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Abstract. This study evaluates the ability of Earth System
Models (ESMs) from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) to simulate biogeochemical vari-
ables in the southern South China Sea (SCS). The analysis
focuses on key biogeochemical variables: chlorophyll, phy-
toplankton, nitrate, and oxygen based on their availability
in the selected models at annual and seasonal scales. The
models’ performance is assessed against Copernicus Ma-
rine Environment Monitoring Service (CMEMS) data us-
ing statistical metrics such as the Taylor diagram and Taylor
skill score. The results show that the models generally cap-
ture the observed spatial patterns of surface biogeochemical
variables. However, they exhibit varying degrees of overes-
timation or underestimation in their quantitative measures.
Specifically, their mean bias error ranges from − 0.02 to
+2.5 mg m−3 for chlorophyll, −0.5 to +1 mmol m−3 for
phytoplankton, −0.1 to +1.3 mmol m−3 for nitrate, and −2
to +2.5 mmol m−3 for oxygen. The performance of the
models is also influenced by the season, with some mod-
els showing better performance during June, July, and Au-
gust than December, January, and February. Overall, the
top five best-performing models for biogeochemical vari-
ables are MIROC-ES2H, GFDL-ESM4, CanESM5-CanOE,
MPI-ESM1-2-LR, and NorESM2-LM. The findings of this
study have implications for researchers and end users of the
datasets, providing guidance for model improvement and un-
derstanding the impacts of climate change on the southern
SCS ecosystem.

1 Introduction

Climate change has profound and wide-ranging effects on
marine ecosystems, impacting both the physical environment
and the primary productivity that inhabits it. Marine pri-
mary productivity plays a crucial role in sustaining life in the
oceans and has far-reaching implications for the entire planet.
Under climate change, understanding the importance of ma-
rine primary productivity becomes even more critical due to
its various ecological, economic, and climate-related impli-
cations. For example, Kwiatkowski et al. (2020) discovered
that the multi-model global mean projections from the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) under
high-emission to low-emission scenarios indicate a consis-
tent decrease in net primary production. Notably, there is a
significant increase in inter-model uncertainty compared to
CMIP5. This increased uncertainty is linked to changes in the
temporal patterns of phytoplankton resource availability and
grazing pressure within CMIP6 (Kwiatkowski et al., 2020).
This carries significant implications for evaluating ecosystem
impacts on a regional scale (Tagliabue et al., 2021). Ocean
biogeochemistry (BGC) models are essential tools in under-
standing and simulating the interactions between the phys-
ical, chemical, and biological processes that occur in the
ocean system. These models incorporate the cycling of key
elements such as chlorophyll, phytoplankton, zooplankton,
carbon, nitrogen, phosphorus, and oxygen through the atmo-
sphere and ocean ecosystems. The importance of ocean BGC
models lies in their ability to provide a more comprehensive
and integrated understanding of the marine environment. The
reliability and accuracy of climate projections made by cli-
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mate models are closely tied to how well these models are
able to replicate or simulate past climate conditions (Jia et
al., 2023; Shikha and Valsala, 2018; Tang et al., 2021). While
a model’s successful reproduction of historical climate pat-
terns suggests that it has captured relevant physical processes
and interactions within the Earth System, this is not always
the case. Ocean BGC models can sometimes appear to accu-
rately represent historical climate patterns for incorrect rea-
sons, as their results are highly dependent on the physical
forcing applied (Friedrichs et al., 2006; Sinha et al., 2010).
For example, minor changes in ocean model circulation can
lead to significant variations in biogeochemical conditions.
Similarly, Glessmer et al. (2008) discovered that even slight
alterations in mixing greatly affect the simulation of primary
production and export in the global general circulation mod-
els. Therefore, caution is needed when using these models
for future climate projections.

As part of the World Climate Research Programme
(WCRP), the CMIP6 oversees the implementation of gen-
eral circulation models (GCMs) by multiple modelling in-
stitutions, aiming to simulate the Earth’s climate system be-
haviour to study a wide range of climate-related phenomena
such as climate variabilities and past and future climate pro-
jections (Mohanty et al., 2024; Peng et al., 2021; Pereira et
al., 2023; Petrik et al., 2022). This simulation aims to ex-
plore how Earth’s climate responds to various climate forc-
ings under distinct scenarios known as shared socioeconomic
pathways (SSPs). The intention is to provide a broader ar-
ray of potential futures for simulation studies (Riahi et al.,
2017). For example, Kwiatkowski et al. (2020) indicate that
forthcoming climate change is anticipated to exert a notewor-
thy and adverse influence on ocean biogeochemistry across
different CMIP6 SSPs. Specifically, the low-emission sce-
nario, SSP1-2.6, and the high-emission scenario, SSP5-8.5,
are projected to induce moderate to highly severe alterations.
By the conclusion of the 21st century, global mean sea sur-
face temperature is expected to rise, while surface pH, sub-
surface oxygen, and nitrate concentrations are anticipated to
decrease. These transformations are likely to negatively af-
fect ocean productivity, resulting in a global mean decline.
The performance of CMIP6 models varies more at the re-
gional scale than at the global scale (Oh et al., 2023). This
is because regional climate features are more sensitive to
the details of the models’ representations of physical pro-
cesses, such as cloud formation, convection, submesoscale
eddies, and wave interactions. However, before we can lever-
age GCMs to study regional biogeochemical changes, rig-
orous performance testing is needed. These tests ensure the
accuracy and reliability of model results, paving the way for
reliable future studies.

Few studies have evaluated the effectiveness of CMIP6
ocean models in simulating different biogeochemical vari-
ables over the globe scale, but intercomparison of CMIP6
BGC model performance and ranking according to perfor-
mance skill at the regional scale has not been done yet.

For example, Petrik et al. (2022) evaluate the representa-
tion of mesozooplankton in six CMIP6 Earth System Mod-
els (ESMs) and compared the models’ simulated mesozoo-
plankton biomass and distribution to observations and as-
sessed their ability to capture the observed relationship be-
tween mesozooplankton and chlorophyll (a proxy for phyto-
plankton). They found that the six CMIP6 ESMs generally
represent the large regional variations in mesozooplankton
biomass at the global scale. Three of the ESMs simulate a
mesozooplankton–chlorophyll relationship within the obser-
vational bounds, which can be used as an emergent constraint
on future mesozooplankton projections. However, there is
a wide ensemble spread in projected changes in mesozoo-
plankton biomass, reflecting the uncertainties in the models’
representation of mesozooplankton at the global scale. Sim-
ilarly, Tjiputra et al. (2020) provided an in-depth assessment
of the ocean biogeochemistry component of the Norwegian
Earth System Model (NorESM2) and discussed the implica-
tions of their findings for understanding and predicting future
ocean biogeochemical changes at the global scale. NorESM2
represents a significant advancement in ocean BGC mod-
elling, incorporating a comprehensive representation of bio-
geochemical processes and demonstrating improved skill in
simulating observed ocean biogeochemical properties. Sim-
ilarly, Christian et al. (2022) presented a comprehensive
overview of the ocean BGC components of two new versions
of the Canadian Earth System Model (CanESM), CanESM5
and CanESM5-CanOE, and described the models in detail
and compared their performance against observations and
other CMIP6 models at the global scale. CanESM5-CanOE
shows improved skill relative to CanESM5 for most ma-
jor tracers at most depths. However, both CanESM5 mod-
els have some biases, such as an underestimation of surface
nitrate concentrations in the subarctic Pacific and equato-
rial Pacific and an overestimation in the Southern Ocean.
Furthermore, Kwiatkowski et al. (2020) demonstrated that
the projected changes in global oceanic impact drivers from
CMIP6 models increases with radiative forcing across the
SSPs. This underscores the advantages of reducing emissions
for upper-ocean ecosystems. The anticipated warming, acidi-
fication, and deoxygenation in the benthic ocean are less pro-
nounced compared to the surface, with increased inter-model
uncertainty relative to scenario uncertainty. This opens a way
to perform more regional intercomparison skill assessments
on CMIP6 BGC models.

