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Abstract. Isotopic measurements of trace gases such as N2O,
CO2, and CH4 contain valuable information about produc-
tion and consumption pathways. Quantification of the un-
derlying pathways contributing to variability in isotopic time
series can provide answers to key scientific questions, such
as the contribution of nitrification and denitrification to N2O
emissions under different environmental conditions or the
drivers of multiyear variability in atmospheric CH4 growth
rate. However, there is currently no data analysis package
available to solve isotopic production, mixing, and consump-
tion problems for time series data in a unified manner while
accounting for uncertainty in measurements and model pa-
rameters as well as temporal autocorrelation between data
points and underlying mechanisms. Bayesian hierarchical
models combine the use of expert information with measured
data and a mathematical mixing model while considering and
updating the uncertainties involved, and they are an ideal ba-
sis to approach this problem.

Here we present the Time-resolved FRactionation And
Mixing Evaluation (TimeFRAME) data analysis package.
We use four different classes of Bayesian hierarchical mod-

els to solve production, mixing, and consumption contribu-
tions using multi-isotope time series measurements: (i) in-
dependent time step models, (ii) Gaussian process priors on
measurements, (iii) Dirichlet–Gaussian process priors, and
(iv) generalized linear models with spline bases. We show
extensive testing of the four models for the case of N2O pro-
duction and consumption in different variations. Incorpora-
tion of temporal information in approaches (i)–(iv) reduced
uncertainty and noise compared to the independent model (i).
Dirichlet–Gaussian process prior models have been found to
be most reliable, allowing for simultaneous estimation of hy-
perparameters via Bayesian hierarchical modeling. General-
ized linear models with spline bases seem promising as well,
especially for fractionation estimation, although the robust-
ness to real datasets is difficult to assess given their high
flexibility. Experiments with simulated data for δ15Nbulk and
δ15NSP of N2O showed that model performance across all
classes could be greatly improved by reducing uncertainty
in model input data – particularly isotopic end-members and
fractionation factors. The addition of the δ18O additional iso-
topic dimension yielded a comparatively small benefit for
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N2O production pathways but improved quantification of the
fraction of N2O consumed; however, the addition of isotopic
dimensions orthogonal to existing information could strongly
improve results, for example, clumped isotopes.

The TimeFRAME package can be used to evaluate both
static and time series datasets, with flexible choice of the
number and type of isotopic end-members and the model
setup allowing simple implementation for different trace
gases. The package is available in R and is implemented us-
ing Stan for parameter estimation, in addition to supplemen-
tary functions re-implementing some of the surveyed isotope
analysis techniques.

1 Introduction

Analysis of isotopic signatures is frequently used in environ-
mental sciences to infer production and consumption path-
ways for trace gases. For example, N2O isotopic composi-
tion reflects the production via different pathways (including
microbial denitrification, nitrification, fungal denitrification),
mixing within the soil airspace, and consumption via com-
plete denitrification. The different production pathways have
distinct isotopic end-members, which describe the isotopic
composition of emitted N2O. Following emission, N2O from
different pathways mixes in the soil airspace, described us-
ing the approximated mixing equation (Ostrom et al., 2007;
Fischer, 2023):

δmix ≈

K∑
k=1

f kδk, (1)

where δmix is the isotopic composition of a mixture of two
or more sources enumerated by k = 1, . . .,K with isotopic
compositions designated by δk and fractional contributions to
the mixture designated by f k . This approximation assumes
that the light isotope has a much greater concentration than
the heavy isotope, which is valid for common trace gases
such as CO2, CH4, and N2O.

N2O is consumed during complete denitrification to N2,
which favors the light isotope and thus leads to progres-
sive enrichment of the remaining N2O pool. The isotopic ef-
fect of consumption can be approximated using the Rayleigh
equation (Mariotti et al., 1981; Ostrom et al., 2007; Fischer,
2023):

δsubstr,r ≈ δsubstr,r=1+ ε ln(r), (2)

where δsubstr,r=1 and δsubstr,r are the isotopic composition of
the initial substrate prior to consumption (r = 1) and when
a certain fraction (1− r) has been consumed, ε is the frac-
tionation factor for the reaction in per mill (‰), and r is
the fraction of substrate remaining where r = 0 represents
a complete reaction.

We can combine Eqs. (1) and (2) for a full model of mix-
ing and fractionation of the subsequent mixture – for exam-
ple, mixing of N2O from different sources within the soil
airspace, followed by complete reduction of a certain frac-
tion of N2O, before measurement of N2O isotopic composi-
tion (Fischer, 2023):

δ =

K∑
k=1

f kδk + ε ln(r), (3)

where δ is the measured isotopic composition. In this equa-
tion, we assume that mixing occurs before fractionation,
when in reality mixing and fractionation are likely occurring
simultaneously depending on the soil pore size distribution
and connectivity, the availability of different substrates, and
the microbial community present (Denk et al., 2017; Yu et al.,
2020; Lewicka-Szczebak et al., 2020). A detailed discussion
of the implications of this assumption is given in Sect. 1 in
the Supplement. Further uncertainty in the model equation
relates to open- vs. closed-system fractionation, describing
renewal of the N2O pool relative to the rate of N2O con-
sumption (Yu et al., 2020; Lewicka-Szczebak et al., 2020).
However, the largest uncertainties in evaluation of this equa-
tion to interpret the measured isotopic composition δ relate
to the end-members for different sources δk and the fraction-
ation factor ε.

A commonly used approach to interpret trace gas iso-
topic measurements is the application of dual-isotope map-
ping, which utilizes the relationship between two isotopic
parameters to infer pathways, for example, δ15Nbulk and
δ15NSP in the case of N2O. The mapping approach can be
used to roughly estimate the dominance of different path-
ways and the importance of fractionation during consump-
tion (Wolf et al., 2015; Lewicka-Szczebak et al., 2017; Wu
et al., 2019; Yu et al., 2020; Rohe et al., 2021). However,
these approaches fail to provide a quantitative determination
of different pathways or to estimate uncertainty for individual
samples. Moreover, mapping approaches are limited to mix-
ing scenarios involving only two sources, which – for exam-
ple – does not allow for the differentiation of contributions
from the nitrification and fungal denitrification pathways
which have similar δ15NSP signatures. In addition, there are
no statistical packages available to implement these mapping
approaches, calling into question the reproducibility among
studies using this approach.

Bayesian approaches to solve isotopic mixing models have
been successfully implemented in several well-known frame-
works (R packages MixSIAR and simmr; Parnell et al., 2013;
Stock et al., 2018). These advanced models are used to re-
solve the contribution of multiple sources to a mixture us-
ing a range of Bayesian statistical techniques, and they are
widely used for applications such as animal diet partitioning
(Stock et al., 2018). However, these packages do not offer the
capability to deal with pool consumption and Rayleigh frac-
tionation, and thus they are not suitable for the interpretation
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of trace gas isotopic measurements where consumption/de-
struction plays a key role (Fischer, 2023; Lewicka-Szczebak
et al., 2020).

The FRAME (Fractionation And Mixing Evaluation)
model provided the first Bayesian tool to include both
mixing and fractionation for the interpretation of isotopic
data (Lewicka-Szczebak et al., 2020; Lewicki et al., 2022).
FRAME applies a Markov chain Monte Carlo (MCMC) al-
gorithm to estimate the contribution of individual sources
and processes, as well as the probability distributions of
the calculated results (Lewicki et al., 2022). However, the
FRAME model can only be applied to time series data by
solving separately for single or aggregated points. Although
the contribution of different pathways may vary strongly on
short timescales, model parameters – such as isotopic end-
members and fractionation factors – are expected to show
minimal variability between subsequent points in a time
series. Time series information can be added to isotopic
models (i) through statistical approaches using smoothing
and other techniques to account for temporal autocorrela-
tion and measurement noise or (ii) through the application
of dynamic approaches incorporating differential equations
(Bonnaffé et al., 2021). In the Time-resolved FRactionation
And Mixing Evaluation (TimeFRAME), we use the statis-
tical approach as a natural extension to the implementation
of FRAME; investigation of dynamical approaches may be
challenging due to high uncertainties in all inputs and should
be a focus of further research.

Here we present the TimeFRAME extension to the
FRAME model to allow for efficient analysis of time series
data. TimeFRAME uses one independent time step model in
which points in a time series are treated independently and
three classes of models to fully incorporate time series infor-
mation: (i) independent time step models, (ii) Gaussian pro-
cess priors on measurements, (iii) Dirichlet–Gaussian pro-
cess priors, and (iv) generalized linear models with spline
bases. The models are solved for the contribution of differ-
ent pathways, end-members, and fractionation factors within
a MCMC framework, and the full posterior distributions of
parameters are reported. The isotopes, end-members, frac-
tionation factors, and model setup are defined by the user,
allowing flexible application to many isotopic problems.

