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Abstract. Accurately modeling gross primary productiv-
ity (GPP) is of great importance for diagnosing terrestrial
carbon–climate feedbacks. Process-based terrestrial ecosys-
tem models are often subject to substantial uncertainties,
primarily attributed to inadequately calibrated parameters.
Recent research has identified carbonyl sulfide (COS) as
a promising proxy of GPP due to the close linkage be-
tween leaf exchange of COS and carbon dioxide (CO2)
through their shared pathway of stomatal diffusion. How-
ever, most of the current modeling approaches for COS and
CO2 do not explicitly consider the vegetation structural im-
pacts, i.e., the differences between the sunlit and shaded
leaves in COS uptake. This study used ecosystem COS fluxes
from seven sites to optimize GPP estimation across vari-
ous ecosystems with the Biosphere-atmosphere Exchange
Process Simulator (BEPS), which was further developed to
simulate the canopy COS uptake under its state-of-the-art
two-leaf framework. Our results demonstrated substantial
improvement in GPP simulation across various ecosystems
through the data assimilation of COS flux into the two-leaf
model, with the ensemble mean of the root mean square error
(RMSE) for simulated GPP reduced by 20.16 % to 64.12 %.
Notably, we also shed light on the remarkable identifiabil-
ity of key parameters within the BEPS model, including the
maximum carboxylation rate of RuBisCO at 25 °C (Vcmax25),
minimum stomatal conductance (bH2O), and leaf nitrogen
content (Nleaf), despite intricate interactions among COS-
related parameters. Furthermore, our global sensitivity anal-
ysis delineated both shared and disparate sensitivities of COS
and GPP to model parameters and suggested the unique treat-

ment of parameters for each site in COS and GPP modeling.
In summary, our study deepened insights into the sensitivity,
identifiability, and interactions of parameters related to COS
and showcased the efficacy of COS in reducing uncertainty
in GPP simulations.

1 Introduction

Over the past 5 decades, terrestrial ecosystems have been ab-
sorbing about 30 % of anthropogenic carbon dioxide (CO2)
emissions, playing a crucial role in mitigating climate change
(Friedlingstein et al., 2022). Driven by the photosynthesis
of terrestrial vegetation, gross primary productivity (GPP) is
the largest terrestrial carbon flux and plays an important role
in understanding terrestrial carbon–climate feedbacks (Luo,
2007; Wang et al., 2021). However, as direct observations of
GPP using atmospheric CO2 observations are confounded by
respiration (Hilton et al., 2017), and the modeling of GPP is
affected by a range of uncertainties such as poorly calibrated
parameters (Macbean et al., 2022), the precise quantification
of GPP in terrestrial ecosystems has been a major challenge
(Canadell et al., 2000; Yuan et al., 2007).

Carbonyl sulfide (COS) is the most abundant sulfur-
containing trace gas in the atmosphere with a lifetime of
about 2 years (Montzka et al., 2007; Karu et al., 2023). The
tropospheric atmospheric mole fraction of COS is approxi-
mately 500 parts per trillion (ppt), exhibiting a typical sea-
sonal amplitude of ∼ 100–200 ppt (Montzka et al., 2007; Ma
et al., 2021; Hu et al., 2021; Remaud et al., 2022, 2023;
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Ma et al., 2023). In the past decade, COS has emerged as a
promising tracer for terrestrial photosynthesis (Stimler et al.,
2010; Asaf et al., 2013; Launois et al., 2015; Kooijmans
et al., 2019) and stomatal conductance (Commane et al.,
2015; Wehr et al., 2017; Sun et al., 2022) as the leaf ex-
change of COS and carbon dioxide (CO2) are tightly cou-
pled through stomata (Sandoval-Soto et al., 2005; Seibt et al.,
2010; Wohlfahrt et al., 2012; Whelan et al., 2018). Unlike
CO2, which is emitted back into the atmosphere via leaf
respiration (Sun et al., 2022), COS is completely destroyed
by a hydrolysis reaction catalyzed by carbonic anhydrase
(Protoschill-Krebs et al., 1996) without back flux in leaves
under normal conditions (Stimler et al., 2010). Consequently,
the measurement of COS flux is able to provide a direct
and independent way to estimate GPP (Sandoval-Soto et al.,
2005; Abadie et al., 2023).

In most early studies, GPP was directly estimated by scal-
ing measurement of plant COS uptake with the empirically
derived leaf relative uptake (LRU) approach or its extensions
that incorporate the effects of temperature, humidity, light,
and CO2 concentration on stomatal conductance (Kohonen
et al., 2022a; Sun et al., 2022; Abadie et al., 2023) because
of the simplicity of this approach and the sufficiency of it
in many cases (Sandoval-Soto et al., 2005; Whelan et al.,
2018). In contrast, the process-based model that mechanisti-
cally simulates COS plant uptake by incorporating stomatal
transport processes has also been developed and widely eval-
uated (Maignan et al., 2021; Kooijmans et al., 2021). Concur-
rently, the significance of soil COS exchange has also been
recognized, leading to the development of a suite of empiri-
cal or mechanistic COS soil exchange models (Kesselmeier
et al., 1999; Berry et al., 2013; Launois et al., 2015; Sun et al.,
2015; Ogée et al., 2016; Whelan et al., 2022). The process-
based COS plant uptake model and soil exchange mod-
els have been integrated into land surface models (LSMs)
(Berry et al., 2013; Maignan et al., 2021; Kooijmans et al.,
2021). Consequently, by constraining the model parameters
of LSMs with COS through data assimilation, not only are
the model variables like GPP expected to be improved, but
our understanding of ecosystem processes is also expected to
be enhanced.

Currently, several studies have been conducted to refine
the model parameters of LSMs through assimilating the COS
fluxes and thereby optimizing the modeling of water–carbon
fluxes (Chen et al., 2023; Abadie et al., 2023; Zhu et al.,
2023). Within a big-leaf framework, Abadie et al. (2023)
demonstrated COS could provide mechanistic constraint on
stomatal diffusion, and the joint assimilation of COS and
GPP is able to improve the model performance of GPP and
latent heat. Ecosystem carbon, water, and energy processes
interact and are nonlinear, and the changes in one process
could induce variations in the other processes. While COS
assimilation has proven to be effective in constraining COS-
related model parameters and optimizing GPP, there remains
a gap in systematic understanding of the ability of COS to

optimize model parameters from different processes. For ex-
ample, how effective is the assimilation of COS in reduc-
ing model prediction uncertainty in GPP and in the relevant
ecosystem processes in different ecosystems?

Due to the dissimilar illumination conditions, there is a
significant variability of leaf photosynthesis between sunlit
and shaded leaves (Chen et al., 1999; Pignon et al., 2017;
Wang et al., 2018; Bao et al., 2022). It is now clearly recog-
nized that big-leaf models are conceptually flawed and prac-
tically inaccurate, and sunlit–shaded leaf stratification is nec-
essary to make accurate canopy-level photosynthesis estima-
tion (Chen et al., 1999; Chen et al., 2012; Luo et al., 2018).
Consequently, in the process-based LSM that simulates COS
plant uptake and photosynthesis in a coupled manner (Ball
et al., 1987; Berry et al., 2013), the application of the two-leaf
model shows promise for providing accurate simulation of
plant COS uptake. In this context, we have further explored
the capacity of COS to constrain the model parameters of
an LSM and to optimize GPP within the two-leaf modeling
framework.

Our goal is to address the following questions:

– Which parameters is the COS simulation sensitive to,
and what are the differences in parameter sensitivities
between COS and GPP?

– How effective is COS assimilation in improving model
prediction and reducing prediction uncertainty in GPP?

– Which process parameters can be well identified by the
assimilation of COS?

– How do process parameters interact in COS modeling
across diverse ecosystems?

To address these questions, we utilized ecosystem COS
flux data to optimize GPP across various ecosystems based
on the coupling of COS modeling with the two-leaf-based
Biosphere-atmosphere Exchange Process Simulator (BEPS).
Through Monte Carlo simulations, we conducted a global pa-
rameter sensitivity analysis to explore the sensitivity of COS
and GPP simulations to model parameters related not only
to photosynthesis but also to water and energy. The interac-
tion and identifiability of these parameters were quantified
using Monte Carlo-optimized parameter sets. Additionally,
the effectiveness of COS in constraining model uncertainty
in simulated COS and GPP is evaluated.

2 Materials and methods

2.1 Model description

2.1.1 BEPS basic model

The BEPS model (Liu et al., 1997; Chen et al., 1999; Chen
et al., 2012) used in this study is a process-based diagnos-
tic model driven by remotely sensed vegetation parameters,
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including leaf area index (LAI), clumping index, and land
cover type, as well as meteorological and soil data (Chen
et al., 2019). With the coupling among terrestrial carbon, wa-
ter, and nitrogen cycles (He et al., 2021), it simulates photo-
synthesis, energy balance, and hydrological and soil biogeo-
chemical processes at hourly time steps (Ju et al., 2006; Liu
et al., 2015). For photosynthesis, it stratifies whole canopies
into sunlit and shaded leaves and calculates GPP for each
group of leaves by scaling Farquhar’s leaf biochemical model
(Farquhar et al., 1980) up to canopy-level with a temporal
and spatial scaling scheme (Chen et al., 1999). In this study,
the BEPS model stratifies the soil profile into five layers, and
the model implicitly solves the soil water content values for
these layers (Ju et al., 2010). Over the last few decades, the
BEPS model has been continuously improved and has been
used in a wide variety of terrestrial ecosystems (Schwalm
et al., 2010; Liu et al., 2015). This study uses the BEPS
model that simulates water, carbon, and energy processes at
hourly intervals, which enables the detection of diel varia-
tions in model variables (Xing et al., 2023).