The Sunda Shelf region of the southern South China Sea
(SCS) is located in the centre of the Southeast Asian mon-
soonal system, with heavy precipitation rates (You and Ting,
2021), river input that delivers freshwater (Lee et al., 2019),
dissolved nutrients (Jiang et al., 2019), and a surrounding of
volcanic islands. With the Himalaya in the background, this
region is characterized by one of the largest sediment dis-
charge rates worldwide (Milliman et al., 1999). The Sunda
Shelf sea in Southeast Asia stands out as one of the world’s
largest and most diverse shelf seas. Despite its ecological
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significance, it faces considerable human population density
challenges along its coastline, leading to substantial stress on
its marine habitats. This is particularly evident in urbanized
marine ecosystems exposed to significant human-induced
pressures (Todd et al., 2019). Concurrently, our knowledge of
the biogeochemistry of tropical shelf seas lags behind that of
higher-latitude environments, posing challenges to predict-
ing the impact of anthropogenic pressures on tropical seas
(Lønborg et al., 2021). This calls for credible future BGC
projections to help devise appropriate mitigation measures to
curb and mitigate the impacts of climate change in this re-
gion. Based on this backdrop, this study objectively aims to
rank 13 CMIP6 ocean models’ historical simulations based
on their ability to reproduce the selective reference biogeo-
chemical variables such as chlorophyll, phytoplankton, ni-
trate, and oxygen over the southern SCS. The rest of this pa-
per will be structured as follows: Sect. 2 gives a brief descrip-
tion of the study domain and the dataset used. Section 3 will
elaborate on the methodology employed. Section 4 presents
the results and discussion of the following sub-topics: spatial
variation and bias, Taylor diagrams, and model ranking. The
conclusion of the study is summarized in Sect. 5.

2 Study domain and data

2.1 Study domain

This study focuses on the Sunda Shelf region, also referred to
as the southern SCS, delineated by latitudes 8° S–15° N and
longitudes 98–121° E, as illustrated in Fig. 1. Situated within
the tropical rim of the northwestern Pacific Ocean, this region
is an integral part of one of the world’s largest marginal seas,
the SCS. The southern SCS is characterized by a shallow
bathymetry, with a maximum depth of approximately 100 m,
except for the central part where depths exceed 1000 m. The
region’s circulation and hydrodynamics are strongly influ-
enced by monsoonal winds, along with other factors such
as complex bathymetry and coastline configuration and the
presence of large islands, river discharge, mixing, upwelling,
internal waves, and eddies (Daryabor et al., 2014, 2015). In
the southern SCS, ocean circulation exhibits substantial vari-
ations driven by the monsoon cycle (Gan et al., 2016). Dur-
ing the northeast monsoon, spanning December to Febru-
ary, winds prevail from the northeast, generating a basin-
wide cyclonic gyre within the southern SCS. Conversely,
during the southwest monsoon, from June to August, winds
blow from the southwest, establishing a double-gyre circu-
lation pattern in the southern SCS. The transition between
the northeast monsoon and southwest monsoon circulation
patterns is gradual, occurring over several weeks. While the
timing of this transition varies from year to year, it typically
takes place in April and October. The monsoon-driven cir-
culation in the southern SCS has significant implications for
the region’s biogeochemistry and marine ecosystems. For in-

Figure 1. Map and bathymetry of the study domain.

stance, the northward currents during the southwest monsoon
transport nutrients from the Equator to the northern SCS, fos-
tering high levels of productivity in this region. Conversely,
the southward currents during the northeast monsoon trans-
port nutrients from the northern SCS to the Equator, where
they are utilized by phytoplankton and other marine organ-
isms (Liu et al., 2002).

2.2 Datasets

Within the southern SCS, extensive observations have
demonstrated that phytoplankton growth, serving as the
primary source of organic matter, significantly influences
oceanic carbon cycles. This phytoplankton growth is influ-
enced by monsoon-driven physical and biogeochemical pro-
cesses, with phytoplankton demonstrating a notable sensitiv-
ity to these environmental dynamics (Pinkerton et al., 2021;
Yuwono and Rendy, 2023). These processes enhance mix-
ing throughout the basin, influencing the overall nutrient sup-
ply and primary productivity in the euphotic zone (Palacz et
al., 2011; Tseng et al., 2005). Therefore, chlorophyll, phyto-
plankton, nitrate, and oxygen are the primary biogeochemi-
cal variables examined in this study. We analysed the histor-
ical experiment outputs of 13 CMIP6 ESMs for the study re-
gion. The model designations and spatial resolutions are pro-
vided in Table 1. This selection was based on the common
availability of the chosen variables and their corresponding
socioeconomic scenario projections at the time of this study.
The selection of the evaluation period was primarily based on
the availability of reference datasets for comparison with the
model outputs. The Copernicus Marine Environment Mon-
itoring Service (CMEMS) dataset (von Schuckmann et al.,
2020), a standardized collocated grid with a horizontal res-
olution of 1/4° (approximately 27 km) and temporal cover-
age from 1993 onwards, was chosen as the reference dataset
to assess the models’ ability to simulate biogeochemical
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Figure 2. DJF spatial biases of surface chlorophyll for 13 individual CMIP6 ESMs relative to the reference.

Figure 3. Same as Fig. 2 but for JJA.

variables over the southern SCS. CMEMS biogeochemistry
model data are the only available time series biogeochemical
hindcast dataset. Although this product is an assimilation-
free dataset, rigorous validations have been done to evalu-
ate the CMEMS global product quality. The Mercator Ocean
Quality Information Document (QuID) confirms and pub-

