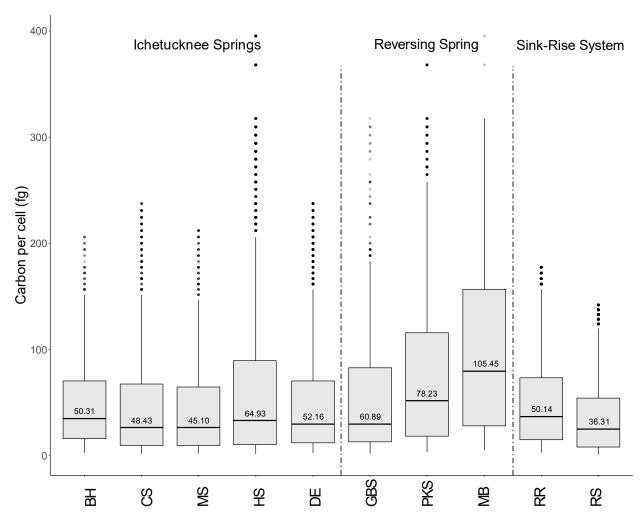
Supplement of Biogeosciences, 21, 3965–3984, 2024 https://doi.org/10.5194/bg-21-3965-2024-supplement © Author(s) 2024. CC BY 4.0 License.

Supplement of

Effects of surface water interactions with karst groundwater on microbial biomass, metabolism, and production

Adrian Barry-Sosa et al.

Correspondence to: Brent C. Christner (xner@ufl.edu)


The copyright of individual parts of the supplement might differ from the article licence.

SUPPLEMENTARY FIGURES AND TABLES

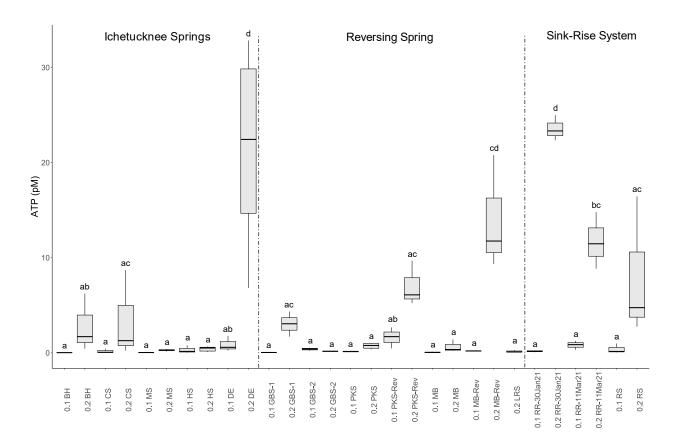
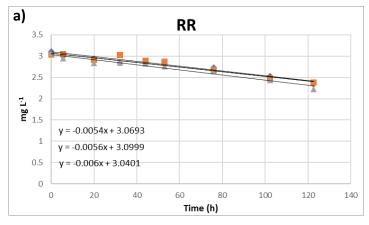
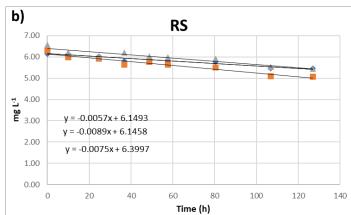
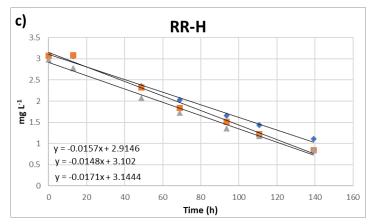
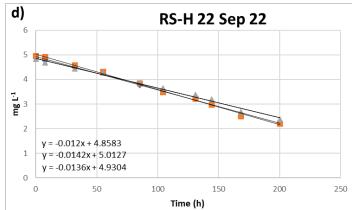

