAGS is faster

have sufficiently short sampling times for both libraries, therefore Stan was used for all subsequent applications.
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