2 Methodology

2.1 Inference of source contributions

One objective of studying isotopic signatures is to determine
the source contributions f 1· · ·fK from measurements of the
mixture. However, measuring one single isotopic species will
only be efficient in distinguishing between a maximum of
two sources. For additional sources, or if consumption of the
mixture needs to be accounted for, multiple isotopic species
are necessary. Analysis of N2O sources and pathways, for

instance, can include analysis of δ15Nbulk, δ15NSP, and δ18O.
The vector of d different isotopic species shall be denoted by
X ∈ Rd . Measurements of the isotopic end-member for each
individual source enumerated by k = 1, . . .,K are assumed to
be known and denoted by S1, . . .,SK ∈ Rd together with the
fractionation factor ε ∈ Rd . Using vector and matrix notation
they can later be used to state the mixing equation in vector
form:

f := [f 1· · ·fK ]
T
∈ RK , (4)

S := [S1· · ·SK ]
T
∈ Rd×K . (5)

The case of Rayleigh fractionation as expressed in Eq. (3)
can be similarly expressed in vectorized form:

X = µ(f, r) := Sf+ ε ln(r). (6)

In a simple example with two sources and measurements
of two isotopic species K = d = 2, the mixing equation can
be solved (assuming convergence is possible) for the param-
eters of interest using linear algebra (see Fischer, 2023, for
details). More generally, mixing and fractionation according
to Eq. (6) can be solved for an arbitrary number of sources
as long as an equal number of isotopic species is available,
i.e., K = d ≥ 2. In this case the linear system of equations
can be written in matrix terms and augmented with the sum
constraint on f:

X̃ :=

[
X

1

]
=

[
S −ε

1T 0

][
f

ln(r)

]
=: S̃f̃. (7)

This d + 1-dimensional linear system of equations can be
addressed with decomposition techniques, and its solution
can be expressed as f̃= S̃−1X̃. A unique solution exists if S̃ is
invertible or, equivalently, if none of the mixing lines and the
consumption line are co-linear. Only non-negative solutions
f̃≥ 0 are feasible to ensure that the source contributions f
correspond to mixing weights and that 0< r ≤ 1.

A flaw of the isotope mapping approach as presented
above is that it does not take measurement uncertainty into
account. However, this can easily be added by formulating
the measurementsX as random variables with expected value
given by the mixing equation E[X] = µ(f, r). Most com-
monly, measurements are modeled using the Gaussian dis-
tribution with independent components and variance η2

∈ R,
thus allowing the mixing-fractionation equation to be stated
as

X ∼Nd(µ(f, r),η21)=Nd(Sf+ ε ln(r),η21). (8)

A maximum-likelihood solution to this mixing-
fractionation equation can be pursued (see Fischer,
2023, for details); however, this limits the framework to
parameters that can be approximated with a Gaussian distri-
bution. Often, the epistemic uncertainty of source isotopic
end-members is modeled as a uniform distribution to best
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account for the combination of measurement uncertainty and
true variability in end-member values (Lewicki et al., 2022).
Bayesian statistics is useful to incorporate all assumptions
and constraints into the model, as well as to employ numeri-
cal inference methods for source contribution estimation and
uncertainty estimation.

2.2 Stationary inference

Stationary inference involves inference for the source con-
tributions f ∈ SK , where SK is the K-simplex, and the frac-
tion of the pool remaining r ∈ [0,1] for one single measure-
ment independent of time. This can be accomplished with
the original FRAME model (Lewicki et al., 2022). FRAME
constructs a prior and likelihood structure where the isotopic
species measurements X ∈ Rd are independently normally
distributed with variance vector η2

∈ Rd+ around a mean
given by an arbitrary mixing equation µ(f, r). The source
contributions f are then equipped with a flat Dirichlet prior
and the fraction remaining r with a uniform prior:

f∼ Dir(1), r ∼ Uni(0,1)

X|f, r ∼Nd(µ(f, r),η2). (9)

The auxiliary parameters for the mixing equation S and
ε are understood to be random variables as well, with pre-
determined fixed priors that are omitted from the model de-
scription above. Choosing those priors is dependent on the
origin of the data and thus not subject to the further engi-
neering of inference models in the following sections. The
likelihood of X is understood to be implicitly conditional on
these auxiliary parameters. This means that a joint posterior
π(f, r,S,ε|X) is fit by the model, and the reported posterior
π(f, r|X) is simply its marginalization.

The FRAME model can be extended by taking different
choices of prior distributions for the parameters of interest
(the source contributions f and the fraction remaining r). The
Jeffreys prior for source contributions is constructed by com-
puting the Fisher information matrix and choosing the prob-
ability distribution proportional to the square root of its de-

terminant. For the source contributions f=
(

1− f
f

)
∈ S2

of two sources S1,S2 ∈ R the computation can be done by
omitting the influence of fractionation, leading to a uniform
prior over the domain of f. For multiple source contributions
this is equivalent to the flat Dirichlet distribution used in the
original FRAME model.

Taking now the fraction remaining with regards to
Rayleigh fractionation r ∈ [0,1] independently of the mixing
weights f into account, the Jeffreys prior can be computed
relative to the pure mixing solution M =X− S1(1− f )−
S2f ∈ R with fractionation factor ε ∈ R (Fischer, 2023):

Ir(r)∝−E
[
d2r

dr2
(M − ε ln(r))2

η2 |r

]
=

2ε2

η2r2 ∝
1
r2 . (10)

Therefore, the objective prior for the fraction remaining r
is given by π(r)∝ 1

r
for r ∈ [0,1], which is also known as

the logarithmic prior; since it cannot be normalized it is an
improper prior. Additionally, even though this prior can be
considered uninformative for r individually according to the
Jeffreys criterion, a joint prior could lead to different results,
although priors are typically chosen as independent distribu-
tions.

In the case of Rayleigh fractionation, however, it might be
more reasonable to use a different distribution that is some-
where in between the uniform and logarithmic prior and in-
corporates the bounds to the interval [0,1] as well, which is
a similar idea to prior averaging (Berger et al., 2015). The
beta distribution offers a functional form that is similar to the
Jeffreys prior but can be normalized. Parameterizing the dis-
tribution with a restricted concentration parameter α ∈ [0,1],
the form beta(α, 1) is the uniform distribution for α = 1 and
converges to the Jeffreys prior for α→ 0, thus expressing a
generalized approach.

2.3 Time series inference

In order to incorporate time series information in the infer-
ence procedure, the model can be extended to work with mul-
tiple measurements at different points in time. The source
contribution f and fraction remaining r are assumed to be
functions with respect to time fτ and rτ , and the measure-
ments correspond to samples in timeXt =X(τt ) at n discrete
time points τ1, . . ., τn.

Now the measurements can be grouped into a measure-
ment matrix X := [X1. . .XN ] ∈ Rd×N , where the time di-
mension is along the matrix rows. Inference of the param-
eters can be done at the identical time points ft = f(τt ) and
rt = r(τt ), so that they can be grouped into similar matrices
as well: F := [f1. . .fN ] ∈ RK×N and r := [r1. . .rN ] ∈ R1×N .
This grouping has the advantage that the mixing equation can
be expressed in vectorized form over all time points without
changing its general layout (Fischer, 2023):

E[X|F,r] = µ(F,r)= SF+ ε ln(r). (11)

2.3.1 Independent time steps

The simplest method to extend the stationary model is to
assume complete independence between all points in time.
This reduces the time series problem to a set of N indepen-
dent stationary problems with one single measurement point
each; thus, the same stationary FRAME model can be used
for each point. The vector of measurement errors η ∈ Rd is
now also allowed to vary in time as η1, . . .,ηN :

ft ∼ Dir(1), rt ∼ Uni(0,1) ∀t

Xt |ft , rt ∼Nd

(
µ(ft , rt ),η2

t

)
∀t. (12)

The prior on the series of source contributions ft and pool
fraction remaining rt is now fully independent in time, and
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the information that could be contained in the fact that some
measurements are closer in time than others is ignored.

Prior information can be encoded into the prior distribu-
tion for ft by introducing a concentration parameter σ ∈ RK+
as well as a parameter α ∈ (0,1) that interpolates between the
uniform prior for rt and the Jeffreys prior using the beta dis-
tribution as described in Sect. 2.2. This allows for the inclu-
sion of information that is universally true for all time points
simultaneously. If no information is available, the model can
be extended by adding an additional hierarchical layer for
these parameters, with weakly informative hyperpriors being
the gamma distribution 0(2,2) on the positive real axis for
concentrations σ and the uniform Uni(0,1) for α:

σ ∼ 0(2,2),α ∼ Uni(0,1)

ft ∼ Dir(σ ), rt ∼ B(α,1) ∀t

Xt |ft , rt ∼Nd

(
µ(ft , rt ),η2

t

)
∀t. (13)

2.3.2 Gaussian process priors

Time series information can be incorporated by various
methods in the case of unconstrained random variables. An
obvious method is to apply the FRAME model with indepen-
dent time steps on a preprocessed measurement series. The
time series preprocessing can be done before model applica-
tion, without consideration of the Bayesian mixing model.
Candidate preprocessing algorithms are kernel smoothing,
spline smoothing, and local polynomial regression. While the
latter can offer uncertainty estimates of the smoothed time
series, a holistic treatment of estimation with uncertainty can
be offered by Gaussian process regression.

