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Figure S1: Linear regressions between pH and relative abundance of IPL classes DGDG (A) and SQDG (B). The statistical 7 
significance of the regression and the goodness of fit are denoted by the p value and the R2, respectively. 8 
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  9 
Figure S2. Linear regressions between Temperature and the number of unsaturation in all IPL classes (weighted average). The 10 
statistical significance of the regression and the goodness of the fit are denoted by the p value and the R2, respectively. 11 
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 13 

Figure S3. Linear regression between (A) Temperature and the relative abundance of DGDG lipids, and B) between the surface-14 
normalized light level (expressed as a %) and PG+PC relative abundances. The statistical significance of the regression and the 15 
goodness of the fit are denoted by the p value and the R2, respectively. 16 
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Figure S4. Cell counts of Synechococcus measured by flow cytometry in surface and subsurface waters of each mesocosm. 19 
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Figure S5. Concentration of total IPLs over chl-a concentration (expressed in µg/mg) in surface and subsurface waters of each 23 
mesocosm. The solid horizontal lines represent the average value for surface (red) and subsurface (blue) waters. 24 
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S1. Supplementary Notes  27 

Classification and Regression Tree (CART) and Random Forest (Figures 4, 5, 6, and 7 in the main text). 28 

The CART analysis is a versatile statistical method that uses decision tree structure to model complex relationships 29 
between predictor and target variables, including regression and classification problems. Essentially, it repeatedly 30 
divides data into smaller subsets, or nodes, based on specific data features to create a predictive tree structure 31 
(Breiman et al., 1984, Ho, 1995). In this study, CART, analyses employ splitting criteria determined by evaluating 32 
the sum of squared deviations in all potential splits, selecting those that yield the greatest reduction in residual 33 
error. To mitigate overfitting in the CART analysis, a pruning procedure is conducted to remove nodes that offer 34 
minimal contribution to model accuracy, as determined by cost complexity measure (Bae et al., 2010). This 35 
procedure allows us to simplify the CART results and focus our interpretations on the most significant predictors 36 
of IPL headgroups only.  37 

A Random Forest (RF) is a machine learning algorithm that employs multiple decision trees to make more accurate 38 
predictions in classification and regression (Breiman et al., 2001). Each decision tree is constructed independently 39 
using a random subset of data and features from the training set. In the case of regression problems, such as 40 
predicting numerical values, a metric like Root Mean Square Error (RMSE) is used to evaluate the model's 41 
accuracy. The RMSE represents the square root of the mean of the squares of the errors between the model 42 
predictions and the actual values in the test dataset (Wei et al., 2010, Tyralis et al., 2019). In summary, RF utilizes 43 
multiple decision trees and metrics like RMSE to generate more accurate and robust mode. A lower RMSE indicates 44 
the model can more accurately predict the target variable's numerical values. Following the averaged cross validated 45 
accuracy estimates, we implemented a cutoff of 5% reduction in RMSE to eliminate variables that do not 46 
significantly reduce the error of the model prediction. This cutoff allows us to focus our interpretation of variables 47 
that contribute significantly to the out of bag predictor performance. 48 

The use CART and RF algorithms helps assessing the robustness of statistical relationships and gain a more 49 
comprehensive understanding of how environmental variables influence the distribution of IPL classes, thus 50 
enhancing our understanding of lipid remodeling. 51 

Please refer to our analyses in our R code available in this study: https://github.com/Guachan/IPLs-KOSMOS/tree/0.1.0 52 
(https://doi.org/10.5281/zenodo.10408453, Cantarero, 2023). 53 
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