2.1.2 The two-leaf scheme for GPP and COS modeling

The BEPS model simulates the canopy photosynthesis for
the sunlit and shaded leaves separately,

GPP= GPPsunlitLAIsunlit+GPPshadedLAIshaded, (1)

where GPPsunlit and GPPshaded denote the GPP per unit area
for sunlit and shaded leaves, and LAIsunlit and LAIshaded rep-
resent the LAI values of sunlit and shaded leaves, respec-
tively. LAIsunlit and LAIshaded are calculated as (Chen et al.,
1999)

LAIsunlit = 2cosθ
(

1− e−
0.5�LAItotal

cosθ

)
, (2)

LAIshaded = LAItotal−LAIsunlit, (3)

where θ is the solar zenith angle, LAItotal is the total leaf area
index of the canopy, and � is the clumping index.

GPP values of sunlit and shaded leaves are calculated us-
ing Farquhar’s model (Farquhar et al., 1980) with consider-
ation of the large difference in incident solar irradiance be-
tween these two-leaf groups (Chen et al., 2012; Chen et al.,
2019). Stomatal conductances of sunlit and shaded leaves
are determined separately according to photosynthesis rates
of these leaves, atmospheric CO2 concentration, relative hu-
midity, and soil moisture (Ball et al., 1987; Ju et al., 2010).
Detailed descriptions of the photosynthesis and stomatal con-
ductance modeling approach of BEPS are illustrated in Ap-
pendix A1.

The ecosystem COS flux includes both plant COS uptake,
FCOS,plant, and soil COS flux exchange, FCOS,soil (Whelan
et al., 2016). In this work, the canopy-level COS plant up-
take, FCOS,plant (pmolm−2 s−1), was calculated by upscal-
ing the resistance analog model of COS uptake (Berry et al.,

2013) with the two-leaf upscaling scheme (Chen et al., 1999).
Considering the different responses of foliage to diffuse and
direct solar radiation (Gu et al., 2002), FCOS,plant is calculated
as

FCOS,plant = FCOS,sunlitLAIsunlit+FCOS,shadedLAIshaded, (4)

where FCOS,sunlit and FCOS,shaded denote the leaf-level COS
uptake rate (pmolm−2 s−1) for sunlit and shaded leaves. The
leaf-level COS uptake rate, FCOS,leaf, is determined by the
following formula (Berry et al., 2013):

FCOS,leaf = COSa

(
1.94
gsw
+

1.56
gbw
+

1
gCOS

)−1

, (5)

where COSa represents the COS mole fraction in the bulk air.
gsw and gbw are the stomatal conductance and leaf laminar
boundary layer conductance to water vapor (H2O). The fac-
tors 1.94 and 1.56 account for the smaller diffusivity of COS
with respect to H2O. gCOS indicates the apparent conduc-
tance for COS uptake from the intercellular airspaces, which
combined the mesophyll conductance (Evans et al., 1994)
and the biochemical reaction rate of COS and carbonic an-
hydrase (Badger and Price, 1994). It can be calculated as

gCOS = αVcmax, (6)

where α is a parameter that is calibrated to observations of si-
multaneous measurements of COS and CO2 uptake (Stimler
et al., 2012). Vcmax is the maximum carboxylation rate of Ru-
BisCO. Analyses of these measurements yield estimates of α
of ∼ 1400 for C3 and ∼ 7500 for C4 species. With reference
to the COS modeling scheme of the Simple Biosphere Model
(version 4.2) (Haynes et al., 2020), gCOS can be calculated as

gCOS = 1.4× 103
· (1.0+ 5.33 ·FC4)

× 10−6FAPARfwVcmax, (7)

where FC4 denotes the C4 plant flag, taking the value of 1 for
C4 plants and 0 otherwise. fw is a soil moisture stress factor
describing the sensitivity of gsw to soil water availability (Ju
et al., 2006). FAPAR is the scaling factor for leaf radiation
(Smith et al., 2008), calculated as

FAPAR = 1− e(−0.45LAI). (8)

The soil COS fluxes are simulated by considering the abi-
otic and biotic components separately, as done by Whelan
et al. (2016). We took the soil COS modeling scheme in-
cluding the parameterizations from Whelan et al. (2016) and
Whelan et al. (2022) in this study (see Appendix A2), given
that our focus is the COS and GPP relationships, and previ-
ous studies have verified this approach with measurements
over multiple sites.
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Table 1. Site characteristics. Site identification includes the country initials and a three-letter name for each site. Locations of the sites are
provided by the latitude (lat) and longitude (long). PFT stands for plant functional type. ENF and DBF denote evergreen needleleaf forest
and deciduous broadleaf forest, respectively.

Site name Lat (° N) Long (° E) PFT Soil texture Year References

AT-Neu 47.12 11.32 C3 grass Sandy loam 2015 Spielmann et al. (2019a)
DK-Sor 55.49 11.64 DBF Sandy loam 2016 Spielmann et al. (2019a)
ES-Lma 39.94 −5.77 C3 grass Sandy loam 2016 Spielmann et al. (2019a)
FI-Hyy 61.85 24.29 ENF Sandy loam 2013–2017 Vesala et al. (2022), Sun et al. (2018)
IT-Soy 45.87 13.08 C3 crop Silty clay 2017 Spielmann et al. (2019a), Abadie et al. (2022)
US-Ha1 42.54 −72.17 DBF Sandy loam 2012–2013 Wehr et al. (2017), Commane et al. (2015)
US-Wrc 45.82 −121.95 ENF Loam 2014 Rastogi et al. (2018a), Shaw et al. (2004)

2.2 Site description

The model was evaluated on seven sites distributed on the
Eurasian and American continents in boreal, temperate, and
subtropical regions based on field observations collected
from several studies. Those sites were representative of dif-
ferent climate regions and land cover types (in the model rep-
resented by plant function types and soil textures, as depicted
in Table 1).

2.3 Data

Data used in this study include LAI, land cover type, me-
teorological and soil data, and CO2 and COS mole frac-
tion data. The CO2 and COS mole fractions in the bulk
air were regarded as spatially invariant over the globe but
assumed to vary annually. The CO2 mole fraction data in
this study are taken from the Global Monitoring Labora-
tory (https://gml.noaa.gov/ccgg/trends/global.html, last ac-
cess: July 2022). For the COS mole fraction, we utilized
the average of observations from sites SPO (the South Pole)
and MLO (Mauna Loa, United States) to drive the model.
These data are publicly available online at https://gml.noaa.
gov/hats/gases/OCS.html (last access: July 2022).

2.3.1 LAI dataset

The LAI datasets used here are the GLOBMAP
global leaf area index product (version 3) (see
GLOBMAP global leaf area index since 1981,
https://doi.org/10.5281/zenodo.4700264; Liu et al., 2021)
and the Global Land Surface Satellite (GLASS) LAI product
(version 3) (acquired from https://doi.org/10.12041/geodata.
GLASS_LAI_MODIS(0.05D).ver1.db, Xiao et al., 2016).
They represent LAI at a spatial resolution of 8 km (Liu
et al., 2012) and 1 km (Xiao et al., 2016), respectively, and
a temporal resolution of 8 d. With reference to the observed
LAI at these sites (Wehr et al., 2017; Rastogi et al., 2018a;
Spielmann et al., 2019a; Kohonen et al., 2022a), we used
GLOBMAP products to drive the BEPS model at most
sites (five out of seven) due to its good agreement with
the observed LAI. Specifically, as the GLOBMAP product

had considerably underestimated LAI at DK-Sor and was
not consistent with the vegetation phenology at ES-Lma
during the measurement campaign (Spielmann et al., 2019a),
GLASS LAI was used at these two sites. In addition, these
LAI products were interpolated into daily values by the
nearest-neighbor method for the simulation.

2.3.2 Meteorological dataset

Meteorological data required to force the BEPS model in-
clude air temperature, shortwave radiation, precipitation, rel-
ative humidity, and wind speed. As the simulations were con-
ducted at the site scale, we utilized FLUXNET2015 data (see
https://fluxnet.org, last access: June 2022, for AT-Neu, DK-
Sor and ES-Lma, and FI-Hyy and US-Ha1) and AmeriFlux
data (see https://ameriflux.lbl.gov, last access: June 2022, for
US-Ha1 and US-Wrc). As FLUXNET2015 meteorological
data for AT-Neu were only accessible for the period of 2002–
2012, we conducted a linear fit between its European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis v5 (ERA5) data (https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2023) and FLUXNET2015 meteorological
data for the corresponding period. Then, we used the fitted
parameters to adjust the ERA5 data for 2015, thereby ob-
taining downscaling information for the meteorological data.
In addition, we utilized the FLUXNET data in 2012 and
AmeriFlux data and ERA5 shortwave radiation data in 2013
to drive the BEPS model at US-Ha1 due to the absence of
FLUXNET data in 2013 and the lack of shortwave radiation
data of AmeriFlux.