Despite the possibility of running the simple time-
independent model on preprocessed measurement time se-
ries, it is beneficial to combine both steps into an advanced
model; for example, the problem-specific geometry could in-
fluence the feasibility of a region in measurement space. A
combined model will include a Gaussian process prior on the
measurements Xt such that posterior means Wt can be esti-
mated and used to drive the FRAME model with indepen-
dent time steps (Sect. 12). The Gaussian process is shifted
and scaled to align with the empirical mean µ̂X and standard
deviation σ̂X of the measurements Xt and controlled by a
kernel function G (Fischer, 2023):

ft ∼ Dir(1), rt ∼ Uni(0,1) ∀t

Wt |ft , rt ∼Nd

(
µ(ft , rt ),

η2
t

2

)
∀t

W ∼ GPd
(
µ̂X, σ̂X,G

)
Xt |Wt , ft , rt ∼Nd

(
Wt ,

η2
t

2

)
∀t. (14)

The distribution on the latent estimatesWt is the product of
the Gaussian process prior as well as the independent normal
distribution around the mixing estimate. Ideally, this model

does not need to include sampling of ft and rt because if
the mixing equation can be expressed as a linear system of
equations (Eq. 7), then the smooth measurement series Wt is
sufficient to solve for the source contribution and fractiona-
tion parameters directly. In practice, this approach reduces to
applying isotopic mapping techniques to the time series that
is preprocessed using Gaussian process smoothing.

If the mixing equation is not explicitly inverted but eval-
uated by sampling the parameters ft and rt , then the latent
variables W can be marginalized over and eliminated from
the model. The product density of W can also be expressed
using known identities (Pedersen and Petersen, 2012) for
each separate isotopic measurement dimension j = 1, . . .,d
in terms of its empirical mean µ̂X,j , empirical standard de-
viation σ̂X,j , and noise variance η2

j . Using the Cholesky de-
composition, these distribution parameters can efficiently be
computed and used for sampling; thus, the latent parame-
ters W can be eliminated from the model, and the likelihood
of each row Xj : can be directly computed (Fischer, 2023):

F∼ Dir(1), r∼ Uni(0,1)

µ(F,r)∼ GPd
(
µ̂X, σ̂X,G

)
XTj :|F,r∼NN

(
µ̃j , 6̃j +

η2
t

2
1
)
∀j = 1, . . .,d. (15)

Gaussian process priors on measurements use only one
single hyperparameter, which is the correlation length ρ used
to compute the kernel matrix Gij = κρ(τi,τj ). The scale of
the Gaussian process is always set to the empirical standard
deviation of the data and is thus considered fixed. In order
to compile a fully hierarchical Bayesian model, an inverse
gamma distribution 1

ρ
∼ 0(2,2) can be used as hyperprior

for the correlation length, assuming that the timescales are
properly normalized.

2.3.3 Dirichlet–Gaussian process priors

To make use of time series information in the source con-
tributions f and the fraction reacted r , direct priors are de-
sired. These priors can be constructed by sampling auxil-
iary variables from multiple independent Gaussian processes
Z∼ GPK(G) and at each point in time inverting the log ra-
tio transformations on the simplex in order to create a time
series of simplex-valued variables ft . The fraction reacted rt
is constrained to the interval [0,1] and can thus be linked
for instance by applying the logit transform logit(r)= ln r

1−r
at each point in time, which maps it to the entire real axis.
Hyperparameters for correlation length ρ ∈ R+ and concen-
tration σ ∈ R+ are used to compute the kernel matrix Gij =

σ 2κρ(τi,τj ) for the Gaussian process. The general shape of
these priors is visualized in Fig. 1. Working with the ma-
trix of source contributions F= [f1, . . ., fn] ∈ RK×N and of
the fraction reacted r= [r1, . . ., rn] ∈ R1×N , the model can
be stated in vectorized form, where the link functions are un-
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Figure 1. Examples of a generalized Gaussian process prior with the radial basis function kernel using different values for correlation length
(ρ) and concentration (σ ). (a) Prior observation for three sources (f 1, f 2, f 3) mapped to the simplex using the centered log ratio transform,
shown over an arbitrary time axis using different values of ρ with σ = 1. (b) Estimated marginal densities (left-hand side) of transformed
Gaussian process priors for different values of the concentration parameters σ with ρ = 0.1, with a prior observation for three sources (f 1,
f 2, f 3) shown over an arbitrary time axis on the right-hand side.

derstood to be columnwise (Fischer, 2023):

clr(F)∼ GPK(G)
logit(r)∼ GP(G)

Xt |ft , rt ∼Nd

(
µ(ft , rt ),η2

t

)
∀t. (16)

Both link functions used can easily be inverted once ran-
dom variables Z∼ GPK(G) and Y∼ GP(G) are sampled
from Gaussian processes over time t = 1, . . .,N . The inverse
of the CLR transform is given by the softmax function, and
the inverse of the logit link is given by the sigmoid func-
tion (see Fischer, 2023). The prior on the source contribu-
tion parameters G is known as a generalized Gaussian pro-
cess prior, and techniques such as Taylor expansion can be
used to derive analytic approximations (Chan and Dong,
2011). Its marginal is a softmax transformed multivariate
Gaussian, which is also known as a logistic normal distri-
bution and serves as an approximation to the Dirichlet distri-
bution (Aitchison and Shen, 1980; Devroye, 1986; Fischer,
2023). Mapping using centered log ratio (CLR) transforms

thus creates a time series of random variables with approxi-
mate Dirichlet marginals, which is referred to as a Dirichlet–
Gaussian process (DGP; Chan, 2013).

The marginals are controlled by the parameter σ of the
Gaussian process, which now acts as the concentration pa-
rameter of the Dirichlet distribution. Since the covariance
kernel G is scaled to generate Gaussian random variables
with unit variance if σ = 1, the marginal distribution in that
case is approximately the uniform Dir(1). This can be seen
by sampling from the generalized Gaussian process priors
and estimating the marginals, as shown in Fig. 1b.

Using the isometric log ratio transform ILR instead of CLR
reduces the number of Gaussian processes that need to be
sampled to K − 1 for the source contributions. Inverting this
link function is accomplished by applying an orthonormal
base transform U to the random variables and then applying
the softmax function. Since interpretability of the sampled
Gaussian process variables is not required, any orthonor-
mal basis is suitable, and a simple construction using Gram–
Schmidt orthogonalization is chosen (Nesrstová et al., 2022;
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Fischer, 2023):

ILR(F)∼ GPK−1(G)
logit(r)∼ GP(G)

Xt |ft , rt ∼Nd

(
µ(ft , rt ),η2

t

)
∀t. (17)

Shorthand notation GP(G)= GP(0,1,G) is used with
correlation length ρ and scale σ included in the kernel com-
putation Gij = σ

2κρ(τi,τj ). Both kernel parameters ρ and σ
can be set in advance or given weak hyperpriors. The in-
verse gamma distribution 1

ρ
∼ 0(2,2) and the regular gamma

distribution σ ∼ 0(2,2) are chosen under the assumption
that the time variables τ1, . . ., τN are scaled appropriately.
This hierarchical model benefits especially from the reduced
number of Gaussian processes sampled when using the ILR
transform, since the kernel covariance matrix must be re-
constructed in every sampling step. The number of hyperpa-
rameters could be increased by using separate concentrations
and correlation lengths for the source contributions F and the
fraction remaining r.

2.3.4 Spline-based priors

An alternative to Gaussian process priors is spline basis func-
tions, which can be used to construct a linear fitting opera-
tion that is then mapped to simplex space. This allows for
the addition of exogenous variables as predictors of source
contributions or fractionation. A cubic spline basis of M ba-
sis functions (Fig. 2) is evaluated at the measurement points
τ1, . . ., τN to form the evaluation matrix H ∈ RN×M with
Hij = sj (τi) for polynomial basis functions s1(·), . . ., sM(·).
The time series of source contributions in simplex space is
reconstructed with the basis coefficients bk ∈ RM for each
source k = 1, . . .,K arranged to the matrix [b1· · ·bK ]T =
B ∈ RL×M and coefficients for fractionation c ∈ R1×M . This
type of model is therefore part of the generalized linear
model class (Nelder and Wedderburn, 1972) and allows for
easy extension with fixed effects relating to measurement di-
mensions as well as random effects for experiment replica-
tion. It will thus further be referred to as the generalized lin-
ear model with spline basis (spline GLM; Fischer, 2023):

B,c∼N (0,1)

clr(F)= BHT

logit(r)= cHT

Xt |ft , rt ∼Nd

(
µ(ft , rt ),η2

t

)
∀t. (18)

In consequence, the distribution of the basis coefficient
vector bk = BTk: ∈ R

M before transformation has distribution
bk ∼NM(0,1) for source k = 1, . . .,K . After application of
the spline basis transform it is thus still Gaussian Hbk ∼
NN (0,HHT), although with a modified covariance matrix
HHT

∈ RN×N . Since the inverse centered log ratio transform

maps Gaussian random variables with unit variance approxi-
mately to a uniform Dirichlet distribution, it makes sense to
scale the basis transform such that 1

N
Tr(HHT )= 1, as the

spline basis vectors are not semi-orthogonal in general.

