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Abstract. Sustainable intensification schemes such as inte-
grated soil fertility management (ISFM) are a proposed strat-
egy to close yield gaps, increase soil fertility, and achieve
food security in sub-Saharan Africa. Biogeochemical mod-
els such as DayCent can assess their potential at larger
scales, but these models need to be calibrated to new environ-
ments and rigorously tested for accuracy. Here, we present a
Bayesian calibration of DayCent, using data from four long-
term field experiments in Kenya in a leave-one-site-out cross-
validation approach. The experimental treatments consisted
of the addition of low- to high-quality organic resources,
with and without mineral nitrogen fertilizer. We assessed
the potential of DayCent to accurately simulate the key el-
ements of sustainable intensification, including (1) yield, (2)
the changes in soil organic carbon (SOC), and (3) the green-
house gas (GHG) balance of CO2 and N2O combined.

Compared to the initial parameters, the cross-validation
showed improved DayCent simulations of maize grain yield
(with the Nash–Sutcliffe model efficiency (EF) increasing
from 0.36 to 0.50) and of SOC stock changes (with EF in-
creasing from 0.36 to 0.55). The simulations of maize yield
and those of SOC stock changes also improved by site (with
site-specific EF ranging between 0.15 and 0.38 for maize
yield and between −0.9 and 0.58 for SOC stock changes).
The four cross-validation-derived posterior parameter distri-
butions (leaving out one site each) were similar in all but

one parameter. Together with the model performance for the
different sites in cross-validation, this indicated the robust-
ness of the DayCent model parameterization and its relia-
bility for the conditions in Kenya. While DayCent poorly
reproduced daily N2O emissions (with EF ranging between
−0.44 and −0.03 by site), cumulative seasonal N2O emis-
sions were simulated more accurately (EF ranging between
0.06 and 0.69 by site). The simulated yield-scaled GHG bal-
ance was highest in control treatments without N addition
(between 0.8 and 1.8 kg CO2 equivalent per kg grain yield
across sites) and was about 30 % to 40 % lower in the treat-
ment that combined the application of mineral N and of ma-
nure at a rate of 1.2 t C ha−1 yr−1. In conclusion, our results
indicate that DayCent is well suited for estimating the impact
of ISFM on maize yield and SOC changes. They also indicate
that the trade-off between maize yield and GHG balance is
stronger in low-fertility sites and that preventing SOC losses,
while difficult to achieve through the addition of external or-
ganic resources, is a priority for the sustainable intensifica-
tion of maize production in Kenya.
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1 Introduction

In Kenya, as in many other countries in sub-Saharan Africa
(SSA), maize yields have remained low; on average they
have been 1.7 t ha−1 compared to the global average of
5.6 t ha−1 over the last decade (2011–2021; FAO, 2023). This
contributes to the low self-sufficiency of food production,
with around 20 % of the Kenyan population facing severe
food insecurity (World-Bank, 2021b). If yields are not im-
proved, increased population growth will further deteriorate
food self-sufficiency and food security in general in the com-
ing decades (Zhai et al., 2021), especially considering ex-
pected yield declines resulting from more frequent extreme
weather events (Lobell et al., 2011). One of the key limita-
tions to sustainable maize production in SSA is the insuffi-
cient use of mineral fertilizer and organic inputs (Vanlauwe
et al., 2010). Integrated soil fertility management (ISFM) is
a sustainable intensification practice that can alleviate these
limitations by combining the use of mineral fertilizers with
organic inputs (Vanlauwe et al., 2010). Several studies have
reported that ISFM has the potential to more than double
maize yields in Kenya, especially on infertile soils, due to its
positive impact on soil fertility, including soil organic matter
(SOM) content (Chivenge et al., 2009, 2011). Furthermore,
increasing SOM can help mitigate adverse effects of climate
change, offering considerable potential in carbon-depleted
soils across SSA (Corbeels et al., 2019). However, the ef-
fectiveness of ISFM in increasing yields strongly depends
on local site conditions, such as soil and climate (Chivenge
et al., 2011).

To close yield gaps in a resource-efficient way and to as-
sess the climate change mitigation potential of ISFM, we
need to understand the long-term effects of ISFM practices at
a larger scale. Ideally, this would be facilitated by implement-
ing a large number of long-term experiments across a repre-
sentative range of soil and climatic conditions. However, the
significant costs, labor, and time required to maintain long-
term experiments limit the number of sites for evaluating the
variable effects of ISFM practices under site-specific condi-
tions. In addition, relying on statistical predictive techniques
to upscale results from a limited number of sites may lead to
low predictive power and large errors because it is unlikely
that the effects of soils and climate on yield and SOM would
be fully captured in the statistical models.

Biogeochemical process-based ecosystem models, such as
DayCent (Parton et al., 1998; Del Grosso et al., 2001), sim-
ulate the effects of important driving variables on crop yield
and SOM formation using semi-mechanistic functions devel-
oped through decades of agronomic and soil research. Be-
cause they (partly) embed our current understanding of the
complex ecosystem processes, they are more robust for scal-
ing up the yield potential (Saito et al., 2021) and the SOM
building capacity (Lee et al., 2020), compared to statistical
predictive techniques. However, to avoid bias in model out-
put, it is best practice that models are calibrated and eval-

uated for local conditions (Necpálová et al., 2015), espe-
cially when applied in novel contexts such as different cli-
mate zones with different soils.

Although DayCent has been used to estimate SOM stock
changes in Kenya on a national scale (Kamoni et al., 2007)
and recently to assess the impact of conservation agriculture
on SOM in Ethiopia (Lemma et al., 2021), its modules of
SOM and maize crop growth have never been rigorously cal-
ibrated and evaluated for tropical agroecosystems in SSA.
A recent evaluation of DayCent in Kenyan maize systems
showed that SOM turnover is underpredicted by the model
(Nyawira et al., 2021). Because SOM is coupled to nitro-
gen (N) mineralization in biogeochemical models, there is
the potential that this translates into biased crop responses to
N addition and biased crop productivity predictions in any
upscaling exercise. A potential solution to this issue is the
simultaneous calibration of soil and crop parameters in Day-
Cent using data from local long-term experiments. Ideally,
this calibration would include the uncertainty in the model
parameters and model outputs (Clifford et al., 2014), so an
estimation of uncertainties is possible in upscaling exercises
(Stella et al., 2019). This is especially relevant given a recent
study showing considerable uncertainty in DayCent’s SOM
turnover rates, even when calibrated using a range of long-
term experiments (Gurung et al., 2020).

In order to use DayCent to assess the potential of ISFM to
reduce yield gaps while minimizing environmental impact in
Kenya and other SSA countries, this study aimed at using a
Bayesian calibration to derive robust DayCent parameters of
SOM cycling and maize growth in Kenya. With robust, we
mean that the model evaluation statistics are representative
of applying the model to new sites with the same climate and
soils. We used the experimental data of four long-term ISFM
experiments conducted in Kenya over nearly 2 decades (Laub
et al., 2023a, b). Of these, two sites were in humid western
Kenya and two were in subhumid-to-semiarid central Kenya.

The first objective of our study was to evaluate to what
extent DayCent can reproduce the differences in yields and
SOM development in response to the addition of different
qualities and rates of organic resources combined with dif-
ferent rates of N fertilizer for a number of contrasting sites.
The second objective was to evaluate the greenhouse gas
(GHG) balance of different addition rates of organic mate-
rial in ISFM to find the optimal balance between limiting
GHG emissions from the soil and optimizing crop yield (that
is, sustainable intensification). The reason for this was that
ISFM can be a source of N2O to the atmosphere (Leitner
et al., 2020), but compared to standard practices, it reduces
soil organic carbon (SOC) losses or even increases SOC
(Laub et al., 2023a), thereby mitigating CO2 emissions.

The specific steps to reach the objectives of this study were
(i) to test the capability of an uncalibrated version of Day-
Cent to simulate yield and SOC development of the different
ISFM practices; (ii) to calibrate DayCent to represent ISFM
under Kenyan conditions using experimental data from four

Biogeosciences, 21, 3691–3716, 2024 https://doi.org/10.5194/bg-21-3691-2024



M. Laub et al.: Modeling integrated soil fertility management for maize production 3693

long-term experiments, displaying the uncertainty in model
parameters by Bayesian calibration; and (iii) to use the cal-
ibrated model to gain understanding of the GHG balance of
the different ISFM treatments.

2 Material and methods

2.1 The experimental sites

The present study used data from four long-term field ex-
periments in Kenya, in which the effect of the addition of
different organic resources at different rates was tested, ei-
ther alone or in combination with the application of mineral
nitrogen fertilizer, in the context of ISFM. The sites are lo-
cated in agriculturally important areas in central and west-
ern Kenya (Supplement Fig. S1). The Embu and Machanga
sites are both located in Embu County, in the central part
of Kenya. The Aludeka site is situated in Busia County in
western Kenya, while Sidada is located in the adjacent Siaya
County, south of Busia (Supplement Table S1). The exper-
iments at Embu and Machanga began in early 2002, while
those at Aludeka and Sidada began in early 2005. There-
fore, 19 years of data was available in central Kenya and
16 years of data was available in western Kenya (2 sites× 16
years+ 2 sites× 19 years= 70 site years= 140 site seasons).
The sites cover a range of altitudes, temperatures, and precip-
itations. Embu, with a mean annual temperature (MAT) of
20 °C and an annual precipitation of 1200 mm, is the coolest
site, while Machanga has a MAT of 24 °C and the lowest an-
nual precipitation (800 mm). Sidada (23 °C, 1700 mm) and
Aludeka (24 °C, 1700 mm) have a high MAT and receive sig-
nificantly more precipitation than the sites in central Kenya.
There are two rainy seasons at each site, corresponding to
two maize growing seasons per year. The long rainy season
occurs from March to August or September, while the short
rainy season occurs from October until January or February.
In terms of soil texture, Machanga and Aludeka have low
clay content (13 % clay at both sites), while Sidada and Embu
are rich in clay (56 % and 60 %, respectively).