6 Dec 2018	C 11 C TTOT (CD C 1)	gage height, if Applicable)*
	Cell Counts, YSI (GBS-1)	48.1 m ³ s ⁻¹ , 0.3 m (GBS-1)
8 Apr 2019	Cell Counts, YSI (LRS)	205.3 m ³ s ⁻¹ , 3.38 m (LRS)
17 Apr 2019	Cell Counts, YSI (HS, DE)	n.a. (HS, DE)
14 Jun 2019	Cell Counts, YSI (DE, MS)	n.a. (DE, MS)
15 Jun 2019	Cell Counts, YSI (BH)	n.a. (BH)
28 Jun 2019	Cell Counts, YSI (PKS)	~15.7 m ³ s ⁻¹ , gage heigh n.d. (PKS)
14 Aug 2019	Cell Counts, YSI (GBS-1, GBS-2, RS, RR)	40.5 m ³ s ⁻¹ , 0.3 m (GBS-1 and 2) 16.1 m ³ s ⁻¹ , 12.1 m (RS); 17.5 m ³ s ⁻¹
		¹ , 1.1 m (RR)
27 Feb 2020	Cell Counts, YSI (LRS)	188 m ³ s ⁻¹ , 2.9 m (LRS)
23 Jul 2020	Cell Counts (MB)	4.3 m ³ s ⁻¹ , 2.88 m (MB)
23 Oct 2020	YSI, ATP (DE, MS)	n.a. (DE, MS)
21 Nov 2020	YSI, ATP (PKS, LRS, MS, HS, DE)	n.d. (PKS) 103.9 m ³ s ⁻¹ , 1.9 m (LRS); n.a. (MS, HS, DE)
30 Jan 2021	Cell Counts, YSI, ATP (RS, RR)	3.2 m ³ s ⁻¹ , 11.2 m (RS); 5.9 m ³ s ⁻¹ , 0.7 m (RR)
28 Feb 2021	Cell Counts, YSI, ATP (MB)	-1.3 m ³ s ⁻¹ , 8.2 m (MB)
4 Mar 2021	YSI, ATP (HS)	n.a. (HS)
11 Mar 2021	YSI, ATP (RR)	27 m ³ s ⁻¹ , 1.5 m (RR)
10 Apr 2021	Cell Counts, YSI (DE)	n.a. (DE)
28 Jul 2021	YSI, Rad, Ox. incubation (DE, HS)	n.a. (DE, HS)
10 Aug 2021	YSI, ATP (PKS, CS)	n.a. (<u>PKS</u>), n.a. (CS)
25 Aug 2021	YSI, ATP (BH)	n.a. (BH)
13 Sept 2021	YSI, Ox. incubation (DE)	n.a. (DE)
28 Oct 2021	YSI, ATP (GBS-1, GBS-2, MB, PKS)	44.2 m ³ s ⁻¹ , 0.4 m (GBS-1 and 2) n.d. (PKS)
4 Nov 2021	YSI (DE, RS, RR); DIC (DE); Cell counts, Rad (RS, RR)	7.44 m ³ s ⁻¹ ,11.5 m (RS); 15.71 m ³ s ⁻¹ , 1.1 m (RR); n.a. (DE)
1 Dec 2021	YSI, Ox. incubation (RS, RR)	7.9 m ³ s ⁻¹ , 11.6 m (RS); 14.9 m ³ s ⁻¹ , 1.1 m (RR)
26 Jan 2022	YSI, DIC (RS, RR, HS)	N.A. (HS); 6.6 m ³ s ⁻¹ , 11.5 m (RS); 8.9 m ³ s ⁻¹ , 0.9 (RR)
7 Mar 2022	YSI, Rad, Ox. incubation (MB)	4.30 m ³ s ⁻¹ , 2.85 m (MB)
31 Mar 2022	YSI, DIC, Ox. incubation (MB)	4.8 m ³ s ⁻¹ , 4.7 m (MB)
8 Apr 2022	YSI, DIC, Ox. incubation (RS)	37.9 m ³ s ⁻¹ , 12.9 m (RS)
21 Apr 2022	YSI, DIC, POC (DE, HS)	N.A. (DE, HS)
2 Jun 2022	YSI, DIC, POC (RS, RR)	4.6 m ³ s ⁻¹ , 11.3 m (RS); 11.1 m ³ s ⁻¹ gage height n.d (RR)
12 Jul 2022	Cell counts, YSI, Rad, POC (MB)	3.09 m ³ s ⁻¹ , 2.7 m (MB)
22 Sep 2022	YSI, DIC, Rad, POC, Ox. incubation (RS)	37.66 m ³ s ⁻¹ , 12.8 m (RS)
27 Sep 2022	YSI, DIC, Rad, POC, Ox. incubation (RR)	28 m ³ s ⁻¹ , 1.5 m (RR)
1 Dec 2022	Cell Counts, YSI, DIC, Rad, Ox. incubation (MB)	3.14 m ³ s ⁻ 1, 2.45 m (MB)