2.4 Prior distribution for the fraction remaining r

Sampling the prior distribution of the fractionation weight r
for closed-system Rayleigh fractionation is challenging, be-
cause it is connected through the non-linear logarithm to
the effect on measurements. Although a uniform prior usu-
ally does not inform the posterior about anything except the
boundaries, the effect of the logarithm on the posterior is
much more unclear. Different choices for prior distributions
of r were thus tested for their effect on the generated pos-
terior sample. The simulated dataset used 17 different val-
ues for the fractionation index d ranging from 0.05 to 0.95.
Source contributions were fixed to f ∗1 = 0.7 and f ∗2 = 0.3.
Each value of r is used to generate Q= 64 data points
X(1), . . .,X(Q) with measurement error η = 4 for a total of
1088 data points (Fig. 4a). The stationary inference model
given in Eq. (9) was fitted to each point individually, which
makes this setting analogous to the inference procedure used
in the original FRAME model (Lewicki et al., 2022).

2.5 Model comparison

2.5.1 Data simulation

No time series datasets with known N2O production and
consumption pathway contributions are available; therefore,
simulated data must be used for thorough comparison of
models. The four models were compared by simulating the
data-generating process multiple times and then comparing
the resulting posterior sample with fixed truth input values.
The time series of source contributions f and pool fractions
reacted r used to simulate the data are denoted by F∗ =
[f∗1· · ·f

∗

N ] and r∗ = [r∗1· · ·r
∗

N ], and the mixing equation with
Rayleigh fractionation is used (Eq. 3). Measurement gener-
ation is then repeated Q times by sampling the source iso-
topic signature S(q) ∈ Rd×K and fractionation factor ε(q) ∈
Rd from their respective priors and then adding independent
Gaussian measurement errors E(q)t ∼Nd(0,η2) with noise
variance η2

∈ Rd for q = 1, . . .,Q (Fischer, 2023):

X
(q)
t = S(q)f∗t + ε

(q) ln
(
r∗t
)
+E

(q)
t . (19)

Auxiliary data for source isotopic signatures and fraction-
ation factors are taken from Yu et al. (2020) (Table 1). These
values correspond to the major N2O sources, nitrification
(S1) and bacterial denitrification (S2). Priors are uniform for
the sources Sj ∼ Uni(bj ,1j ),j = 1,2 and Gaussian for the
fractionation factor with variance matched to the reported

bounds ε ∼N (c, 1
2
ε

2 ).
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Figure 2. Examples of the spline prior for three source contributions (f 1, f 2, f 3, where f 1+f 2+f 3 = 1) transformed to the simplex with
the CLR transformation using different degrees of freedom M that can be used to control the covariance of source contributions at separate
points in time.

Table 1. Prior distribution parameters for N2O source isotopic signatures and the fractionation factor for consumption used to simulate
datasets for model testing (Yu et al., 2020). Ranges for sources indicate the full range of previous data used to construct the uniform
distribution, whereas for reduction the range indicates the standard deviation of the Gaussian distribution.

b1±11 b2±12 b3±13 c±1ε

Source Nitrification Denitrification Fungal denitrification Reduction
Abbreviation Ni bD fD Red

δ15Nbulk
−55.5± 17.0 −25.25± 55.1 −38.50± 15.0 −6.4± 2.7

δ15NSP 35.35± 6.7 −1.9± 11.2 33.55± 12.7 −5.55± 1.5
δ18O 23.5± 6.0 20.0± 6.6 38.45± 7.3 −15.4± 5.8

The simulations are done on fixed parameter sets that in-
tend to be illustrative for six given cases that might occur
in reality. The focus is on investigation of temporal patterns;
other fractionation scenarios have been explored previously
using a stationary model setup (Lewicka-Szczebak et al.,
2020; Lewicki et al., 2022). The true parameter time series
f∗t and r∗t are shown in Figure 3 and are sampled at N = 32
equally spaced time steps. One additional general example
(GenE) is used for simulation with properties being less ex-
treme than for the other six, which may be more representa-
tive of average datasets that would be encountered in prac-
tice. For GenE, a Gaussian error with magnitude η = 5 is
used to sample N = 64 measurementsX1, . . .,XN . The fixed
parameter values and the simulated data are shown in Fig. 3.

Bayesian parameter estimation is then tested on each gen-
erated dataset X(q) = [X(q)1 · · ·X

(q)
N ] ∈ R

d×N for q = 1, . . .,Q

individually, and a total of S posterior samples of all parame-
ters is produced each time. The posterior samples shall be de-
noted by F(q,s) = [f(q,s)1 · · ·f(q,s)N ] and r(q,s) = [r(q,s)1 · · ·r

(q,s)
N ],

respectively, for s = 1, . . .,S.

2.5.2 Measuring quality of inference

Sampling from the posterior distribution does not give unique
point estimates for the parameters involved, and multiple
ways of computing final parameter estimates exist. Most
commonly the posterior mean is used as point estimate, al-
though using the median could, for example, be a useful strat-
egy for posterior distributions that are highly dissimilar to a
Gaussian distribution.

The accuracy of the estimation can be assessed by com-
puting the distance between these pointwise estimates and
the true value using root mean squared error (RMSE) and
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Figure 3. True parameter series used to simulate datasets with different properties. The production–consumption scenario corresponds to
production by nitrification (S1, red) and denitrification (S2, green) followed by mixing and subsequently reduction (r is the fraction remaining
following reduction, blue) in complete denitrification. (a) Six parameter series to test time series modeling, which illustrate fast-changing
source contributions (FastS), slow-changing source contributions (SlowS), extremal source contributions (ExtrS), high fractionation (HighF),
average and variable fractionation (AvgF), and low fractionation (LowF). (b) The general example (GenE) and the resultant isotopic time
series show measurement values simulated accordingly together with LOESS estimates on the right.

mean average error (MAE). Although it would be possible to
compute the metrics at each point in time, they are averaged
for simpler model comparison:

RMSE(q)k :=

√√√√ 1
N

N∑
t=1

(
F̂(q)kt −F∗kt

)2
, (20)

MAE(q)k :=
1
N

N∑
t=1
|F̂(q)kt −F∗kt |. (21)

Computations for r(q,s) are analogous.

Since the parameters to be estimated are interpreted as
a time series, it makes sense to also compare specific time
series information across the model estimates. The rate of
change can be significantly confounded in the measurement
time series, since the measurement errors follow a white
noise distribution that introduces high-frequency changes.
The ability of models to filter this noise can be measured by
comparing the rate of change, which is approximated using
first differences: 1F∗t,j = F∗t,j+1−F∗t,j and 1r∗t = r

∗

t+1− r
∗
t

for t = 1, . . .,N − 1. The magnitude of changes is not nec-
essarily relevant, since poor estimates of the magnitude of
changes would also lead to poor pointwise comparison met-
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rics. Therefore, the ratio of variances of first differences
shall serve as comparison metric for time series information,
which can be understood as comparing a notion of curvature
or acceleration in the time series (Fischer, 2023):

VarFD(q)k =

∑N−1
t=1

(
1F(q)kt −

∑N−1
j=1 F(q)kj

)2

∑N−1
t=1

(
1F∗kt −

∑N−1
j=1 F∗kj

)2 . (22)

2.5.3 Metrics for comparison of Bayesian posterior
distributions

Bayesian models are mainly used to derive pointwise esti-
mates, but their advantage is the creation of a sample from
the posterior distribution. It is thus also important to take
distribution properties into account. Posterior interval cov-
erage is a useful metric to evaluate simulated data from the
full Bayesian model, meaning in particular that F∗ and r∗
are sampled from their priors as well. Since the data simu-
lation for model comparison used here has fixed parameter
values, interpreting interval coverage becomes less meaning-
ful. It is still practical to use the size of the credible interval
as measure of uncertainty, and thus the interval span can be
compared, which is desired to be as small as possible given
otherwise accurate estimates. The credible interval with level
γ ∈ [0,1] is then the set excluding the tails with a proportion
of 1−γ

2 of the most extreme observations on either side (Fis-
cher, 2023):

I (γ )=

[
q

(
1− γ

2
|X
)
,q

(
1+ γ

2
|X
)]
. (23)

Further metrics for the quality of the entire posterior distri-
butions can be taken into consideration. Posterior predictive
checks are typically used in cases where no true values for
the parameter estimates are available, in order to assess the
models’ capability of representing the input data well (Ru-
bin, 1984). The posterior predictive distribution is the like-
lihood of hypothetical future measurements calculated using
the posterior distribution over parameter values in the pres-
ence of the actually available data:

p(X̃|X)=
∫
p(X̃|F,r)π(F,r|X) dFdr. (24)

This posterior predictive distribution is not unique due
to the auxiliary parameters S and ε. It is unclear whether
the posterior predictive distribution should be proportional
to the marginalized likelihood p(X̃|F,r) or rather the likeli-
hood conditioned on the auxiliary parameters p(X̃|F,r,S,ε).
This discrepancy renders comparison of predictive density
values across dataset simulations X(q) ineffective, since the
models fit a joint posterior and thus assume that future data
must be sampled using identical auxiliary parameter values,
whereas the simulation resamples their S(q) and ε(q) values
every time.