lished the quality of these data through comparisons with
recognized datasets like the Ocean Color, World Ocean At-
las, and GlobColour products (Perruche et al., 2019) and
proves that they have high skills at reproducing the clima-
tology and variability in the available biogeochemical vari-
ables. In order to improve confidence in this dataset for our
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study region, Wahyudi et al. (2023) validated the particu-
late organic carbon (POC), chlorophyll, dissolved oxygen,
nitrate, phosphate, and silicate obtained from the CMEMS
biogeochemistry product by comparing it with in situ data
collected during the Widya Nusantara Expedition 2015 (Tri-
ana et al., 2021) in the upwelling area of southwestern Suma-
tra waters. They found that the mean absolute percentage
error values were lower than 15 %, indicating the reliabil-
ity of the CMEMS biogeochemistry model data in our study
area. Additionally, Chen et al. (2023) used the daily chloro-
phyll concentration data from the same CMEMS biogeo-
chemical product in the South China Sea region. By utiliz-
ing this CMEMS biogeochemistry model dataset, Wahyudi
et al. (2023) and Chen et al. (2023) highlight the profi-
ciency of the CMEMS biogeochemistry model data in re-
producing both the climatic patterns and fluctuations ob-
served within the biogeochemical variables in our study do-
main. This gave us confidence in using this CMEMS bio-
geochemical dataset as the reference model to assess other
models in southern SCS region. Furthermore, we have as-
sessed the CMEMS product using observation data from the
World Ocean Atlas 2018 (WOA18) for nitrate and oxygen
and satellite data from GlobColour (product ID – OCEAN-
COLOUR_GLO_BGC_L4_MY_009_104) for chlorophyll
and phytoplankton. The validation results are presented in
Supplement Table S1, with the spatial percentage bias de-
tailed in Supplement Figs. S1–S2. The validation results
demonstrated good agreement, with region-wide differences
of less than ±5% for chlorophyll and phytoplankton and
less than ±10% for nitrate and oxygen. The spatial pattern
comparison indicates that the largest differences between the
CMEMS and WOA18 observation data occur in coastal ar-
eas. These differences may be attributed to the insufficient
quantity of WOA18 observation data in our study domain
and the coarse resolution of WOA18 (∼ 111 km). However,
the small differences between their climatologies (less than
±10%) give us confidence that CMEMS is reliable. There-
fore, given that CMEMS has all the required parameters and
that our analysis established the reliability of the CMEMS
in our study region, we believe that using CMEMS as a ref-
erence dataset allows for a fair performance assessment of
the CMIP6 ESMs across all the parameters evaluated. The
evaluation method relies on the analysis of an average year
to represent the regional climatology. A longer period is gen-
erally considered more representative, and within the con-
straints of data availability, the 22-year period from 1993 to
2014, encompassing the end of the CMIP6 historical exper-
iments, was selected. As the CMIP6 models have different
horizontal scales, all model outputs were regridded to a com-
mon horizontal resolution using the bilinear interpolation
method. The CMIP6 climate models are publicly available
and archived at https://esgf-node.llnl.gov/search/cmip6/ (last
access: 11 September 2024), while the CMEMS data can be
accessed at https://data.marine.copernicus.eu/products (last
access: 11 September 2024).

3 Methodology

3.1 Evaluation metrics and ranking

To evaluate the ability of CMIP6 models to simulate biogeo-
chemical variables in comparison to reference data, spatial
variation, the mean bias error (MBE), the correlation coef-
ficient (CC), the root-mean-square difference (RMSD), and
the normalized standard deviation (NSD) were employed.
CC, RMSD, and NSD were visualized using a Taylor dia-
gram (TD), which offers a succinct statistical summary of
the degree of similarity in patterns between simulated and
reference data based on their CC, RMSD, and variance ratio.
Smaller values of RMSE and bias indicate better model per-
formance, while a larger positive value of CC, ranging from
−1 to 1, suggests improved correlation between the simu-
lated and reference climate variables. The specific equations
used to calculate MBE, CC, RMSD, and SD using TDs are
presented in Eqs. (1)–(4), respectively.

MBE=
1
n

∑n

i=1
(Mi −Ri), (1)

CC=

∑n
i=1

(
Mi −M

)(
Ri −R

)√
n∑
i=1

(
Mi −M

)√∑n
i=1

(
Ri −R

) , (2)

RMSD=

√
1
n

∑n

i=1
(Mi −Ri)

2, (3)

SD=

√
1
n

∑n

i=1
(Mi −M)

2, (4)

TSS=
(1+R)4

4
(

SDR+ 1
SDR

)2 , (5)

where n represents the total number of grids within the ocean
areas of the analysis domain, and Mi and Ri denote the
model and reference at ith grid, respectively. M and R rep-
resent the mean values of the model and the reference data.

The assessment of model performance hinges on various
factors, including the specific variables, the regions under
analysis, and the chosen evaluation metrics. Achieving a fair
and standardized comparison necessitates consideration of
these elements. In this context, models were ranked based
on their annual performance utilizing the Taylor skill score
(TSS), as outlined in Eq. (5). Here, R signifies the pattern
correlation between the models and the reference data, while
SDR stands for the ratio of the spatial standard deviations of
the models to that of the reference. The TSS quantifies the
resemblance between the model and reference data concern-
ing both the distribution and amplitude of the spatial pattern
(Taylor, 2001). All evaluation metrics were applied to each
variable, leading to the generation of individual and overall
rankings for the models. All analyses in this study were con-
ducted using MATLAB software and its numerical function-
alities; Scientific colour maps 7.0 was used to make figures
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Table 1. List of 13 CMIP6 models used, including model name, modelling institution, coupled BGC model, and the horizontal resolution.

Model abbreviation Institution BGC model Horizontal resolution References

ACCESS-ESM1-5 CSIRO, Australia WOMBAT 250 km Ziehn et al. (2020)

CanESM5
CCCma, Canada

CMOC
100 km Swart et al. (2019)

CanESM5-CanOE CanOE

GFDL-ESM4 NOAA-GFDL, USA COBALTv2 1°× 1° Dunne et al. (2020)

MIROC-ES2H
MIROC, Japan OECO2 100 km

Kawamiya et al. (2020)

MIROC-ES2L Hajima et al. (2020)

MPI-ESM-1-2-HAM Consortium of

HAMOCC6

220 km Neubauer et al. (2019)
Switzerland,
Germany, UK,
Finland

MPI-ESM1-2-HR Max Planck 50 km Müller et al. (2018)
Institute for
Meteorology,
Germany

MPI-ESM1-2-LR 220 km Mauritsen et al. (2019)

MRI-ESM2-0 Meteorological

MRI.COM4.4

100 km Yukimoto et al. (2019)
Research
Institute,
Japan

NorESM2-LM
NCC, Norway iHAMMOC 100 km Tjiputra et al. (2020)

NorESM2-MM

UKESM1-0-LL Met Office MEDUSA2 100 km Sellar et al. (2019)
Hadley Centre,
UK

that are readable by readers with colour vision impairments
(Crameri et al., 2020, 2021).

4 Results and discussion

4.1 Spatial variation and bias

Although temporal cycles, such as the yearly cycle of sea-
sons, are indeed important components of climate variabil-
ity (Behrenfeld et al., 2006; Kwiatkowski et al., 2017), they
offer only a partial perspective on the long-term changes as-
sociated with climate change. These long-term changes en-
compass shifts in average temperatures, alterations in precip-
itation patterns, changes in the frequency and intensity of ex-
treme weather events, and other systemic shifts that extend
beyond the periodicity of seasonal cycles. In contrast, spa-
tial patterns provide a more comprehensive understanding of
how climate is changing across different regions and ecosys-
tems (Chi et al., 2023). Consequently, the spatial distribu-
tions of each biogeochemical variable were analysed sea-
sonally, during the southwest and northeast monsoons, and

compared to reference data. This approach provides a general
overview of the models, their differences from observations,
and their relative performance. The months June, July, and
August (JJA) as southwest (summer) and December, January,
and February (DJF) as northeast (winter) were selected to
represent the respective seasons. Seasonal bias and the mean
bias error are presented in Figs. 2–25, demonstrating the abil-
ity of each model to reproduce the seasonal distribution for
the southern SCS region. While most CMIP6 climate models
effectively capture the reference seasonal pattern of each bio-
geochemical variable, some models exhibit overestimations
or underestimations of the observed magnitude.

