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Abstract. This study examines the linkages between the
upper-ocean (0–200 m) oxygen (O2) content and stratifica-
tion in the North Pacific Ocean using four Earth system mod-
els (ESMs), an ocean hindcast simulation, and an ocean re-
analysis. The trends and variability in oceanic O2 content are
driven by the imbalance between physical supply and bio-
logical demand. Physical supply is primarily controlled by
ocean ventilation, which is responsible for the transport of
O2-rich surface waters to the subsurface. Isopycnic poten-
tial vorticity (IPV), a quasi-conservative tracer proportional
to density stratification that can be evaluated from temper-
ature and salinity measurements, is used herein as a dy-
namical proxy for ocean ventilation. The predictability po-
tential of the IPV field is evaluated through its information
entropy. The results highlight a strong O2–IPV connection
and somewhat higher (as compared to the rest of the basin)
predictability potential for IPV across the tropical Pacific,
where the El Niño–Southern Oscillation occurs. This pat-
tern of higher predictability and strong anticorrelation be-
tween O2 and stratification is robust across multiple models
and datasets. In contrast, IPV at mid-latitudes has low pre-
dictability potential and its center of action differs from that
of O2. In addition, the locations of extreme events or hotspots
may or may not differ between the two fields, with a strong
model dependency, which persists in future projections. On
the one hand, these results suggest that it may be possible
to monitor ocean O2 in the tropical Pacific based on a few
observational sites co-located with the more abundant IPV
measurements; on the other, they lead us to question the ro-
bustness of the IPV–O2 relationship in the extratropics. The
proposed framework helps to characterize and interpret O2

variability in relation to physical variability and may be es-
pecially useful in the analysis of new observation-based data
products derived from the BGC-Argo float array in combina-
tion with the traditional but far more abundant Argo data.

1 Introduction

Dissolved oxygen (O2) in the oceans is crucial for biogeo-
chemical cycling, marine ecosystems, and the redox chem-
istry of seawater. O2 is a key element for the survival and
functioning of marine organisms, as fish, shellfish, marine
mammals, and other aquatic life rely on O2 to breathe and
carry out essential metabolic processes. Growth, reproduc-
tion, and the overall health of marine organisms depend
on the balance between metabolic demands and O2 supply
(Deutsch et al., 2015).

Ocean deoxygenation refers to the long-term decrease in
the concentration of O2 in the Earth’s oceans. At the global
scale, according to historical observations, the O2 inventory
has been declining significantly during the past decades (Ito
et al., 2017; Schmidtko et al., 2017). Changes in O2 con-
centrations can reflect the impacts of climate change, nutri-
ent pollution, eutrophication, and other human-induced stres-
sors (e.g., Breitburg et al., 2018). Predicting O2 levels in
the oceans is especially important around and within oxy-
gen minimum zones (OMZs), which are characterized by
layers in the water column with very low O2 concentra-
tion due to biological, chemical, and physical processes. As
oceans warm, OMZs are posed to increase in number and
size across the globe, thereby threatening marine ecosys-
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tems. In the North Pacific, a large OMZ exists on the east-
ern side of the tropical Pacific, and its variability and trends
are important for nitrogen cycling and the production of
N2O, a potent greenhouse gas (Nevison et al., 2003; Yang
et al., 2017). However, O2 measurements are temporally and
spatially sparse, and trends remain uncertain: the decline
in O2 between 1970 and 2010 is estimated to be around
−0.48± 0.35 % per decade in the upper 1000 m (Bindoff et
al., 2019). The uncertainty in ocean deoxygenation estimates
is due to different interpolation methods, data quality control
standards, and data sources, the latter varying from shipboard
measurements (ship-based bottle measurements and CTD–
O2 profiles) to biogeochemical Argo floats (Roemmich et al.,
2019).

Interpreting changes in O2 concentrations requires an un-
derstanding of how ocean circulation, mixing, air–sea gas
exchange, biological productivity, and respiration operate.
The air–sea gas exchange for O2 is relatively efficient, and it
maintains the surface water close to saturation with the over-
lying atmosphere for ice-free regions. Ocean circulation is
the primary pathway through which O2 is supplied (or ven-
tilated) into the thermocline and deep ocean. At the subsur-
face, O2 is gradually consumed by respiration due to the de-
composition of dissolved and particulate organic matter. The
O2 concentration progressively decreases as water masses
age. At the climatological timescale, the rates of O2 supply
and consumption are balanced to sustain a steady state. In
another words, changes in O2 concentration are caused by
an imbalance between O2 supply and O2 consumption. On
the supply side, the ventilation of O2 is essentially controlled
by ocean circulation and mixing processes. Broadly, venti-
lation refers to the exchange of water between the surface
layer and the ocean’s interior (Talley et al., 2011) and in-
volves a wide range of physical processes such as the wind-
driven shallow overturning associated with subtropical cells
(Brandt et al., 2015; Duteil et al., 2014; Eddebbar et al.,
2019), the formation of mode and intermediate waters (Claret
et al., 2018; Sallée et al., 2010, 2012; Gnanadesikan et al.,
2012), and lateral (isopycnal) eddy stirring (Rudnickas et
al., 2019; Gnanadesikan et al., 2013, 2015). These circula-
tion systems are ultimately driven by atmospheric winds and
air–sea buoyancy fluxes, which exhibit significant interan-
nual, decadal, and multi-decadal variability. Fluctuations in
ventilation rates as well as in ocean stratification are known
to impact both O2 levels (Ridder and England, 2014; Duteil
et al., 2014; McKinley et al., 2004) and the distribution of
isopycnal potential vorticity (IPV), a dynamical tracer which
is proportional to the local stratification and the Coriolis pa-
rameter. Use of the absolute value of the Coriolis parameter
in the formula, as indicated by ∗, guarantees that the relation-
ship with stratification holds with the same sign in both hemi-
spheres, so a higher IPV∗ indicates stronger stratification and
vice versa. A strong wintertime convective mixing will pro-
duce weakly stratified O2-rich water masses (low IPV∗ and
high O2) and vice versa. These properties are then brought

together into the ocean’s interior following the pathway of
large-scale ocean currents.

In this study, we build upon this relationship and explore
the overarching hypothesis that IPV∗ may be used as a proxy
for O2 with a focus on the North Pacific basin. If this is the
case, then IPV∗ may provide a means to monitor and predict
the evolution of O2. In the North Pacific, the Pacific Decadal
Oscillation (PDO) is the mode of climate variability that ex-
erts the greatest control on stratification and O2, as shown
by Ito et al. (2019). Indeed, the dominant mode of oxygen
variability in the North Pacific Ocean is correlated with the
PDO index such that the PDO explains about 25 % of its vari-
ance. In the tropics, the PDO modulates the depths of isopy-
cnal surfaces and biological productivity and respiration to-
gether with the El Niño–Southern Oscillation (ENSO), while
at mid-latitudes it is the dominant mode influencing the depth
of winter-mixed-layer ventilation and ventilation processes.
Here we analyze outputs from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016), a major
international effort with the primary objective of providing a
standardized framework for simulating past, present, and fu-
ture climate conditions. The participating modeling groups
run their climate models under prescribed forcing fields and
following a common protocol, thereby generating a compre-
hensive set of output datasets which are freely available to
the scientific community through data portals and archives
provided by the Earth System Grid Federation (ESGF). Us-
ing a suite of Earth system models (ESMs) run with pre-
scribed carbon dioxide concentrations, we address the fol-
lowing questions:

– How robust is the relationship between O2 and IPV∗ in
the North Pacific across several ESMs and how may it
evolve by the end of the 21st century (related to HYP 1;
see below)?

– What are the linkages between O2 and IPV∗ and large-
scale modes of climate variability such as PDO and
ENSO (related to HYP 2)?

– Where are the hotspots of changes in IPV∗ and O2 in
the historical period and in the projections, and are they
co-located or do they differ in space and time (related to
HYP 3)?