The log pointwise predictive density (LPPD) is a metric
for the quality of the posterior predictive density and thus
by proxy of the Bayesian model. It is computed by evaluat-
ing the predictive density at the original data points and can
be approximated using the posterior samples (Gelman et al.,
2014):

LPPD(q) = ln
∫
p(X|F,r)π(F,r|X)

dFdr≈
1
S

S∑
s=1

p(X|F(s)). (25)

2.6 Model implementation

TimeFRAME is implemented in R R Core Team (2017).
Bayesian modeling in TimeFRAME uses Stan for Hamilto-
nian Monte Carlo sampling (see Sect. 2 in the Supplement).
TimeFRAME can be installed using the links provided in the
“Code and data availability” section. All experiments were
run on an Intel Core i9-10900K CPU. The reported run times
in Sect. 2 in the Supplement are for a single sampling chain,
and in other sections the reported times are the maximum of
four simultaneously run chains.

3 Results

In this section, we will first discuss the influence of the prior
distribution for r and then present a detailed comparison of
different aspects of model performance. The four classes of
models were compared for performance on time series data
across a wide range of scenarios representative of edge cases
that might occur in reality. For these experiments, fixed pa-
rameter values for source contributions F∗ and fraction re-
maining r∗ were sampled as described in Sect. 2.5.1. The
model configurations to be compared are summarized in Ta-
ble 2.

3.1 Influence of the chosen prior distribution for the
fraction remaining r

Using a uniform prior for the fraction reacted π(r)∝ 1 is
the natural choice used as standard by all models. This
was compared to the Jeffreys prior, which was derived to
be π(r)∝ 1

r
and thus is an improper prior (see Sects. 2.2

and Fischer, 2023, for details). A middle ground between
these two choices was given by the beta prior r ∼ B( 1

2 ,1),
which has π(r)∼ 1

√
r
. The first argument of the beta distri-

bution can also be used as a free parameter α ∈ (0,1] along-
side a uniform hyperprior to construct the hierarchical model
r ∼ B(α,1),α ∼ Uni(0,1).

Each data point was supplied to the model individually,
and S = 5000 posterior samples were generated. The sam-
ples were combined for each value of r to marginalize over
the distributions of the auxiliary parameters (Fig. 4b). The
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Table 2. Model configurations used to compare performance on time series data across different edge cases for the four model classes
described in Sect. 2.3. The “abbreviation” column refers to the abbreviations for each configuration used in subsequent discussion.

Model class Abbreviation Description

Independent Independent Independent time step model described in Eq. (12)
Hierarchical Hierarchical independent time step model with gamma hyperprior for concentration σ

described in Eq. (13)

Gaussian process prior GP (ρ = 1) Gaussian process prior on measurements with ρ = 1 described in Eq. (15)
GP (latent) Gaussian process prior on measurements with ρ = 1 using latent variable formulation

described in Eq. (14)
GP (hier.) Gaussian process prior on measurements with inverse gamma hyperprior on ρ
GP (latent, hier.) Gaussian process prior on measurements with inverse gamma hyperprior on ρ using

latent variable formulation

Dirichlet–GP prior DGP (CLR, ρ = 1) DGP prior using CLR transform and ρ = 1, σ = 1 described in Eq. (16)
DGP (ILR, ρ = 1) DGP prior using ILR transform and ρ = 1, σ = 1 described in Eq. (17)
DGP (CLR, hier.) DGP prior using CLR transform and σ = 1 with inverse gamma hyperprior on ρ
DGP (ILR, hier.) DGP prior using ILR transform and σ = 1 with inverse gamma hyperprior on ρ

Spline-based prior Spline (CLR) B-spline GLM using CLR link function having M = 8 for source contributions and
M = 4 for fraction remaining described in Eq. (18)

Spline (ILR) B-spline GLM using ILR link function andM = 8 for source contributions andM = 4
for fraction remaining

Spline (Laplace) B-spline GLM using ILR link function andM = 8 for source contributions andM = 4
for fraction remaining with Laplace prior on coefficients

source S2 (bD) has a wide prior distribution (Table 1) which
confounds with the effect of fractionation and introduces
high uncertainty. Since this uncertainty is proportional to the
logarithm of r , the effect on the posterior distribution is much
more pronounced when r is high. The Jeffreys prior intro-
duces a shift towards lower values compared to the uniform
prior, with the beta prior being in between the two. Inference
performance was compared by taking the posterior means
f̂(q) = 1

S

∑S
s=1f(q,s) and r̂(q) = 1

S

∑S
s=1r(q,s) and comparing

them against the true values (Fig. 4c). Clearly, the Jeffreys
prior performs worst for source contributions f , with the
uniform prior performing best, closely followed by the beta
and hierarchical prior. Regarding the fraction remaining r ,
the Jeffreys prior performs best for low values of r , with the
uniform prior performing worst; however, this relationship
switches at about r = 0.4 to the opposite. Therefore, choos-
ing any prior can be justified if one expects the fractionation
index to be in a certain range. The standard deviation be-
tween different repetitions, however, clearly shows that the
effect of prior choice is overwhelmed by the variation intro-
duced through the distribution of the sources and consump-
tion, due to the large uncertainty in the source and fractiona-
tion factor priors.

3.2 Comparison of overall model performance

The examples described in Sect. 2.5.1 were sampled forQ=
64 repetitions. Measurements were simulated with a Gaus-
sian measurement error of magnitude η = 5. The posteriors

were sampled for a total of S = 10000 steps using four paral-
lel chains. Goodness of estimation was quantified with esti-
mates computed as the posterior means f̂(q) = 1

S

∑S
s=1f(q,s)

and r̂(q) = 1
S

∑S
s=1r(q,s) and taking the mean absolute er-

ror (Eq. 21) to the ground truth (Fig. 5a). Conclusions us-
ing the root mean squared error or with posterior medians
were similar. All models using fixed hyperparameters use de-
fault values that are not specifically tuned for the examples
at hand. Therefore, the reported performance is not indicative
of best-case performance and only shows the quality of the
chosen values. Hierarchical models do not have this problem
since they can estimate the hyperparameters for each exam-
ple specifically.

Overall performance was best for hierarchical DGP mod-
els and spline GLMs (Fig. 5a). Estimation of fraction re-
acted r is relatively poor in most cases (MAE> 0.4); how-
ever, spline models perform well for all cases (MAE usu-
ally< 0.3), particularly for extremal fractionation amounts
(all examples except AvgF). The default number of degrees
of freedom that spline models use seems surprisingly ro-
bust in all examples, whereas the default correlation length
of Gaussian processes does not. Gaussian process priors on
measurements appear to be slightly worse than DGP priors
and spline-based priors, especially SlowS and ExtrS. Inde-
pendent time step models have worse performance than the
rest for all examples, and the hierarchical extension to it only
has good performance in examples SlowS and ExtrS, which
represent cases where the contribution of the sources is ei-
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Figure 4. Comparison of different priors for the fraction remaining r . (a) Dual-isotope plot for the simulated data, constructed with two
sources and different values of r . Data points are colored by the true value of r . (b) Posterior densities of the fractionation weight r averaged
across simulations for true r values of 0.05, 0.5, and 0.95 using different prior distributions. (c) Mean absolute error of Bayesian models
using different prior distributions of r , shown for different true values of r and f . Vertical lines indicate the standard deviation over Q= 64
repetitions. The performance on source contributions is identical for both sources (Ni and bD), since they are perfectly correlated, so only
one panel is shown for f .

ther very low or very high. In other cases, using flat priors as
default values seems to work best.