Three ESMs, namely ACCESS-ESM1-5, CanESM5-
CanOE, and MPI-ESM1-2-HR, consistently showed an over-
estimation of chlorophyll concentrations during both the DJF
and JJA seasons (Figs. 2, 3). Their mean bias error surpassed
+0.1 mg m−3, indicating a notable discrepancy between the
simulated and reference chlorophyll levels (Fig. 4). This
overestimation raises concerns about potential shortcomings
in these models’ representation of biogeochemical processes
governing phytoplankton growth and chlorophyll produc-
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Figure 4. The mean bias error in surface chlorophyll for both seasons (DJF, JJA) and annually.

Figure 5. DJF spatial biases of surface phytoplankton for 13 individual CMIP6 ESMs relative to the reference.

tion. In contrast to the overestimating models, CanESM5
consistently underestimated chlorophyll concentrations in
both seasons, with a mean bias error of −0.02 mg m−3. This
suggests that the model consistently generated chlorophyll
values lower than those of the reference data. Possible ex-
planations for this underestimation could be an underrepre-

sentation of nutrient availability or an overestimation of graz-
ing pressure on phytoplankton. The remaining ESMs demon-
strated a moderate ability to replicate reference chlorophyll
concentrations. Here, “moderate” represents the model per-
forming at an average level in simulating the variables com-
pared to the reference data. Their mean biases generally
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Figure 6. Same as Fig. 5 but for JJA.

Figure 7. The mean bias error in surface phytoplankton for both seasons (DJF, JJA) and annually.

fell within an acceptable range of ≤±0.1 mg m−3, indicat-
ing that these models capture the overall patterns of chloro-
phyll distribution in the southern SCS. Three models, namely
CanESM5-CanOE, MPI-ESM1-2-HR, and UKESM1-0-LL,
consistently overestimated phytoplankton carbon levels in
both seasons (Figs. 5, 6), exhibiting a mean bias error ex-

ceeding +0.5 mmol m−3 (Fig. 7). This overestimation sug-
gests potential shortcomings in these models’ representa-
tion of phytoplankton growth and carbon fixation processes.
For example, the UKESM1-0-LL model does not overes-
timate chlorophyll but overestimates phytoplankton. This
could stem from the fact that the UKESM1-0-LL model ex-
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Figure 8. DJF spatial biases of surface nitrate for 13 individual CMIP6 ESMs relative to the reference.

Figure 9. Same as Fig. 8 but for JJA.

plicitly simulates chlorophyll concentrations, allowing for a
more accurate representation of chlorophyll levels (Sellar et
al., 2019). However, UKESM1-0-LL uses nitrogen as its pri-
mary model currency, which results in a more pronounced
quantitative representation of nutrient levels. This might lead
to enhanced nutrient uptake by phytoplankton due to dif-

ferences in model parameterizations and consequently result
in the overestimation of phytoplankton biomass. In contrast,
CanESM5 exhibited a persistent underestimation of phyto-
plankton carbon throughout the year. Its mean bias error of
−0.5 mmol m−3 highlights a discrepancy between simulated
and reference phytoplankton carbon levels. This underesti-
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mation could stem from factors such as an overestimation of
zooplankton grazing or an underestimation of phytoplank-
ton productivity. The remaining ESMs, with the exception of
CanESM5, moderately replicated the reference phytoplank-
ton carbon patterns. Their mean bias errors were generally
within an acceptable range of ≤±0.4 mmol m−3.

Most models showed spatial uniformity in their underes-
timation or overestimation of chlorophyll and phytoplank-
ton, with a few models exhibiting spatial diversities in their
estimates. For example, the CanESM5-CanOE model con-
sistently overestimates chlorophyll concentration and phy-
toplankton biomass in both seasons, with a mean bias er-
ror of +0.28 mg m−3 in DJF and +1.7 mg m−3 in JJA for
chlorophyll and+1.2 mmol m−3 in DJF and+0.8 mmol m−3

in JJA for phytoplankton. This overestimation is particu-
larly pronounced in the region between Sumatra, penin-
sular Malaysia, and Borneo, where chlorophyll exceeds
1 mg m−3 and phytoplankton exceeds 5 mmol m−3. Simi-
larly, the UKESM1-0-LL model overestimates chlorophyll
and phytoplankton in both seasons, especially in the Gulf of
Thailand. These models may have insufficient spatial reso-
lution to capture the fine-scale physical and biological pro-
cesses in these regions. Important features like small-scale
currents, eddies, and upwelling events, which significantly
affect chlorophyll and phytoplankton distributions, may not
be adequately resolved, leading to spatial bias. Generally,
ESMs in CMIP6 are developed for open-ocean conditions
rather than for shelf seas. Most CMIP6 ESMs have a coarse
resolution (≥ 100 km horizontal) for the ocean component,
although some have resolutions of≤ 25 km, which is consid-
ered eddy permitting. This suggests these ESMs can repre-
sent barotropic processes at smaller scales but not baroclinic
ones. The ability of coarse-resolution CMIP6 ESMs to repre-
sent shallow continental shelf water dynamics with high skill,
such as in the southern SCS Sunda Shelf region, is limited.
Variability in this region is influenced by inflows like the In-
donesian Throughflow and SCS Throughflow, which are not
resolved by coarse-resolution models (Wang et al., 2024).

The analysis revealed a divergent pattern among ESMs in
replicating reference surface nitrate concentrations in both
seasons (Figs. 8, 9). ACCESS-ESM1-5 exhibited an ex-
treme overestimation of surface nitrate levels, with a mean
bias error >+1 mmol m−3, suggesting potential shortcom-
ings in the model’s representation of nitrate uptake by phyto-
plankton or of denitrification processes. GFDL-ESM4- and
NorESM2-based models also displayed substantial overes-
timations, with mean bias error exceeding +0.4 mmol m−3

(Fig. 10). These overestimations could stem from factors
such as an underestimation of nitrate removal processes or
an overestimation of nutrient inputs from rivers. The remain-
ing ESMs moderately replicated the reference surface nitrate
patterns, indicating a reasonable representation of nitrate dy-
namics in these models. Furthermore, delving into model bi-
ases at deeper levels, especially concerning nutrient dynam-
ics, will provide more insights into the model’s accuracy in

simulating the nutricline. Therefore, we have presented the
nitrate profile for each selected model compared with ref-
erence data (CMEMS) and observation data (WOA18) in
Figs. S3 and S4. For simplicity, here we have discussed the
nitrate concentration biases at depths of 70 m (Figs. 11–13)
and 1000 m (Figs. 14–16). Similar to surface nitrate, most
models exhibited a positive bias at 70 m, with an average
mean bias error ranging from +0.5 to +3 mmol m−3 across
the study area; at 1000m, the models exhibit a mean bias
error range of −1 to +2 mmol m−3. Among these models,
MPI-based models showed the least-positive bias at a 70 m
depth; however, as depth increased to 1000 m, their biases
shifted towards the negative (Figs. 13 and 16, respectively).
MIROC- and MPI-based models exhibited the least bias in
nitrate concentrations at both surface and deep layers com-
pared to reference data. This may be attributed to the near
balance achieved between nitrogen cycle sources (such as ni-
trogen fixation, atmospheric nitrogen deposition, and riverine
nitrogen input) and sinks (including denitrification, nitrous
oxide emission, and sedimentary loss) over the long spinup
period (Mauritsen et al., 2019; Hajima et al., 2020). In con-
trast, CanESM5-based models demonstrated minimal nitrate
bias at the surface but showed varying positive and nega-
tive biases in deep layers. These discrepancies arise from the
simplified parameterization of denitrification in their BGC
models. In these models, denitrification in the deep layers is
set to balance the rate of nitrogen fixation and is vertically
distributed in proportion to the detrital remineralization rate.
However, in reality, nitrogen fixation and denitrification are
not constrained to be balanced within the water column at
any single location; rather, denitrification primarily occurs in
anoxic areas (Swart et al., 2019). Notably, no seasonal varia-
tions in bias in all selected models were observed in the deep
layer (1000 m; Fig. 16).