All experiments were set up as a split-plot design with
three replicates, with different qualities and quantities of or-
ganic resources as main plots and the presence or absence of
mineral N fertilizer as subplots. Maize was grown continu-
ously in all experiments, with two crops per year, one in the
long rainy season and one in the short rainy season. The ex-
perimental design was identical at all four sites and has been
described in detail in earlier publications (Chivenge et al.,
2009; Gentile et al., 2011; Laub et al., 2023a, b). Organic-
resource treatments consisted of high-quality Tithonia diver-
sifolia (TD) green manure, high-quality Calliandra calothyr-
sus (CC) prunings, low-quality stover of Zea mays (MS),
low-quality sawdust from Grevillea robusta trees (SD), lo-
cally available farmyard manure (FYM), and a control treat-
ment (CT) without organic-resource additions. Organic re-

sources differed in quality by the contents of N, lignin, and
polyphenols (Supplement Table S2). Each organic resource
was applied once a year at two rates, 1.2 and 4 t C ha−1 yr−1,
while mineral nitrogen fertilizer was applied at a fixed rate
of 120 kg N ha−1 (CaNH4NO3) in each of the two growing
seasons. Of this, 40 kg N ha−1 was applied at planting, and
the remaining 80 kg N ha−1 was applied about 6 weeks later.
Organic resources were applied only once a year, prior to
planting in the long rainy season, i.e., in January or Febru-
ary. They were incorporated to a depth of 15 cm with hand
hoes. Furthermore, a blanket application of 60 kg P ha−1 as
triple superphosphate and of 60 kg K ha−1 as muriate potash
at planting was provided to all plots each season. The plots
were kept weed free by hand weeding, two to three times per
season, and selective application of pesticides was used when
necessary to control armyworm, stem borer, and/or termites.

2.2 The DayCent model

DayCent (2017 version of DD_EVI) is a terrestrial ecosys-
tem model of intermediate complexity (Del Grosso et al.,
2001). It simulates daily C and N fluxes within the soil–
plant–atmosphere continuum and has been parameterized
for several crops and ecosystems (Necpalova et al., 2018).
It has submodules to simulate plant growth and organic-
resource and soil organic matter (SOM) decomposition, in-
cluding mineralization of N, soil water and temperature, N
gas fluxes, and CH4 oxidation. The net primary productivity
(NPP) of plants is a function of their genetic potential, a sim-
plified phenology, solar radiation, temperature, and stresses
such as reduced water or N availability. Here, we used the
non-growing degree day version of the DayCent crop mod-
ule that does not simulate phenology but has a seedling stage
with reduced growth until a certain biomass (full canopy) is
reached. SOC and soil N in the topsoil are represented by an
active, slow, and passive SOM pool, while litter and organic
resources are represented by a structural- and metabolic-litter
pool (Parton et al., 1987). All SOM pools are conceptual and
have no measurable counterparts, whereas the litter pools are
semi-quantitative. Their division is based on the measurable
ratio of lignin to N in the organic resources and plant lit-
ter. DayCent can adequately simulate crop yields, SOC and
soil N dynamics, and N2O emissions in temperate conditions
(Del Grosso et al., 2005; Necpálová et al., 2015; Necpalova
et al., 2018; Gurung et al., 2020, 2021), but a recent pa-
per showed inadequate performance for tropical conditions
(Nyawira et al., 2021).

2.3 Data used for the DayCent model calibration and
evaluation

To provide an overall assessment of the performance of
DayCent for its use in Kenya, a leave-one-site-out cross-
validation approach was applied to evaluate the model per-
formance. Specifically, this involved using a data subset from

https://doi.org/10.5194/bg-21-3691-2024 Biogeosciences, 21, 3691–3716, 2024



3694 M. Laub et al.: Modeling integrated soil fertility management for maize production

three of the four sites for model calibration, with evaluation
performed using the data from the fourth site. This process
was repeated four times, every time with another site serving
as the evaluation site. Different data were used for this: maize
grain yield and the aboveground biomass, both on a dry mat-
ter basis, were available for each cropping season between
2002 and 2020 (further details in Laub et al., 2023b). All
these data were used with one exception – the short rainy sea-
son of 2019 at Sidada, which had unrealistically high maize
grain yields of up to 16 t ha−1. In addition, plot-scale SOC
and total N contents in the top 15 cm soil layer were available
at several time points and in 2021 for the 0–30 cm soil depth.
At Embu and Machanga, soil samples were taken every 2 to
3 years since the start of the experiment in 2002 until 2021,
while at Sidada and Aludeka, soil sampling occurred only in
2005, 2018, 2019 and 2021 (further details in Laub et al.,
2023a). Because soil bulk density data were not available for
most time points and there was no significant difference in
topsoil bulk density between treatments at any site in 2021,
the mean soil bulk density per site was used to calculate SOC
stocks of the top 15 cm of soil depth. We used a DayCent pa-
rameterization that was developed to simulate SOC stocks
of the IPCC-recommended (Intergovernmental Panel on Cli-
mate Change) 0–30 cm topsoil layer (Gurung et al., 2020)
(further details in Sect. 2.3.2). Thus, the 0–15 cm SOC stocks
were adjusted to 0–30 cm depth. This was done by adding the
site-specific SOC stocks from the 15–30 cm layer (specifi-
cally, the 15–30 cm equivalent soil-mass-based ones; Wendt
and Hauser, 2013; Lee et al., 2009) to the treatment-specific
SOC stocks from 0–15 cm. Due to limited data availability
for the 15–30 cm soil depth (only 2021), this approach was
considered the most conservative and robust; subsoil carbon
usually changes very slowly, and a statistical test revealed no
differences in the equivalent soil-mass-based SOC stocks of
the 15–30 cm layer (2.5–4.7 t soil ha−1) between treatments
at the same site in 2021 (with only one single exception at
Aludeka; Supplement Fig. S2).

Data on N2O emissions were used in the model evaluation
phase but not for model calibration, due to their scarcity and
high uncertainty. The N2O measurements were conducted
after N fertilization in 2005 (weekly measurements from
March to June at Embu and Machanga and daily measure-
ments at Machanga in November), in 2013 and 2018 (weekly
measurements from March to the beginning of May at Sidada
and Aludeka), and in 2021 (weekly measurements from mid-
March to mid-May at Sidada). The measurements applied
the static-chamber method (Hutchinson and Mosier, 1981)
with two measuring frames per plot permanently installed
for a whole rainy season (one within, one between maize
rows). The sampling chambers (0.27× 0.375× 0.11 m) had
a vent tube and fan for homogenizing the gas sample be-
fore extraction with a 60 mL polypropylene syringe through
a septum-sealed sampling port. Four gas samples were col-
lected at 0, 15, 30, and 45 min of chamber closure. Gas sam-
ples from within and between maize rows were combined

per time point in the same syringe (Arias-Navarro et al.,
2017). All analyses were conducted using an SRI 8610C gas
chromatographer (456-GC, Scion Instruments, Livingston,
United Kingdom) equipped with an electron capture detector
for N2O analysis. Fluxes per surface area were determined
using the linear slope of gas concentration over time (Pel-
ster et al., 2017; Barthel et al., 2022). Simulated N2O emis-
sions were evaluated against measured daily and cumulative
N2O emissions. To determine the cumulative emissions at
the plot scale, we used the trapezoid method (Levy et al.,
2017), specifically, the trapz function of R (Tuszynski, 2021).
Treatment-scale means and variances of the daily and cumu-
lative N2O emissions were then computed in a similar way
as for the other measurements.

Finally, continuous soil moisture measurements were con-
ducted using sensors placed in each replicate at 10 cm soil
depth (EC-5 Soil Moisture Sensor, METER, Germany) in the
control and the 1.2 t C plots of the Calliandra, farmyard ma-
nure, and maize stover treatments at the Sidada and Aludeka
sites (March 2018 to December 2020). These soil moisture
data were used to initially determine the optimal pedotrans-
fer functions for soil hydraulic conductivity but not used in
the model calibration.

2.3.1 Model driving variables and model assumptions

The site-specific crop management data were obtained from
season- and site-specific records of field management opera-
tions. These included dates of organic-resource application,
manual plowing before planting, maize planting, split appli-
cation of mineral N, weeding, and harvest. Dates of pesti-
cide applications and gap filling or maize thinning were also
available, but these operations are not part of standard Day-
Cent management and were therefore not included in mod-
eling. Therefore, our model runs assumed no occurrence of
pests or diseases and an optimal plant density at emergence,
which, in practice, was ensured by manual thinning and gap
filling.

Recorded weather data existed for all sites, but filling in
data gaps was necessary due to the unavailability and loss of
recorded data. At Embu and Machanga, manual recordings
of daily minimum and maximum temperature and precipita-
tion were available from 2002 until the end of 2007, but from
2008 until 2017, only measured precipitation was available.
After 2017, newly installed TAHMO stations (https://tahmo.
org/climate-data/, last access: 16 May 2022) were available
for these two sites, providing daily values for temperature
and precipitation. At Aludeka and Sidada, manual recordings
of daily minimum and maximum temperature and precipita-
tion were available for all years from 2005 to 2017. There-
after, weather stations (METER climate station, METER En-
vironment, Munich, Germany) were installed and provided
the data. Data gaps were filled using the NASA POWER
product (https://power.larc.nasa.gov/docs/methodology/, last
access: 19 May 2022). A bias correction for the minimum
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and maximum temperature of NASA POWER data was per-
formed, using a linear regression with measured data as the
dependent variable (y) and NASA POWER data as the in-
dependent variable (x). Specifically, the slope and intercept
of the regression equation y =mx+ b were used to produce
a corrected estimate of these data. In our specific case, the
slopes were not significantly different from 1, but intercepts
(b) were significantly different from 0. The specific inter-
cepts for the maximum temperature were −0.3, −0.4, +3,
and +6 °C for Embu, Machanga, Sidada, and Aludeka, re-
spectively. The intercepts for the minimum temperature were
−0.25, −0.5, −3, and +1 °C for Embu, Machanga, Sidada,
and Aludeka, respectively. For precipitation, no bias correc-
tion was done.