Our specific objectives are to evaluate the hypotheses that
ocean ventilation (IPV∗) regulates O2 variability in the North
Pacific (HYP 1); that the PDO/ENSO–ventilation–O2 link-
age provides the basis for the predictability of O2 when-
ever IPV∗ is predictable (HYP 2); and that the linkage can
be exploited to identify hotspots of changes in O2 variabil-
ity, means, and extremes (HYP 3; see “Materials and meth-
ods”). While testing these hypotheses, we also aim to intro-
duce recently developed approaches for model intercompar-
ison and data analysis to the ocean biogeochemistry com-
munity. Specifically, in this work we adopt the information
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entropy (IE; Prado et al., 2020) concept for evaluating pre-
dictability, a data-mining tool for dimensionality reduction
and network analysis (δ-MAPS; Fountalis et al., 2018), and
the standard Euclidean distance (SED) index (Diffenbaugh
and Giorgi, 2012) to evaluate changes in the fields we an-
alyze. In short, IE is a metric that measures the amount of
randomness and therefore unpredictability in a dataset. For
example, if a time series is a random sequence, its entropy
will be high, while if a time series follows a sinusoidal curve,
its IE will be low. On the other hand, δ-MAPS combines fea-
ture extraction and network analysis into a single framework.
Its goal is to identify key features and to visualize how those
features relate to one another. Finally, the SED index is a sim-
ple and flexible method used to detect total changes in one or
more variables in a given dataset (in other words, to identify
regions that stand out for changes in means, extremes, and
variability) through measuring the distance in multi-variate
space between a baseline period and any other. After intro-
ducing these tools in more detail in Sect. 2, a description of
the data analyzed in this work follows in Sect. 3. Results are
then presented in Sect. 4, with a general discussion and con-
clusions to close.

2 Materials and methods

In this section, we describe the three tools recently developed
for climate science applications and adopted in our analysis
as well as how we calculate IPV∗. The information entropy
(IE) is used to evaluate predictability. IE is defined follow-
ing Prado et al. (2020) and is based on the recurrence of mi-
crostates in a recurrence plot (RP). An RP (Eckmann et al.,
1987) is a visualization technique for trajectory recurrence
of a given dynamical system described in phase space by a
matrix Rij such that

Rij (ε)=2
(
ε−

∣∣xi − xj
∣∣) ,xi ∈ Rd , ij = 1,2, . . .,K, (1)

where 2 is the Heaviside function; || is an Euclidean dis-
tance; xi and xj are, in our work, states at time steps i and j ;
ε is a threshold distance (the maximum distance between two
states to be considered mutually recurrent); d is the xi space
dimension; and K is the number of states considered (the
length of each analyzed time series). Rij is a matrix that rep-
resents non-recurrent (as zeros) and recurrent (as ones) states
in phase space, and it is explicitly dependent on ε. Corso et
al. (2018) introduced the recurrence entropy quantifier, for
which for a given time series, the probability of occurrence
of microstates in its RP is quantified without the need for a
space-state reconstruction. A microstate of dimension N is an
N by N matrix sampled inside the RP, with a probability of
occurrence Pk = nk/Ntot, where nk is the number of occur-
rences of the microstate andNtot is the total number of possi-
ble configurations of 0 and 1 of the microstate (see Ikuyajolu
et al., 2021, and Prado et al., 2020, for more details). The IE

is then defined as

IE(Ntot)=−
∑Ntot

k=1
Pk lnPk, (2)

where k refers to the kth microstate. When IE is normal-
ized by the maximum entropy (corresponding to when all
microstates show the same probability), then IE= 0 corre-
sponds to perfect predictability and IE= 1 represents chaos.
Furthermore, the explicit dependence of the entropy quanti-
fier on ε is removed using the maximum entropy formulation.
Prado et al. (2020) have shown that a value for which IE is
maximum exists, does not vary much with varying ε, and is
strongly correlated with the Lyapunov coefficient of the sys-
tem. We refer the reader to Ikuyajolu et al. (2021) for details
of the heuristic used to estimate the maximum entropy. In
essence, Prado et al. (2020) suggest a technique to eliminate
the dependence of the entropy computation on the selection
of a distance threshold ε by finding a clearly defined max-
imum (Smax) in the relationship between ε and the entropy
(see Fig. 4 in Prado et al., 2020). This maximum is robust
and relatively stable within a range of ε values. Furthermore,
there is a strong correlation between the maximum entropy
and the Lyapunov exponent. In our work, the code used to
compute the entropy (see the “Code and data availability”
section) uses the heuristic explained in Ikuyajolu et al. (2021)
for the calculation of Smax through an iterative procedure that
calculates the recurrence entropy for varying ε until a max-
imum is found and retained. This algorithm requires three
input parameters: the microstate dimension (set at 4 in this
work, but we explored other values as shown in the Results
section), the number of random samples to compute the mi-
crostate distribution in the RP (here 10 000), and a random
sub-sample used to determine the ε value for which the en-
tropy is maximum (here 1000). We compute the entropy field
of the deseasonalized and detrended IPV∗ (full signal) using
monthly data over all historical and future periods. At each
point, the entropy of the IPV∗ field is associated with recur-
ring microstates in its time series (which defines the system
and thereby impacts its predictability). The higher the pre-
dictability of a time series is, the more recurrent its temporal
dynamics are, i.e., the easier it will be to predict its future
evolution.
δ-MAPS (Fountalis et al., 2018) is used to identify climate

modes of variability. It is an unsupervised network analy-
sis method that identifies spatially contiguous and possibly
overlapping regions referred to as domains and the lagged
functional relationships between them. This dimensionality-
reduction method is simpler and easier to interpret than em-
pirical orthogonal functions (EOFs), which suffer from or-
thogonality constraints (Dommenget and Latif, 2002). Its
benefits relative to conventional EOF-based approaches in-
clude interpretability and prevention of overfitting when
extracting climate patterns from high-dimensional datasets
(Falasca et al., 2019). In short, δ-MAPS domains are spa-
tially contiguous regions that share a highly correlated tem-
poral activity between grid cells. In this work, we apply δ-
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MAPS to the sea surface temperature (SST) anomaly field
(see the “Code and data availability” section) to identify ma-
jor modes of climate variability in the North Pacific in a re-
analysis and in the ESMs. Given any spatiotemporal field,
its local homogeneity is hypothesized to be highest at “epi-
centers” or “cores”. For each grid point, a local homogeneity
is defined as the average pairwise cross-correlation between
that grid cell and a set of K nearest neighbors (see Foun-
talis et al., 2018, for details). Cores are then determined as
neighbors of points where the local homogeneity is a local
maximum and above a threshold δ. Each core is iteratively
expanded and merged using a greedy algorithm to iteratively
find domains as large as possible that are (i) spatially contigu-
ous, (ii) include at least one core, and (iii) have homogene-
ity higher than δ. Using a significance test, δ is computed
for the unlagged cross-correlations. Given any random pair
of grid points, the significance of the Pearson correlation of
their time series is assessed through Bartlett’s formula (Box
et al., 2011), with the null hypothesis of no coupling. The sig-
nificance of each correlation is tested for a user-specified sig-
nificance level α, and δ is computed as the average of the sig-
nificant correlations. Here, we applied δ-MAPS with K = 8
and α = 0.01.