Three models, namely MIROC-ES2H, MPI-ESM1-2-LR,
and MPI-ESM-1-2-HAM, consistently overestimated sur-
face oxygen levels in both seasons (Figs. 17, 18), exhibit-
ing a mean bias error exceeding +0.5 mmol m−3. This over-
estimation suggests potential shortcomings in these models’
representation of oxygen production through photosynthesis
or of oxygen consumption through respiration and microbial
processes. Conversely, ACCESS-ESM1-5-, CanESM5-, and
NorESM2-based models displayed persistent underestima-
tions of oxygen throughout the year. Their mean bias errors
exceeding −1 mmol m−3 highlight a discrepancy between
simulated and reference surface oxygen levels (Fig. 19). This
underestimation could stem from factors such as an overesti-
mation of oxygen consumption processes or an underestima-
tion of oxygen production through photosynthesis. The re-
maining ESMs moderately replicated the reference surface
oxygen patterns, indicating a reasonable representation of
oxygen dynamics in these models. Similar to the nitrate pro-
file, we have also presented the oxygen profile for each se-
lected model compared with reference data and observation
data in Figs. S5 and S6. During the observation of oxycline
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Figure 10. The mean bias error in surface nitrate for both seasons (DJF, JJA) and annually.

Figure 11. DJF spatial biases of nitrate at 70 m depth for 13 individual CMIP6 ESMs relative to the reference.

dynamics in most of the models, we noted that the oxygen
exhibited a negative bias at a depth of 70 m and transitioned
to a positive bias with increasing depth (1000 m; Figs. 22
and 25). Moreover, UKESM1-0-LL consistently exhibited
a substantial negative mean bias error from the surface to
a depth of 70 m (>+15 mmol m−3) and shifted to a posi-

tive bias of>+7 mmol m−3 at 1000 m, relative to its surface
bias. Similarly, CanESM5- and MIROC-based models also
displayed markedly high positive biases at a depth of 1000 m
but with comparatively smaller biases at 70 m. Multiple fac-
tors could contribute to biases in the simulation of nutricline–
oxycline dynamics by models. Inaccuracies in simulating nu-
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Figure 12. Same as Fig. 11 but for JJA.

Figure 13. The mean bias error in nitrate at 70 m depth for both seasons (DJF, JJA) and annually.

tricline dynamics may arise from errors in parameterizing
physical, chemical, and biological processes relevant to these
dynamics. In DJF, most models overestimate oxygen levels
at the surface and underestimate at a depth of 70 m. This
bias in oxygen concentration may result from excessively in-

tense winter mixing of cold, oxygen-rich waters from the
northern boundary of the southern SCS with water in the
Sunda Shelf region (Thompson et al., 2016). This intense
mixing leads to a surplus of oxygen being brought to the
surface, causing models to predict higher-than-actual oxygen
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Figure 14. DJF spatial biases of nitrate at 1000 m depth for 13 individual CMIP6 ESMs relative to the reference.

Figure 15. Same as Fig. 14 but for JJA.

levels there. Simultaneously, this mixing reduces the oxy-
gen concentration at intermediate depths, as the oxygen-rich
water is redistributed upwards, resulting in underestimated
oxygen levels at 70 m. Additionally, nutrient trapping issues
may also contribute to the remaining model bias (Six and
Maier-Reimer, 1996). Moreover, the exclusion of relevant

processes or feedback mechanisms influencing nutricline dy-
namics within the model, such as nutrient upwelling, mi-
crobial remineralization, and ocean stratification, may lead
to biased simulations. Additionally, structural uncertainties
embedded in the model formulation, including simplifica-
tions or assumptions regarding complex processes, may also
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Figure 16. The mean bias error in nitrate at 1000 m depth for both seasons (DJF, JJA) and annually.

Figure 17. DJF spatial biases of surface oxygen for 13 individual CMIP6 ESMs relative to the reference.

play a role in generating biases in simulation results. For
example, advancements in model parameterization and rep-
resentation of biogeochemical fluxes have led to consistent
improvements in the mean states of nutrient dynamics in
CMIP6 models (Séférian et al., 2020) such as GFDL-ESM4

and the MIROC-based, MPI-ESM1-based, and NorESM2-
based models. Specifically, improvements in GFDL-ESM4
performance are attributed to a series of updates and changes
in model physics (such as mixing and climate dynamics) and
biogeochemical parameterizations such as the implementa-
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Figure 18. Same as Fig. 17 but for JJA.

tion of a revised remineralization scheme for organic matter
that depends on oxygen and temperature (Laufkötter et al.,
2017).

The observed bias underscores the necessity of error cor-
rection, as these errors are likely to persist in the projections,
potentially introducing significant uncertainty. The flow of
nutrients and other biogeochemical tracers around the globe
is significantly influenced by ocean circulation patterns. Al-
terations in these patterns can lead to shifts in nutrient dis-
tribution, consequently impacting biogeochemical processes
(Lu et al., 2020). It is important to note that not all CMIP6
ESMs fail to reproduce the reference seasonal pattern of bio-
geochemistry, and it is unrealistic to expect a single ESM
to accurately represent all biogeochemical variables. While
some ESMs can effectively reproduce the reference pattern
for individual variables, significant uncertainty regarding the
reasons why some ESMs outperform others in this respect
remains. The ESMs employed in CMIP6 are influenced by a
variety of external factors, including solar radiation, green-
house gas concentrations, and land-use changes. These ex-
ternal forcings are typically incorporated into ESMs as time
series data. Inaccuracies in these time series data can lead to
discrepancies in the simulated biogeochemistry, including er-
rors in the seasonal cycle (Sun and Mu, 2021). Even the most
advanced ESMs do not fully capture all of the biogeochem-
ical processes that occur in the real world. This implies that
some ESMs may overlook important processes such as nu-
trient cycling, light availability, temperature variations, and
phytoplankton phenology, which contribute to the observed
seasonal pattern of biogeochemistry. Additionally, the abil-

ity of an ESM to replicate the reference seasonal pattern of
biogeochemistry can be influenced by the model’s resolution
and the specific numerical methods used to solve its equa-
tions.