The data on the soil hydraulic properties needed in Day-
Cent (volumetric soil water content at field capacity, wilt-
ing point, and saturated hydraulic conductivity KS) were
calculated based on the soil texture measured at each site.
The pedotransfer functions of Hodnett and Tomasella (2002)
were used because they were specifically designed for trop-
ical soils. Their soil hydraulic properties also showed better
agreement between the measured and simulated soil moisture
contents than when soil hydraulic properties of Saxton and
Rawls (2006) were used. Because the Hodnett and Tomasella
(2002) equation does not provide a method to estimate KS,
KS was calculated using the Saxton and Rawls (2006) equa-
tion, with values of the water retention curve, α and n (van
Genuchten, 1982), calculated with the equation from Hod-
nett and Tomasella (2002). The equations can be found in
Supplement Sect. S1.

2.3.2 Initial model parameterization and selection of
potentially sensitive parameters for calibration

It was assumed that the organic-resource inputs had the same
properties across all sites (i.e., mean values of lignin contents
and C/N ratios per organic resource were assumed; Supple-
ment Table S2). This approach was used because measure-
ments were not available for all sites and years and was jus-
tified as an analysis of variance of data from the years 2002,
2003, 2004, 2005, and 2006 at Embu and Machanga, as well
as from 2018 at all sites, did not indicate any significant dif-
ferences in lignin contents and C/N ratios between the sites
or years. The C content of maize grain was assumed to be
42.5 % throughout the simulation period. This was the mean
value of measured grain C content across sites (standard de-
viation of 1.8 %) in the short rainy season 2018 and long
rainy season 2019 (data not shown). Given the strong corre-
lation between maize grain yield and aboveground biomass
in the measured data (r = 0.87), the aboveground biomass
data were transformed to harvest index data for the model
calibration process because harvest index had a lower corre-
lation with yield (r = 0.59) than aboveground biomass.

The DayCent simulations were conducted at the treat-
ment scale using average values across all three replicate

plots for soil parameters (i.e., soil texture, bulk density, pH),
SOC and soil N stocks, maize grain yield, and aboveground
biomass/harvest index. This aggregation was done to reduce
the computation time of the simulations and because initial
tests showed similar model performance as compared to ap-
plying the model to each experimental replicate individually.
The site-specific standard deviation for each type of measure-
ment was used as a measure of uncertainty in the measured
data (computed from the three replicates at each time point
for each treatment at each site). This choice was based on the
statistical models of Laub et al. (2023a, b), showing variance
heterogeneity between sites but not between treatments.

The standard parameter values of the DayCent 2020 ver-
sion were taken as initial model parameters, with three ex-
ceptions. First, we used the adjusted decomposition param-
eter values of the SOM pools from Gurung et al. (2020)
to allow for the use of DayCent for simulating SOC stocks
of the 0–30 cm soil depth layer instead of the standard 0–
20 cm layer. Second, we modified the parameter value rep-
resenting the fraction lost as CO2 upon structural-litter and
lignin turnover (ps1co(1&2)&rsplig). The default value for
this parameter is 0.5, assigning a carbon use efficiency (CUE)
value of 50 % to structural litter, based on outdated theories
that lignin-rich materials form stable SOC most efficiently
(Frimmel and Christman, 1988). Newer studies have, how-
ever, clearly shown that minimal structural litter is conserved
in the long term, while metabolic litter forms SOC more effi-
ciently (Cotrufo et al., 2013; Denef et al., 2009; Puttaso et al.,
2013; Kallenbach et al., 2016). Thus, we opted for a more
realistic prior value of 0.85 for ps1co(1&2)&rsplig, corre-
sponding to a more plausible CUE value of 15 % for struc-
tural litter (Mueller et al., 1997). Third, for the parameters
determining the minimum and maximum proportion of ni-
trified N lost as N2O, we used values that fell between the
DayCent default values and recent values from Gurung et al.
(2021). This choice was motivated by the fact that the Day-
Cent default parameter values led to excessively high emis-
sions, while the Gurung et al. (2021) parameter values re-
sulted in emissions that were too low. Finally, we assumed
that the maize growth parameters of the second highest pro-
duction level (C5 in DayCent) represent best the production
levels observed in the experiment.

To identify which model parameters to include in the
global sensitivity analysis (see Sect. 2.4) and model calibra-
tion, we reviewed the literature for recently conducted sensi-
tivity analyzes of the DayCent model (Necpálová et al., 2015;
Gurung et al., 2020). Additionally, we consulted the DayCent
manual to identify and add further parameters of potential
importance for the processes considered in our study (i.e.,
plant productivity and soil C and N cycling). This resulted
in a selection of 66 parameters (Table 1 and Supplement Ta-
ble S3). Some of these parameters belong to the same cate-
gory but can be individually calibrated in DayCent. For ex-
ample, the “tillage multiplier” of SOM turnover can have dif-
ferent values for different SOM pools but is usually the same
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for all SOM pools in the standard DayCent parameterization.
Thus, we decided to have the same tillage multiplier value
for all SOM and litter pools. Some parameters can have dif-
ferent values between the surface and soil SOM pools (e.g.,
C/N ratios and turnover rates). For simplicity, we assigned
the same C/N ratios and a constant ratio to the turnover rates
of surface and soil SOM pools (i.e., decX(2)/decX(1), with
X being a number between 1 and 5, representing each of the
five defined SOM pools). This simplified parameter sensitiv-
ity analysis and calibration with regard to surface and soil
SOM pools. Finally, the parameters governing the minimum
and maximum values were reformulated. Instead of calibrat-
ing them as a maximum and a minimum value, we considered
the maximum value and the difference between the mini-
mum and maximum values (i.e., N2Oadjust_(max−min) and
aneref(1)−aneref(2)). This ensured that the minimum value
was smaller than the maximum value, thereby avoiding nu-
merical problems (initial N2Oadjust_max was set to 0.015;
N2Oadjust_(max−min) was set to 0.003).

2.3.3 Soil organic matter pool initialization based on
measured data

Instead of relying on spin-up simulation based on uncertain
historical land use and management of the simulated sites, we
used measured mineral-associated organic carbon (MAOC)
fractions as a proxy for the initialization of the passive SOM
pool (Zimmermann et al., 2007). Replacing SOM initializa-
tion assumptions with measured proxies can enhance model
performance (Laub et al., 2020; Wang et al., 2023) and,
more importantly, is less sensitive to user assumptions. It
also aligns with the DayCent concepts on SOM; the manual
(Hartman et al., 2020) denotes that particulate organic car-
bon (POC) and MAOC are related to the slow and the pas-
sive SOM pool, respectively. MAOC data for samples from
the 0–30 cm soil layer were available from the year 2021
(specifically for the control −N, control +N, and the farm-
yard manure −N and Tithonia diversifolia −N treatments at
4 t C ha−1 yr−1 at all sites). It was derived by density frac-
tionation using a sodium polytungstate solution (1.6 g cm−3

for Aludeka and 1.7 g cm−3 for the other sites). Aggregates
were dispersed with ultrasonication at 400 J mL−1 (217 s at
200–240 W), after which samples were centrifuged for 2 h at
4700 rpm to separate the heavy and the light fraction, which
were then separated, washed with deionized water, dried at
60 °C for 24 h, and analyzed for weight and C content. A sta-
tistical analysis revealed the absence of treatment differences
within the same site, so the site-specific MAOC values for the
0–30 cm soil depth across treatments (0.91, 0.88, 0.85, and
0.86 g MAOC g−1 SOC for Aludeka, Embu, Machanga, and
Sidada in 0–30 cm, respectively) were used to initialize the
SOC in the passive SOM pool in DayCent simulations. Fur-
ther, 3 % of initial SOC was assigned to the active SOM pool
(mean value recommended in the DayCent manual), and the
remainder of SOC was assigned to the slow SOM pool.

The DayCent manual further states that, although the slow
SOM pool is closely related to the POC fraction, it tends to
be larger (Hartman et al., 2020). Consequently, the passive
SOM pool must be smaller than the MAOC fraction. Ad-
ditionally, the fractionation data were from 2021, when the
experiments were already 19 and 16 years old. To address
these issues, two new parameters were introduced in the sim-
ulations: (1) an intercept (ICMAOC) to account for the passive
SOM pool being smaller than the MAOC fraction and (2) a
slope for the time since the start of the experiment (SLt) to
account for SOM changes (mostly losses) since the start of
the experiments, with the passive SOM pool typically chang-
ing at the slowest rate. Given that all sites were converted to
agriculture only a few decades ago (Laub et al., 2023a), the
percentage of total C in the passive SOM pool at the start of
the experiment should be higher than the 30 %–40 % that is
common at the steady state of SOM pools (Hartman et al.,
2020). Considering this, it was assumed that the intercept’s
initial value was−0.1 g MAOC g−1 SOC and the slope’s ini-
tial value was −0.005 g MAOC g−1 SOC yr−1 since the start
of the experiment, giving both terms approximately the same
weight. Thus, the fraction of SOC in the passive SOM pool
at the start of the experiment was

SOCp(gg−1)=MAOC2021+ ICMAOC+SLt× tdif. (1)

Here, SOCp represents the fraction of SOC in the passive
SOM pool at the start of the experiment, MAOC2021 is the
MAOC fraction in 2021 (g MAOC g−1 SOC), ICMAOC is the
intercept, and SLt is the slope value that is multiplied by the
time difference between the measurement and the start of the
experiment in years (tdif). With the selected standard values
for ICMAOC and SLt, between 66 % (Machanga) and 73 %
(Aludeka) of SOC were assumed to be in the passive SOM
pool at the start of the experiment. The uncertainty related to
this initialization approach was accounted for in the model
calibration by allowing large ranges for these parameters. Fi-
nally, to initialize the soil N pools, C/N ratios of the active,
slow, and passive SOM pools were set to 10, 17.5, and 8.5, re-
spectively, which are the best estimates provided by the man-
ual (Hartman et al., 2020).