2.3.3 COS and GPP datasets

The hourly ecosystem COS flux observations were utilized
to perform optimization and to evaluate the optimization
results. They were derived from existing studies with pre-
processing with regard to the data quality check, as listed in
Table 1. Specifically, following the recommendations regard-
ing the standardized processing of eddy covariance flux mea-
surements of COS by Kohonen et al. (2020), both the mea-
sured and the gap-filled COS flux observations are provided
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in Vesala et al. (2022), and the latter is utilized in this study.
To assess the model performance of GPP, the GPP obser-
vations were also collected from FLUXNET (DK-Sor, ES-
Lma, FI-Hyy, and US-Ha1 in 2012), AmeriFlux (US-Ha1 in
2013), and existing studies for AT-Neu and IT-Soy (Spiel-
mann et al., 2019a) and for US-Wrc (Rastogi et al., 2018a).
Given that only CO2 turbulent flux (FC) or net ecosystem
exchange (NEE) data were available at AT-Neu, IT-Soy, and
US-Ha1 in 2013, a night flux partitioning model (Reichstein
et al., 2005) was employed to derive GPP. This model as-
sumes that nighttime NEE represents ecosystem respiration,
Reco, and thus partitions FC or NEE into GPP and Reco based
on the semi-empirical models of respiration, which use air
temperature as a driver (Lloyd and Taylor, 1994; Lasslop
et al., 2012).

2.4 The Monte Carlo-based parameter optimization
approach

To evaluate the sensitivity, equifinality, and interaction of
model parameters, the Monte Carlo-based parameter opti-
mization approach was employed here (Fig. 1). The method-
ology calls for rejecting the concept of a unique global opti-
mum parameter set within some particular model structure,
instead recognizing the equifinality of parameter sets that ex-
hibit similarly good performance in producing the observed
data (Beven and Freer, 2001). In a Monte Carlo simulation
framework, a large number of random sets of parameters
are derived across specified parameter ranges (Staudt et al.,
2010) and employed to drive the model. Subsequently, model
realizations are grouped into behavioral and non-behavioral
model runs and associated parameter sets based on the val-
ues of the single or multiple performance measures and the
predefined threshold value (Houska et al., 2014). The for-
mer describes acceptable model realizations conditioned on
the available observational data (Blasone et al., 2008; Beven
and Binley, 2014). The latter describes parameter sets that
produce behavior inconsistent with observed behavior. Given
the gradual transition of performance measures from behav-
ioral to non-behavioral model runs within the Monte Carlo
framework, the threshold value used to distinguish between
behavioral and non-behavioral parameter sets was often de-
termined by an acceptable sample rate, i.e., ranking model
runs and taking the top X% as behavioral (Beven and Bin-
ley, 2014). In the past few decades, this approach has been
extensively used in ecosystem modeling with multiple pa-
rameters to be calibrated and has shown high ability in con-
straining multiple ecosystem processes (Tonkin and Doherty,
2009; Houska et al., 2014; He et al., 2016; Wu et al., 2019;
Wu et al., 2020; Xing et al., 2023).

2.4.1 Parameter selection and sampling strategy

Based on current understanding of COS exchange (Wohlfahrt
et al., 2012; Berry et al., 2013; Whelan et al., 2016; Whelan

Figure 1. Flowchart of the Monte Carlo-based parameter optimiza-
tion approach used in this study. RMSE signifies root mean square
error.

et al., 2018; Cho et al., 2023), photosynthesis (Ball et al.,
1987; Raines, 2003; Blankenship, 2021), and related param-
eter sensitivity studies (Liu et al., 2011; Chen et al., 2012;
Chen et al., 2023; Xing et al., 2023; Abadie et al., 2023; Zhu
et al., 2023), nine parameters were selected to be calibrated
in this study (for details see Table 2). These parameters are
related to formulas describing four processes: (1) photosyn-
thesis (Vcmax25, VJslope, Nleaf), (2) soil hydrology (Ksatscalar,
bscalar, rdecay), (3) stomatal gas exchange (bH2O, mH2O), and
(4) energy balance (fleaf). Specifically, Ksatscalar and bscalar
are scaling factors designed to optimize the saturated hy-
draulic conductivity (Ksat) and the Campbell parameter (b)
for each soil layer in the BEPS model. The prior values
and prior ranges for these parameters (Table 2) were chosen
based on the literature (Jackson et al., 1996; Medlyn et al.,
1999; Kattge et al., 2009; Miner et al., 2017; Ryu et al., 2018)
and default model settings. Uniform distributions were as-
signed to all parameters, and 20 000 sets of parameters were
generated through random sampling.

2.4.2 Selection of behavioral simulations

To measure the agreement between model simulations and
observations, a variety of performance metrics have been
proposed and utilized in previous studies (Beven and Bin-
ley, 1992; Moradkhani et al., 2005; Staudt et al., 2010). In
this study, we employed the root mean square error (RMSE)
to distinguish between behavioral and non-behavioral simu-
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Table 2. Descriptions of the nine parameters that were selected to be calibrated. The prior values and prior ranges (in parentheses) of these
parameters are given for each plant function type (PFT) or for each soil texture or globally according to the parameter dependency. ENF and
DBF denote evergreen needleleaf forest and deciduous broadleaf forest, respectively.

Parameter Description Dependent Prior value and prior range

ENF – sandy loam DBF – silty loam C3 grass – loam C3 crop

bH2O The intercept of the Ball–Berry model
(molm−2 s−1)

PFT 0.0175 0.0175 0.0175 0.0175
(0–1) (0–1) (0–1) (0–1)

bscalar The scaling factor of Campbell parameter b
(unitless)

Texture 1 (0.25–1.75) 1 (0.25–1.75) 1 (0.25–1.75) 1 (0.25–1.75)

fleaf Ratio of photosynthetically active radiation to
shortwave radiation (unitless)

Global 0.466 (0.42–0.51)

Ksatscalar The scaling factor of saturated hydraulic
conductivity Ksat (unitless)

Texture 1 (0.25–1.75) 1 (0.25–1.75) 1 (0.25–1.75) 1 (0.25–1.75)

mH2O The slope of the Ball–Berry model (unitless) PFT 8 (2–14) 8 (2–14) 8 (2–14) 8 (2–14)

Nleaf Leaf nitrogen content (m2 g−1) PFT 3.10 (0.40–5.80) 1.74 (0.32–3.16) 1.75 (0.23–3.27) 1.62 (0.40–2.84)

rdecay Decay rate of root distribution (unitless) PFT 0.95 (0.80–0.99) 0.97 (0.80–0.99) 0.96 (0.80–0.99) 0.95 (0.80–0.99)

Vcmax25 Maximum carboxylation rate of RuBisCO at
25 °C (µmol m−2 s−1)

PFT 62.5 (13.1–111.9) 57.7 (15.3–100.1) 78.2 (16–140.4) 100.7 (27.5–173.9)

VJslope Slope of the Vcmax and Jmax (maximum
electron transport rate) relationship (unitless)

PFT 2.39 (1–4) 2.39 (1–4) 2.39 (1–4) 2.39 (1–4)

lations:

RMSE=

√
1
N

∑N

i=1
(obsi − simi)

2, (9)

whereN is the total number of observations; obs and sim de-
note the observations and simulations, respectively; and simi

denotes the simulation corresponding to the ith observation,
obsi .

Specifically, here we chose an acceptable sample rate of
0.5 %, i.e., the top 100 model runs with the lowest RMSE
values for COS as behavioral simulations. Thus, the deter-
ministic model prediction is given by the ensemble mean of
the 100 behavioral simulations.

2.5 Uncertainty quantification

The model prediction limits or uncertainty bounds can be de-
termined by forming the cumulative density function (CDF)
of the ensemble of simulations (Beven and Binley, 2014),
normally chosen at the 5 % and 95 % confidence level in most
of the previous studies (Blasone et al., 2008). Similarly, we
chose the 5 % and 95 % quantiles of the 20 000 simulations
and the 100 behavioral simulations to quantify the model out-
put uncertainty in this study.

2.6 Parameter sensitivity

In order to take full advantage of the Monte Carlo simula-
tions, a density-based global sensitivity analysis approach
(Plischke et al., 2013) was used to investigate the sensitivity
of COS and GPP simulations to the selected model param-
eters via the Sensitivity Analysis Library (SALib) (Iwanaga

et al., 2022). This approach aims at assessing the influence of
the entire input distribution on the entire output distribution
without reference to a particular moment of the output (Bor-
gonovo, 2007). According to Borgonovo (2007), the sensi-
tivity index (δ) is always between 0 and 1, it equals 0 if the
output is not dependent on the model parameter, and it equals
unity if all model parameters are considered.

2.7 Parameter uncertainty

Due to the functional and structural complexity of ecosys-
tems, ecosystem models often require a substantial number
of parameters to realize the modeling of various ecosystem
processes, and some parameters compensate for each other
(Mo et al., 2008). While the parameter interactions related to
photosynthesis have been systematically studied (Tang and
Zhuang, 2009; Lu et al., 2013; Wu et al., 2019; Xing et al.,
2023), the parameter interactions related to COS flux sim-
ulation have not been reported. Based on the Monte Carlo-
based methodology, the numerous behavioral parameter sets
around the “optimum” (Beven and Freer, 2001) provide us
with the opportunity to analyze the interactions between the
selected parameters. In this study, the Pearson correlation co-
efficient and the confidence level were employed to identify
the parameter interactions.