Spline GLMs have very small errors on fraction con-
sumed r whenever the value is slowly changing and close
to 0 or 1. This could suggest that the chosen hyperparame-
ters are suitable for all examples. Another plausible explana-
tion is the fact that the spline bases used have an intercept
term, which allows the center of estimation to freely move,
whereas DGP models do not. For the source contributions
this likely does not matter, but allowing the Gaussian process
to have non-zero mean could be beneficial for estimating r .
An additional spline model was added with Laplace priors on
the coefficients, which seems to be beneficial in cases where
parameters are close to their boundaries since the prior al-
lows for values farther from zero. The model using Gaus-
sian process priors on measurements was implemented using
both formulations with latent variables and with analytically

computed likelihood. Performance is identical in all cases,
strongly indicating that the formulations are equivalent for
parameter estimation. Additionally, using CLR or ILR trans-
formations for DGP models and Spline GLMs does not make
a difference in estimation accuracy, as is to be expected from
their derivations.

Time series models are not only expected to give accu-
rate estimates of mean source contributions and fractiona-
tion, but the resulting time series should also have similar
properties to the ground truth. The variance ratio of first dif-
ferences (Eq. 25) measures accuracy of the estimated cur-
vature (Fig. 5b). Clearly, the hierarchical Gaussian process
and DGP models estimate the correlation length well, result-
ing in a time series with similar rates of change to the true
values. Spline GLMs perform well, especially for the exam-
ples FastS, SlowS, and ExtrS. Independent time step mod-
els result in high variation, which is due to the fact that the
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Figure 5. Model performance for different configurations (see Table 2 for details: fast-changing source contributions (FastS), slow-changing
source contributions (SlowS), extremal source contributions (ExtrS), high fractionation (HighF), average and variable fractionation (AvgF),
and low fractionation (LowF)). (a) Mean absolute errors for all examples averaged overQ= 64 dataset simulations with standard deviations
shown as vertical lines. The results for the two source contributions were identical since they are perfectly correlated, so the plots only show
one result for f in addition to the fraction remaining r . (b) Log variance ratio of first differences of the estimated time series against the true
values for source contributions f . The time series for fraction remaining r are linear or constant in most examples and are thus not suitable
to be used for model comparison with this metric.

measurement noise is not adequately filtered. The fixed cor-
relation length Gaussian processes seem to have misspeci-
fied hyperparameters, since they also overestimate the rates
of change in the time series.

Fitting times ranged from 20 to 72 s on average for the
S = 10000 posterior samples generated by each model, split
into 2500 over four chains (see Fischer, 2023, for details).
Hierarchical models tend to be slowest due to the additional
parameters and repeated matrix decompositions that need to
be computed, whereas fixed parameter models, especially in-
dependent time steps and spline GLMs, are sampled fastest.
Spline models using the Laplace prior have long fitting times,

which could indicate that the high parameter values – which
are allowed due to weaker regularization of parameter ranges
far from zero – are not sufficiently identifiable, resulting in
slow sample generation.

3.3 Influence of fractionation extent on model
performance

Models can have varying performance at different reaction
extents and thus different levels of fractionation. For this
reason, a time series of source contribution values f∗t was
taken and paired with different constant fractionation val-
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ues r∗t = r
∗ to generate measurements and monitor perfor-

mance. In total, 17 equally spaced fractionation values rang-
ing from r∗ = 0.02 to 0.98 were used, and a total of Q= 32
datasets were generated per value. True values for source
contributions were taken from the general example GenE
(Sect. 2.5.1), and a measurement error magnitude of η = 5
was used. This experiment was done only with representative
models of the four main model classes in order to reduce the
number of comparisons. The model configurations used were
the independent time step model, the Gaussian process prior
on measurements with hierarchical estimation of correlation
length, DGP prior with hierarchical estimation of correlation
length, and spline-based GLM with fixed hyperparameters
for degrees of freedom.

Overall performance is best when r∗ is close to 0.5
(Fig. 6a). Estimation is also more accurate with very low val-
ues of r∗, because small r∗ values have large impacts on iso-
topic measurements, and thus estimation can become more
accurate. Spline models are expected to perform well here
because the time series of fraction remaining is constant,
which can be reflected in the low degrees of freedom used.
The different model classes seem to be equally affected by
changes in r∗ otherwise, showing that the choice of hyperpa-
rameters to reflect the situation of interest is more important
than selecting a particular model.

Spans of 95 % credible intervals can give additional in-
sight into the pattern observed for the estimation accuracy
over different values of r∗ (Fig. 6b). If parameter estimation
is good, then a smaller credible interval span shows a nar-
row posterior around the correct mean. DGP prior models
have the smallest credible interval span for source contribu-
tions and fraction remaining. All other models have an inter-
val width of over 0.75 for large values of fraction remaining,
thus spanning over half of the possible domain. Clearly, due
to the Rayleigh fractionation equation being non-linear in r ,
it is difficult to estimate large values of r (resulting in low
fractionation) with high accuracy. If the amount of remain-
ing substrate is larger than 0.1, the data do not give sufficient
information regarding r , so estimates of r group around the
prior mean of 0.5 and show large credible interval spans.

3.4 Influence of measurement noise on model
performance

The main advantage that smooth models such as Gaussian
processes and splines have over the independent time step
assumption is that they promise to filter measurement noise
and thus produce estimates that are more accurate and have
a narrower posterior distribution. For this reason an experi-
ment was conducted using values of source contributions f∗t
and fraction remaining r∗t from the general example GenE
(Sect. 2.5.1) to simulate datasets with different levels of mea-
surement noise. Noise values range from η = 0.5 to η = 20,
and for each separate value of η, a total of Q= 32 datasets
were generated.

Performance of all models generally decreases with in-
creased measurement noise as expected (Fig. 7a). However,
below η = 5, reduction in noise does not lead to further im-
provement in performance: most of the estimation error at
this noise level comes from the source end-member uncer-
tainty rather than the measurement noise. The variance ra-
tio of first differences (Fig. 7b) can be used to assess the
quality of the estimated time series in the presence of high-
frequency changes due to measurement noise. Variance ratios
of the independent time series model gradually increase with
increasing measurement noise magnitude. All other models
seem to filter the noise well, having much lower overestima-
tions of the first difference variance. The hierarchical DGP
model seems to be less equipped to deal with very high noise,
which could simply be due to the fact that the weakly infor-
mative hyperprior on the correlation length is not suitable
here. The spline GLM appears to have constant low values
for the ratio of first difference variance, due to the fact that
the fixed degrees of freedom predetermine the smoothness
of the estimates independent of measurement noise. More-
over, the model run time for the spline model was close to
the run time for the independent model and less than half the
run time for the GP and DGP models across all noise lev-
els. These results show that use of the spline model can be
particularly advantageous for data featuring high statistical
uncertainty.

3.5 Potential impact of improvements in data quality

Estimation accuracy can be improved not only by choos-
ing the right model but also by improving the quality of the
data available to the model. Several ways of adding more
or higher-quality data exist, and the effects on model per-
formance were studied in order to find what would be most
beneficial. The above examples use two sources with two iso-
topic measurements, making the system well determined. If
additional isotopic measurements are available, they can be
added to make the system overdetermined and thus elim-
inate some noise. To investigate this approach, the addi-
tional isotopic measurement δ18O was added with source
end-members and uncertainty from Yu et al. (2020) (Table 1).
The same dataset generation procedure as in Sect. 3.2 was
used with a total ofQ= 64 datasets generated. Resulting im-
provement in estimation accuracy for the same two sources
is shown in Fig. 8a. It is worth noting that the additional mea-
surement is not ideal in quality, with large uncertainty for the
fractionation factor ε. An improvement can clearly be seen
for estimation of the fraction reacted r , especially in the ex-
amples HighF and AvgF. Very little improvement is seen for
estimation of f . Spline GLMs improved the most, especially
in their already good ability to estimate the fraction reacted.
The addition of δ18O to this model did not strongly improve
results, due to large uncertainty in source end-members and
fractionation factors. However, the addition of isotopic di-
mensions with low uncertainty or strong differences com-
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Figure 6. Impact of the fraction remaining r on model performance. Each reported value is the average over Q= 32 dataset simulations,
with vertical lines indicating standard deviations. (a) Mean absolute error of the four main model classes over different values of the fraction
remaining r . (b) The 95 % credible interval spans of the four main model classes over different values of the fraction remaining r .

pared to existing information could improve results, for ex-
ample, clumped isotopes or δ18O for determination of fungal
denitrification.

Instead of adding additional measurements, efforts could
be put into determining the end-members of the sources and
the fractionation factors more accurately, thus reducing un-
certainty in the input data. To study this case an idealized
set of sources and fractionation factors were selected to have
the mixing and reduction line exactly perpendicular, with
an uncertainty of 10 % in each dimension with respect to
the mean. This renders the mixing and fractionation com-
ponents independent, since they cannot confound each other.
We therefore set the end-members for S1 to −1± 0.2 and
1±0.2 ‰ for δ15Nbulk and δ15NSP, respectively, and for S2 to
1±0.2 and−1±0.2 ‰ for δ15Nbulk and δ15NSP, respectively.
The fractionation factor was set to 1± 0.1 ‰ for both iso-
topes. Measurements sampled in this setting follow exactly
the same procedure as in Sect. 3.2 but only use a Gaussian
measurement error with magnitude η = 0.1. For each exam-
ple, Q= 64 datasets were generated, and the mean absolute
error of estimation is shown in Fig. 8b.