2.4 Global sensitivity analysis

To reduce the number of optimized parameters during the
calibration, we performed a parameter screening (van Oi-
jen, 2020). For this purpose, a global sensitivity analysis
was conducted to quantify the relative importance of differ-
ent model parameters to the relevant model outputs regard-
ing our study’s focus on maize yield and the greenhouse gas
mitigation potential of ISFM. The aim was to identify and
fix less influential model parameters to their initial values,
reducing the computational cost for performing the consec-
utive Bayesian model calibration (see Sect. 2.5). The global
sensitivity analysis was performed using the Sobol method
(Saltelli, 2002a, b), which allows for the estimation of the
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proportion of variance in the model outputs that is explained
by each model parameter while considering the first-order
and higher-order interaction terms (Gurung et al., 2020). The
“sensitivity” package (function sobolSalt; Iooss et al., 2021)
of R version 4.0 (R Core Team, 2020) was applied. This func-
tion implements a simultaneous Monte Carlo estimation of
first-order and total-effect Sobol indices. The computational
cost is N(p+ 2) model runs, with N being the dimension
of the two matrices to construct the Sobol sequence and p
being the number of parameters (66 in our case). Our tests
indicated similar results for N = 500 and 1000, so we chose
a dimension of 1000. The preselected model parameters to
include are described above and in Table 1 and Supplement
Table S3. The ranges used for the global sensitivity analy-
sis were centered around the initial parameter value obtained
as described above (Sect. 2.3.2). The upper and lower pa-
rameter boundaries were based on previous sensitivity anal-
yses (e.g., Necpálová et al., 2015; Gurung et al., 2020), with
plausible ranges reported in the DayCent manual and varia-
tions observed in different maize parameterizations in the lit-
erature. The parameters were then grouped according to the
magnitude of their ranges. Parameters with very small, small,
and moderate ranges were varied by ± 10 %, 25 %, and 50 %
from the initial parameter value, respectively. For parameters
with large and very large ranges, the upper boundaries were
the initial parameter values multiplied by 3 and 10, respec-
tively, and the lower boundaries were the initial parameter
values divided by 3 and 10, respectively. The parameter sen-
sitivity was independently determined for the mean maize
grain yield and aboveground biomass, averaged over all sea-
sons at all sites, as well as for the SOC and soil N stocks at
the end of the simulation period (equations presented in the
Supplement Sect. S2).

2.5 Combined Bayesian calibration of plant and soil
model parameters

Bayesian calibration is a probabilistic inverse modeling or
data assimilation technique, which is used to estimate the
joint posterior distribution of model parameters (θ ) given the
measured data (D) and the model structure (M), expressed
as p(θ |D,M). It uses the proportionality form of Bayes’
theorem, where p(θ |D,M) is proportional to the prior be-
lief about model parameters, with p(θ) times the likelihood
function of the data given the model and the parameters of
p(D|M,θ):

p(θ |D,M)∝ p(θ)×p(D|M,θ). (2)

While the prior p(θ) is chosen based on previous
knowledge of the model parameters, the likelihood func-
tion p(D|M,θ) measures how well the model and the data
match. In practice it is derived for a given set of parameters
sampled from the prior, by running and evaluating the model
using the measured data, the simulated counterpart, and the
variance–covariance matrix of the model residuals. Follow-

ing Gurung et al. (2020), we applied the R software (R Core
Team, 2020) to create a mixed model with restricted max-
imum likelihood estimation with the lme4 package (Bates
et al., 2015), which automatically constructed the variance–
covariance matrix based on the nested design of observations
to account for autocorrelation of residuals. The likelihood
was a function of the following form:

p(D|M,θz)=
1

√
2π6

exp
(
−

1
2
(M (θz)−D)

T6−1 (M (θz)−D)

)
, (3)

where 6 is the variance–covariance matrix, M(θz) is the
vector of simulated values using the zth parameter set θz,
and D is the vector of observed data. In the R software,
this can be constructed by setting the residual (modeled
value−measured) as the dependent variable of a zero-
intercept model with nested random effects (i.e., sampling
date within site) and assigning the inverse of the median stan-
dard deviation (of each type of measurement at each site) as
weight. By using the inverse of the standard deviation of each
type of measurement as weight of the zero-intercept model,
it is possible to include different types of measurements into
the same likelihood function. This is similar to what is done
in weighted analyses commonly performed in meta-analyses
(Möhring and Piepho, 2009). The logLik() function is then
used to extract the log likelihood, which is transformed to
the likelihood by raising e to the power of the log likelihood.

The sampling importance resampling method, which was
used in this study, is a direct form of Bayesian calibration,
which has recently been used by Gurung et al. (2020) to cal-
ibrate the parameters of the SOM module of DayCent us-
ing a large collection of temperate long-term experiments.
It samples the prior by running the model for a large sam-
ple of parameter sets of size I from the prior, computing the
likelihood for each sample, and filtering the prior based on
importance weights w(θz):

w(θz)=
p(D|M,θz)∑I
i=1p(D|M,θz)

, (4)

where p(D|M,θz) is the likelihood function of the zth
parameter set and w(θz) is the corresponding importance
weight. It is consistent with the proportionality form of
Bayes’ theorem in that it uses the importance weights w(θz)
as probabilities for sampling from the prior, without replace-
ment, to derive the posterior.

Combined Bayesian calibration of the sensitive DayCent
parameters was performed using all available data on maize
grain yield, harvest index (calculated from aboveground
biomass), and SOC stocks. A notable exception was that
SOC stocks from the Machanga site were not used in the cali-
bration process because this site was severely affected by soil
erosion (Laub et al., 2023a) that is not represented by Day-
Cent. The main reason for only using grain yield, the harvest
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index, and SOC data was that the yields, SOC stocks, and
their trade-offs were the focus of this study. Technical con-
straints also influenced the decision; the creation and read-
out of daily simulation outputs to match simulated and mea-
sured soil moisture content, mineral nitrogen content, and
N2O fluxes would slow down the whole Bayesian calibra-
tion process by a factor of 5. The Bayesian calibration would
have taken more than 3 months on the virtual machine with
64 cores. Following Gurung et al. (2020), model parameters
that had a total sensitivity index of at least 2.5 % for either
yield, aboveground biomass, or SOC were considered influ-
ential and thus were subjected to calibration (11 parameters).
Additionally, the new parameters that were associated with
the initialization, ICMAOC and SLt, had to be calibrated, re-
sulting in a total of 13 parameters for calibration (Table 1).

Overall, a total of 200 000 simulations were performed,
from which 0.1 % (200) of the parameter sets were sampled
to derive the posterior distribution through resampling (Gu-
rung et al., 2020). It was assured that this number of sim-
ulations was sufficient by splitting the simulations into two
halves and visually assessing the similarity of derived poste-
riors for these subsets. In our experience, the sampling im-
portance resampling algorithm is highly suitable for Day-
Cent, which is prone to crashing with inappropriate param-
eter combinations. Unlike chain-dependent methods such as
Markov chain Monte Carlo, this method relies on model runs
that are independent of each other, ensuring that an erroneous
run does not stop the algorithm. In addition, this method
allows for an efficient cross-validation of the posterior pa-
rameter set, such as the leave-one-site-out cross-validation
employed in this study. Notably, the sampling importance
resampling algorithm’s advantage lies in its ability to store
model results for each parameter set by site, allowing for
straightforward cross-validation by site, without the need for
rerunning the model for each iteration. The posterior parame-
ter distributions of this study are displayed for both the leave-
one-site-out cross-validation and the combined dataset from
all four sites (Fig. 2). The former shows the importance of in-
dividual sites in the calibration process, while the latter pro-
vides the most representative posterior distribution for model
upscaling, making efficient use of all available data.

To ensure computational efficiency, we used informed
Gaussian priors that were centered around the standard pa-
rameter values of DayCent, with different coefficients of
variation based on different observed ranges in previous stud-
ies. To make optimal use of existing knowledge about the
parameters, the selected coefficients of variation per range
were initially based on previous studies that had performed
Bayesian calibration of the DayCent model. The coefficients
of variation were chosen in a way that the prior from our
study covered the whole range of the posterior from previous
studies and then was multiplied by a factor of 1.5 to account
for the additional uncertainty that arose from applying Day-
Cent at tropical sites. The studies of Gurung et al. (2020) and
Mathers et al. (2023) were the basis to derive the coefficient

of variation for the parameters dec4, dec5(2), clteff(1,2,&4),
ps1co2(1&2)&rsplig, and pmco2(1&2). The study of Yang
et al. (2021) was the basis for the parameters ppdf(1) and
ppdf(2), and the study of Necpálová et al. (2015, though not
being Bayesian) was the basis for the parameters aneref(3)
and fwloss(4). For himax and prdx(1), we looked into the de-
fault parameters of annual crops in DayCent to assure that the
whole range of values (0.30–0.55 and 1.1–3.5, respectively)
was covered by the prior. The final coefficients of variation
were 0.08, 0.15, 0.23, 0.38, and 0.45 for parameters with very
small, small, moderate, large, and very large ranges (Table 1).
For the newly introduced parameters, we used large coeffi-
cients of variation, namely 0.38 for SLt and 1 for ICMAOC,
with the reason for the latter being an initial test in which
ICMAOC was set to −0.3 instead of −0.1, which proved to
be too low, but in which the uncertainty range with a stan-
dard deviation of 0.1 proved to be reasonable. Additionally,
all parameters were constrained to remain within their physi-
cally sensible limits (i.e., not< 0 for all and not> 1 for those
representing fractions).