Parameter identifiability (PI) is the concept of whether un-
certain parameters can be correctly estimated from the ob-
served data (Yi et al., 2019). The failure in PI is supposed to
be caused by “over-parameterization” and parameter inter-
actions (due to high nonlinearity of model equations) (Gan
et al., 2014). Inspired by Yi et al. (2019), who used likeli-
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hood confidence interval as a measure of PI, here we used
parameter distribution range for the same purpose. Taking
into account the influence of the prior distribution of the be-
havioral parameter sets, the PI is defined as the reduction in
the parameter range width. Hence, a large value of PI indi-
cates that the parameter is well identified in the optimization
process.

3 Results

3.1 Parameter sensitivity

The sensitivity indexes of COS and GPP simulations with
respect to the model parameters for the seven sites are il-
lustrated in Fig. 2. It can be seen that both COS and GPP
simulations exhibit high sensitivity to leaf nitrogen content
(Nleaf) and the maximum carboxylation rate of RuBisCO at
25 °C (Vcmax25), while showing low sensitivity to the energy-
balance-related parameter fleaf and soil-hydrology-related
parameters (including bscalar, Ksatscalar, and rdecay). With the
average values of the sensitivity index of 0.11 and 0.10,
the photosynthesis-related parameter VJslope and stomata-
conductance-related parameter mH2O can significantly im-
pact the simulation of GPP. However, those parameters do
not exhibit high sensitivity in the modeling of COS. Our re-
sults also highlight the crucial role of the intercept of the
Ball–Berry model (bH2O) in the modeling of COS, yet its im-
pact on the simulation of GPP is limited. In summary, our
results suggest that the simulated COS and GPP share some
similarities in their sensitivities to parameters, but there are
also notable differences. Specifically, the parameters mH2O
and VJslope strongly influence GPP simulations but have min-
imal impacts on COS simulations. Conversely, the parameter
bH2O plays a more crucial role in COS simulation.

With mean values of 0.33, 0.29, and 0.09, the sensitivity
of COS simulations to Nleaf, Vcmax25, and bH2O, respectively,
is much larger than that of GPP simulations. However, the
patterns of the sensitivity of these parameters for COS and
GPP simulations are very similar across these sites. Our re-
sults reveal that the simulated COS and GPP are more sensi-
tive to Nleaf and less influenced by Vcmax25. In comparison to
other sites, the role of Vcmax25 in the simulation of COS and
GPP at IT-Soy is less significant. Additionally, we observed
that mH2O holds greater importance in the modeling of GPP
at US-Wrc than at other sites. Moreover, our results suggest
that the modeling of GPP at deciduous broadleaf forest sites
(DK-Sor and US-Ha1) is more sensitive to VJslope and less
sensitive to mH2O compared with other sites.

3.2 Posterior parameter distributions

The cumulative frequency distribution and the boxplots of
each of the parameters for the 0.5 % best runs are plotted in
Fig. 3, with a comparison to the uniform parameter distri-
butions and the prior parameter values. As shown in Fig. 3,

the posterior distributions of these parameters differ signifi-
cantly, indicating that the response of these parameters to the
assimilation of COS is quite different. Our results demon-
strated that COS fluxes have similar constraining effects on
the same parameters in different ecosystems, although the
posterior distributions of the same parameter at different sites
depicted variations. In general, parameters related to plant
growth and stomatal conductance were strongly constrained
by the assimilation of COS, while the parameters related to
energy balance and soil hydrology were inadequately con-
strained.

With a distinct shape and remarkably narrow range of
the cumulative frequency curves, bH2O (the intercept of the
Ball–Berry model, representing minimum stomatal conduc-
tance) was strongly constrained by the assimilation of COS
in this study. For most sites (AT-Neu, DK-Sor, FI-Hyy, IT-
Soy, and US-Ha1), the values of bH2O were confined to a
very limited range of 0 to 0.08 molm−2 s−1. At these five
sites, the average values of the posterior bH2O were all lo-
cated from 0.01 to 0.03 molm−2 s−1, aligning well with the
default value of bH2O (0.0175 molm−2 s−1) for the BEPS
model. In contrast, with posterior bH2O values ranging from
0.03 to 0.18 and 0.03 to 0.91 molm−2 s−1, the default value
of bH2O for the BEPS model was rejected by the assimilation
of COS at ES-Lma and US-Wrc. Despite the broad distribu-
tion of posterior bH2O at US-Wrc, the cumulative frequency
curve still indicates that bH2O is well constrained at this site,
with 80 % of the posterior bH2O located in a narrow range
of 0.15 to 0.50 molm−2 s−1. Overall, our results are reason-
able as literature-documented values of bH2O are highly vari-
able, and they align well with the compilation provided by
Miner et al. (2017), in which more than five-sixths of the
bH2O values are located between 0 and 0.18 molm−2 s−1,
and about half are located between 0 and 0.04 molm−2 s−1.
Moreover, the mean values of posterior bH2O for most (five
out of seven) sites are larger than the default bH2O value of
the BEPS model, suggesting that the current bH2O value uti-
lized in BEPS may be underestimated.

Identified as the most sensitive parameters in COS mod-
eling, the plant-growth-related parameters Vcmax25 and Nleaf
were generally well constrained in this study. However, un-
like bH2O, which is strongly constrained at all sites, the pos-
terior cumulative frequency curves of Vcmax25 and Nleaf ex-
hibit considerable variation across sites. Except for US-Ha1
and US-Wrc, the posterior Vcmax25 andNleaf were mostly dis-
tributed in the upper half of the parameter range. Particularly,
all of the lower-half values of Vcmax25 and Nleaf were ex-
cluded by the behavioral parameter sets at ES-Lma. In con-
trast, the posterior cumulative frequency curves of Vcmax25
deviated slightly from the original uniform distribution at
US-Ha1, indicating that they are not well constrained by the
assimilation of COS. As for US-Wrc, both the largest 7 %
and the smallest 4 % values of Nleaf are effectively excluded
by the assimilation of COS.
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Figure 2. Sensitivity indexes of the modeled ecosystem COS fluxes (a) and GPP (b) with respect to model parameters.

Table 3. Mean posterior mH2O values for seven study sites in comparison with the default values and the PFT-grouping values
(mean± standard deviation) in Miner et al. (2017). Within the compilation of Miner et al. (2017), FI-Hyy and US-Wrc are classified under
the PFT of evergreen gymnosperm tree, while DK-Sor and US-Ha1 fall under the PFT of deciduous angiosperm tree.

Site name AT-Neu DK-Sor ES-Lma FI-Hyy IT-Soy US-Ha1 US-Wrc

Default 8 8 8 8 8 8 8
This study 6.41 9.53 10.37 5.13 9.33 8.00 7.76
Miner 2017 13.3± 3.1 8.7± 5.1 13.3± 3.1 6.7± 2.5 13.5± 3.1 8.7± 5.1 6.7± 2.5

Another stomatal-conductance-related parameter, mH2O,
demonstrated effective constraint through COS assimilation
at specific sites (AT-Neu, DK-Sor, ES-Lma, FI-Hyy, and IT-
Soy), with parameter range width reductions comparable to
Vcmax25 and Nleaf. However, at US-Ha1 and US-Wrc, the
posterior cumulative frequency curves of mH2O show min-
imal deviation from the original uniform distribution. Nev-
ertheless, the optimization of mH2O is generally achievable
through COS assimilation, as supported by our results, in
good agreement with the compilation of Miner et al. (2017),
in which the average historical values of mH2O grouped by
PFT (referred to as the PFT-grouping values below) are pro-
vided. As indicated in Table 3, the average absolute bias be-
tween the default mH2O and the PFT-grouping value reached
as high as 2.87 for these sites. Through COS assimilation, the
mean absolute bias was reduced to 2.59.

The photosynthesis-related parameters VJslope and fleaf
also influence COS simulation. However, the posterior dis-
tributions of fleaf resemble the original uniform distribution,
suggesting that it is not a crucial parameter for COS simula-
tions. The posterior cumulative frequency curve of VJslope
also generally deviates slightly from the uniform distribu-

tion. Yet, at DK-Sor and US-Ha1, more than two-thirds of
the posterior VJslope values are situated in the upper half of
the parameter range, indicating that VJslope can also be well
constrained by the assimilation of COS in specific cases.

Among these seven sites, the soil-hydrology-related pa-
rameters Ksatscalar and bscalar did not exhibit a strong re-
sponse during the assimilation of COS. However, the poste-
rior cumulative frequency curves of rdecay show notable de-
viations from the uniform distribution in certain cases. At
US-Wrc, higher values of rdecay are more prevalent within
the behavioral parameter sets, leading to the posterior mean
of rdecay being much greater than the prior mean. Moreover,
the largest 14 % values of rdecay are effectively excluded by
the assimilation of COS at IT-Soy.