Lastly, we adopt the approach introduced by Diffenbaugh
and Giorgi (2012) (which builds on Williams et al., 2007;
Diffenbaugh et al., 2008; and references therein) to identify
hotspots of change. The SED is a non-parametric method,
meaning that it does not assume a specific probability distri-
bution for the data. This flexibility makes it applicable to a
wide range of datasets, regardless of their underlying distri-
bution. The reader is referred to Turco et al. (2015) for its
application to global atmospheric data. Here we apply the
procedure described in Turco et al. (2015) to O2 and IPV∗ as
follows: hotspots are quantified through a standard Euclidean
distance (SED) index that aggregates the changes in means,
variability, and extremes of the given spatiotemporal field ac-
cording to

SED=

√√√√∑N1

i=1

∑4
j=1

(
1ij

p95
(∣∣1ij ∣∣)

)2

. (3)

We compute two SED indices in each grid point, sepa-
rately for O2 and IPV∗. N1 is the total number of indicators
per variable and i is the index identifying each indicator; j
spans the seasons, so 1ij is the ith indicator in the j th sea-
son; and p95 is the 95th percentile. The indicators and SEDs
are computed point by point; i.e., each grid point has one
value. Therefore, the percentile is computed spatially over
all the grid points. Here we consider December–January–
February (the boreal) winter, March–April–May spring, and
so on. We consider three indicators for each variable, evaluat-
ing changes in means, variability, and extremes between two
periods of equal length. Period 1 covers 1950 to 1981 (1960
to 1986 for the reanalysis and the E3SM-2G ocean hindcast).
Period 2 covers 1983 to 2014 (1988 to 2014 for the reanalysis

and the hindcast) over the historical time frame and 2036 to
2067 and 2069 to 2100 for the projected future. In Eq. (3), in-
dicators of both periods are normalized to the 95th percentile
calculated over period 1 to fairly compare changes in the in-
tensity of hotspots over time. We chose not to compare the
period from 2069 to 2100 with the period from 1950 to 1981
but rather to compare it to 2036 to 2067 instead because we
wish to track changes in each period compared to the pre-
ceding time slot to quantify how rapidly they occur in the
future projections compared to the historical time frame. For
each variable, we compute three indicators at each grid point
and for each season using the Climate Data Operators (CDO;
Schulzweida, 2022) as follows.

Changes in means are estimated in each season sepa-
rately by 1means = yseasm2− yseasm1, where yseasm1 and
yseasm2 are the multi-year seasonal means in periods 1
and 2, respectively. Therefore, taking for example the O2
historical simulations over the period from 1950 to 2014 (al-
though similar expressions also hold for IPV∗ and the other
periods), 1means DJF = 〈O2DJF〉1983–2014−〈O2DJF〉1950–1981,
1means MAM = 〈O2MAM〉1983–2014−〈O2MAM〉1950–1981,
1means JJA = 〈O2JJA〉1983–2014−〈O2JJA〉1950–1981, and
1means SON = 〈O2SON〉1983–2014−〈O2SON〉1950–1981, where
〈. . .〉 is a time mean (seasonal climatology).

Changes in multi-year seasonal variability 1variability
are evaluated by (i) detrending each variable point by
point in the two periods separately; (ii) computing
the multi-year seasonal standard deviation of these de-
trended fields, yseasσ , for each period for each season;
and (iii) computing as the percent changes such that
1variability = 100 ·

(
yseasσ2−yseasσ1

yseasσ1

)
. Therefore, with the ex-

ample of O2 historical simulations over the period from
1950 to 2014, 1variability DJF = 100(std(O2DJF)1983–2014−

std(O2DJF)1950–1981)/std(O2DJF)1950–1981, where std(. . . ) is
the multi-year seasonal (winter) standard deviation over the
specified period (equivalent formulations also hold for the
other seasons).

Finally, changes in extremes (in our case overshoots of
IPV∗ and undershoots of O2) are computed through the
following steps: (i) for each season, we compute at each
grid point the multi-year O2 minimum or IPV∗ maximum
over period 1 using monthly data (e.g., the O2 minimum
given all December, January, and February values for the
boreal winter), and we build a threshold map for each sea-
son; (ii) we count how many times O2< thresholdO2 (or
IPV∗> thresholdIPV∗ ) is verified in each corresponding sea-
son of period 2, again using monthly data; and (iii) the per-
centage of occurrences computed in point (ii) is finally taken
as an indicator of percent changes in extremes and estimated
by1extremes = 100×

(
Nocc
NT

)
, whereNocc is the number of ex-

treme occurrences (in each season) and NT is the total num-
ber of months in the corresponding seasons (96 for the mod-
els and 81 for reanalysis and hindcast).
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Building on previous works (Falasca et al., 2019; Falasca
and Bracco, 2022), we expect the statistics of a given model
to remain relatively stable across ensemble members; i.e., we
do not expect the member choice to significantly influence
the calculation of extremes and hotspots or their relation-
ships in particular. We verified that this is indeed the case in
one of the models by testing four additional randomly cho-
sen ensemble members of CanESM5 (see the “Code and data
availability” section). A major advantage of this hotspot def-
inition is that it accounts for changes in the mean, variability,
and extremes at the same time. In other words, it accounts for
the intrinsic characteristics of the simulated climate fields,
which can be characterized by considering all three aspects
together. In particular, the definition of extremes aims at in-
cluding information on months exceeding corresponding sea-
sonal baseline extremes, without choosing a threshold on the
current distribution a priori, which is especially relevant for
comparing changes with respect to a reference baseline. The
three indicators, grouped into four seasons for each variable,
are then used to compute the SED indices.

Finally, IPV∗ (m−1 s−1) is used as a proxy for stratification
and is defined as the isopycnic potential vorticity (Talley et
al., 2011) with the absolute value of the Coriolis parameter
in its formula:

IPV∗ =
|f |

g
N2. (4)

Here, N2 is the Brunt–Väisälä frequency (− g
ρ
∂ρ
∂z
), which

measures the fluid stability to vertical displacements; g is the
gravitational acceleration; f is the Coriolis parameter; and ρ
is the density, calculated in this work using salinity and tem-
perature fields and the TEOS-10 equation of state for sea-
water (http://www.teos-10.org/, last access: 17 April 2024).
IPV is a conservative tracer in frictionless and adiabatic
circulation. IPV∗ is calculated over the three-dimensional
ocean volume using Eq. (4) considering the 0–200 m verti-
cal weighted average. This procedure allows us to compare
datasets with different vertical discretization.

3 Data

We consider four ESMs from the CMIP6 historical catalogue
(with prescribed CO2 concentrations), a hindcast, and re-
analysis data, as summarized in Table 1. Whenever multi-
ple ensemble members were available, we selected the first
(r1i1p1f1). We randomly selected four additional ensemble
members for CanESM5 (r5i1p1f1, r10i1p1f1, r15i1p1f1, and
r20i1p1f1) to further verify the robustness of the hotspot cal-
culation to the member choice. All ESMs are forced with
prescribed CO2 concentrations from 1850 to 2014, and we
analyze the monthly outputs from 1950 to 2014. We further
discuss future SSP5-8.5 scenarios and focus on the 2036 to
2100 period, indicated as future.

The hindcast is a new ocean–ice biogeochemistry simula-
tion (referred to as the G-Case) E3SMv2.0-BGC (hereafter
E3SM-2G; Takano et al., 2023) based on the Model for Pre-
diction Across Scales – Ocean (MPAS-O), an ocean compo-
nent of the Energy Exascale Earth System Model (E3SM)
version 2 (Golaz et al., 2022). Details on ocean physics up-
dates can be found in Golaz et al. (2022). One of the major
updates is the introduction of Redi isopycnal mixing (Redi,
1982). Along with ocean physics updates, this version also
incorporated a uniform background vertical diffusion specif-
ically developed for simulations of the ocean biogeochem-
istry to enhance ocean carbon uptake and thermocline ven-
tilation of dissolved inorganic carbon (DIC). Incorporating
this mixing parameterization results in improved represen-
tation of climatological O2 distributions in the v2.0 version
compared to its predecessor (Burrows et al., 2020). The Ma-
rine Biogeochemistry Library (MARBL; Long et al., 2021) is
used to simulate ecosystem dynamics and the cycling of bio-
geochemical elements. After the spin-up period, the model
is forced by a meteorological reanalysis dataset, JRA55-do
version 1.4 (Tsujino et al., 2020), from 1958 onward. As an
ocean reanalysis, we use the ORAS4 product (Balmaseda et
al., 2012; Mogensen et al., 2012) available from 1959 on-
ward, which includes a direct surface flux implementation
from ERA-40 and ERA-Interim and multi-scale bias correc-
tion. When analyzing the E3SM-2G hindcast and the ORAS4
reanalysis, we focus on the 1960 to 2014 interval to avoid the
spurious presence of an anticyclonic tropical cyclone in the
northeastern Pacific in 1959 in JRA55-do v1.4.

All the data, models, and reanalysis are remapped at 1° by
1° horizontal resolution and to a common vertical grid with
a linear interpolator.