2.6 Model evaluation

We used the following standard model evaluation statistics
(Loague and Green, 1991):

MSEy =
1
n

n∑
z=1

(
Oyz−Pyz

)2
, (5)

RMSEy =
√

MSEy, (6)

EFy = 1−

∑n
z=1
(
Oyz−Pyz

)2∑n
z=1
(
Oyz−Oy

)2 , (7)

where the MSEy is the mean squared error, RMSE is its root,
and EFy is the Nash–Sutcliffe model efficiency. We further
divided MSEy into squared bias (SB), non-unity slope (NU),
and a lack of correlation (LC), as suggested by Gauch et al.
(2003). We expressed them as a percentage of the MSEy :

SBy(%)=

(
Oy −P y

)2
MSEy

× 100, (8)

NUy(%)=

(
1− by

)2
×

(∑n
z=1

(
O2
yz

)
n

)
MSEy

× 100, (9)

LCy(%)=

(
1− ry

)2
×

(∑n
z=1

(
P 2
yz

)
n

)
MSEy

× 100, (10)

where Oyz is the measured value of the zth measurement of
the yth type of measurement, Oy is the mean of the yth type
of measurement, and Pyz is the simulated value correspond-
ing to Oyz. P y is the mean predicted value of the yth mea-
surement type, b is the slope of the regression of P onO, and
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r is the correlation coefficient betweenO and P . The indica-
tors LC, SB, and NU show the nature of model errors; that is,
a high LC shows that it is mostly random, a high SB shows a
systematic bias, and a high NU shows issues of model sensi-
tivity.

2.7 Greenhouse gas balance

To compare different ISFM treatments in terms of their
greenhouse gas (GHG) emissions, their net GHG balance
was computed on a yearly basis (kg CO2 eq. ha−1 yr−1) over
the whole simulation period. This calculation was based
changes in the SOC content and cumulative emissions of
N2O using a 100-year time horizon of global warming po-
tentials (Necpalova et al., 2018):

GHG balance=
44
12
×1SOC+ 265×N2O, (11)

where 1SOC is the change in SOC stocks (kg C ha−1 yr−1)
and N2O is the cumulative N2O flux (kg N2O ha−1 yr−1).
The CH4 oxidation capacity was not considered because
it usually makes a very limited contribution to GHG bal-
ance in rainfed cropping systems (Lee et al., 2020) and we
did not have data to evaluate the reliability of this simu-
lated flux. In addition to the net annual GHG balance (in
t CO2 eq. ha−1 yr−1), we calculated the yield-scaled GHG
balance (in CO2 equivalent per kg maize grain yield) by di-
viding the cumulative GHG balance over the entire simula-
tion period by cumulative simulated yields (dry matter basis).

3 Results

3.1 Most sensitive DayCent parameters

The results of the global sensitivity analysis showed that of
the 66 model parameters analyzed, only 20 parameters had
a Sobol total sensitivity index > 1 % for either maize grain
yield, aboveground biomass, SOC, or soil N stocks (Fig. 1).
Of these, only 11 parameters had a Sobol total sensitivity
index > 2.5 %, a threshold that captures the most influen-
tial parameters and represents a suitable selection of param-
eters for model calibration (Gurung et al., 2020). The pa-
rameters that turned out to be the most sensitive, with a
Sobol total sensitivity index > 10 % for at least one type
of measurement, were radiation use efficiency (prdx(1); for
all measurement types), the optimal and maximum temper-
ature for maize growth (ppdf(1) and ppdf(2), respectively;
only for grain yield and aboveground biomass), and the max-
imum harvest index (himax; only for grain yield). Further,
the turnover rate of the slow and passive SOM pools (dec5(2)
and dec4, respectively; only for SOC and soil N), the de-
composition multiplier for soil tillage (clteff(1,2&4); only
for SOC and soil N), and the fraction lost as CO2 of the
metabolic-litter pool (pmco2(1&2), i.e., 1-CUE); only for

SOC and soil N) belonged to the most sensitive model pa-
rameters. The parameters of further importance, with a Sobol
total sensitivity index > 2.5 % and < 10 %, were the mini-
mum value for the impact factor of anaerobic soil conditions
(aneref(3); only for SOC and soil N), the scaling factor for
potential evapotranspiration (fwloss(4); only for maize grain
yield), and the fraction lost as CO2 of the structural-litter and
lignin pools (ps1co(1&2)&rsplig, i.e., 1-CUE; only for SOC
and soil N). The fact that the Sobol first-order and total sen-
sitivity indexes were similar for most parameters suggested
only a limited number of interactions between the parameters
identified by the global sensitivity analysis.

3.2 Posterior parameter distributions from the
Bayesian model calibration

Following the global sensitivity analysis, 13 selected model
parameters were calibrated using Gaussian priors which were
centered around the initial parameter value, with standard
deviations according to the uncertainty ranges (Table 1). It
should be noted that the presented calibrated parameter val-
ues in Table 1 correspond to the single best parameter set for
all four sites combined (i.e., the parameter set that had the
highest likelihood in the case of no cross-validation).

Compared to the range of the prior parameter sets, the
ranges of the posterior parameter sets calibrated with data
from all four sites changed significantly for the parame-
ters fwloss(4) and pmco2(1&2); had a similar mean value
but a more narrow distribution for the parameters ICMAOC,
prdx(1), and ps1co2(1&2)&rsplig; and changed slightly for
the parameters dec4, dec5(2), ppdf(1), ppdf(2), and himax
(Fig. 2). The posterior parameter sets of the leave-one-site-
out cross-validations were largely in agreement with each
other and with the posterior parameter sets calibrated with
data from all four sites. The exception was the parameter
pmco2(1&2), which was centered around 0.55 for the case
that the Aludeka site was left out and around 0.70 for all
other cases (Fig. 2).

The parameter that changed most strongly in the param-
eter sets calibrated with data from all four sites was the
scaling factor for potential evapotranspiration (fwloss(4);
from 0.75 to 0.94), thereby not including the initial value
in the 95 % posterior credibility interval (0.81 to 0.99; Ta-
ble 1). Also the CUE of metabolic litter was reduced (by
an increase in pmco2(1&2) from 0.54 to 0.91 g g−1), but
the initial value was still within the 95 % posterior credi-
bility interval (0.48 to 0.91 g g−1). The turnover rates in-
creased for both the slow SOM pool (dec5(2); from 0.10
to 0.13 g g−1 yr−1) and the passive SOM pool (dec4; from
0.0035 to 0.0060 g g−1 yr−1), which was however counter-
balanced by a reduction in the effect of tillage on decom-
position (clteff(1,2,&4); from 10 to 5), and all three of these
parameters contained their initial values in the 95 % posterior
credibility intervals. The maximum harvest index slightly
increased (himax; from 0.40 to 0.43 g g−1) and so did the
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Figure 1. Results of the global sensitivity analysis of the most relevant DayCent model parameters. Parameter sensitivity was independently
determined for the mean maize aboveground biomass, grain yield, and SOC and soil N stocks at the end of the simulation period. Only
parameters with a Sobol sensitivity index > 1 % are displayed.

potential production of maize per unit of light interception
(prdx(1); from 2.25 to 2.62 g C m−2 Ly−1). Finally, the opti-
mum temperature for maize growth decreased (ppdf(1); from
30 to 28.6 °C), while the maximum temperature for maize
growth increased (ppdf(2); from 45 to 47.1 °C). Of the two
parameters that translated measured MAOC into SOC in the
passive SOM pool, only ICMAOC was altered (from −0.1
to −0.02 g g−1), but the initial value was still in the 95 %
posterior credibility intervals (−0.25 to 0.06 g g−1). Over-
all, the parameter correlations in the posterior parameter set
across the four sites were low for soil-carbon-related pa-
rameters (around 0.4 at maximum), but stronger correlations
existed between plant-productivity-related parameters (e.g.,
−0.7 between himax and prdx(1) and 0.58 between ppdf(1)
and ppdf(2); Supplement Fig. S3).

3.3 Simulation of maize grain yields and aboveground
biomass at harvest

While the overall variation in maize grain yields across sites
and treatments could be captured to some extent with the ini-
tial model parameter set, a negative model efficiency was
obtained for two sites (Fig. 3). With the leave-one-site-out
cross-validation approach, the model efficiency for maize
grain yields at the left-out site improved ubiquitously (i.e.,
from 0.32 to 0.38 at Aludeka, from −0.04 to 0.15 at Embu,
from 0.32 to 0.38 at Machanga, from−0.16 to 0.31 at Sidada,

and from 0.36 to 0.50 across all sites), and so did RMSE
and bias. The same was true for the simulation of above-
ground biomass (e.g., from 0.03 to 0.23 across sites; Fig. 4),
with the exception of Machanga. Overall, biases in simulated
grain yields were mostly eliminated through the model cali-
bration, and biases in simulated aboveground biomass were
eliminated at Sidada and reduced at Embu but increased at
Machanga.