4.2 Inter-variable relationships

4.2.1 Chlorophyll–phytoplankton

The correlation between chlorophyll and phytoplankton
serves as a critical indicator of marine ecosystem health
and productivity. As chlorophyll is a pigment essential for
photosynthesis in phytoplankton, its concentration is of-
ten used as a proxy for phytoplankton in aquatic environ-
ments (e.g. Petrik et al., 2022). A strong positive corre-
lation between chlorophyll and phytoplankton signifies ro-
bust primary production and nutrient availability, highlight-
ing favourable conditions for marine life. Conversely, a weak
or negative correlation may indicate nutrient limitation, en-
vironmental stressors, or other factors affecting phytoplank-
ton growth. Understanding this correlation provides valuable
insights into ecosystem dynamics, nutrient cycling, and the
impacts of environmental changes on marine ecosystems.
However, it is important to note that not all models simu-
late chlorophyll concentrations prognostically. Instead, some
models derive chlorophyll concentrations from the carbon-
to-chlorophyll ratio and from phytoplankton biomass. This
approach acknowledges the intricate relationship between
chlorophyll production and phytoplankton biomass, ensur-
ing a comprehensive representation of primary productiv-
ity in marine environments. The correlation between chloro-
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Figure 19. The mean bias error in surface oxygen for both seasons (DJF, JJA) and annually.

Figure 20. DJF spatial biases of oxygen at 70 m depth for 13 individual CMIP6 ESMs relative to the reference.

phyll and phytoplankton biomass can also provide insights
into whether a model produces chlorophyll prognostically or
not. If a model simulates chlorophyll concentration prognos-
tically, there should be a strong positive correlation between
chlorophyll concentration and phytoplankton biomass. This

correlation arises from the direct influence of phytoplankton
biomass on chlorophyll production through photosynthesis.
On the other hand, if chlorophyll concentrations are derived
from the carbon-to-chlorophyll ratio and from phytoplank-
ton biomass, the correlation may still exist but could be in-
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Figure 21. Same as Fig. 20 but for JJA.

Figure 22. The mean bias error in oxygen at 70 m depth for both seasons (DJF, JJA) and annually.

fluenced by additional factors such as nutrient availability
and environmental conditions. Therefore, analysing the cor-
relation between chlorophyll and phytoplankton biomass can
help discern the modelling approach used to simulate chloro-
phyll dynamics within the ocean model. During our anal-
ysis of the linear regression between chlorophyll and phy-

toplankton, most of the selected CMIP6 models showed a
strong positive correlation between chlorophyll and phyto-
plankton concentrations (Fig. 26). Notably, ACCESS-ESM1-
5, MIROC-ES2L, and MRI-ESM2-0 demonstrated particu-
larly robust positive correlations, with the coefficient (R)
reaching 1. However, examination of the 95 % confidence
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Figure 23. DJF spatial biases of oxygen at 1000 m depth for 13 individual CMIP6 ESMs relative to the reference.

Figure 24. Same as Fig. 23 but for JJA.

interval suggests that the relationship between chlorophyll
and phytoplankton in MIROC-ES2H and in MPI-based and
NorESM-based models deviates from proximity. This dispar-
ity in confidence intervals among those models could arise
from the differences in model parameterizations and struc-
tural complexities, resulting in differing levels of uncertainty

in the simulated relationships between chlorophyll and phy-
toplankton. Models with simpler representations of biologi-
cal processes or less accurate parameterizations may exhibit
wider confidence intervals due to increased uncertainty in
their outputs. Specifically, MPI- and NorESM-based mod-
els employed the HAMOCC version of the biogeochemistry
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Figure 25. The mean bias error in oxygen at 1000 m depth for both seasons (DJF, JJA) and annually.

model, which does not explicitly simulate chlorophyll con-
centrations (Paulsen et al., 2017; Tjiputra et al., 2020).

4.2.2 Nitrate–phytoplankton

Through the application of linear regression analysis, we in-
vestigated the correlation between surface nitrate levels and
phytoplankton biomass. While analysing the various CMIP6
models, we observed that none of the models displayed a
correlation (R) > 0.8. However, among the selected models,
CanESM5-ConOE, MIROC-ES2H, MPI-ESM1-2-LR, MRI-
ESM2-0, and UKESM1-0-LL exhibited a statistically sig-
nificant positive correlation (R > 0.5, p < 0.001) with sur-
face nitrate and phytoplankton (Fig. 27). Conversely, the re-
maining models demonstrated considerably weaker positive
correlations, with only CanESM5, GFDL-ESM4, MIROC-
ES2L, and MPI-ESM1-2-HR displaying a slight negative
correlation. This slight negative correlation could stem from
various factors that may reflect discrepancies in those model
dynamics, such as the representation of nutrient uptake or
phytoplankton growth rates. Biological processes within the
models might not accurately capture the complexities of
phytoplankton–nutrient interactions. For example, variations
in biogeochemical tracers within model frameworks could
influence model efficacy. Specifically, except for UKESM1-
0-LL- and MIROC-based models, all other selected models
utilize carbon as their primary model currency for represent-
ing phytoplankton biomass, incorporating explicit calcula-
tions for phytoplankton biomass, and they also utilize nitrate
and phosphate to constrain bulk phytoplankton growth rates

alongside temperature and light. Consequently, their repre-
sentation of phytoplankton biomass exhibited a weaker cor-
relation with nitrate. Despite the use of a carbon tracer, MPI-
ESM1-2-LR incorporates a newly resolved nitrogen-fixing
formulation within its biogeochemistry model. This updated
formulation introduces an additional prognostic phytoplank-
ton class, replacing the diagnostic formulation of nitrogen
fixation utilized in MPI-ESM-LR (Paulsen et al., 2017; Mau-
ritsen et al., 2019). As a result, this adjustment enables the
model to capture the nitrogen response to phytoplankton
biomass positively. UKESM1-0-LL employed nitrogen as its
primary currency, resulting in a more pronounced quanti-
tative representation of phytoplankton biomass in response
to increased nitrate levels compared to the other models
(Fig. 27). While MIROC-ES2L primarily utilizes nitrogen
as its tracer, it also integrates the phosphorus cycle within
the model framework to accurately depict the strong phos-
phorus limitation on the growth of diazotrophic phytoplank-
ton (Hajima et al., 2020). Consequently, this incorporation
of the phosphorus cycle may account for phosphorus limita-
tion, resulting in the observed negative correlation between
nitrate and phytoplankton biomass within our study area. In
the case of GFDL-ESM4, the negative correlation between
nitrate and phytoplankton could potentially originate from
the model parametrization. In this framework, phytoplank-
ton were categorized based on size and functional type, with
small phytoplankton being nitrogen-rich and large phyto-
plankton phosphate-rich, thereby creating the characteristic
N : P ratios (Stock et al., 2020). Thus, differences in param-
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Figure 26. Relationships between chlorophyll and phytoplankton for 13 individual CMIP6 ESMs in the southern South China Sea during
the study period (1993–2014). Dashed red lines represent the 95 % confidence interval, with 0.05 as the level of significance (α).

eterizations, data initialization, and model resolution could
contribute to divergent simulated responses. This discrep-
ancy underscores the variability among model outputs and
highlights the importance of further scrutinizing model per-
formances based on parametrization and phenological struc-
ture. It is important to analyse how these models are formu-
lated and their roles in nutrient uptake, zooplankton graz-
ing, phytoplankton growth, and plankton mortality within

the trophic transfer processes. This approach will aim to re-
fine our comprehension of the intricate dynamics govern-
ing marine ecosystems within each model. Furthermore, this
analysis highlights significant variability in phytoplankton–
nutrient correlations across CMIP6 models; the observed dis-
crepancies underscore the potential benefits of employing
more advanced phytoplankton parameterizations, such as nu-
trient quotas or flexible N : C ratios. These approaches could
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provide a more nuanced representation of phytoplankton re-
sponse to nutrient availability. Models like UKESM1-0-LL,
which utilize nitrogen as their primary currency for phyto-
plankton biomass, demonstrate good correlations with ni-
trate, suggesting that explicit consideration of nutrient stoi-
chiometry may enhance model accuracy. Similarly, integrat-
ing phosphorus cycles as seen in MIROC-ES2L could bet-
ter capture phosphorus limitations affecting phytoplankton
growth. Future model developments should prioritize these
parameterizations to improve the fidelity of biogeochemical
simulations and to better understand ecosystem responses to
environmental changes.