3.3 The optimization performance in COS fluxes

The posterior simulated COS fluxes were evaluated against
the prior simulations and observations. Table 4 lists the mean
RMSEs and range widths of the prior and posterior simu-
lated COS fluxes for all the sites. The RMSEmean values of
the posterior COS simulations are smaller than those of the
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Figure 3. Cumulative frequency distributions and boxplots for the posterior model parameters obtained by COS assimilation. The grey area
represents uniform parameter distributions, while the colored areas denote posterior CDF distributions, with parameters for different sites
represented using different colors. The box extends from the first quartile to the third quartile of the parameter values, with a line at the
median. The “×” markers denote outliers, and the whiskers represent the lowest or highest parameter values excluding any outliers. The
black squares represent the prior parameter values, and the axis ranges denote the prior ranges of the parameters. PI denotes parameter
identifiability, defined as the reduction in the parameter range width.
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Table 4. Comparison of model performance indices for the prior and posterior COS simulations. The RMSEmean values of the prior and
posterior simulations are the mean values of the RMSEs of 20 000 prior COS simulations and 100 behavioral COS simulations with COS
observations, respectively. The range widths of the prior and posterior COS simulations are defined as the mean values of the difference
between the 95th and 5th percentile of the prior and posterior simulations, respectively. The reduction (%) in RMSEmean and range width is
calculated as (1− posterior/prior)× 100.

Site name RMSEmean (pmolm−2 s−1) Range width (pmolm−2 s−1)

Prior Posterior Reduction (%) Prior Posterior Reduction (%)

AT-Neu 24.10 14.30 40.67 46.40 6.79 85.36
DK-Sor 32.69 24.07 26.36 45.41 13.33 70.64
ES-Lma 17.10 14.66 14.26 10.35 2.75 73.47
FI-Hyy 15.87 10.87 31.52 20.96 3.88 81.50
IT-Soy 16.49 11.35 31.16 27.26 5.12 81.21
US-Ha1 30.08 17.02 43.44 50.47 8.42 83.31
US-Wrc 36.76 14.28 61.14 78.04 4.13 94.70

prior COS simulations, and the mean RMSE reduction for all
sites is 35.51 % ± 13.72 % (mean±SD). At the same time,
the simulation range widths of COS fluxes are also well con-
strained, with a mean reduction of 81.46 % ± 7.32 % from
the prior. The reduction in RMSEmean and range width is par-
ticularly significant in US-Wrc, with a value of 61.14 % and
94.70 %, respectively.

In Fig. 4, the daily or monthly variations in COS during the
observation period at each site are shown. It can be observed
that both the prior and the posterior simulations are able to
accurately capture the daily variation in or the seasonal cycle
of COS across these sites, with the exception of IT-Soy. As
IT-Soy is a temporary observatory with no continuous in situ
meteorological observations available, the ERA5 meteoro-
logical data were used to drive the model for this site, result-
ing in the simulation not being able to characterize the COS
changes very well. Although the simulations perform well in
modeling the variations in COS for other sites, our results
also suggest that they tend to underestimate the magnitude of
COS fluxes at both ends of the growing season (e.g., Fig. 4d).
Furthermore, the model markedly underestimates the magni-
tude of COS during rainy days (DOY 126–134) at ES-Lma
(Fig. 4c). These findings suggest substantial deficiencies in
modeling the mechanistic process of COS exchange. Nev-
ertheless, it can be stated that the fusion of COS observa-
tions with the BEPS model has the capacity to constrain the
predictive uncertainty in COS, as evidenced by significantly
reduced uncertainty bounds that largely encapsulate observa-
tions.

The prior simulations significantly underestimate the COS
fluxes at ES-Lma, with the ensemble mean of prior simu-
lations being only about one-third of that of the observa-
tions. After optimization, the simulated COS fluxes show a
substantial increase and generally align with the observa-
tions. However, some observed peaks are still not included
in the posterior simulation uncertainty bounds. In contrast,
the prior simulations tend to overestimate COS fluxes at for-

est sites FI-Hyy, US-Ha1, and US-Wrc. At US-Wrc and US-
Ha1, the ensemble means of prior simulations are 65.70 %
and 64.81 % larger than the observations. The assimilation of
COS effectively corrected the overestimation but, at the same
time, led to a slight underestimation of the simulated COS
for US-Wrc. With the downregulation of COS simulations,
the model–observation difference at both ends of the grow-
ing season for FI-Hyy further increased. Particularly, signifi-
cant underestimation is found in the posterior simulations in
2017 for FI-Hyy, despite the posterior simulations showing
a remarkable improvement in reproducing COS fluxes over
the entire period (2013–2017). As the prior simulations nei-
ther noticeably overestimate nor underestimate, there is lit-
tle difference between the ensemble mean of the prior and
posterior simulations at the remaining three sites (AT-Neu,
DK-Sor, and IT-Soy). Nevertheless, the assimilation of COS
resulted in a remarkable reduction in both RMSEmean and
uncertainty bounds for COS simulations at these sites, with
mean reductions of 23.93 % and 75.11 %, respectively.

Overall, there are considerable uncertainties in the prior
simulations, with the uncertainty bounds comparable to or
much larger than the uncertainties in observations, and the
ensemble mean strongly deviates from observations in some
sites, i.e., ES-Lma. Our results suggest that significant im-
provement in both the ensemble mean and the predictive un-
certainty in COS simulations can be achieved through the
addition of the information provided by the COS observa-
tions with the Monte Carlo-based parameter optimization ap-
proach, especially for evergreen needleleaf forest sites. How-
ever, limited by various factors, such as uncertainty in model-
driven data and model structure (Cho et al., 2023), currently
the model often underestimates the simulation at both ends
of the growing season and lacks proficiency in modeling the
magnitude of COS during rainy days.
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Figure 4. Comparison of prior and posterior simulated ecosystem COS fluxes. The ensemble means of the prior (red) and posterior (blue)
simulations are plotted around the uncertainty bounds (5th and 95th quantiles). The mean observed COS and its uncertainty (estimated by the
standard deviation) are represented by black dots with error bars. The means and uncertainties of these hourly observations and simulations
are calculated and plotted on a daily or monthly scale. Error bars are not plotted when more than three-quarters of the observations are
missing. The subplot numbers are assigned based on the alphabetical order of the site names.

3.4 The performance of simulated GPP

The mean RMSEs and range widths of both prior and pos-
terior simulated GPP for all sites are presented in Table 5.
With reduction ratios of RMSEmean ranging from 20.16 %
to 64.12 %, the assimilation of COS effectively enhanced the
model performance of GPP to varying degrees. Concurrently,
the range widths of GPP simulations were well confined, ex-
hibiting a mean reduction ratio of 65.81 % ± 6.77 %. The
maximum reduction in RMSEmean for GPP occurred at US-
Wrc, aligning with the substantial improvement observed in

the posterior simulated COS at this site. In contrast, a rel-
atively limited impact on improving the prediction of GPP
was observed at FI-Hyy, as evidenced by the smaller reduc-
tion in both the RMSEmean value and the range width of GPP
simulations.

The BEPS model demonstrated excellent performance in
capturing the daily variation in and seasonal cycle of GPP,
as illustrated in Fig. 5. However, similar to the COS simu-
lations, the ensemble averages of the prior simulated GPP
deviated notably from observations at several sites. For ex-
ample, at DK-Sor and ES-Lma, the ensemble averages of the
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Table 5. Comparison of model performance indices for the prior and posterior GPP simulations. The RMSEmean values of the prior and
posterior simulations are the mean values of the RMSEs of 20 000 prior GPP simulations and 100 behavioral GPP simulations with GPP
observations, respectively. The range widths of the prior and posterior GPP simulations are defined as the mean values of the difference
between the 95th and 5th percentiles of the prior and posterior simulations, respectively. The reduction (%) in RMSEmean and range width
is calculated as (1− posterior/prior)× 100.

Site name RMSEmean (µmolm−2 s−1) Range width (µmolm−2 s−1)

Prior Posterior Reduction (%) Prior Posterior Reduction (%)

AT-Neu 13.52 9.48 29.90 27.14 8.41 69.01
DK-Sor 15.39 7.08 54.00 19.65 7.19 63.39
ES-Lma 7.35 4.63 37.06 11.99 4.75 60.39
FI-Hyy 5.14 4.10 20.16 8.51 3.98 53.20
IT-Soy 10.98 7.19 34.57 20.92 5.29 74.72
US-Ha1 8.05 4.50 44.14 12.09 3.51 70.97
US-Wrc 17.76 6.37 64.12 40.98 12.70 69.00

prior simulated GPP were only approximately half of those
of the observations. After the assimilation of COS, GPP sim-
ulations exhibited a significant increase, aligning well with
observations at DK-Sor and ES-Lma. Conversely, substan-
tial overestimation of prior GPP simulations was effectively
corrected through the assimilation of COS at US-Wrc, re-
sulting in a remarkable enhanced modeling performance in
both RMSE and range width. For FI-Hyy and US-Ha1, min-
imal differences were observed between the ensemble mean
of prior and posterior simulations, as the ensemble mean of
prior simulated GPP had already consistently fit the obser-
vations. Nevertheless, our results highlight notable enhance-
ments in the predictive uncertainty in GPP through COS as-
similation at these two sites. In Fig. 5e, it is evident that,
likely due to the absence of in situ meteorological data at
IT-Soy, GPP trends are not well represented, although the
ensemble averages of the GPP simulations are very close to
those of the observations in magnitude. However, with a re-
duction in range width as high as 74.72 %, our finding sug-
gests that the assimilation of COS can significantly reduce
the predictive uncertainty in GPP, despite the presence of
substantial meteorological data uncertainty.