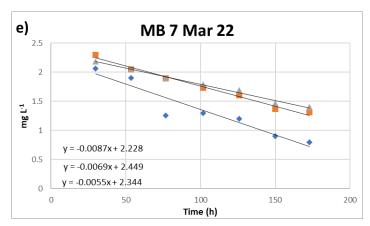
Table S1. List of sampled dates, indicating the specific samples taken at each location. *Hydrological data for each location retrieved from the following USGS monitoring stations: GBS-1 and 2 02322500⁺, LRS 02320500⁺, MB 02319302, RR 02321958 and RS 02321898. For PKS, the SRWMD station 02320048 was used. Stations marked with ⁺ indicates that the monitoring station was not located at the sampling location, so the closest monitoring station at the nearby river was used instead. Underlined locations denote times when the flow was high (RR and RS) or samples

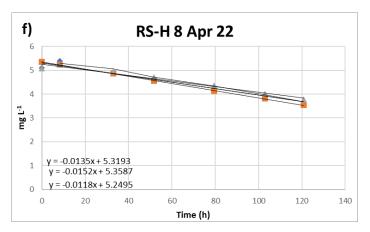

collected during a reversal (MB and PKS). Acronyms: MB: Madison Blue Spring; PKS: Peacock Spring; LRS: Little River Spring; DE: Devil's Eye Spring; HS: Head Spring; BH: Blue Hole Spring; MS: Mission Spring; CS: Coffee Spring. GBS: Gilchrist Blue Springs; RS: Santa Fe River Sink; RR: Santa Fe River Rise. YSI: Measurements using the multiparameter YSI ProDSS probe; DIC: Samples for dissolved inorganic carbon consumption measurements; POC: Samples for measuring particulate organic carbon; Rad: Samples for radioisotopic incubations, Ox. Incubation: samples for oxygen production measurements; ATP: Samples for measuring ATP concentrations. n.d.: no data, n.a.: not applicable.

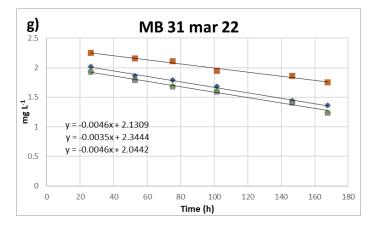


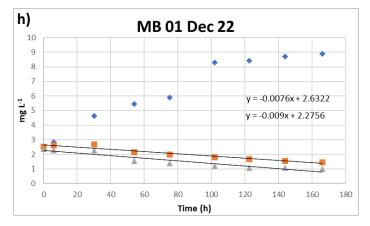

Figure S1. Cell Carbon per cell. Numbers within the box plot indicate the average values. Location acronyms are defined at Table S1 caption.

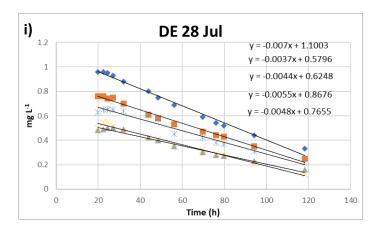


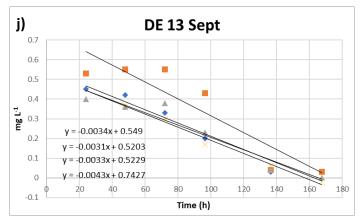

Figure S2. Bulk ATP concentration measured at each location in the 0.1 and $0.2 \,\mu m$ fraction. Location acronyms are defined at Table S1 caption. Suffix -Rev indicates a sample collected in a spring during a reversal period.