While DayCent could not capture the full season-to-season
variability in grain yields and aboveground biomass, the
mean yields and aboveground biomass throughout the sim-
ulation period were simulated well for most treatments with-
out the addition of mineral nitrogen (Supplement Fig. S4).
The exception to this was the Embu site, where there was a
systematic underestimation of yields in the +N treatments.
Nonetheless, DayCent was able to acceptably simulate the
variability in grain yields across sites by organic-resource
and mineral-nitrogen-fertilizer treatment (model efficiencies
between 0.30 and 0.54; with values for control −N (0.08)
and sawdust −N (0.18) being the exception; Supplement
Fig. S7). Interestingly, DayCent poorly distinguished the
mean yields and aboveground biomass of treatments with
high compared to very high rates of N inputs (i.e., the differ-
ences between the different organic resources and the control
within the +N treatment). An additional test of the model
sensitivity of mean yields to different levels of mineral ni-
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Figure 2. Prior compared to the posterior model parameter distribution resulting from the Bayesian model calibration of DayCent using
(a) data from all sites combined (top) and (b) the leave-one-site-out cross-validation (bottom). The uncertainty ranges of the priors were
based on the range of parameter values found in the literature and increased by a factor of 1.5 because DayCent was applied to the tropical
site, while, historically, it was mostly calibrated based on temperate sites. Dashed vertical lines represent the values of the initially selected
parameter set. The posterior distributions are based on all four study sites combined. For the description of the parameters, see Table 1.

trogen fertilizer in the control provided further insights into
this (Supplement Fig. S5). In this test, the yields plateaued
at rates of mineral nitrogen that were lower than the maxi-
mum N rates provided in the organic-resource and mineral-
nitrogen-fertilizer treatments with mineral N and organic re-
sources combined (up to > 500 kg N yr−1 or > 250 kg N per
growing season). At Machanga and Embu, simulated mean
yields stopped increasing at around 100 kg N ha−1 per grow-
ing season, which is less the 120 kg N ha−1 per growing sea-
son in the control of +N. At Aludeka and Sidada, simulated
mean yields stopped increasing at 200 to 250 kg N ha−1 per
growing season, but most of the response to N was below
120 kg N ha−1 per growing season (Supplement Fig. S5).
Although the mean yields in −N treatments with the high-
quality inputs were well simulated, some of the low-quality
input treatments at Aludeka and Sidada, namely maize stover
and sawdust at 1.2 and 4 t C ha−1 yr−1, had lower simulated
than observed mean yields in their −N treatments (Fig. 5).
The same was true for the control −N at Aludeka, Embu,
and Machanga.

3.4 Simulated SOC stocks in response to integrated soil
fertility management

Similar to the simulation of maize grain yields, the simu-
lations of changes in SOC stocks following the application
of organic resources at different rates (1.2 and 4 t ha−1 yr−1)
generally improved across sites by the leave-one-site-out
cross-validation approach compared to using the initial
model parameter set (Fig. 6). The improvement was even
stronger when compared to DayCent simulations with the
default CUE value for the structural pool (these had a neg-
ative model efficiency at all four sites; Supplement Fig. S6).
While Aludeka experienced an improved but negative model
efficiency for simulated changes in SOC stocks with the
leave-one-site-out cross-validation (from −4.17 to −0.90),
the model efficiencies at Embu and Sidada were positive in
the initial parameter set and improved with calibration (from
0.53 to 0.54 at Embu and from 0.47 to 0.58 at Sidada).
Also across sites, the model efficiency (computed without
Machanga) improved considerably from 0.36 to 0.55 follow-
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Figure 3. Simulated compared to measured maize grain yields at the four study sites for (a) the initial DayCent parameter set versus (b) the
calibrated parameter set by leave-one-site-out cross-validation. The 2985 data points correspond to the observations from the experimental
treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic-resource and chemical-nitrogen-fertilizer
treatments. Grey bands show the 95 % confidence intervals of measured (horizontal) values and the 95 % credibility intervals of the poste-
rior distribution (vertical). EF: Nash–Sutcliffe model efficiency, RMSE: root mean squared error, SB: squared bias, NU: non-unity slope,
LC: lack of correlation. Model statistics across all sites are the following. Before calibration – EF: 0.358, RMSE: 1.757 t ha−1, SB: 21 %,
NU: 1 %, LC: 77 %. After calibration (with 27 % of measurements being in the 95 % credibility interval of the posterior) – EF: 0.503,
RMSE: 1.545 t ha−1, SB: 4 %, NU: 2 %, LC: 94 %.

ing calibration. As expected, Machanga, for which the SOC
stock data had been removed from the calibration dataset
due to soil erosion at this site, still exhibited a poor model
efficiency after calibration (−1.9 compared to −4.8 before
calibration). DayCent performed well in simulating the vari-
ability in the changes in SOC stocks across sites, evaluated
by organic-resource and mineral-nitrogen-fertilizer treatment
(also computed without Machanga). With the exception of
the treatments farmyard manure ±N, maize stover ±N,
and sawdust −N model efficiencies were between 0.51 and
0.79 (with RMSE between 3.2 and 4.3 t ha−1; Supplement
Fig. S8) with the highest performance for the control +N
(0.79) and control −N (0.69) treatments. The other treat-
ments still had positive model efficiencies (0.15 to 0.42), but
the SOC losses of the farmyard manure treatments were over-
estimated (EF of 0.15 for−N, 0.29 for+N, RMSE of 5.1 and
5.3).

While SOC changes were well captured in the con-
trol treatments across all sites, it should be noted that
the increases in SOC stocks in the treatment receiving
4 t C ha−1 yr−1 were overestimated at Aludeka (Supplement

Fig. S9). As a result, the posterior credibility intervals of sim-
ulated SOC stocks matched well with measured SOC stocks
of Embu and Sidada but not with those of Aludeka (Fig. 7).
The difference between the 4 t C ha−1 yr−1 input and the con-
trol treatments were generally well simulated, but the fact
that Machanga, the other sandy site, could not be used in
the calibration due to erosion likely contributed to the poorer
performance of the sandy site in Aludeka.

3.5 Simulated N2O emissions and GHG balance

The negative model efficiencies and the absence of correla-
tion between observed and simulated daily N2O values in-
dicated that model performance for daily N2O emissions
was poor (Fig. 8). While treatments with higher N loads
had both higher simulated and measured N2O fluxes com-
pared to those with lower loads, the peaks of N2O emissions
were often simulated on different dates than the measure-
ments. This was most noticeable in +N treatments (Supple-
ment Fig. S10). Conversely, the simulated cumulative N2O
emissions per season were in a better agreement with the
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Figure 4. Simulated compared to measured maize aboveground biomass (AGB) at the four study sites for (a) the initial DayCent parameter
set versus (b) the calibrated parameter set by leave-one-site-out cross-validation. The 2985 data points correspond to the observations from
the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic-resource and chemical-
nitrogen-fertilizer treatments. Grey bands show the 95 % confidence intervals of measured (horizontal) values and the 95 % credibility inter-
vals of the posterior distribution (vertical). EF: Nash–Sutcliffe model efficiency, RMSE: root mean squared error, SB: squared bias, NU: non-
unity slope, LC: lack of correlation. Model statistics across all sites are the following. Before calibration – EF: 0.033, RMSE: 4.392 t ha−1,
SB: 27 %, NU: 1 %, LC: 72 %. After calibration (with 36 % of measurements being in the 95 % credibility interval of the posterior) –
EF: 0.231, RMSE: 3.915 t ha−1, SB: 7 %, NU: 8 %, LC: 85 %.

measured values. All sites, except Machanga, showed pos-
itive model efficiencies (highest at Embu, 0.69; lowest at
Sidada, 0.06) but generally underestimated the uncertainty
around cumulative N2O emissions (Fig. 8). Additionally, the
correlation between simulated and measured N2O emissions
was notably higher for the cumulative emission fluxes than
for daily fluxes (R2 of 0.74 for Aludeka, 0.7 for Embu, and
0.36 for Sidada, compared to an R2 value of close to 0 for
daily fluxes). Furthermore, despite some bias at Aludeka and
Sidada, most of the error in seasonal N2O emissions was not
systematic (i.e., LC of 51 %–96 %).

The simulated changes in SOC and seasonal N2O emis-
sions revealed a positive GHG balance for all treatments at
all sites (Fig. 9a). Yet, the magnitude of emissions, as well as
the relative contributions of N2O and CO2, differed strongly
between sites and treatments. For instance, in the control−N
treatment, emissions ranged from 1.5 t CO2 eq. ha−1 yr−1

at Aludeka to 5 t CO2 eq. ha−1 yr−1 at Sidada. The rel-
ative contribution of N2O also differed strongly by site.
At Aludeka, for example, all positive GHG balance val-
ues in the 4 t C ha−1 yr−1 treatments receiving farmyard

manure, Tithonia, and Calliandra came from N2O, while
SOC acted as a sink of GHG. In contrast, at Sidada and
Embu, most treatments had between a third and half of their
GHG balance associated with N2O emissions, with the re-
mainder attributed to SOC losses. Compared to the control
−N treatment, all organic-resource treatments in the −N
treatments were simulated to have lower emissions at in-
puts of 1.2 t C ha−1 yr−1 (Fig. 9b). Yet, when including the
4 t C ha−1 yr−1 and the +N treatments, the changes ranged
from an increase of around 1.5 t CO2 eq. ha−1 yr−1 to a re-
duction of 2 t CO2 eq. ha−1 yr−1. Embu was the site where
the addition of mineral N (+N treatment) led to the strongest
increase in simulated GHG balance compared to the control
−N treatment.

Finally, there were site- and treatment-specific differences
in the yield-scaled GHG balance. The treatment control of
−N, maize stover −N, and sawdust −N had the highest
simulated emissions per kilogram maize grain yield across
sites (0.8 to 1.8 kg CO2 equivalent per kg yield). In con-
trast, the farmyard manure, Calliandra, and Tithonia treat-
ments at inputs of 1.2 t C ha−1 yr−1 in the +N treatment and
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Figure 5. Bar plots of mean simulated and mean measured (a) maize grain yield and (b) aboveground biomass (AGB) from cross-validation.
Error bars represent standard deviation.
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Figure 6. Simulated compared to measured changes in SOC stocks since the start of the experiment at the four study sites for (a) the initial
DayCent parameter set versus (b) the calibrated parameter set by leave-one-site-out cross-validation. The 724 data points correspond to the
observations from the experimental treatments over 32 to 38 seasons, depending on the site. Symbols represent the different organic-resource
and chemical-nitrogen-fertilizer treatments. Grey bands show the 95 % confidence intervals of measured (horizontal) values and the 95 %
credibility intervals of the posterior distribution (vertical). EF: Nash–Sutcliffe model efficiency, RMSE: root mean squared error, SB: squared
bias, NU: non-unity slope, LC: lack of correlation. Model statistics across all sites except Machanga (from which SOC data was excluded
in the calibration process due to strong erosion). Before calibration – EF: 0.364, RMSE: 5.199 t ha−1, SB: 1 %, NU: 22 %, LC: 77 %. After
calibration (with 45 % of measurements being in the 95 % credibility interval of the posterior) – EF: 0.548, RMSE: 4.22 t C ha−1, SB: 1 %,
NU: 11 %, LC: 89 %.

at 4 t C ha−1 yr−1 in both −N and +N treatments tended to
have the lowest simulated emissions at all sites (around 0.3,
1, and 0.6 kg CO2 equivalent per kg yield at Aludeka, Embu,
and Sidada, respectively).