We begin our analysis with a brief evaluation of the ESM
biases in the two main fields of interest, IPV∗ and O2. For
IPV∗, the ocean reanalysis dataset is used for validating the
model outputs for the maximum possible time overlap in
the historical configuration (1959 to 2014). For O2, we can
only contrast the annual mean O2 climatology data between
the World Ocean Atlas (Garcia et al., 2019) and the ESMs
(Fig. 1). We additionally compared the ORAS4 IPV∗ clima-
tology data over the period from 1988 to 2014 (i.e., period 2
for this reanalysis) with the corresponding climatology data
computed using SODA3.4.2, which uses a different ocean
component to ORAS4. The differences across reanalyses that
use different models but assimilate the same observations are
much smaller (about 1 order of magnitude) than the signal
(Fig. S1 in the Supplement) and smaller than any model bias.

The E3SM-2G hindcast is forced by observed atmospheric
fields and displays the smallest bias and, for O2, also the
smallest root mean square error (RMSE), which is shown
atop the panels in Fig. 1. Overall, the IPV∗ and O2 biases
have broadly anticorrelated patterns, with the models being
generally less stratified and more oxygen rich than observed
in the extratropical North Pacific and often too stratified and
with a larger O2 deficit compared to observations south of the
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Table 1. The CMIP6 Earth system models, global ocean hindcast, and reanalysis used in this work. Under each model name, a short form
used in the following figures is indicated in parentheses.

Modeling group or
center

Model
name

Atmospheric
component and
resolution

Oceanic component and
resolution

Reference

National Oceanic and
Atmospheric Administra-
tion, Geophysical Fluid
Dynamics Laboratory

GFDL-
ESM4
(GFDL)

AM4.0, ∼ 1°,
49 levels

OM4 MOM6, 0.5° by 0.5°, 75 vertical lev-
els (hybrid pressure or isopycnal).
Biogeochemical component:
COBALTv2

Dunne et al. (2020),
Stock et al. (2020)

Canadian Earth System
Model version 5

CanESM5
(CanESM)

CanAM5,
T63 (∼ 2.8°),
49 levels

CanNEMO, 45 vertical levels, NEMO3.4.1,
ORCA1 tripolar grid, 1° with refinement to
1/3° within 20° of the Equator.
Biogeochemical component:
CMOC

Swart et al. (2019),
Christian et al. (2022)

NorESM Climate Model-
ing Consortium

NorESM2-
LM
(NorESM)

CAM-OSLO,
2° resolution,
32 levels

MICOM, 1°, 70 vertical levels.
Biogeochemical component:
iHAMOCC

Seland et al. (2020),
Tjiputra et al. (2020)

Institut Pierre-Simon
Laplace

IPSL-
CM6A-LR
(IPSL)

LMDZ, NPv6,
N96; 1.25°
Lat× 2.5° long,
79 levels

NEMO-OPA (eORCA1.3), tripolar primar-
ily 1°, 75 vertical levels.
Biogeochemical component:
PISCESv2

Boucher et al. (2020)

Department of Energy,
Energy Exascale Earth
System Model

E3SMv2.0-
BGC
(E3SM)

JRA55-do
reanalysis,
55 km,
3 h resolution

MPAS-O, 30 to 60 km resolution.
Biogeochemical component:
E3SMv2.0-BGC, MARBL

Golaz et al. (2022),
Takano et al. (2023),
Long et al. (2021)

ECMWF Ocean Reanaly-
sis System

ORAS4 – Global, 1°, 42 levels Balmaseda et al.
(2012), Mogensen et
al. (2012)

Equator. However, maximum and minimum biases in the two
fields seldom coincide. Regionally, E3SM-2G is generally
less stratified than observed, with a relatively low O2 bias and
an overestimation of approximately 10 µmol kg−1 in the sub-
tropical thermocline of the North Pacific basin. The hindcast
performs especially well in the tropical thermocline. Among
the CMIP6 models, CanESM5 shows a slightly higher IPV∗

underestimation in the subpolar gyre and an O2 overestima-
tion in the subtropics compared to the other ESMs, while
NorESM2-LM emerges as the most stratified south of the
Equator. For O2, larger biases (positive or negative) are gen-
erally found in the tropical thermocline and the tropical and
subtropical boundaries. The sign and magnitude of the biases
are model dependent. Interestingly, models generally overes-
timate O2 at subpolar latitudes.

4 Results

4.1 Predictability potential (HYP 1)

We begin our analysis by considering the predictability po-
tential of IPV∗ as quantified through the information entropy

(IE; see “Materials and methods”). The goal is to verify if
and where IPV∗ has an elevated predictability owing to the
presence of quasi-recurrent behaviors in its time series. We
also aim to examine whether O2 is correlated with IPV∗ in re-
gions where the latter has a high predictability potential. As
a reminder, IE values close to 1 indicate high complexity and
unpredictability, and values close to 0 indicate perfect pre-
dictability (the signal is recurrent, e.g., constant or periodic).
We preliminarily tested the sensitivity of the entropy field to
the microstate dimension within a range that is meaningful
according to previous literature (Ikuyajolu et al., 2021) us-
ing microstates of dimensions 2, 3, 4, and 5 for GFDL over
the period from 1950 to 2014 (Fig. S2). We found that the
IE pattern, i.e., areas more (or less) predictable relative to
the surroundings, is substantially unchanged and that the ge-
ographical patterns are robust to changes in the microstate
dimension, in agreement with Ikuyajolu et al. (2021). Both
microstate dimension 4 and microstate dimension 5 show
reasonable entropy values, and we chose to use a microstate
dimension of 4 to conduct our analysis because it spans the
widest range of possible values.
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Figure 1. (Left) IPV∗ annual climatology means (1959 to 2014) weighted-averaged over 0–200 m depth in the North Pacific basin.
(a) ORAS4. (b–f) Model bias (model−ORAS4) differences. (Right) O2 annual climatology means (1950 to 2014) weighted-averaged over
0–200 m depth. (g) World Ocean Atlas (WOA) climatology means. (h–l) Model biases (model−WOA) difference. The root mean square
error (RMSE) values of the modeled IPV∗ (m−1 s−1) and O2 (µmol kg−1) are shown for each panel.

4.1.1 O2–IPV∗ relationship across ESMs and its future
evolution

IE maps for IPV∗ are shown in Fig. 2 for both historical and
future time frames, with superposed contours of the areas
where the (lagged) anticorrelation between IPV∗ and O2 is
at least −0.5 (see Figs. S3–S4 for the anticorrelation and lag
maps). Higher predictability in the historical period is found
in the tropical Pacific areas close to the geographical loca-
tion of ENSO (i.e., the area most impacted by the domain
identified as ENSO-related by δ-MAPS, which maps well
the region identified by an EOF analysis over the SST field
for having the greatest variance explained by the first prin-
cipal component, pc1). The predictability potential is gen-
erally highest along two stripes enclosing the ENSO pat-
tern north and south of the Equator and excluding the up-
welling cold tongue. The distribution of IE follows broadly
that found in a much longer simulation of the IPSL model
covering the past 6000 years and analyzed by Falasca et
al. (2020), and it appears to be robust across models. The
western boundary current region and the Kuroshio–Oyashio
Extension have low predictability across all datasets consid-
ered. In NorESM2-LM and CanESM5, and to a lesser de-
gree in ORAS4 and IPSL-CM6A-LR, the higher predictabil-
ity of the ENSO area extends to the northeastern portion of
the basin. In general, in both the hindcast and the models,

strong anticorrelations between IPV∗ and O2 (correlation co-
efficient (c.c.)≤−0.5) coincide with regions of low IE and
are linked to ENSO affecting stratification and O2 concur-
rently in the tropics and south of the upwelling area. Very
limited IPV∗ predictability is found in the central and west-
ern North Pacific, where the variability is dominated by the
PDO signal. The PDO does not emerge as easily predictable
in the interval considered, in agreement with, e.g., Gordon
et al. (2021) and Falasca et al. (2020), who analyzed the
predictability of sea surface temperatures in the IPSL model
across the whole second half of the Holocene. In those areas,
anticorrelations between O2 and IPV∗ are relatively weak
(generally >−0.4 except for NorESM). The entropy and the
regions where the evolution of IPV∗ and O2 are strongly an-
ticorrelated do not change significantly in the future projec-
tions of the four models. We further explored whether oxy-
gen solubility (O2sol), which is modulated by ocean warm-
ing and cooling, and the apparent oxygen utilization (AOU),
which is controlled mostly by the biogeochemical processes
affecting oxygen demand, may be independently linked to
IPV∗ predictability. The areas in which IPV∗ and AOU time
series are positively correlated, with correlation coefficients
≥ 0.5, are very similar to the ones obtained by analyzing the
O2–IPV∗ relationship. For O2sol, which approximates pre-
formed O2 at the depths considered well, the anticorrelation
areas (i.e., where c.c.≤−0.5) are quite extensive, especially
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in the hindcast, but mostly superimposed onto high-entropy
and low-predictability IPV∗ areas (Fig. S5).