Improving all uncertainties involved at a minimum has a
great impact on model performance. Almost all mean abso-

lute errors of estimation are below an error margin of 0.05 for
source contributions and below 0.1 for fraction remaining.
Furthermore, model choice becomes less relevant, and even
the independent time step models perform similarly to the
other more sophisticated ones. Interestingly, the DGP model
with fixed hyperparameters and the spline GLM with fixed
spline basis underperform in source contribution estimation,
for example, HighF. This could be evidence that the default
parameters become less robust when noise is removed, and
they should be selected more carefully. This experiment is an
extremely idealized case, and natural variability likely pre-
cludes this level of precision in end-members for microbial
N2O production in soil; however, it shows the high poten-
tial for improvements in input data to enhance results and
moreover to make results more robust towards model config-
uration. Currently, the level of uncertainty in direct anthro-
pogenic N2O and CH4 source end-members (e.g., industrial
production, energy and transport emissions) is very high due
to the scarcity of measurements (Eyer et al., 2016; Röckmann
et al., 2016; Harris et al., 2017) – further investigation of the
isotopic range of these sources, as well as consideration of
end-members for novel isotopes such as clumped species,
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Figure 7. Impact of measurement noise on model performance. Each reported value is the average over Q= 32 dataset simulations, with
vertical lines indicating standard deviations. (a) Mean absolute error of estimation of the four main model classes over different measurement
noise levels η. (b) Log variance ratio of first differences for the estimated time series against the true values for source contributions over
different measurement noise levels η.

may lead to the level of uncertainty reduction required to
achieve accurate source partitioning.

4 Application of TimeFRAME to real and simulated
datasets

In this section, we will present use of the TimeFRAME pack-
age for the analysis of simulated and real datasets to illustrate
aspects of model configuration choice and output data under
different scenarios.

4.1 Model selection and application

TimeFRAME allows different models to be applied with
minimal effort, meaning that data can be analyzed with sev-
eral different model setups to investigate the robustness of
results. The independent time step model does not incorpo-
rate time series information; thus, it is recommended only
for datasets with independent measurements. The DGP and
spline models both perform well, reproducing the input data
values and time series properties – the spline model was bet-
ter able to estimate r . All models estimate f of different

sources across the full range with similar accuracy; however,
when the fraction remaining r is very low or high, the results
show much larger error (Fig. 8). This is compounded by the
difference between mixing followed by reduction (MR) and
reduction followed by mixing (RM) models at low values of r
(Sect. 1 in the Supplement). We therefore recommend users
test both DGP and spline models for time series data and treat
results with caution when these models differ strongly. Esti-
mates of very low fraction remaining should also be treated
with caution. Despite these points, we find that TimeFRAME
offers a strong improvement on previously available meth-
ods: accounting for information contained within time series
significantly reduces the uncertainty in estimates of f and r ,
and the package application is simple and fast, as well as easy
to document and reproduce.

The testing here focuses on interpretation of N2O isotope
data to unravel production and consumption pathways. Time-
FRAME can also be applied to other scenarios, for example,
trace gases such as CO2 or CH4, or datasets with many more
isotopic dimensions through clumped isotope measurements.
The number of sources is indefinite as the model can be ex-
tended by the user; however, when the number of sources
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Figure 8. Model performance considering different improvements to the input data. The original model performance is shown in gray.
(a) Mean absolute error for all models on Q= 64 generated datasets using one additional isotopic measurement (δ18O). (b) Mean absolute
error for all models on Q= 64 generated datasets using the idealized sources and fractionation factor with 10 % uncertainty in isotopic
end-members.

is larger than the number of isotopic dimensions, the model
will be poorly constrained. The model can currently only in-
clude one consumption pathway applied after mixing – future
versions will include more complex setups; however, the un-
certainty in input data currently precludes this level of com-
plexity. The examples shown here use time as the dimension
of autocorrelation, as time series are the most common kind
of data. However, other dimensions could be used, such as
temperature in the case of measurements across a gradient of
temperature-dependent processes or soil moisture for a set of
incubations across a moisture gradient. TimeFRAME’s setup
allows simple adaptation to different user-defined mixing and
fractionation models and fast and reproducible interpretation
of these models.

4.2 Application to the general simulated time series

The main purpose of the time series models is to provide es-
timates of source contribution and fractionation weights with
uncertainty. In the sections above, only the performance met-
rics aggregated over many simulations have been shown. To
illustrate the modeling capabilities, the representative general
example (GenE) was simulated from fixed parameter values,
and the inference results are shown in comparison to the true
values.

In order to run the Bayesian models and estimate source
contributions and fractionation over time, the auxiliary distri-
butions of the source isotopic signatures S and the fraction-
ation factor ε as well as the noise magnitude η must be sup-

https://doi.org/10.5194/bg-21-3641-2024 Biogeosciences, 21, 3641–3663, 2024



3658 E. Harris et al.: TimeFRAME: unraveling isotopic data

Figure 9. Posterior means of the three model types compared to the true parameter values. Shaded areas indicate 95 % credible intervals, and
the true parameter values used to simulate the measurements are shown as black lines.

plied in addition to the dataset. Three different model classes
were run to illustrate the computed output: (i) the indepen-
dent time step model described in Eq. (12), (ii) the spline
GLM described in Eq. (18), and (iii) the hierarchical DGP
prior model described in Eq. (17). From the output that the
models produce, either summary statistics of the posterior
(such as its mean and quantiles) can be gathered or the mean
and credible intervals from all posterior time series sampled
can be extracted as shown in Fig. 9.

The independent time step model clearly shows poorer
performance due to the large effect of measurement error on
the estimated parameters. Nevertheless, the credible interval
covers the true parameter values well and is reasonably nar-
row. Estimation of the fraction remaining r seems to be bi-
ased toward higher values, which could be due to overlap
with the variation in source isotopic signatures. The B-spline
basis for the GLM seems to have default values for degrees of
freedom that are fairly optimal in this case. The time series of
parameter estimates is now smooth similarly to the actual pa-
rameter series. Estimation using the hierarchical DGP prior
model gives the best results: the time series are adequately
smooth, and estimates are close to the true values with nar-
row credible intervals.

4.3 Comparison of TimeFRAME and a dual-isotope
mapping approach on a stationary dataset

The samples used to compare the TimeFRAME model with
the traditional dual-isotope mapping approach were taken
from Kenyan livestock enclosures (bomas in Kiswahili,
also known as Swahili) at the Kapiti Research Station and
Wildlife Conservancy of the International Livestock Re-
search Institute (ILRI) located in the semi-arid savanna re-
gion (1°35.8′–1°40.9′ N, 36°6.4′–37°10.3′ E). The different

samples represent the isotopic composition of N2O taken
from boma clusters of varying age classes (0–5 years after
abandonment). At Kapiti, bomas are set up in clusters of
three to four, which are used for the duration of approxi-
mately 1 month before setting up a new cluster. The sampling
campaign was conducted in October 2021 in order to under-
stand the underlying mechanisms of the huge N2O emissions
observed in these systems (Butterbach-Bahl et al., 2020), and
the findings will be published in a separate paper (Fang et al.,
submitted). The dataset contains measurements of δ15Nbulk,
δ15NSP, and δ18O of N2O as well as δ15N of soil. A stable
isotope analysis of these samples was done using isotope
ratio mass spectrometry (IRMS) as described in Verhoeven
et al. (2019) and Gallarotti et al. (2021). A dual-isotope map-
ping approach was used to extract the production pathways
and reduction extent for this dataset based on δ15NSP and
δ18O using the scenarios of mixing followed by reduction
(MR) and reduction followed by mixing (RM), described in
detail in Fang et al. (submitted) and Ho et al. (2023).

As the boma dataset is a set of independent measurements,
TimeFRAME was applied to the data using the independent
time step model. The time axis was replaced by numbering
of points in the dataset. The standard deviation of all iso-
tope measurements was set to 1 ‰ as the measurement un-
certainty was not quantified; however, this may be a low es-
timate given the many sources of uncertainty from measure-
ment error to international scale calibration. TimeFRAME
was applied in two configurations:

1. using only δ15NSP and δ18O as well as Ni and bD path-
ways to closely mimic the configuration of the dual-
isotope MR approach and
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Table 3. RMSE (‰) for isotopic data estimated using pathway
contributions from the two TimeFRAME and the two dual-isotope
model configurations, compared to the measured isotopic data used
as input for the models.

δ15Nbulk δ15NSP δ18O

TimeFRAME, 2-iso., 2 source – 6 19
TimeFRAME, 3-iso., 3 source 36 22 17
Dual isotope, MR – 7 23
Dual isotope, RM – 7 23

2. using δ15Nbulk, δ15NSP, and δ18O with Ni, bD, and fD
(fungal denitrification) pathways, which is the most de-
tailed configuration available with these data.