4.3 Taylor diagrams

Taylor diagrams were used to evaluate and summarize the
performance of CMIP6 models across various parameters
that they simulated. Taylor diagrams provide a concise and
visually appealing way to compare the performance of mul-
tiple models against reference data. Taylor diagrams facili-
tate the inter-comparison of multiple CMIP6 ESMs, allow-
ing researchers to identify models that consistently perform
well or poorly across a range of biogeochemical parameters
by incorporate three key metrics: the correlation coefficient,
the normalized standard deviation (NSD), and the normal-
ized root-mean-square difference. These metrics collectively
evaluate the agreement between model simulations and the
reference in terms of their overall pattern, magnitude, and
phase relationship by a baseline-observed point, where the
correlation is 1 and the RMSD is 0. If the simulation point
is close to the reference point, it means that the model and
reference data are highly similar. If the model is far away
from the reference point, they are considered poor models,
and the models in intermediate positions are moderate mod-
els. Taylor diagrams can be applied to assess model perfor-
mance at regional and seasonal scales, providing insights into
the models’ ability to capture spatial and temporal variations
in biogeochemical processes. This information can be valu-
able for understanding regional climate–biogeochemistry in-
teractions. Taylor diagrams for assessing the selected models
were performed based on their annual climatology.

Regarding chlorophyll, the overall performance of the 13
CMIP6 ESMs in simulating chlorophyll spatial patterns was
moderate, with spatial correlations ranging from −0.2 to 0.7
and RMSDs below 2 (Fig. 28a). MIROC-ES2H and MIROC-
ES2L were the best-performing models, with correlation co-
efficients of 0.6 and 0.4, RMSDs of 0.7 and 0.9, and stan-
dard deviations of 0.6 and 0.5, respectively, when compared
to other models. ACCESS-ESM1-5 and UKESM1-0-LL had
the poorest performance, with correlation coefficients of 0.1
and 0.2, RMSDs of 2.1 and 1.8, and standard deviations of 2
and 1.7, respectively. Similar to chlorophyll, the performance
of the ESMs in simulating phytoplankton spatial patterns was
moderate (Fig. 28b). MIROC-ES2H was the best-performing
model, with a correlation coefficient of 0.4, an RMSD of 0.9,

and a standard deviation of 0.8. CanESM5 and MPI-ESM-
1-2-HAM had negative correlations of −0.08 and −0.04, re-
spectively. ACCESS-ESM1-5 and UKESM1-0-LL had cor-
relation coefficients of 0.04 and 0.27, RMSDs of 2.3 and 2.6,
and standard deviations of 2.1 and 2.7, respectively.

The performance of the ESMs in simulating nitrate con-
centrations was moderate to poor (Fig. 28c). MPI-ESM1-
2-HR, MPI-ESM1-2-LR, and MPI-ESM-1-2-HAM were
the best-performing models, with correlation coefficients
of 0.24, 0.35, and 0.39; RMSDs of 0.99, 0.95, and 0.95;
and standard deviations of 0.5, 0.19, and 0.16, respec-
tively. MIROC-ES2L, NorESM2-MM, and UKESM1-0-LL
had negative correlations of −0.07, −0.02, and −0.15, re-
spectively. ACCESS-ESM1-5 had a correlation coefficient
of 0.42, an RMSD of 9.24, and a standard deviation of
9.49. It is worth noting that due to the NSD range limit,
ACCESS-ESM1-5 is not visible in Fig. 28c. All ESMs
simulated oxygen concentrations with positive correlations
(Fig. 28d). MPI-ESM1-2-LR and UKESM1-0-LL were the
best-performing models, with correlation coefficients of 0.57
and 0.52, RMSDs of 1.29 and 1.38, and standard devia-
tions of 1.57 and 1.6, respectively. ACCESS-ESM1-5 had the
poorest performance, with a correlation coefficient of 0.58,
an RMSD of 2.33, and a standard deviation of 2.75. The spa-
tial statistics of nitrate and oxygen at deep layers (1000 m)
for the 13 CMIP6 ESMs is presented in Table S2.

Overall, the performance of the ESMs in simulating sur-
face biogeochemical variables ranged from moderate to poor
(Table 2), likely because the ESMs in CMIP6 were devel-
oped based on the broader conditions of the open ocean,
which differ significantly from the more complex and vari-
able conditions of shelf seas. Additionally, the coarse res-
olution of these models is insufficient to accurately cap-
ture the fine-scale dynamics and interactions occurring in
shelf sea environments. Together, these factors likely con-
tribute to the moderate-to-poor performance of the ESMs ob-
served in this study. MIROC-ES2H and MIROC-ES2L were
the best-performing models for chlorophyll and phytoplank-
ton, while MPI-ESM1-2-HR, MPI-ESM1-2-LR, and MPI-
ESM-1-2-HAM were the best-performing models for ni-
trate. ACCESS-ESM1-5 generally performed poorly across
all variables.

4.4 Model ranking

In addition to the qualitative analysis presented in the Taylor
diagram, a skill score is calculated using Eq. (5) to further
validate the models’ proficiency in reproducing biogeochem-
ical variables, serving as a quantitative summary of the infor-
mation conveyed by the Taylor diagram. The final ranking of
models is determined based on this skill score. The ranking
process involves assessing the skill score for each model with
respect to individual variables. Subsequently, the average of
the individual variable scores for each model is computed,
serving as the overall score for that particular model. The fi-
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Figure 27. Relationships between nitrate and phytoplankton for 13 individual CMIP6 ESMs in the southern South China Sea during the
study period (1993–2014). Dashed red lines represent the 95 % confidence interval, with 0.05 as the level of significance (α).

nal and variable scores for the models are depicted in Fig. 29.
A Taylor skill score closer to 1 indicates higher agreement
between the simulation and reference. This approach, akin
to previous successful studies (Kim et al., 2023; Yool et al.,
2021), enhances the robustness of the assessment.

The overall performance of the selected CMIP6 ESMs
is summarized in the final score graph (Fig. 29a). MIROC-
ES2H emerged as the top-ranked ESM, followed by GFDL-

ESM4 and CanESM5-CanOE in second and third place, re-
spectively. Beyond the top three, the final score curve ex-
hibits a nearly linear pattern, suggesting that the remaining
ESMs exhibited relatively consistent performance across var-
ious evaluation criteria. Notably, ACCESS-ESM1-5 ranked
lowest among the ESMs, consistent with its observed per-
formance in the spatial bias and Taylor diagram analyses.
MIROC-ES2H demonstrated superior performance across all
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Table 2. Spatial statistics for surface variables of 13 CMIP6 ESMs.