In Fig. S6 we show the IE maps for O2. Predictability
is generally higher outside the equatorial upwelling region
and the Kuroshio–Oyashio Extension. In E3SM, the areas in
which the predictability potential of IPV∗ is high and the cor-
relation with O2 is≤ 0.5 coincide and also have low IE in O2.
This is verified to some extent in IPSL and NorESM but not
in the other two models.

In the next section we isolate the PDO signal to explore
whether the low predictability in the North Pacific (north
of ENSO region) is related to the superposition of different
timescales, i.e., whether there is low-frequency PDO modu-
lation with high-frequency “noise” due to both atmospheric
and oceanic variability. The PDO is indeed a lower-frequency
mode compared to ENSO and has most loading at extratrop-
ical latitudes in which the atmospheric “noise” is greater.

4.2 Trends and PDO impact on O2 and IPV∗ (HYP 2)

The limited predictability found in the North Pacific does not
exclude the possibility of the PDO modulating both IPV∗

and O2 inventories simultaneously. As explored in previous
work (e.g., Ito et al., 2019), the dominant mode of observed
O2 variability in the northern Pacific Ocean is indeed corre-
lated with the PDO index, which explains about 25 % of the
variance. Observations, however, offer only sparse coverage
in both time and space. To further verify the PDO modula-
tion, we computed the first EOF for the E3SM-2G hindcast
0–200 m O2 and IPV∗ anomalies for the period from 1960
to 2014 over the northern Pacific (20.5–69.5° N 115.5° E–
60.5° W) and the corresponding time series for pc1. The first
EOF explains 25 % of the oxygen variance and about 12 %
of the IPV∗ variance. The computed pc1 shows a signifi-
cant and strong correlation (Pearson’s R coefficient) with
the PDO time series computed using SST anomalies, with
|R| = 0.83 (p < 0.01) for O2 and |R| = 0.44 (p < 0.01) for
IPV∗ after applying 5-year moving means. The correlation
with the PDO is higher than with the ENSO, which is at most
|R| = 0.34 (p < 0.01) for O2 after applying a 3-month mov-
ing mean, consistent with the analysis by Ito et al. (2019).
We hereby quantify the (linear) impact of the PDO on the
two fields of interest and then evaluate their residuals. If the
PDO is the main predictor of IPV∗ and O2 distributions, its
impact on the two fields should be strongly anticorrelated and
larger than the residual. As mentioned above, the objective is
to verify whether IPV∗ could be used to extrapolate informa-
tion about O2 and its evolution in time, bypassing – at least
to some degree – the need to run full biogeochemical models
or measure O2 directly.

4.2.1 Estimation of climate indices and their
relationship with IPV∗ and O2

We use δ-MAPS (see “Materials and methods”) applied to
the SST field to evaluate the main modes of Pacific climate
variability, i.e., ENSO and PDO, and their time evolution
in the models, in the ocean hindcast, and in the reanalysis.
While the evolution of ENSO using δ-MAPS is straightfor-
wardly described by the time series of the cumulative anoma-
lies in the ENSO-related domain (e.g., Falasca et al., 2019),
for the PDO we must consider the difference between the
SST cumulative anomalies of two domains. The domains are
identified by the complex network algorithm, and we ap-
plied a 5-year running mean to produce the PDO time series
shown in Fig. 3. The shape and size of the domains are in-
dicated in Fig. 4. For ORAS4 and E3SM-2G over the period
from 1960 to 2014, we computed the 0-lag Pearson’s correla-
tion coefficients between these time series and the commonly
defined indices of PDO (following Mantua et al., 1997)
and Niño 3.4 (average SST anomalies over the box 5° N–
5° S, 170–120° W) retrieved from NOAA (https://psl.noaa.
gov/data/climateindices/list/, last access: 17 April 2024). Af-
ter applying a 3-month moving average to the ENSO time
series (signals and indices) and a 5-year moving average to
the PDO time series (signals and indices), the correlation co-
efficients are 0.88 for PDO and 0.93 for ENSO in ORAS4
and 0.89 for PDO and 0.91 for ENSO in E3SM-2G.

Among the models (Fig. 3), GFDL slightly underestimates
the PDO strength during the historical period, while the op-
posite is true of CanESM and NorESM. In the latter, the fre-
quency of the signal is also higher than observed. By the end
of the 21st century, the strength of the PDO remains unal-
tered in GFDL and IPSL, while it decreases in NorESM2 and
especially in CanESM following a decrease in the size of the
eastern domain. A decrease in amplitude and an increase in
frequency of the PDO were also found in several models in
the CMIP5 ensemble (Li et al., 2020).

Given the PDO(t) indices, the residual component of the
fields of interest that is not linearly forced by the PDO can
be separated as a function of time (see, e.g., Kucharski et al.,
2008) so that for O2 (but the same procedure was applied to
IPV∗)

O2res(x,y, t)= O2(x,y, t)−O2PDO(x,y, t), (5)

where

O2PDO(x,y, t)= bO2(x,y) ·PDO(t). (6)

The parameter bO2(x,y) is constant over time and deter-
mined by least-squares fitting through a linear regression for
each dataset separately. Figure 4 shows bIPV∗ and bO2 for all
datasets with the boundaries of the domains corresponding
to the ENSO mode and those contributing to the PDO in the
historical period superposed. In most cases there is an overall
anticorrelation between the maps of the two fields, but there
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Figure 2. IPV∗ information entropy in the historical interval (left) and in the future (right) for the ESMs and in the historical period from 1960
to 2014 for the hindcast and ORAS4, with superposed contours of the areas where in which the IPV∗ and O2 time series are anticorrelated,
including correlation coefficients ≤−0.5.

Figure 3. PDO indices (SST cumulative anomalies) calculated using δ-MAPS (see text) in the historical and future time frames. The
dashed line in panel (b) is the PDO index time series from NOAA (available at https://psl.noaa.gov/data/climateindices/list/, last access:
17 April 2024) multiplied by the standard deviation of the ORAS4 time series in panel (b) after applying a 5-year moving mean.

are also several important differences. First, the regions in
which bO2 is strongest (both positive and negative values) do
not correspond to minima and maxima in bIPV∗ . Second, the
equatorial upwelling tends to have a strong positive signal in
bO2 and only a weak one, albeit of the same sign, in bIPV∗ .
Third, the impacts of PDO on the fields vary substantially
among models, as quantified by the correlations among the

respective fields indicated atop the bO2 plots, with GFDL be-
ing the closest to the hindcast and, for the IPV∗ case, also
to the reanalysis. In NorESM2 the anticorrelation between
the regression fields is too strong and the PDO has both a
shape and a loading different to those observed in the Pacific
interior. CanESM and IPSL display positive spatial correla-
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tions, with important biases with respect to the hindcast at
the Equator and along the eastern boundary.

We performed a comparable linear regression analysis us-
ing the ENSO index instead of the PDO and, as expected,
obtained similar shapes of the b coefficients but much lower
absolute values (Fig. S8). This further confirms that in the
North Pacific, the PDO is the dominant mode of climate vari-
ability.

Moving on to the projections, the maps of the regression
coefficients do not change considerably in three of the mod-
els considered (Fig. 5). In CanESM, on the other hand, bIPV∗

changes sign over most of the domain. The residual trends,
when compared to the regression coefficients, are stronger
and dominate the evolution of both fields, especially in the
subtropical and subpolar gyres of the North Pacific (Fig. S9),
thereby superseding the PDO signal.