4 Discussion

4.1 Parameter sensitivity

As mentioned before, here we utilize the conductance ana-
log model proposed by Berry et al. (2013) to simulate COS
plant uptake. Thus, it is not surprising that both stomatal-
conductance-related parameters, bH2O and mH2O, would im-
pact the modeling of COS flux. Considering the stress of soil
moisture on stomatal conductance, the stomatal conductance
was calculated by a modified version (Woodward et al., 1995;
Ju et al., 2010) of the Ball–Berry model (Ball et al., 1987)
based on the close relationship between stomatal conduc-
tance and photosynthesis rate. Consequently, both the soil-

hydrology-related parameters and the photosynthesis-related
parameters can ultimately play a role in the simulation of
COS plant uptake by influencing the modeling of the stom-
atal conductance.

It has been recognized that the photosynthetic capacity
simulated by terrestrial ecosystem models is highly sensitive
to Vcmax, Jmax, and light conditions (Zaehle et al., 2005; Bo-
nan et al., 2011; Rogers, 2014; Sargsyan et al., 2014; Koffi
et al., 2015; Rogers et al., 2017; Xing et al., 2023). Our study
corroborates these findings, highlighting the pronounced sen-
sitivity of simulated GPP to Vcmax25, followed by VJslope and
fleaf. Moreover, our results reveal that the COS simulations
are not notably sensitive to fleaf and VJslope, while Vcmax25
plays a crucial role in the modeling of COS. This is because
Vcmax25 not only affects the estimation of stomatal conduc-
tance through photosynthesis, but is also used to character-
ize the apparent conductance for COS uptake from the inter-
cellular airspaces, as both mesophyll conductance and car-
bonic anhydrase activity tend to scale with Vcmax (Badger
and Price, 1994; Evans et al., 1994; Berry et al., 2013). Yet,
as the hydrolysis reaction of COS by carbonic anhydrase is
not dependent on light, VJslope and fleaf do not play a role
in the modeling of apparent conductance and thus have little
effect on the simulation of COS.

As the COS plant uptake and photosynthesis are tightly
coupled through stomata, one would naturally expect simi-
lar sensitivity in simulated COS and GPP to the stomatal-
conductance-related parameters mH2O and bH2O. However,
the relationship between COS and stomatal conductance dif-
fers significantly from that between GPP and stomatal con-
ductance within the model (e.g., Eq. 5 and the Ball–Berry
model). Consequently, a notable difference in sensitivity be-
tween simulated GPP and COS to mH2O and bH2O was iden-
tified in this study. Specifically, mH2O exhibited more pro-
nounced effects on photosynthesis, while bH2O played a cru-
cial role in the simulation of COS.
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Figure 5. Comparison of prior and posterior simulated GPP. The ensemble means of the prior (red) and posterior (blue) simulations are
plotted around the uncertainty bounds (5th and 95th quantiles). The mean observed GPP and its uncertainty (estimated by the standard
deviation) are represented by black dots with error bars. The means and uncertainties of these hourly observations and simulations are
calculated and plotted on a daily or monthly scale. Error bars are not plotted when more than three-quarters of the observations are missing.
The subplot numbers are assigned based on the alphabetical order of the site names.

Given that a significant portion of nitrogen is invested in
the photosynthetic machinery (Mu and Chen, 2021), there
exists a close association between leaf nitrogen content and
leaf photosynthetic capacity (Sage and Pearcy, 1987). Addi-
tionally, the well-established relationship between leaf nitro-
gen content and carboxylation capacity (Kattge et al., 2009;
Lu et al., 2022) further emphasizes this connection. Specif-
ically, carboxylation capacity in leaf scale is assumed to be
linearly related to leaf nitrogen content in the BEPS model
(Medlyn et al., 1999; Chen et al., 2012). Consequently, both
Vcmax25 and Nleaf play a crucial role in influencing carboxy-

lation capacity, thus having a substantial impact on the sim-
ulation of COS.

The soil-hydrology-related parameters can also affect the
simulation of COS plant flux as we take the stress effect
of soil moisture on both stomatal conductance and meso-
phyll conductance into account (Ju et al., 2010; Knauer et al.,
2020). These parameters also affect the modeling of COS soil
exchange since soil moisture is a significant factor in COS
soil biotic flux (Whelan et al., 2016). However, given the
smaller magnitude of soil COS exchange compared to plant
uptake (Whelan et al., 2018) and the minimal impact of soil
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moisture stress on photosynthetic capacity (Ma et al., 2022),
these soil-hydrology-relevant parameters do not significantly
influence the modeling of COS.

4.2 Parameter interactions

For all seven sites, Pearson correlation coefficients and con-
fidence levels between the selected parameters were calcu-
lated, as depicted in Fig. 6. Generally, each site exhibits ap-
proximately three to eight parameter combinations with sig-
nificant correlations (p< 0.05). A total of 8 parameter com-
binations demonstrate significant correlations at more than
one site, while 11 parameter combinations exhibit significant
correlations at only one site. Specifically, with a mean corre-
lation coefficient of −0.55± 0.14 (negative value represent-
ing a negative correlation), the correlations between Vcmax25
and Nleaf are very significant (p< 0.01) at all sites, indicat-
ing a robust interaction between them. In addition to Vcmax25
and Nleaf, four parameter combinations show highly signifi-
cant correlations (p< 0.01) at a minimum of two sites: bH2O
andmH2O,mH2O and Vcmax25,mH2O andNleaf, and bscalar and
VJslope. Such results indicate the strong interactions among
parameters related to stomatal conductance, photosynthesis,
and soil hydrology, even if some of them do not significantly
impact the modeling of COS.

We observed substantial variations in parameter interac-
tions across different sites. For instance, at AT-Neu, mH2O
and Nleaf exhibited a highly significant negative correlation
with a correlation coefficient as high as −0.45. However,
these two parameters seemed irrelevant at DK-Sor, with a
correlation coefficient of only −0.03. As for soil-hydrology-
related parameters, none of them showed significant corre-
lations with any parameter at IT-Soy, FI-Hyy, and US-Ha1,
yet there were four related parameter combinations signif-
icantly correlated at DK-Sor (Fig. 6b). Furthermore, while
Vcmax25 was highly correlated with Nleaf at all sites, the cor-
relation coefficients varied considerably, ranging from−0.41
to −0.87.

We also observed interactions not only between two pa-
rameters but also among several parameters (e.g., bscalar−

Vcmax25−VJslope in Fig. 6a). Figure B1 showcases the intri-
cate interactions among multiple parameters relevant to COS
simulations and illustrates the distribution of behavioral pa-
rameter sets. The parameter combinations depicted in Fig. B1
are particularly representative as they originate from diverse
sites and include nearly all highly significant correlated com-
binations. Overall, since the six plant-growth-related param-
eters used in this study are positively correlated with the
simulation of COS, they consistently constrain each other,
demonstrating a negative correlation, as shown in Fig. 6a, c,
and d. However, due to the nonlinearity of the model, there
is not a simple linear relationship between these parameters.
For example, at AT-Neu, where the COS observations no-
tably exceed the ensemble mean of prior simulations, Vcmax25

and VJslope exhibit a nonlinear correlation, but both tend to
be distributed near their upper limits (Fig. B1).

4.3 Parameter identifiability

As the parameter identifiability is quantified based on the
range of the behavioral parameter, its results were presented
in Fig. 3 along with the plots of the cumulative likelihood dis-
tributions of the behavioral parameters. These results under-
score the remarkable ability of COS assimilation to identify
bH2O, with a mean PI of bH2O as high as 0.81± 0.28. Iden-
tified as the most sensitive parameters for COS modeling,
Vcmax25 andNleaf also exhibit remarkable identifiability, with
mean PIs of 0.29± 0.19 and 0.26± 0.22, respectively. mH2O
demonstrates varying levels of identifiability, with PIs rang-
ing from 0.01 to 0.28. In contrast, the light-reaction-related
parameters VJslope and fleaf are not well identified, with
the maximum value of PI of only 0.04. The soil-hydrology-
related parameters bscalar, Ksatscalar, and rdecay are also gen-
erally unidentifiable. Notably, rdecay is well identified at IT-
Soy, in which its PI value (0.14) is approximately 7 times that
of the other sites.

In this study, the identifiability of a parameter is closely
related to the sensitivity of COS simulations to the pa-
rameter, although it is known to be influenced by model
over-parameterization and parameter interactions (Gan et al.,
2014). For instance, at ES-Lma, where the COS simulations
exhibited the greatest sensitivity to Nleaf and Vcmax25, these
parameters were also found to have the highest identifiability
(Figs. 2a and 3). Given the high sensitivity of COS model-
ing to Vcmax25, Nleaf, and bH2O, it is unsurprising that these
parameters can be effectively identified by the assimilation
of COS. However, our findings indicate that the sensitivity
of Vcmax25 and Nleaf is much greater than that of bH2O, yet
the latter is much more identifiable. This outcome can be at-
tributed to the highly significant correlation between Vcmax25
andNleaf, as parameter interaction is a primary contributor to
parameter unidentifiability (Gan et al., 2014).

In Sect. 3.1, it is demonstrated that the modeling of COS
exhibits a low sensitivity to fleaf, mH2O, and VJslope. Conse-
quently, it is reasonable that the assimilation of COS did not
effectively identify fleaf, mH2O, and VJslope (Fig. 3). How-
ever, due to their significant correlations with other plant-
growth-related parameters, effective identification is possible
in specific cases. Notably, combinations such asmH2O−bH2O
andmH2O–Vcmax25 are very significantly correlated (Fig. 6b),
and both bH2O and Vcmax25 are well identified at FI-Hyy. As
a result, mH2O also attains high identifiability at this site.