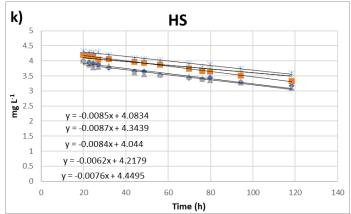


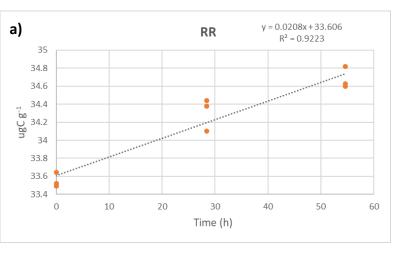


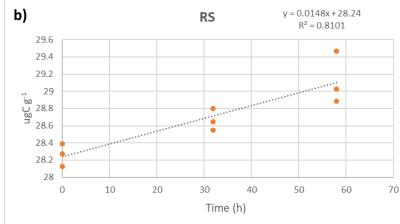


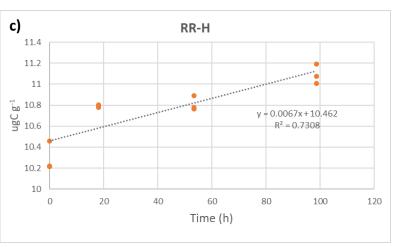


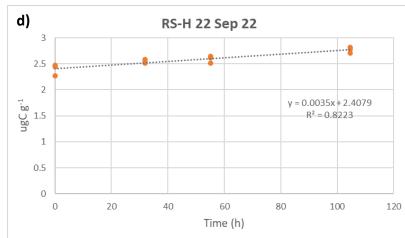


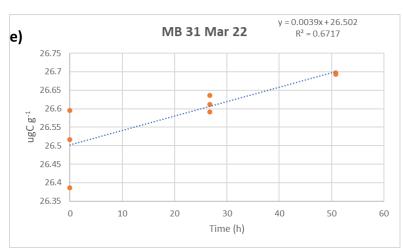


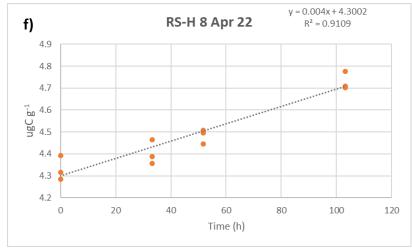


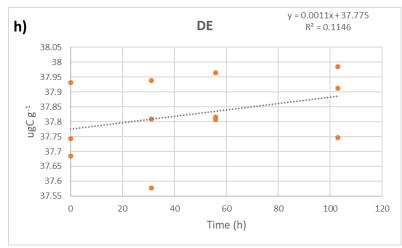


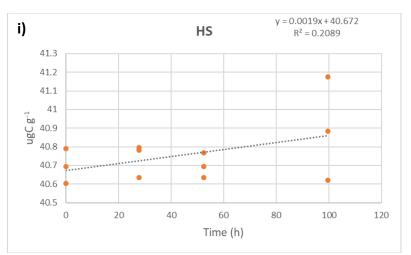
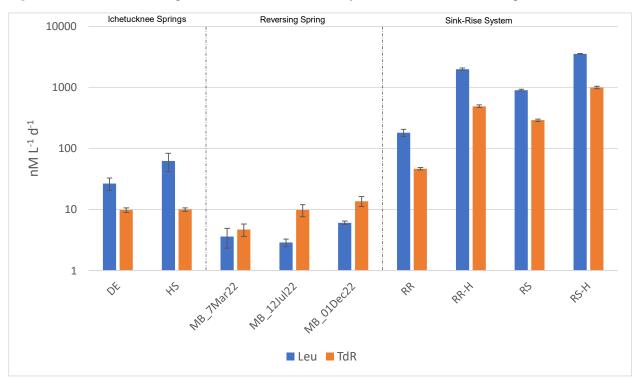
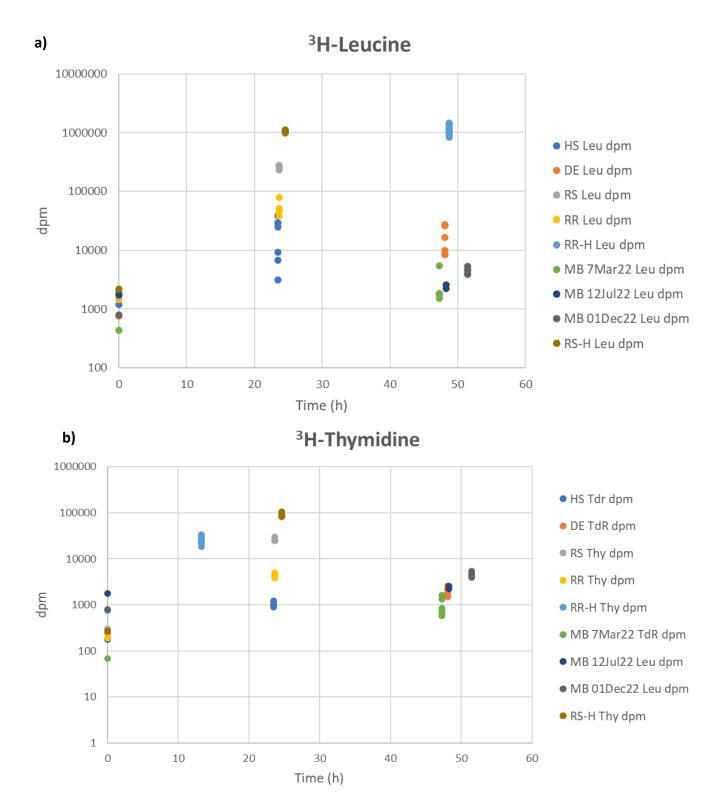