Overall, during the historical period, the residuals have
an amplitude comparable to the PDO-forced signal (see
Fig. S7), and the linear trends have similar patterns to but
lower amplitude than the whole-field trends (see further dis-
cussion of trend shape when presenting 1means). In the fu-
ture, on the other hand, linear trends of residuals and whole
fields have similar patterns and intensities.

4.3 Hotspots of change (HYP 3)

As a last step, we evaluate changes in means, variability,
and extremes for both variables (considering whole signals,
i.e., not just the residuals) using the indicators introduced in
“Materials and methods”. For the historical time frame, we
divide the interval from 1950 to 2014 into two periods of
equal length covering 1950 to 1981 and 1983 to 2014 (1960
to 1986 and 1988 to 2014 for E3SM-2G and ORAS4). We
evaluated the indicators in each season separately or aver-
aged together and found that differences across seasons were
small, as measured by the standard deviation of the indica-
tors (Figs. S10–S12). In the following we discuss only the
indicators averaged across the four seasons without loss of
information.

The representations of 1means in Fig. 6 show the changes
in the mean fields, which have very similar patterns to the
linear trend in both IPV∗ and O2 (see Fig. S7). By 2015,
stratification has increased nearly everywhere in the ESMs,
except for the equatorial upwelling region and the Kuroshio–
Oyashio Extension. In ORAS4 there is also a prominent band
in which stratification decreases between 10 and 20° N from
the coast of the American continent to 150° W in the sec-
ond period and in the overall trend. O2 decreases in most of
the North Pacific, especially in the subpolar gyre around the
Kamchatka Peninsula, and increases in the upwelling areas
along the coasts of Peru and Central America as well as in the
California Current System. Regions of increasing O2 are also
found corresponding to the North Equatorial Current in the
E3SM-2G hindcast and in the GFDL and CanESM models,
in the equatorial upwelling band in NorEMS2, and in por-

tions of the subpolar gyre around Alaska in E3SM-2G and
IPSL.

Indicators of change in (seasonal) variability (1variability;
Fig. 7) show strong differences across models in terms of pat-
terns and, at least for O2, intensity. Whenever corresponding
maps of O2 and stratification have the same sign and com-
parable amplitude at corresponding locations, they indicate
that increments or decreases in IPV∗ variability at seasonal
scales are associated with corresponding increments in 0–
200 m O2 variability. In the hindcast, changes are greater for
residual O2 than for stratification. This is verified in three of
the models in the northeastern extratropics. Among the mod-
els, GFDL and NorESM2 show patchy changes, both posi-
tive and negative, across the domain, with the smallest am-
plitudes among the datasets considered. CanESM undergoes
predominately positive changes north of the Equator in IPV∗

and negative changes to the south of it, while the variabil-
ity in the O2 field also decreases in the central portion of the
subtropical gyre. In IPSL the variability increases nearly ev-
erywhere in both fields but especially at the Equator and to
the south of it in IPV∗ and more uniformly at all latitudes in
O2.

Changes in extremes (1extremes) for the O2 field are
stronger than for stratification (Fig. 8). Episodes of strong O2
decrease and stratification increase are more frequent in pe-
riod 2. For O2 the regions to the north and south of the equa-
torial upwelling band emerge as most impacted in the E3SM-
2G hindcast and GFDL, while the subtropical gyre displays
an increase in extreme events nearly everywhere in CanESM
and IPSL, at its boundary in E3SM-2G, and in its eastern
portion in GFDL and NorESM. The subpolar gyre is affected
especially in CanESM and IPSL. Changes in IPV∗ extremes
have less clear latitudinal differences and do not display a ro-
bust intensification at extratropical latitudes across the mod-
els. In ORAS4, maxima are found near the California Current
System and in the warm-pool area.

Table 2 summarizes the correlation coefficients between
the maps of the three indicators for the two fields consid-
ered. Coefficients are negative for all models but small for
1means; slightly larger in amplitude and positive for the vari-
ability indicator (1variability); and very small for 1extremes in
the hindcast, CanESM, and IPSL analyses, while they are
larger in amplitude and positive for GFDL, with a strong con-
tribution from the equatorial region, especially in NorESM,
where positive values are also found north of 20° N.

The resulting hotspot indices (SED), computed separately
for the IPV∗ and the O2 indicators (see “Materials and meth-
ods”), are reported in Fig. 9. Except for IPSL, the hotspots
are found outside the equatorial band. Those for O2 are gen-
erally stronger along the eastern part of the subtropical gyres,
in the eastern part of the PDO region, and along the Califor-
nia upwelling system, and the IPV∗ hotspots are more com-
monly found over the western parts of the basin and along the
southern boundary of the subtropical gyre. This result sug-
gests a longitudinal decoupling between hotspots in O2 and
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Figure 4. bIPV∗ (left) and bO2 (right) regression coefficient maps with superposed contours of the ENSO (blue line) and of the PDO+ and
PDO− domains. bIPV∗ represents the change in IPV∗ per unit change in SST, and bO2

∗ represents the change in O2 per unit change in SST.
The correlation coefficients (c.c.’s) among the corresponding maps for the same model or hindcast are also indicated. Color limits are fixed
as ±3 standard deviations of the ensemble for each variable over the whole area (±2.99× 10−13 for IPV∗ and ±0.023 for O2). Values in
parentheses are c.c.’s computed north of 20° N. All c.c.’s passed a shuffling significance test at the 5 % level (see Supplement).

Figure 5. As in Fig. 4 but for the future projections. Color limits are fixed as ±3 standard deviations of the ensemble for each variable over
the whole area (±4.1× 10−13 for IPV∗ and ±0.02 for O2). Values in parentheses are correlation coefficients (c.c.’s) computed north of
20° N. All c.c.’s passed a significance test at the 5 % level (see Supplement).

stratification in at least three of the models and in the hind-
cast, with NorESM being the exception due to the simulated
superposition of the changes in extremes in the two fields.
We also computed the SED for the residual fields, obtaining
similar results (Fig. S13).

The maps of the indicators for the future projections follow
in Figs. 10–12, again averaged over seasons, and the associ-
ated standard deviations are reported in Figs. S14–S16. In
the projections, the seasonal differences are slightly greater

compared to the historical period for 1means (IPV∗) in the
northern subpolar gyres, especially for CanESM, NorESM,
and IPSL (Fig. 10), and along the subtropical and the north-
ern subpolar gyres for 1extremes(IPV∗) (Fig. 12). Standard
deviations for 1extremes(O2) are stronger along the extrat-
ropical gyres and weaker in the tropical upwelling region
(Fig. S16). Areas of higher standard deviations in the pro-
jections are, however, associated with much stronger values
of 1means and 1extremes compared to the historical period.
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Figure 6. For the period from 1950 to 2014,1means for IPV∗ (left) and O2 (right). All indicator maps are obtained by averaging the respective
seasonal maps.

Figure 7. For the period from 1950 to 2014, 1variability for IPV∗ (left) and O2 (right).

In the projections, 1means strengthens significantly and is
stronger than the actual trend shown in Fig. S9, indicating an
acceleration of the changes in the last portion of the 21st cen-
tury. This is especially relevant for IPV∗ north of the Equa-
tor. Stratification increases everywhere except for regions in
the Southern Hemisphere with different extension in the four
models and mostly located in the central and eastern por-
tions of the basin. O2 decreases everywhere except for small
areas around the equatorial upwelling band. The decrease is

very strong along the northern boundary of the Pacific Ocean
and, depending on the model, at the subtropical gyre bound-
ary (NorESM and, to a lesser extent, CanESM) and south of
the Equator along the coast of Central and South America
(IPSL).

In terms of variability, when comparing the two variables,
very few areas in Fig. 11 have a comparable sign and am-
plitude (which would indicate comparable increases or de-
creases). IPV∗ variability increases in the warm pool and to
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Figure 8. For the period from 1950 to 2014, 1extremes for IPV∗ (left) and O2 (right).