It has previously been demonstrated that soil-hydrology-
related parameters exert a minimal impact on COS simula-
tions (Fig. 2) and cannot be effectively constrained through
COS assimilation in general (Fig. 3). Consequently, these
parameters exhibit low identifiability, although significant
combinations of correlations associated with soil-hydrology-
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Figure 6. Parameter correlation matrix plots with significance levels between the parameters of the behavioral parameter sets. Correlation
coefficients are shown in red font when the confidence level is greater than 95 % (p< 0.05), with the superscript “∗” indicating a confidence
level greater than 99 % (p< 0.01).

related parameters were observed at certain sites (e.g., DK-
Sor).

4.4 Relationship between COS and GPP simulation
performances

In this study, we identified the top 100 parameter sets whose
corresponding simulations displayed the smallest RMSE

concerning COS observations as the behavioral parameter
sets. Subsequently, these behavioral parameter sets were em-
ployed to derive the posterior simulated COS and GPP and to
estimate prediction uncertainty. Therefore, it is necessary to
investigate the distribution of RMSEs for COS simulations
and GPP simulations and to understand the relationship be-
tween the model performance of COS and that of GPP.
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Figure 7. Comparison of RMSE for COS (RMSECOS) and GPP (RMSEGPP) in the Monte Carlo simulations. Each data point represents a
parameter set, with color indicating data density. The dashed grey line represents the RMSE threshold for COS simulations, calculated as the
mean of the 100th and 101st smallest values of the RMSE.

In Fig. 7, scatterplots of RMSEs for COS and GPP are
presented. It can be observed that at most sites, where the
scatters are most densely distributed, there tend to be rela-
tively small RMSEs for both COS and GPP. These results
indicate that the current model is generally capable of simu-
lating COS and GPP well at the same time. However, given
the distinct mechanisms of COS and GPP as well as the un-
certainties in model structure and driving data, etc., there
are also numerous parameter sets that perform well for ei-
ther COS or GPP but exhibit significant discrepancies with
the observations of the other. For example, the model runs
with the 3 % highest RMSE for GPP instead exhibit good
performance in terms of COS at ES-Lma, with their mean
RMSE values (15.42 pmolm−2 s−1) less than those of the
prior (17.10 pmolm−2 s−1). Overall, our results suggest that
these behavioral parameter sets, which demonstrate good
performance in COS simulation, generally also perform well
in modeling GPP. However, the parameter sets with relatively
good GPP simulation results exhibit significant variability in
the performance of COS modeling.

4.5 Caveats and implication

Compared to the big-leaf model, the two-leaf model has been
demonstrated to better describe the canopy radiation distri-
bution, GPP, and stomatal conductance (Luo et al., 2018).
In this study, we take advantage of the two-leaf model to
simulate COS fluxes from plant and soil based on the BEPS
model within the two-leaf framework. Ecosystem COS flux
data were used to calibrate the model parameters belonging
to BEPS and to optimize GPP simulations among diverse
ecosystems within the Monte Carlo-based methodology. Our

results demonstrate that COS not only improves the accuracy
of GPP simulations but also reduces GPP simulation uncer-
tainty. However, due to the lack of in situ COS concentration
and flux data, as well as BEPS model driving data (e.g., mete-
orological data, LAI data, and clumping index data), we still
face challenges in evaluating the performance of the two-leaf
model compared to other models in COS simulation. There-
fore, there is an urgent need for more in situ meteorological
data, vegetation canopy structural parameters, and COS ob-
servations.

The spatial and temporal variation in atmospheric COS
concentrations has a considerable influence on the COS plant
uptake (Ma et al., 2021; Kooijmans et al., 2021) due to the
linear relationship between the two (Stimler et al., 2010).
With a lack of continuous ground-based COS concentra-
tion observations, COS concentrations in the bulk air are re-
garded as spatially invariant over the globe but assumed to
vary annually in this study, which may lead to significant
biases in COS simulations. Currently, several recent studies
have simulated COS vegetation fluxes based on atmospheric-
transport-model-derived COS concentration data within the
big-leaf framework (Kooijmans et al., 2021; Maignan et al.,
2021; Abadie et al., 2023). These COS fluxes simulated
based on big-leaf models were in turn used to drive atmo-
spheric transport models (Remaud et al., 2023; Ma et al.,
2023). Within an atmosphere inversion framework, recent
studies indicate an underestimation of the biosphere COS
sink in high-latitude regions of the Northern Hemisphere
(NH) (Ma et al., 2021; Remaud et al., 2023). Larger underes-
timations of ecosystem COS exchange based on the big-leaf
model at high latitudes have also been confirmed at the site
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scale, and the underestimations of COS are consistent with
biases in GPP for some sites (Kooijmans et al., 2021). Inter-
estingly, Luo et al. (2018) demonstrated that the reason for
the underestimation of GPP by the big-leaf model is that it
fails to accurately describe the instantaneous radiation distri-
bution in the canopy, and the underestimation increases with
the increase in LAI. The NH high-latitude regions have rela-
tively high LAI (Fang et al., 2019); therefore the deficiency
of the big-leaf model in simulating radiation distribution may
contribute to the existence of the missing COS sink in the NH
high latitude in summer, and this deficiency is amplified by
the larger LAI. In fact, the spatial distribution of LAI (i.e.,
GLOBMAP LAI) retrieved through remote sensing not only
in NH high-latitude regions but also in central Africa aligns
with the spatial distribution of the missing sink revealed by
the “objective” inversion conducted by Ma et al. (2021) (as il-
lustrated in Fig. 7 in Ma et al., 2021), which further validates
the reasonableness of this hypothesis. Therefore, conducting
COS simulations under the two-leaf framework at a global
scale holds the promise of providing insights into the global
COS vegetation sink and benefiting the simulation of the spa-
tial and temporal distribution of COS concentrations. Thus, it
is necessary to conduct regional and global COS simulations
within the two-leaf model framework in the future.

Taking advantage of the Monte Carlo-based parameter op-
timization approach, we analyzed the global sensitivity, iden-
tifiability, and interactions of COS-related parameters in this
study. Furthermore, we quantified the uncertainty in simu-
lated COS and GPP, thereby revealing the capacity of COS to
constrain the uncertainty in GPP simulations. However, the
Monte Carlo-based parameter optimization approach is sub-
ject to controversy (Sambridge and Mosegaard, 2002) due to
the numerous subjective decisions involved in its implemen-
tation, such as the selection of the parameter range, sample
size, and performance metric, etc. Further research is needed
to investigate the impact of these factors on the parameter
optimization results related to COS and the assessment of
model prediction uncertainty.

5 Conclusions

In this study, ecosystem carbonyl sulfide fluxes were uti-
lized to calibrate the ecosystem model parameters and to
optimize GPP simulations among various ecosystems within
a Monte Carlo-based approach using COS modeling within
BEPS. A global parameter sensitivity analysis was conducted
to identify the most sensitive parameters among a set of
nine pre-selected parameters. The identifiability and interac-
tion of model parameters were investigated by the behavioral
parameter sets. The effectiveness of COS in improving the
model performance of GPP was evaluated. The major find-
ings are as follows:

(1) Similar to GPP, we found the modeling of COS is sen-
sitive to parameters Vcmax25 and Nleaf and insensitive to soil-

hydrology-related parameters and the energy-related param-
eter fleaf. Unlike GPP, COS is sensitive to bH2O and insensi-
tive to mH2O and VJslope.

(2) The assimilation of COS within the Monte Carlo-based
approach effectively improved model prediction of GPP and
significantly reduced the model predictive uncertainty, with
a mean RMSE reduction of 40.56 % ± 13.77 % and a mean
range width reduction as high as 65.81 % ± 6.77 %.

(3) Complex and significant two-parameter or multi-
parameter interactions exist between the model parameters.
Particularly, Vcmax25 and Nleaf show highly significant corre-
lations (p< 0.01) at all sites.

(4) Generally, bH2O, Vcmax25, and Nleaf can be well iden-
tified through the assimilation of COS, especially bH2O,
whereas the soil-hydrology-related parameters and the light-
reaction-related parameters cannot be identified effectively.

Appendix A

A1 BEPS photosynthesis and stomatal conductance
modeling approach

In the BEPS model, the net photosynthesis rate (A) is calcu-
lated using the Farquhar model (Farquhar et al., 1980; Chen
et al., 1999):

A=min(Ai,Aj )−Rd, (A1)

Ac = Vcmax
Ci −0

∗

i

Ci +Kc

(
1+ Oi

Ko

) , (A2)

Aj = J
Ci −0

∗

i

4(Ci − 20∗i )
, (A3)

where Ai and Aj are RuBisCO- and RuBP-limited gross
photosynthetic rates (µmolm−2 s−1), respectively. Rd is the
dark leaf respiration (µmolm−2 s−1). Vcmax is the maximum
carboxylation rate of RuBisCO (µmolm−2 s−1); J is the
electron transport rate (µmolm−2 s−1); Ci and Oi are the
intercellular carbon dioxide (CO2) and oxygen (O2) con-
centrations (molmol−1), respectively; and Kc and Ko are
Michaelis–Menten constants for CO2 and O2 (molmol−1),
respectively.

