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S1. Generalized model including dissolved organic matter dynamics 

Carbon (C) and nitrogen (N) are transferred between POM and MAOM compartments partly via dissolved organic matter 

(DOM), which is only considered implicitly in the model presented in the main text (Fig. 1). In this appendix, we present a 

more general model including a DOM compartment, and show what simplifications lead to the model used in the main text. 

To construct this more general model, we assume that a fraction of the depolymerized products from POM and MAOM are 

used locally by the respective microbial communities (fractions 1 − 𝑙𝑃 and 1 − 𝑙𝑀, respectively) and a fraction is transferred 

to a ‘shared’ DOM compartment (fractions 𝑙𝑃 and 𝑙𝑀, respectively). DOM is then taken up by both communities according to 

the rates 𝑈𝑃 and 𝑈𝑀 (Fig. S1). 

The C mass balance equations for the substrate (second subscript S), microbial biomass (second subscript B) in the POM (first 

subscript P) and MAOM (first subscript M), as well as for the DOM (subscript D) can be written as,  

𝑑𝐶𝑃𝑆

𝑑𝑡
= −(1 − 𝑙𝑃)𝐷𝑃⏟      

𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑙𝑃𝐷𝑃⏟
𝑃𝑂𝑀→𝐷𝑂𝑀

+ (1 −𝑚)𝑀𝑃⏟      
𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (1) 

𝑑𝐶𝑃𝐵

𝑑𝑡
= 𝑒𝑃𝑈𝑃⏟

𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑛 𝐷𝑂𝑀

+ (1 − 𝑙𝑃)𝑒𝑃𝐷𝑃⏟        
𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑛 𝑃𝑂𝑀

− 𝑀𝑃⏟
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (2) 

𝑑𝐶𝑀𝑆

𝑑𝑡
= −(1 − 𝑙𝑀)𝐷𝑀⏟      

𝑢𝑝𝑡𝑎𝑘𝑒

− 𝑙𝑀𝐷𝑀⏟  
𝑀𝐴𝑂𝑀→𝐷𝑂𝑀

+ 𝑚𝑀𝑃⏟  
𝑖𝑛 𝑣𝑖𝑣𝑜

+ 𝑀𝑀⏟
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (3) 

𝑑𝐶𝑀𝐵

𝑑𝑡
= 𝑒𝑀𝑈𝑀⏟  

𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑛 𝐷𝑂𝑀

+ (1 − 𝑙𝑀)𝑒𝑀𝐷𝑀⏟        
𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑛 𝑀𝐴𝑂𝑀

− 𝑀𝑀⏟
𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

, (4) 

𝑑𝐶𝐷

𝑑𝑡
= 𝑙𝑃𝐷𝑃⏟

𝑃𝑂𝑀→𝐷𝑂𝑀

+ 𝑙𝑀𝐷𝑀⏟  
𝑀𝐴𝑂𝑀→𝐷𝑂𝑀

− (𝑈𝑃 + 𝑈𝑀)⏟      
𝑢𝑝𝑡𝑎𝑘𝑒

. (5) 

The rate of uptake of DOM by the POM microbes is probably smaller than the uptake by MAOM microbes, as the former 

primarily feed on POM substrates (i.e., 𝑈𝑃 ≈ 0). Moreover, we can assume that the DOM compartment is in quasi-equilibrium 

(i.e., 𝑑𝐶𝐷 𝑑𝑡⁄ ≈ 0) because it is a small C compartment with relatively fast turnover rates. Mathematically, this means that 

𝑈𝑀 ≈ 𝑙𝑃𝐷𝑃 + 𝑙𝑀𝐷𝑀, which allows simplifying Eq. (1)-(5) and obtain the model described in the main text (after re-naming 

𝑙 = 𝑙𝑃). 
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Figure S1. Schematic of the generalized model including a dissolved organic matter (DOM) compartment. Only C compartments 

and fluxes are shown. Plant input rates to POM (litter) and DOM (root exudates) are shown as red arrows, but are not included in 

the model equations because a single cohort of residues is tracked during decomposition and stabilization.  
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S2. General solutions for partly soluble residues (𝒃 < 𝟏) 

The following equations are the general solutions of Eq. (10) (for 𝑐𝑀(𝑐𝑃)) and (24) (for 𝑛𝑃(𝑐𝑃)) in the main text when the 

added residues are partly soluble (𝑏 < 1), 

𝑐𝑀 =
𝑐𝑃(𝑙+

𝑎𝑚

1−𝑚
)+(

𝑐𝑃
𝑏
)

(1−𝑒𝑀)
1−𝑎 {(1−𝑏)[(1−𝑒𝑀)−1]−𝑏𝑙+𝑎(1−

𝑏

1−𝑚
)}

(1−𝑒𝑀)+𝑎−1
, 

(6) 

𝑛𝑃 = 𝑐𝑃
𝑟𝐵

𝑟0
+ (1 −

𝑟𝐵

𝑟0
) 𝑏 (

𝑐𝑃

𝑏
)

1

1−𝑎
. (7) 

The full analytical solution of Eq. (26) for 𝑛𝑀(𝑐𝑃) is rather cumbersome and less mathematically insightful, so we do not 

report it here. These equations can be simplified as done in the main text by substituting 𝑎 = 𝑒𝑃(1 − 𝑙)(1 −𝑚), simplifying 

where possible the factor 1 − 𝑚, taking the limit for 𝑚 → 1 (as motivated in Section 3.2), and further assuming that all 

microbes have the same CUE (e). These simplifications lead to the more compact solutions, 