The agreement between the dual-isotope method and the
analogous TimeFRAME two-isotope implementation is very
good (mean absolute deviation of 8 % and 15 % for bD/Ni
and reduction, respectively, for the MR method, Fig. 10).
The dual-isotope method results are not significantly differ-
ent for the MR and RM implementations, supporting the as-
sumptions made in Eq. (3) as the basis for the TimeFRAME
package: these models only deliver significantly different re-
sults in cases where N2O reduction is very high (see Sect. 1
in the Supplement). TimeFRAME offers the major advan-
tage that uncertainty bounds for the prior are incorporated
and thus calculated for the posterior. Moreover, using the
TimeFRAME package functions, the calculations are repro-
ducible, can be performed in just two lines of code, and
can be easily adapted to consider different end-members and
model setups. The TimeFRAME three-isotope implementa-
tion shows very different results to the other estimates due
to the inclusion of δ15Nbulk and the fungal denitrification
pathway. This pathway has high δ15NSP (Table 1) and thus
strongly impacts the model estimates of nitrification and re-
duction, which are also evidenced by high δ15NSP.

The pathway estimates were used to reconstruct the iso-
tope measurements, and the RMSE between true measure-
ments and reconstructed measurements was found as an es-
timate of model performance in the absence of true knowl-
edge of pathways (Table 3). The TimeFRAME two-isotope
implementation is able to reproduce the isotopic data more
accurately than the dual-isotope plot due to the Bayesian op-
timization of the fit. The TimeFRAME three-isotope imple-
mentation shows poorer RMSE due to the additional chal-
lenge of fitting δ15Nbulk as well as the fD pathway. The dif-
ference between MR and RM implementations of the dual-
isotope approach is minimal, showing that model configura-
tion and uncertainty in end-members is far more important
for results than the specific formulation of the fractionation
and mixing equation.

These results show the importance of considering differ-
ent pathways and model configurations. TimeFRAME users
should aim to include as much isotopic data as possible and

to use other complementary approaches such as microbial
ecology to constrain potential production and consumption
pathways, for example, to decide whether it is appropriate to
include fungal denitrification. Users should consider both the
estimated uncertainty for a particular model setup, provided
by the TimeFRAME package, and the variation between es-
timates for different plausible scenarios.

4.4 Comparison of time series analysis with existing
approaches

TimeFRAME was applied to two irregularly time-spaced
datasets from soil incubations at different soil moisture levels
(L1= drier= 55 %–66 % WFPS; L2=wetter= 69 %–82 %
WFPS). The L1 and L2 incubations were sampled on 8 and
11 dates, respectively, with between 1 and 7 duplicate mea-
surements taken on each sampling date and a total of 41 and
24 measurements made, respectively. The incubations are de-
scribed in detail in Lewicka-Szczebak et al. (2020). Time-
FRAME was compared to results from the 3DIM/FRAME
model (Lewicka-Szczebak et al., 2020; Lewicki et al., 2022),
with both models considering four pathways (bacterial den-
itrification, nitrifier denitrification, fungal denitrification, ni-
trification) as well as N2O reduction using the end-members
and fractionation factors reported in Lewicka-Szczebak et al.
(2020). FRAME solves the isotopic equations independently
for each sampling date, whereas TimeFRAME spline and
DGP implementations are able to consider temporal corre-
lations between sampling times. Additionally, dual-isotope
mapping and 15N labeling approaches were compared, as de-
scribed in Lewicka-Szczebak et al. (2020).

The agreement was good between pathway estimates from
TimeFRAME and FRAME, although the spline implementa-
tion estimated lower reduction than other methods (Fig. 11).
Agreement with the mapping approach was very poor for bD
and good for reduction, reflecting the low ability of the map-
ping approach to unravel pathway contributions with similar
end-members. Agreement with the 15N gas flux method was
good for reduction and acceptable for bD, considering the
denitrification contribution being quantified is not identical.
The results clearly showed the influence of WFPS on bD and
reduction, with both pathways increasing by 2 % for every
1 % increase in WFPS (Fig. 11).

5 Conclusions

The TimeFRAME data analysis package uses Bayesian hier-
archical modeling to estimate production, mixing, and con-
sumption pathways based on isotopic measurements. The
package was particularly developed for the analysis of N2O
isotopic data and contains default isotopic end-members and
fractionation factors for N2O, but the flexible implementation
means it can also be applied to other trace gases such as CH4
and CO2. TimeFRAME provides a simple and standardized
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Figure 10. Comparison of TimeFRAME results with pathway estimates from a dual-isotope plot approach. TimeFRAME was applied in two
configurations: (i) using only δ15NSP and δ18O as well as Ni and bD pathways and (ii) using δ15Nbulk, δ15NSP, and δ18O with Ni, bD, and
fD pathways. The dual-isotope approach used δ15NSP and δ18O as well as Ni and bD pathways in configurations MR (mixing followed by
reduction) and RM (reduction followed by mixing). (a) A one-to-one comparison of estimates from the two TimeFRAME configurations
and the dual-isotope plot MR and RM methods. (b) A plot of the estimates for each pathway from the two TimeFRAME configurations and
from the dual-isotope MR method.

method for analysis of pathways based on isotopic datasets,
which has previously been lacking. The package will con-
tribute strongly to reproducibility and uncertainty quantifica-
tion in the analysis of these datasets.

TimeFRAME has four main classes of models, which
have been extensively tested in a range of scenarios. For
time series data, the Dirichlet–Gaussian process and spline
GLM priors show very good results. These models are able
to smooth time series to reduce the impact of noisy data
and deliver good pathway quantification compared to the
ground truth for simulated datasets. The independent time
step model is strongly impacted by measurement noise but

delivers good performance compared to the dual-isotope
mapping approach, with simpler and more reproducible im-
plementation as well as uncertainty quantification.

Model application and testing showed that uncertainty in
end-members and fractionation factors was the major source
of uncertainty in pathway quantification. Reduction of uncer-
tainty in these parameters will strongly improve the insights
that can be gained from isotopic data. Model setup is also
critical: the sources/pathways chosen in the model strongly
affect results and should be informed based on any other rel-
evant sources of information, for example, profiling of the
microbial community present at a measurement site. Time-

Biogeosciences, 21, 3641–3663, 2024 https://doi.org/10.5194/bg-21-3641-2024



E. Harris et al.: TimeFRAME: unraveling isotopic data 3661

Figure 11. Using TimeFRAME to understand the impact of water-filled pore space (WFPS) on N2O production and consumption. (a) Com-
parison of TimeFRAME pathway estimates (independent, spline (M = 6 andMr= 3), and DGP (ρ= 0.2 and ρr= 0.5) implementations) with
estimates from the FRAME model, from an SP-δ18O mapping approach, and from a 15N-labeled gas flux approach. Comparisons are only
shown for bD (bacterial denitrification) and reduction as other pathways are not estimated by the mapping and gas flux approaches. The gas
flux approach does not strictly estimate bD but the proportion of N2O arising from NO−3 substrate. The lines show the linear regression, and
the legends show the mean absolute deviation for each comparison. (b) Impact of WFPS on bD and reduction estimated using TimeFRAME
spline and DGP results. The error bars show the estimated standard deviation at each point from the TimeFRAME fit. The legend shows
details of the weighted linear regression (Rlm() function weighted by 1

σ ) for each dataset.

FRAME provides a robust and powerful analysis tool, but
the accuracy of results gained from TimeFRAME depends
on careful definition of the model setup and configuration by
the user.

Code and data availability. The TimeFRAME code and applica-
tion data shown in the paper can be accessed at

– https://gitlab.renkulab.io/eliza.harris/timeframe (Harris and
Fischer, 2023a).

The TimeFRAME package for direct installation with devtools is
located at

– https://github.com/elizaharris/TimeFRAME (Harris and Fis-
cher, 2023b).

The TimeFRAME user interface (Shiny app) is useful for first
interactions with the model. The TimeFRAME shiny app can be
directly started at

– https://renkulab.io/projects/fischphi/n2o-pathway-analysis/
sessions/new?autostart=1 (Fischer, 2024).

Alternatively, session settings for the Renku platform deploy-
ment can be chosen before the app is initialized at

– https://renkulab.io/projects/fischphi/n2o-pathway-analysis/
sessions/new (Fischer, 2024).

The development version of TimeFRAME, including the differ-
ent edge scenarios explored in this paper as well as tools and exam-
ples to assist in the implementation of different fractionation equa-
tions, can be accessed at

– https://gitlab.renkulab.io/fischphi/n2o-pathway-analysis (Fis-
cher, 2024).

Code used for the experiments can be found at

– https://gitlab.renkulab.io/fischphi/n2o-pathway-analysis/-/
tree/main/experiments (Fischer, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-21-3641-2024-supplement.
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