Table 2. Correlation coefficients (c.c.’s) for the period from 1950 to 2014 between the corresponding indicator maps for IPV∗ and O2. Bold
values indicate a c.c.≥ 0.1 that passed the shuffling significance test at the 5 % level (see Supplement). Numbers in parentheses reflect c.c.’s
computed north of 20° N.

E3SM-2G GFDL NorESM CanESM IPSL

1means (means) −0.01 (−0.02) −0.07 (−0.07) −0.23 (−0.16) −0.28 (−0.16) −0.12 (−0.07)
1variability (variability) 0.32 (0.24) 0.28 (0.23) 0.04 (0.15) 0.33 (0.21) 0.24 (0.18)
1extremes (extremes) 0.01 (−0.08) 0.29 (0.05) 0.35 (0.47) 0.09 (0.34) −0.03 (0.17)

the south of the Equator in the eastern portion of the basin
in all models except for NorESM. O2 variability increases in
patchy areas mostly in the eastern half of the basin in GFDL,
only along the southern boundary of the subtropical gyre
in NorESM, roughly along the boundaries of the gyres in
CanESM, and along the northern gyre boundary and south of
the Equator in IPSL. Lastly, the extremes (1extremes; Fig. 12)
increase in CanESM and IPSL nearly everywhere except for
the equatorial upwelling area for both variables, in NorESM
in the Northern Hemisphere for O2 and in the ENSO re-
gion for IPV∗, and in GFDL along the northern boundary
of the basin for IPV∗ and in the northern and southern por-
tions of the domain for O2. Correlations among maps of the
two variables are generally very small for all indicators in the
projections (Table 3), with |c.c.|< 0.4, except for 1means in
NorESM and CanESM. Finally, we verified the robustness
of our results to the choice of the ensemble member, comput-
ing the extreme indicators of four randomly chosen ensemble
members of the CanESM model for the entire IPV∗ and O2
signals during the historical periods. We found no significant
changes in extremes and SED (Figs. S17–S18).

5 Discussion and conclusions

State-of-the-art Earth system models (ESMs) can simulate
many aspects of the Earth’s observed climate and biogeo-
chemical processes, thereby offering valuable insights into
the future. Challenges persist, however, in reliably represent-
ing ocean biogeochemical dynamics (Schartau et al., 2017;
Fennel et al., 2022). Biogeochemical processes can involve
intricate interactions between multiple components of the
Earth system (Pascal et al., 2024). These processes are of-
ten nonlinear, and couplings with physical climate processes
are complex and challenging to interpret (e.g., Béal et al.,
2010), thus requiring advances in diagnostic methods and
interpretation. To assess model performance, continued ef-
forts to develop metrics for model evaluation are needed. In
this study we present new tools stemming from data-mining
techniques that may contribute to this end. These quantita-
tive approaches, together with advances in observation-based
gridded products, can better characterize and extract infor-
mation about linkages between physical and biogeochemi-
cal variables. In particular, biogeochemical data, including
dissolved oxygen measurements, remain sparsely available
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Figure 9. For the period from 1950 to 2014 (1960 to 2014 for E3SM-2G and ORAS4), SED index for IPV∗ (left) and O2 (right). The color
scale is realized with rgbmap (Greene, 2023).

Figure 10. For the period from 2036 to 2100, 1means for IPV∗ (left) and O2 (right).

compared to physical data. This limited availability of obser-
vational data hinders model validation. Exploiting linkages
between the physical climate and oceanic O2 can enhance the
understanding and predictive skills of biogeochemical trac-
ers. Examples of recently developed tools that take advan-
tage of these linkages can be found in Giglio et al. (2018) and
Sharp et al. (2023), who applied machine learning tools to the
Argo-O2 dataset to generate time-evolving maps of dissolved
O2 concentrations from seasonal to interannual timescales.

The overarching hypothesis in this work was that in the
North Pacific, the spatiotemporal variability in O2 reflects
that of ocean ventilation (Talley et al., 2011), which can be
measured by the magnitude of the isopycnic potential vortic-
ity (IPV). A recent study (Ito et al., 2019) found that at sub-

tropical latitudes, the variability in wintertime mixed-layer
depths and the subduction of O2 are linked to the PDO. Ele-
vated O2 levels emerge downstream of the deepened winter
mixed layer during the positive phase of the PDO. According
to the same study, in the equatorial Pacific, the variability in
upper-ocean O2 is linked to the stratification and the depth
of the thermocline, which in turn are modulated by the PDO.
A wide range of mechanisms have been suggested for the
connection between upper-ocean O2 and ventilation, many of
which can be represented in ESMs. We should note, however,
that Ito et al. (2019) also showed that extratropical O2 vari-
ability involves multiple types of physical–biogeochemical
coupling that may compensate one another. For example,
ventilation variability (Ridder and England, 2014; Duteil et
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Figure 11. For the period from 2036 to 2100, 1variability for IPV∗ (left) and O2 (right).

Figure 12. For the period from 2036 to 2100, 1extremes for IPV∗res (left) and residual O2res (right). The percentage shown reaches 60 %
(3 times higher than during the historical period; Fig. 8).

al., 2014; McKinley et al., 2004) can have the opposite im-
print on O2 than on water mass shifts, depending on the ver-
tical stratification of temperature and O2. In the subtropical
thermocline, both temperature and O2 decrease with depth,
and vertical shifts of water masses generate positive correla-
tions between them (Brandt et al., 2015; Duteil et al., 2014;
Eddebbar et al., 2019). However, a negative relationship
is expected between temperature and O2 under ventilation-
driven variability, as colder conditions are typically associ-
ated with stronger ventilation (and thus higher O2). The su-
perposition of these two processes may cause partial com-
pensations and could amplify inter-model differences, espe-
cially in O2 concentrations.

In this work, we tested the overarching hypothesis that the
O2 variability in the North Pacific is linked to that of ocean
ventilation as measured by the magnitude of the isopycnic
potential vorticity using four ESMs, a hindcast, and reanaly-
sis data. We verified the simplistic view that the spatiotempo-
ral variability in O2 reflects that of ocean ventilation through

the analysis of potential predictability, of the linkages be-
tween ventilation and O2 with the dominant climate modes
of the North Pacific, and of the patterns of extreme events
in ventilation and O2. As a tracer of physical ventilation,
we chose isopycnic potential vorticity or IPV∗. Strong venti-
lation is assumed to generate a negative anomaly in IPV∗,
which is then advected and mixed by physical circulation
and mixing processes. Ventilation supplies O2-rich surface
waters into the interior ocean, implying a negative correla-
tion between O2 and IPV∗, as weak stratification (low IPV)
may be linked to high oxygen. First, the information entropy
(IE) was adopted to identify the areas in which IPV∗ has
a high predictability potential. Predictability was generally
high along two stripes enclosing the ENSO pattern and ex-
cluding the upwelling cold tongue regions, which were found
to correspond to areas in which O2 and IPV∗ are strongly an-
ticorrelated. The underlying mechanisms are relatively well
understood (Ito et al., 2019), and this behavior is robust
across all the analyzed datasets and does not change signifi-
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Figure 13. For the period from 2036 to 2100, SED index for IPV∗ (left) and O2 (right). The color scale was produced with rgbmap (Greene,
2023).

Table 3. The 2036–2100 correlation coefficients (c.c.’s) between the corresponding indicator maps for IPV∗ and O2. Bold values indicate
c.c.’s≥ 0.1 that passed the shuffling significance test at the 5 % level (see Supplement). Numbers in parentheses reflect c.c.’s computed north
of 20° N.

GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR

1means −0.21 (−0.15) −0.55 (−0.22) −0.60 (−0.59) −0.32 (−0.28)
1variability 0.30 (0.30) 0.14 (0.26) 0.21 (0.19) 0.02 (0.00)
1extremes −0.01 (0.56) 0.35 (0.40) 0.23 (0.01) 0.08 (−0.02)

cantly in the future projections of the four ESMs. Therefore,
around the Pacific Equator, IPV∗, which is easily retrievable
from temperature and salinity data, has a good predictability
potential (higher than in the rest of the basin) and can be used
as a proxy for O2. The greater availability of temperature and
salinity (and therefore stratification) observations from Argo
floats, reanalyses, and modeled fields could be used in con-
junction with the fewer co-located observations of O2 to val-
idate our findings and further extrapolate information about
O2 and its time evolution in these tropical areas.