4 Discussion

4.1 Robustness of the Bayesian calibration shown by
cross-validation

As shown by the leave-one-site-out cross-validation (Figs. 3
and 4), the Bayesian calibration considerably improved the
predictive capability of DayCent for maize grain yield,
aboveground biomass, and changes in SOC stocks across
sites. The model evaluation statistics from this calibration

were comparable to those reported in recent publications that
also combined the predictions of crop yield and SOC (Nec-
palova et al., 2018; Levavasseur et al., 2021; Nyawira et al.,
2021). However, while these studies generally showed a bet-
ter simulation of crop yield than SOC, our study diverged.
We found that while better yield simulations compared to
SOC simulations were evident at the Aludeka and Machanga
sites with soils of low clay content, the results were different
at the Embu and Sidada sites with clay-rich soils. Here, SOC
stock changes were more accurately simulated than maize
grain yield. This, together with the fact that the simulation of
aboveground biomass worsened at two sites as a result of the
calibration (Fig. 4), suggests that no single best parameter set
exists for the current version of DayCent to accurately rep-
resent the conditions at all four sites. In that regard, the dis-
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Figure 7. Measured (dots) versus simulated SOC stocks over time at the four study sites for the different organic-resource and chemical-
nitrogen-fertilizer treatments. Error bars represent 95 % confidence intervals for measured data; the solid black line represents the simulation
by the best parameter set. Grey bands represent the 95 % credibility intervals of the model posterior simulations, calibrated by leave-one-
site-out cross-validation. Note that due to intense soil erosion, data from Machanga were not used in the calibration process.

crepancy between the sites with clay-rich and clay-poor soils
could indicate that DayCent insufficiently includes soil tex-
tures effects on nutrient availability and SOC formation. Yet,
drawing definitive conclusions from just four sites is prob-
ably not warranted. In the absence of data from more sites,
it is preferable to apply the full range of possible parameter
sets that are supported by the available data (Mathers et al.,
2023) rather than using only the single best parameter set.

Because our calibration shows a good model fit with ob-
served mean yields and changes in SOC stocks across sites,
with no overall major bias (positive EF and errors mostly
consisting of LC), the parameter set, especially the full pos-
terior, appears suitable for upscaling of model simulations.
Specifically, the yields of the ISFM treatments applying
farmyard manure, Calliandra, and Tithonia were simulated
well, both with and without the addition of mineral nitro-
gen fertilizer (Supplement Fig. S7). The changes in SOC
stocks for the control, Calliandra, and Tithonia treatments
were also simulated well across sites, while DayCent un-
derestimates the SOC buildup from farmyard manure treat-

ments (Supplement Fig. S8). However, one should keep in
mind that the season-to-season yield variability is captured
less accurately than the mean yields (lower RMSE) and that
changes in SOC are better represented at sites with clay-rich
soils than those with clay-poor soils. Because the model cal-
ibration and evaluation were performed at sites with diverse
characteristics, it is reasonable to assume that DayCent, when
applied to sites with similar climate and soil conditions, will
provide satisfactory results with similar model uncertainties
and errors. In that respect, while the leave-one-site-out cross-
validation made efficient use of data for model evaluation,
further model upscaling should apply the full posterior model
parameter set including all sites (Fig. 2). In that case, a com-
putationally inexpensive exercise would use only the single
best parameter set (Table 1), while the full posterior parame-
ter set should be used to get estimates of the posterior credi-
bility intervals for changes in SOC stocks.

https://doi.org/10.5194/bg-21-3691-2024 Biogeosciences, 21, 3691–3716, 2024



3708 M. Laub et al.: Modeling integrated soil fertility management for maize production

Figure 8. Simulated compared to measured N2O emissions at the four study sites for the different organic-resource and chemical-nitrogen-
fertilizer treatments, based on the calibrated parameter set using leave-one-site-out cross-validation. Displayed are the measured versus
modeled values per treatment for (a) the days where measurements were conducted and (b) the mean of cumulative flux measurements per
season using the trapezoid method. The 808 data points (a) correspond to the daily measurements from the experimental treatments over one
to two seasons, depending on the site. Symbols represent the different organic-resource and chemical-nitrogen-fertilizer treatments. Error
bars represent 95 % confidence intervals (measurements) and credibility intervals (simulations). Note that the credibility intervals are only
informed by yield, SOC, and harvest index data and therefore do not represent the full uncertainty in N2O emissions. EF: Nash–Sutcliffe
model efficiency, RMSE: root mean squared error, SB: squared bias, NU: non-unity slope, LC: lack of correlation.

4.2 Bayesian calibration shows uncertainty in model
parameters

To estimate the potential yield and long-term sustainability
of cropping systems without major bias using biogeochem-
ical models, region-specific model calibrations are needed
(Rattalino Edreira et al., 2021; Yang et al., 2021). There-
fore, while previous studies have simulated crop productiv-
ity under ISFM and similar practices with the default pa-
rameter values (e.g., Nezomba et al., 2018; Nyawira et al.,
2021), the results of our study underscore the importance
of a local calibration, especially when simulations are done
with a single parameter set. On the one hand, the similar
ranges of the prior and posterior model parameter sets for
SOC-decomposition-related parameters (i.e., clteff(1,2&4),
dec4, dec5(2)) indicate that the included prior knowledge
about DayCent parameters from recent Bayesian calibra-
tion studies (Gurung et al., 2020; Yang et al., 2021; Math-

ers et al., 2023) represent good parameter estimates for a
tropical setting. On the other hand, the CUE values of both
metabolic litter (centered around 25 % with pmco2(1&2)
around 0.75) and structural litter (centered around 10 %
with ps1co2(1&2)&rsplig around 0.9) are low compared to
the default values. This indicates the difficulty in stabiliz-
ing the organic-resource additions into SOM at the tropical
soils of these four long-term experiments. Both parameters
(pmco2(1&2) and ps1co2(1&2)&rsplig) are even higher than
in a recent study by Mathers et al. (2023). However, because
these values had reached their predefined upper boundary
limit in the study by Mathers et al. (2023), our CUE val-
ues might even be representative of temperate and not just
for the tropical conditions of Kenya. In general, including
prior knowledge about model parameter values from simi-
lar studies substantially improves model performance com-
pared to using default parameter values (e.g., see the poor
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Figure 9. Cumulative simulated greenhouse gas (GHG) balance of N2O emissions and CO2 emissions due to the loss of SOC at the four
study sites for different organic-resource and chemical-nitrogen-fertilizer treatments combined throughout the simulated period (16 years
for Aludeka and Sidada, 19 years for Embu and Machanga). Displayed are the (a) GHG balance per area of land and year, (b) difference in
GHG balance per area of land and year to a no-input treatment, and (c) yield-scaled GHG balance. The GHG balance is expressed in CO2
equivalent over a 100-year horizon.

model performance without including prior knowledge on
ps1co(1&2)&rsplig; Supplement Fig. S6). In fact, the align-
ing turnover rates of the slow and passive SOM pools with
those derived for temperate conditions (Gurung et al., 2020)
indicate that the DayCent temperature function is well suited
to handle the faster SOM turnover under tropical conditions.

It is important to note that our sites were under natural veg-
etation (i.e., forest) or fallow until relatively shortly before
the establishment of the experiments (Laub et al., 2023a).
Consequently, upon the start of cultivation, erosion and po-
tentially accelerated decomposition (due to soil disturbance)
occurred, and SOC had likely not yet reached a new equi-

https://doi.org/10.5194/bg-21-3691-2024 Biogeosciences, 21, 3691–3716, 2024



3710 M. Laub et al.: Modeling integrated soil fertility management for maize production

librium with C inputs from maize cultivation. Therefore, C
loss is the dominant process occurring at the sites. The good
simulations of the strong SOC changes in the control treat-
ments when using MAOC initialized SOM pools, a method
not commonly used with DayCent, further supporting sug-
gestions to move away from purely conceptual SOM pools
(Abramoff et al., 2018; Laub et al., 2024). Such conceptual
pools require many assumptions about the initial vegetation
and soil conditions (e.g., in the spin-up modeling or estima-
tion of SOM pool distribution). In fact, the high uncertainty
about initial vegetation, as well as time and management
since site conversion, was a major reason to move away from
the model spin-up and site history run usually typically done
with DayCent. Thus, our study provides additional support to
modify DayCent, incorporating measurable SOM pools (e.g.,
Dangal et al., 2022).

Nevertheless, soil property maps, which would be needed
to initialize measurable SOM pools at scale, are also subject
to uncertainty. For example, differences between different
SOC maps used in model initialization propagate into dif-
ferences in the changes in SOC stocks (Zhou et al., 2023).
It was shown that uncertainty in the simulated effect of a
soil management practice on the difference in SOC stocks
compared to a counterfactual is lower than the uncertainty
in the simulated temporal development of SOC stocks (Zhou
et al., 2023). Therefore, it may be best practice to work with
a baseline and an improved scenario. Both spin-up and SOC
map initialization have their shortcomings, and in the end the
model user must make an informed decision on which ini-
tialization method they consider subject to less uncertainty,
based on which data are locally available.