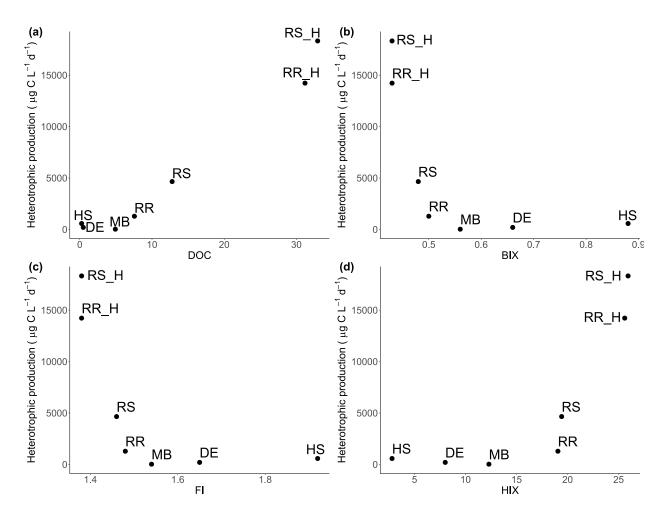



Figure S3. Individualized oxygen consumption rates (In mg of oxygen per liter). Location acronyms are defined at Table S1 caption.






Figure S4. Individualized DIC production rates. Location acronyms are defined at Table S1 caption.

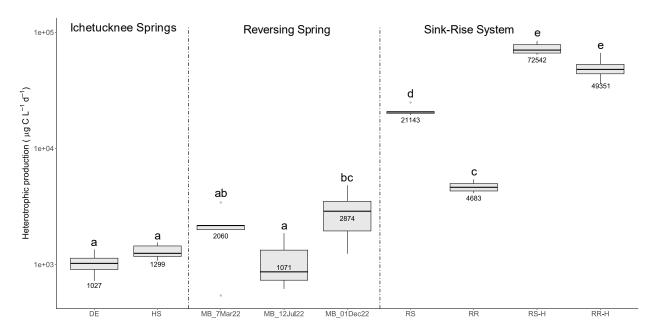

Figure S5. Bulk molar incorporation rates of ³H-leucine and ³H-thymidine. The -H at sink-rise samples (RR and RS) indicates samples taken during high flow, to differentiate them from the others, taken at low flow. Location acronyms are defined at Table S1 caption.

Figure S6. Results for radioisotopic incubation in dpms (desintegrations per minute) over time for a) leucine and b) thymidine at each location for each incubation timepoint. Location acronyms are defined at Table S1 caption.

Figure S7. Leucine production rates vs. (a) DOC and organic matter quality indices (b) BIX, (c) FI and (d) HIX. Location acronyms are defined at Table S1 caption.

Figure S8. Rates of bulk carbon incorporation derived from ³H-thymidine. Numbers within the box plot indicate the average values. Location acronyms are defined at Table S1 caption.