CMIP6 ESMs Chlorophyll Phytoplankton Nitrate Oxygen

CC NSD NRMSD CC NSD NRMSD CC NSD NRMSD CC NSD NRMSD

ACCESS-ESM1-5 0.10 2.01 2.15 0.04 2.14 2.33 0.30 9.49 9.24 0.58 2.75 2.33
CanESM5 −0.11 0.54 1.19 −0.08 0.58 1.20 0.07 0.07 1.00 0.72 2.34 1.77
CanESM5-CanOE 0.40 2.01 1.85 0.37 2.39 2.23 0.20 1.08 1.32 0.71 2.35 1.78
GFDL-ESM4 0.43 1.56 1.45 0.43 1.74 1.59 0.64 3.89 3.34 0.61 1.90 1.52
MIROC-ES2H 0.62 0.65 0.78 0.46 0.82 0.96 0.45 1.38 1.29 0.50 2.23 1.94
MIROC-ES2L 0.40 0.60 0.93 0.22 0.76 1.12 −0.07 2.23 2.51 0.42 2.40 2.18
MPI-ESM1-2-HR 0.07 1.20 1.51 0.01 1.27 1.61 0.24 0.05 0.99 0.59 2.01 1.63
MPI-ESM1-2-LR 0.13 0.95 1.29 0.02 1.19 1.54 0.35 0.19 0.95 0.57 1.57 1.29
MPI-ESM-1-2-HAM 0.04 1.22 1.54 −0.04 1.48 1.82 0.39 0.16 0.95 0.59 1.80 1.45
MRI-ESM2-0 0.29 0.89 1.13 0.20 1.10 1.33 0.18 4.18 4.12 0.30 1.80 1.78
NorESM2-LM 0.15 0.73 1.15 0.22 0.93 1.21 0.07 2.91 3.01 0.58 2.34 1.93
NorESM2-MM 0.13 0.84 1.22 0.18 1.05 1.32 −0.02 3.37 3.53 0.54 1.95 1.65
UKESM1-0-LL 0.20 1.73 1.81 0.28 2.77 2.67 −0.15 2.81 3.12 0.52 1.60 1.38

Figure 28. Annual Taylor diagrams for (a) chlorophyll, (b) phytoplankton, (c) nitrate, and (d) oxygen.

variables except oxygen, consistently achieving scores above
0.2. For oxygen, MPI-ESM1-2-LR ranked highest due to its
exceptional spatial representation and accurate seasonal pat-
tern captured in the Taylor diagram. This out-performance
of MPI-based models for oxygen can be attributed to the
effectiveness of the physical drivers within that model. Jin
et al. (2023) showed that MPI-based models excel in simu-
lating climatological sea surface temperatures (SST) during
boreal winter and summer and are among the top perform-
ers in reproducing SST climatology in Asian marginal seas

due to their minimal SST biases. Thus, MPI-based models
outperform others in replicating surface oxygen variables in
our study. The distribution of scores for chlorophyll, phyto-
plankton, oxygen, and nitrate (Fig. 29b–e) indicates that only
a few ESMs consistently achieved top performance for these
variables. Since an ensemble always masks the significant
differences between the individual models, the multi-model
ensemble comprising all ESMs does not take into account the
relative strengths and weaknesses of each model (Bannister
et al., 2017; Knutti, 2010). Therefore, evaluating GCMs in
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Figure 29. The selected CMIP6 ESM scores and ranks.

order to choose the best or most appropriate ones is crucial
and helps planners and policymakers feel confident in their
use of GCMs for impact assessment studies and other uses
(Aloysius et al., 2016; Perez et al., 2014; Raju and Kumar,
2020).

5 Conclusions

This study assessed the ability of 13 CMIP6 ESMs to repli-
cate biogeochemical variables such as chlorophyll, phyto-
plankton, nitrate, and oxygen over the southern SCS at an-
nual and seasonal scales. The ESMs were compared against
CMEMS data, considered a proxy for the reference for
the period of 1993–2014. Their performance was evaluated
based on their ability to reproduce the seasonal climatol-
ogy and distribution bias, using statistical metrics such as
the Taylor diagram and Taylor skill score. The models were
ranked based on their skill score. The results revealed that
some models slightly overestimated or underestimated bio-
geochemical variables during both seasons. The performance
of the models varied between seasonal and annual scales.
Most of the models exhibited a positive spatial correlation
with reference data at both seasonal and annual scales for sur-
face variables. However, a few models showed negative cor-
relations, such as CanESM5 (−0.11 and −0.08 for chloro-
phyll and phytoplankton, respectively), MPI-ESM-1-2-HAM
(−0.04 for phytoplankton), MIROC-ES2L (−0.07 for ni-

trate), NorESM2-MM (−0.02 for nitrate), and UKESM1-0-
LL (−0.15 for nitrate). Similarly, at a depth of 1000 m, the
GFDL-ESM4 and MRI-ESM2-0 models alone show positive
correlations of 0.02 and 0.46, respectively, and the remaining
models showed negative correlations ranging from −0.77 to
−0.08. At a depth of 1000 m for oxygen, ACCESS-ESM1-
5, GFDL-ESM4, and UKESM1-0-LL alone showed negative
correlations of −0.2, −0.26, and −0.06, respectively, and
the remaining models showed positive correlations ranging
from 0.05 to 0.6. Despite their overall good performance in
the ranking, some models were unable to accurately simu-
late the seasonal climatology of the study region. While both
Taylor diagram and Taylor skill score methods aim to assess
model performance, discrepancies in model ranking can arise
due to their different approaches. The Taylor diagram em-
phasizes a balanced assessment of correlation, RMSE, and
SD, providing a visual representation of model performance
and allowing for qualitative assessment and identification of
strengths and weaknesses. In contrast, the Taylor skill score
places more emphasis on RMSE and SD, as their normal-
ized differences contribute more significantly to the numeri-
cal score, which may not capture the nuances of model per-
formance observed in the Taylor diagram. Considering all
these factors, the top-five overall best-performing models
for biogeochemical variables in southern SCS were MIROC-
ES2H, GFDL-ESM4, CanESM5-CanOE, MPI-ESM1-2-LR,
and NorESM2-LM. The conclusions drawn from this re-
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search hold significant implications for both researchers and
policymakers relying on the datasets. The outcomes offer
valuable insights that can guide improvements in parame-
terization schemes within models, particularly in instances
where the reference patterns were not effectively reproduced.
Addressing the existing challenges related to topography and
local-scale convective effects remains a priority for ongoing
model enhancements. Furthermore, analysing the physical
drivers or control variables of models, such as temperature,
precipitation and wind, holds immense importance in ad-
vancing our understanding of model performance and inter-
model process parameterization differences. By conducting
such studies, we can gain important insights into the mecha-
nisms governing model behaviour and the factors influencing
their outcomes. This deeper understanding enables us to re-
fine model accuracy, enhance predictive capabilities, and ul-
timately improve our ability to simulate and predict biogeo-
chemical processes in various environmental systems. Con-
sequently, by comprehensively investigating these aspects,
we can identify areas for model improvement and develop
more robust frameworks for studying complex ecological dy-
namics.

Data availability. The CMIP6 data are available from the Earth
System Grid Federation (ESGF) at https://esgf-node.llnl.gov/
search/cmip6/ (ESGF, 2024). The CMEMS data can be accessed
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