Secondly, the variability in O2 and IPV∗ was examined
in relation to large-scale modes of climate variability in
the extratropical North Pacific. At mid-latitudes, the re-
gional climate variability is PDO-dominated and our analysis
shows very low predictability of IPV∗, unlike in the ENSO-
dominated equatorial regions. The low predictability extends
to the western boundary current and the Kuroshio–Oyashio
Extension region. In the extratropical North Pacific, the (lin-
ear) contribution of the PDO to O2 and IPV∗ and the trends
of their residuals have comparable amplitude over the his-
torical period. This is not verified in the future projections,
where the trends become increasingly dominant. Pattern cor-
relations in the PDO regression maps (b coefficients) are gen-
erally quite small across the models.

Thirdly, we evaluated the hotspots of change in IPV∗ and
O2 in the historical period and in the future projections. Over-
all, the historical hotspot indices or SED, computed sepa-

rately for IPV∗ and O2, suggest a longitudinal decoupling
across the two variables for all datasets except for one model,
i.e., NorESM. In addition, most of the hotspots are in the ex-
tratropics. O2 SEDs tend to be higher along the eastern por-
tion of the basin, while IPV∗ hotspots are mostly found over
the western side of the basin and along the southern boundary
of the subtropical gyre. The intensity of the SED increases
over time from the historical period to the end of the 21st
century. Larger changes and hotspots are found at the gyre
boundaries and in the northern portion of the basin, from the
Kamchatka Peninsula to the Gulf of Alaska. While O2 loss
is broadly linked to the strong increase in stratification, there
are significant differences across model patterns, pointing to
the need for further investigation.

The existing uncertainty in the CMIP6 models’ repre-
sentations of oxygen changes limits the information that
can be extracted from the projections. We carried out our
analysis on a sub-sample of the CMIP6 catalog only, but
adding more models will not challenge this important con-
clusion. For a detailed model intercomparison of ocean de-
oxygenation in CMIP6 models, the reader is referred to Abe
and Minobe (2023). Major sources of uncertainty in the fu-
ture projections reside, for example, in their representation
of the ENSO amplitude, as detailed in Beobide-Arsuaga et
al. (2021), and in uncertainties regarding the amount of fu-
ture warming (Tokarska et al., 2020) and, consequently, re-
garding the changes in upper-ocean stratification. Compared
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to the CMIP5 catalog, CMIP6 models tend to warm more and
show a decline in subsurface oxygen ventilation with no con-
sistent decrease in inter-model uncertainties (Kwiatkowski et
al., 2020). Here we found that while in some models the rela-
tionship between IPV∗ and O2 becomes stronger, that is not
the case for all models, and it is not verified in GFDL, which
has the highest horizontal resolution and best compares to the
reanalyses in the historical period.

A note of caution should be spent on the representation of
regional changes and hotspots. The currently available spa-
tial resolution for CMIP6 models does not resolve the fine-
scale (mesoscale and finer) physical and biogeochemical pro-
cesses occurring near the coast. This is especially true in re-
gions of elevated nutrient supply such as along the California
Current System and, more generally, in the eastern boundary
upwelling systems (EBUS). Consequently, projected oxygen
trends may exhibit variability even within subregions un-
der the same scenario, as shown for EBUS by Bograd et
al. (2023). However, analysis at the scales required to cap-
ture coastal dynamics would require higher-resolution mod-
els that would need – if projected into the future – bound-
ary conditions from CMIP6 simulations. CMIP6 models in-
deed remain the primary tool for evaluating changes in large-
scale modes of climate variability at interannual to decadal
timescales. While resolution is an important limitation for
coastal areas, our main findings remain relevant to the inter-
pretation of the large-scale forcing. In particular the outcome
of the hotspot analysis, i.e., that there is a large-scale lon-
gitudinal decoupling between the areas of most prominent
changes in IPV∗ and O2 despite the PDO imprinting, is un-
likely to be influenced by the models’ resolution.

We found that the linkages between extratropical O2 and
PDO are model dependent and that the relationship is not as
strong as hypothesized on the basis of the sparse available
observations. In summary, the variability across the current
generation of CMIP models is, for some of our hypotheses,
too large to reach any definite conclusion regarding a sig-
nal which is weaker than expected. To alleviate this problem,
we suggest using the new BGC-Argo array to validate the
performance of each model by testing relationships between
temperature, IPV, and O2.

Models and reanalyses or hindcasts such as E3SM-2G
allow for testing of whether there may be predictability,
notwithstanding their biases and, for the case of the North
Pacific, of whether there is a robust relationship across mod-
els between large-scale climate modes of variability, stratifi-
cation, and O2. The predictability potential extrapolated by
global ESMs represents an upper bound of the actual one,
but it is useful for identifying when further exploration may
be warranted or where such an exercise may simply be futile.
For example, the information entropy could be evaluated us-
ing opportunely interpolated Argo data (e.g., Smith and Mur-
phy, 2007; Cheng and Zhu, 2016; and for BGC-Argo, Turner
et al., 2023; Keppler et al., 2023; Sharp et al., 2023). In re-
gions where the predictability potential is high, such an ex-

ercise is warranted; wherever the potential predictability is
low, it would be futile. In reference to our second hypothesis,
we found that the PDO modulates IPV∗ and O2 but that the
signal is not robust across models, thus limiting the possi-
bility of reconstructing the large-scale evolution of O2 from
temperature and salinity data alone. On the other hand, in
the equatorial regions generally undersampled in historical
O2 datasets, the relatively high predictability of IPV∗ and its
strong link to O2 could be exploited.

In summary, in this work we examined the relationship
between the upper-ocean (0–200 m) oxygen (O2) content
and stratification in the North Pacific Ocean in four CMIP6
ESMs, an ocean hindcast simulation, and an ocean reanaly-
sis. As far as the robustness of the relation between O2 and
IPV∗ in the North Pacific is concerned (our first question),
we found significant inter-model differences in the represen-
tation of climate variability in the North Pacific in CMIP6
models.

In relation to the linkages between O2 and IPV∗ com-
pared to large-scale modes of climate variability such as PDO
and ENSO (second question), we highlighted the potential
of monitoring IPV∗ to infer O2 evolution in the ENSO area.
However, we did not find a robust signal in terms of patterns
and time evolution in the extratropics, where the PDO is the
dominant mode of climate variability. The caveat is that the
relationship, while weak, was nonetheless statistically sig-
nificant under several metrics in the hindcast and in some
models, of which GFDL-ESM4 is the best example.

Lastly, we found that the hotspots of changes in IPV∗ and
O2 are not co-located (third and final question), which is es-
pecially true in the historical period.

In conclusion, the evolution trajectory of both stratification
and oxygen in the North Pacific remains uncertain. Reduc-
ing this uncertainty would require monitoring IPV and O2 si-
multaneously, for example through the accumulation of Argo
floats equipped with CTD and O2 sensors, to better quantify
the large-scale co-variability in physical and biogeochemical
parameters as a first step towards model improvement.

Code and data availability. The Python version of δ-MAPS is
available at https://github.com/FabriFalasca/py-dMaps (last ac-
cess: 17 April 2024; https://doi.org/10.5281/zenodo.7320415,
Falasca, 2022). The code for the information entropy compu-
tation is available at https://github.com/FabriFalasca/NonLinear_
TimeSeries_Analysis (Falasca, 2020). Climate indices used in this
study are from NOAA at https://psl.noaa.gov/data/climateindices/
list/ (PSL, 2024). The CMIP6 Earth system model output is
available via the Earth System Grid Federation (https://esgf-node.
llnl.gov/search/cmip6/, ESGF, 2022). The hotspot analysis was
carried out using CDO (https://doi.org/10.5281/zenodo.7112925,
Schulzweida, 2022). A sample code for the hotspot calculation is
also available at https://doi.org/10.5281/zenodo.13294399 (Ljuba,
2024). We used the eof Python package (Dawson, 2016) for
EOF analysis of spatiotemporal data (available at https://ajdawson.
github.io/eofs/latest/api/eofs.standard.html).
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