The electron transport rate, J , is dependent on incident
photosynthetic photon flux density (PPFD; µmolm−2s−1) as

J =
Jmax I

I + 2.1Jmax
, (A4)

where Jmax is the maximum electron transport rate
(µmolm−2 s−1), and I is the incident PPFD calculated from
the incident shortwave radiation RSW (Wm−2):

I = β∗RSWfleaf, (A5)

where β∗= 4.55 is the energy–quanta conversion factor
(µmol J−1), and fleaf is the ratio of photosynthesis active ra-
diation to the shortwave radiation (unitless).
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The maximum carboxylation rate of RuBisCO Vcmax was
calculated according to the modified Arrhenius temperature
function (Medlyn et al., 2002) and the maximum carboxyla-
tion rate of RuBisCO at 25 °C (Vcmax25). Vcmax is generally
proportional to the leaf nitrogen content. Considering that
both the fractions of sunlit and shaded leaf areas to the to-
tal leaf area and the leaf nitrogen content vary with the depth
into the canopy, the Vcmax values of sunlit (Vcmax,sunlit) and
shaded (Vcmax,shaded) leaves can be obtained through vertical
integrations with respect to canopy depth (Chen et al., 2012;
De Pury and Farquhar, 1997):

Vcmax,sunlit = VcmaxχnNleaf
k
[
1− e(kn+k)L

]
(kn+ k)(1− e−kL)

, (A6)

Vcmax,shaded = VcmaxχnNleaf

×

1
kn

[
1− e−knL

]
−

1
kn+k

[
1− e(kn+k)L

]
L− 1

k
(1− e−kL)

, (A7)

where χn (m2 g−1) is the relative change of Vcmax to leaf ni-
trogen content; Nleaf (gm−2) is the leaf nitrogen content at
the top of the canopy; kn is the leaf nitrogen content decay
rate with increasing depth into the canopy, taken as 0.3; and
L is the canopy depth described in total LAI. Here, k is cal-
culated as

k =G(θ)�cos(θ), (A8)

where G(θ) is the projection coefficient, taken as 0.5.
After Vcmax values for the representative sunlit and shaded

leaves are obtained, the maximum electronic transport rates
for the sunlit and shaded leaves are obtained from Medlyn
et al. (1999):

Jmax = VJslopeVcmax− 14.2, (A9)

where VJslope (unitless) is the slope of the relationship of
Vcmax and Jmax.

The leaf stomatal conductance to water vapor (gsw in
molm−2 s−1) is estimated using a modified version of the
Ball–Berry (BB) empirical model (Ball et al., 1987) follow-
ing Woodward et al. (1995):

gsw = bH2O+
mH2OARhfw

Ca
, (A10)

where bH2O is the intercept of the BB model, representing the
minimum gsw (mol m−2 s−1);mH2O is the empirical slope pa-
rameter in the BB model (unitless); Rh is the relative humid-
ity at the leaf surface (unitless); fw is a soil moisture stress
factor describing the sensitivity of gsw to soil water availabil-
ity (Ju et al., 2006); and Ca is the atmospheric CO2 concen-
tration (µmolmol−1).

The soil water availability factor fw,i in each layer i is
calculated as

fw,i =
1.0

fi(ψi)fi(Ts,i)
, (A11)

where fi(ψi) is a function of matrix suction ψi (m) (Zierl,
2001), and fi(Ts,i) is a function describing the effect of soil
temperature (Ts,i in °C) on soil water uptake (Bonan, 1991).

To consider the variable soil water potential at different
depths, the scheme of Ju et al. (2006) was employed to cal-
culate the weight of each layer (wi) to fw:

wi =
Rifw,i
n∑
i=1
Rifw,i

, (A12)

where n is the number of soil layers (five were used in this
study) of the BEPS model, and Ri is the root fraction in
layer i, calculated as

Ri =


1− r100cdi

decay i = 1

r
100cdi−1
decay − r

100cdi
decay 1< i < n

r
100cdi−1
decay i = n,

(A13)

where cdi is the cumulative depth (m) of layer i. In this study,
each soil layer depth (from top to bottom) of the BEPS model
is 0.05, 0.10, 0.20, 0.40, and 1.25 m, respectively.

The overall soil water availability fw is then calculated as

fw =

n∑
i=1

fw,iwi . (A14)

The hydraulic conductivity of each soil layer Ki (ms−1) is
expressed as

Ki = Ksati

(
SWCi
θs,i

)2bi+3

, (A15)

where Ksati is the saturated hydrological conductivity of soil
layer i (ms−1); SWCi is the volumetric liquid soil water con-
tent of soil layer i (ms−1); θs,i is the porosity of soil layer i
(unitless); and bi is the Campbell parameter for soil layer i,
determining the change rate of hydraulic conductivity with
SWC (unitless). In this study, Ksati and bi are expressed as

Ksati = KsatscalarKsatdf,i, (A16)
bi = bscalarbdf,i, (A17)

where Ksatdf,i and bdf,i are the default values of Ksati and bi ,
respectively.

A2 BEPS soil COS modeling approach

The total soil COS flux FCOS,soil is the sum of the abiotic
COS flux FCOS,abiotic and biotic COS flux FCOS,biotic:

FCOS,soil = FCOS,abiotic+FCOS,biotic. (A18)

Here, we take the approach developed in Whelan et al.
(2016) for the modeling of FCOS,soil. In this approach,
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FCOS,abiotic is described as an exponential function of the
temperature of soil Tsoil (°C):

FCOS,abiotic = αe
βTsoil , (A19)

where α and β are parameters determined using the least-
squares fitting approach. We assigned the values of α and β
to BEPS according to the parameterization scheme of Whe-
lan et al. (2016).
FCOS,biotic is described as the product of a power function

and an exponential function:

FCOS,biotic = Fopt

(
SWC

SWCopt

)
e
−a
(

SWC
SWCopt

−1
)
, (A20)

a = ln

(
Fopt

FSWCg

)(
ln
(

SWCopt

SWCg

)
+

(
SWCg

SWCopt
− 1

))−1

. (A21)

Here, a is the curve shape constant. The maximum bi-
otic COS uptake Fopt and the biotic COS uptake FSWCg are
the COS fluxes (pmolm−2 s−1) at optimum soil water con-
tent SWCopt and a secondary soil water content SWCg and
SWCg > SWCopt. A more detailed description of the mod-
eling of FCOS,biotic and the parameterization scheme adopted
in this study can be found in Whelan et al. (2022).

Appendix B: Additional figure

Figure B1. Scatterplots showing the behavioral parameter sets in 3D parameter space at AT-Neu (a), FI-Hyy (b) and US-Ha1 (c), and US-
Wrc. The scatter colors represent the magnitude of the corresponding parameters using red, green, and blue (RGB) values. The projection of
the scatter is illustrated with smaller markers.
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Data availability. Measured eddy covariance carbonyl sulfide
flux data can be found at https://doi.org/10.5281/zenodo.3406990
(Spielmann et al., 2019b) for AT-Neu, DK-Sor, ES-Lma,
and IT-Soy; at https://doi.org/10.5281/zenodo.6940750
(Kohonen et al., 2022b) for FI-Hyy; and from the
Harvard Forest Data Archive under record HF214
(https://doi.org/10.6073/pasta/7ed7b4d1fc7ad303998e76143a3b279a,
Commane et al., 2016) for US-Ha1. The raw COS
concentration data of US-Wrc can be obtained at
https://doi.org/10.5281/zenodo.1422820 (Rastogi et al., 2018b).
The meteorological data can be obtained from the FLUXNET
database (https://fluxnet.org/, last access: June 2022) for AT-Neu
(https://doi.org/10.18140/FLX/1440121, Wohlfahrt et al., 2020),
DK-Sor (https://doi.org/10.18140/FLX/1440155, Ibrom and
Pilegaard, 2020), ES-Lma (https://doi.org/10.18160/FDSD-
GVRS, Migliavacca et al., 2020), FI-Hyy
(https://doi.org/10.18140/FLX/1440158, Mammarella et al.,
2020), and US-Ha1 (https://doi.org/10.18140/FLX/1440071,
Harvard University, 2020); from the AmeriFlux database
(https://ameriflux.lbl.gov/, last access: June 2022) for US-Ha1
(https://doi.org/10.17190/AMF/1871137, Munger, 2022) and US-
Wrc (https://doi.org/10.17190/AMF/1246114, Wharton, 2016); and
from the ERA5 dataset (https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2023) for AT-Neu, IT-Soy, and US-Ha1. The GPP
data can be obtained from the FLUXNET database for DK-Sor,
ES-Lma, FI-Hyy, and US-Ha1; from the AmeriFlux database
for US-Ha1; from https://doi.org/10.5281/zenodo.3406990
(Spielmann et al., 2019b) for AT-Neu and IT-Soy; and
from https://doi.org/10.5281/zenodo.1422820 (Rastogi et al.,
2018b) for US-Wrc. The GLASS LAI is available at https:
//doi.org/10.12041/geodata.GLASS_LAI_MODIS(0.05D).ver1.db
(Xiao et al., 2016), and the GLOBMAP LAI is available at
https://doi.org/10.5281/zenodo.4700264 (Liu et al., 2021).
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