The similarity of our DayCent model calibration with
that of Gurung et al. (2020) and earlier studies, despite us-
ing different model initialization approaches, indicates the
broad applicability of DayCent. It suggests that the SOM
turnover and maize traits in DayCent are representative of
temperate to tropical conditions. The adjustments made to
the values of optimal and maximum temperature for maize
growth (ppdf(1) and ppdf(2)) could be attributed to the local
maize varieties that are adapted to the higher temperatures in
Kenya. For example, Yang et al. (2021) conducted a region-
specific Bayesian model calibration of the DayCent maize
growing parameters and found ppdf(1) to vary between 26
and 32 °C, a range similar to our posterior. However, the dif-
ferences in model performance by site shows that the broad
representativeness of DayCent comes at the cost of model
simplification and site-specific model performance. A main
reason for this may be that DayCent model formalisms do
not include the latest mechanistic understandings of the role
of microbes in SOM decomposition (Laub et al., 2024) and
the sorption kinetics of carbon to minerals for SOM protec-
tion (Abramoff et al., 2018; Ahrens et al., 2020). Addition-
ally, DayCent does not fully consider that a lot of stabilized
SOC is formed by microbes from metabolic and not struc-
tural litter (Cotrufo et al., 2013; Kallenbach et al., 2016).

For example, it was recently demonstrated that the Millennial
model, which includes measurable SOM pools and improved
kinetics of carbon sorption, better predicts SOC stocks at the
global scale than the CENTURY model, which has concep-
tual SOM pools (Abramoff et al., 2022). While model cal-
ibration can compensate for deficiencies in mechanistic ac-
curacy at a single site (Laub et al., 2024), this is likely not
possible across sites with different conditions.

An interesting observation is that while the model bias
for the mean maize yield was treatment specific (i.e., the
mean yields of +N treatments of farmyard manure at
4 t C ha−1 yr−1 at all sites and of Tithonia at the same rate
at all sites but Sidada were underpredicted by DayCent), the
bias for SOC stocks was mostly site specific (i.e., SOC for-
mation at Aludeka of 4 t C ha−1 yr−1 was overpredicted). A
potential explanation for this site-specific bias for SOC is the
fact that DayCent was developed under the paradigm of SOM
formation occurring mainly from recalcitrant humic com-
pounds in the soil. Alternatively, it might indicate that soil
texture alone is insufficient to explain the mineralogy-driven
storage potential of SOC (e.g., Reichenbach et al., 2021;
Mainka et al., 2022) or that, because Machanga SOC stocks
were not used in the calibration due to erosion, SOC changes
at clay-rich sites cannot inform SOC changes at sandy sites
like Aludeka. Finally, our model sensitivity test of inputs of
mineral nitrogen suggests that the maize yield bias at high
N is due to DayCent’s inability to capture yield increases
above 100–150 kg N ha−1 per season at the four sites (Sup-
plement Fig. S5); the+N treatments of Tithonia, Calliandra,
and farmyard manure at 4 t C ha−1 yr−1 supplied on average
> 250 kg N ha−1 per season. Here, it should be noted that
DayCent does not include other potential beneficial effects
of organic-resource treatments, such as increased pH from
farmyard manure application (Xiao et al., 2021; Mtangadura
et al., 2017) or improved water infiltration of treatments that
maintain SOC stocks compared to those that reduce them.

4.3 N2O emissions and GHG balance

In general, the poor match between observed and measured
daily N2O emissions (Supplement Fig. S10) illustrates the
difficulty of simulating the timing of microbial processes,
through which nitrate (NO3

−) is converted to N2 and N2O
gases, with models of intermediate complexity such as Day-
Cent. One reason is the poor representation of soil mois-
ture dynamics by the “tipping-bucket” soil water balance ap-
proach and that soil gas diffusivity is not explicitly simulated
(Zhang and Yu, 2021; Wang et al., 2020). However, the fact
that cumulative N2O emissions were better simulated than
daily emissions, that there was no systematic under- or over-
prediction of cumulative N2O emissions, and that simulated
N2O emissions were within the uncertainty range of mea-
sured N2O emissions demonstrates the suitability of Day-
Cent to represent average N2O emissions with the current
calibration. Nonetheless, the fact that the uncertainty around
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predicted cumulative N2O emissions was lower than the un-
certainties in the measurements indicates that the posterior,
which was only calibrated with yield, SOC, and harvest index
data, underestimates the uncertainty around N2O emission
predictions. Thus, although DayCent’s simulations of N2O
emissions are superior to using emission factor approaches
(dos Reis Martins et al., 2022), simulating N2O emissions
remains challenging and highly uncertain due to the com-
plexity of the processes involved and their high temporal and
spatial variability. Given the limited bias in simulating SOC
changes and cumulative N2O emissions shown, the DayCent
simulations provide a reasonable first estimate of the GHG
balance. Nevertheless, the contributions of N2O emissions to
the GHG balance of up to 100 % (at Aludeka) and between
10 % to 60 % (at the other sites; Fig. 9) are subject to high
uncertainty, as evident from the measurements.

Despite this unresolved uncertainty, our modeling results
show that all ISFM options in a maize monocropping system
have a net positive GHG balance, aligning with the preva-
lent trend of SOC losses in recently established (< 50 years)
maize systems in SSA (Sommer et al., 2018; Laub et al.,
2023a). The findings also support the postulate that closing
yield gaps in SSA will increase N2O emissions per area of
land (Leitner et al., 2020). However, the large differences
in the yield-scaled GHG balance between treatments, such
as the 30 % to 60 % lower yield-scaled GHG balance in the
FYM 1.2 +N treatment compared to the control −N treat-
ment across the sites, indicate that ISFM has the potential
to produce crops with relatively lower GHG emissions than
no- or low-input systems and that the calculation of emis-
sions per unit of food is preferable to the calculation per land
area (Clark and Tilman, 2017). Specifically, the ISFM treat-
ments with low-emissions and high yields, such as FYM 1.2
+N, which produces between 2 and 4 t of yield per season
at emissions of between 0.3 and 1 kg CO2 equivalent per kg
yield, are a suitable mitigation practice compared to the con-
trol treatment with few or no inputs of organic and/or chem-
ical fertilizer. Consequently, sustainable intensification and
mitigation of greenhouse gases can go hand in hand.

4.4 DayCent is suitable to upscale simulations of “real”
ISFM but has a limited sensitivity to high nitrogen
inputs

Because mean maize yields across sites were reasonably
well represented by the calibrated version of DayCent, it
can be used for upscaling to predict the potential impact of
ISFM in lowering yield gaps at national levels. However, the
plateauing of mean yields at high nitrogen loads (Supple-
ment Fig. S5) indicates that DayCent may not be suitable
for estimating maximum achievable yields (e.g., Ittersum
et al., 2016) and should thus be restricted to yield predictions
for medium nitrogen input levels. Given that the historical
rates of nitrogen fertilizer application in Kenya are less than
50 kg N ha−1 (World-Bank, 2021a), the model seems suitable

to simulate the effect of implementing “realistic” ISFM prac-
tices, which target maximum nitrogen use efficiency (Van-
lauwe et al., 2010), with N input rates considerably below the
maximum N rates used in the field experiments of this study
(e.g., 80 kg N per season; Mutuku et al., 2020). At all sites,
the prediction of mean maize yields was reasonably well for
Calliandra, Tithonia, and farmyard manure treatments at 1.2
and 4 t C ha−1 in the −N treatment, as well as for CT +N,
i.e., all treatments that supply nitrogen at the desired rate for
ISFM. Also, the variability in yields and SOC stock changes
per treatment across sites was simulated well for Calliandra,
Tithonia, and farmyard manure in both +N and −N treat-
ments (with changes in SOC being simulated a bit worse in
farmyard manure treatments; Supplement Figs. S7 and S8).
While this shows the general capability of DayCent to sim-
ulate differences in yields and SOC changes between sites
as a function of organic-resource composition, it also shows
that DayCent cannot capture the better performance of farm-
yard manure compared to Calliandra and Tithonia treatments
when only considering C, N, and lignin contents. Overall,
simulated mean maize yields at medium nitrogen levels are
likely representative of the achievable yield through ISFM.
In summary, the model calibration seems suitable for assess-
ing the long-term effects of relevant ISFM practices on soil
fertility, maize yield, and GHG emissions as well as their
trade-offs, given the good representation of mean yield po-
tential and SOC changes by the model. Nevertheless, since
year-to-year yield variations were not captured well by Day-
Cent, it remains uncertain how effectively the current model
calibration can simulate scenarios of climate change, where
temperature and precipitation patterns will become more er-
ratic. In the absence of major pests (which in the experiments
were controlled), the variations in seasonal precipitation and
temperature are responsible for these differences, and if these
are not well represented, the applicability of DayCent beyond
the climatic range that it was calibrated for is questionable.

5 Conclusions

In this study, we demonstrated the effectiveness of simulta-
neously calibrating the SOM and plant modules of DayCent
to simulate maize productivity and changes in SOC stocks
under integrated soil fertility management (ISFM) in Kenya.
Using a Bayesian calibration approach, our study shows the
importance of using a local calibration and of choosing cor-
rect prior values for model parameters. Although the ini-
tial DayCent parameterization represented the tropical con-
ditions in Kenya acceptably, the overall model performance
for maize grain yield, aboveground biomass, and SOC stock
changes was improved after calibration using local data. Fur-
thermore, while parameters related to SOM turnover were
comparable to previous studies, a lower carbon use efficiency
of applied organic resources (higher values of CO2-loss-
related parameters) compared to previous studies highlighted
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the difficulty in building new SOC stocks in the studied tropi-
cal soils. Our leave-one-site-out cross-validation showed that
the calibration-derived parameter set is robust for upscaling
the model simulations to larger areas in Kenya, particularly
when applying the full posterior parameter set. At the same
time, while mean maize grain yields were well simulated,
the year-to-year yield variability raised concerns about the
model’s ability to capture the short-term effects of climate
change adequately. Finally, while no ISFM treatment was
predicted to act as a net sink of greenhouse gases, treatments
with high and intermediate yields exhibited the lowest yield-
scaled emissions.
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contacting the developers directly, who in our case kindly provided
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