𝑐𝑀 = 𝑐𝑃
𝑙(1−𝑒)+𝑒

(1−𝑒)−1
+ (

𝑐𝑃

𝑏
)
(1−𝑒𝑀)

{1 − 𝑏 [1 −
𝑙(1−𝑒)+𝑒

(1−𝑒)−1
]}, (8) 

𝑛𝑃 = 𝑐𝑃, (9) 

𝑛𝑀 = 𝑐𝑃 [𝑙 −
(+𝑙−1)𝑒

1−(1−𝑒)

𝑟𝐵

𝑟0
]
1

−1
+ (

𝑐𝑃

𝑏
)


[1 −
𝑏(+𝑙−1)

−1
] (1 −

𝑟𝐵

𝑟0
) + (

𝑐𝑃

𝑏
)
(1−𝑒)

[1 +

𝑏(+𝑙−1)(1−𝑒)

1−(1−𝑒)
]
𝑟𝐵

𝑟0
, 

(10) 

with boundary conditions 𝑐𝑀(𝑏) = 1 − 𝑏, 𝑛𝑃(𝑏) = 𝑏, and 𝑛𝑀(𝑏) = 1 − 𝑏. 

Fig. S2 illustrates the effect of residue solubility, mathematically represented by the parameter b, on the trajectories of 𝑐𝑀, 𝑛𝑃, 

and 𝑛𝑀. Compared to insoluble residues (𝑏 = 1), residues whose fraction 1 − 𝑏 is immediately stabilized in MAOM have 

initial conditions at lower 𝑐𝑃  and 𝑛𝑃 , but correspondingly higher 𝑐𝑀  and 𝑛𝑀  levels (red circles in Fig. S2). Despite these 

different initial states, the trajectories of 𝑐𝑀, 𝑛𝑃, and 𝑛𝑀 in phase space generally converge to those of residues with 𝑏 = 1 as 

decomposition progresses. However, lower values of microbial CUE (low e) and when MAOM is decomposed much slower 

than POM + residues (low ) cause the trajectories of 𝑐𝑀 to remain separated for a longer period compared to the trajectories 

of 𝑛𝑃, and 𝑛𝑀 (top panels in Fig. S2). 
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Figure S2. Fraction of added C in MAOM, 𝒄𝑴 (top row), fraction of added N in POM + residues, 𝒏𝑷 (center row), and fraction of 

added N in MAOM, 𝒏𝑴 (bottom row), as a function of the fraction of added C in POM + residues, 𝒄𝑷, at different levels of residue 

solubility (colors) and when varying the values of model parameters: residue N:C ratio, 𝒓𝟎 (left column), microbial carbon use 

efficiency, e (center column), and ratio between the decay constants of MAOM and POM + residue decomposition,  (right column). 

Two solubility levels are considered: insoluble residues (𝒃 = 𝟏; black), and partly soluble residues resulting in rapid stabilization of 

a fraction of residue (𝒃 = 𝟎. 𝟗; red). In all panels, residue decomposition progresses from right to left along the curves, as 𝒄𝑷 

decreases; initial conditions are indicated by circles; the dot-dashed black lines indicate 1:1 lines, which represent equality between 

the fractions of added C or N shown on the y-axes and 𝒄𝑷 shown on the x-axes. Baseline parameters are: 𝒍 = 𝟎. 𝟏, 𝒎 = 𝟎. 𝟗, 𝒓𝟎 =
𝟏/𝟒𝟎, 𝒆 = 𝟎. 𝟑,  = 𝟎.𝟎𝟓. 
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S3. Comparison of models assuming insoluble (𝒃 = 𝟏) or partly soluble residues (𝒃 < 𝟏) 

To assess if model fitting improves when considering partial stabilization of soluble residues, we selected six datasets with 

sufficient resolution at the beginning of decomposition (when the effect of the initial condition is most relevant) and fitted two 

model versions: one with 𝑏 = 1 and one with 𝑏 < 1. These six datasets (from five studies) tracked the fate of C from various 

types of grass and herb residues (Cotrufo et al., 2015; Lavallee et al., 2018; Leichty et al., 2021; Mitchell et al., 2018; Nunez 

et al., 2022). Assuming that ~10% of residue C is water soluble, and that approximately half of that can be readily stabilized, 

we obtain an estimate for 𝑏 = 0.95 (i.e., initial MAOM fraction is 0.05). For reference, ~20% of C in leachate can be stabilized 

as MAOM in one week (Even and Cotrufo, 2024), suggesting that the 50% figure we considered is at the high end of a 

reasonable range. In principle, b could be regarded as a fitting parameter as well, but most datasets lacked data points in the 

initial phases of decomposition (i.e., 𝑐𝑃 > 0.8) so that b cannot be properly constrained. We could also estimate b from 

measured soluble C fractions for each residue type across the database, but these estimates would still be uncertain as we do 

not know how much of the soluble C is used locally by microorganisms in the POM + residue compartment and how much 

can be transported away and stabilized as MAOM. Therefore, we limit this model comparison to the two end-member cases 

of 𝑏 = 1 and 𝑏 = 0.95. 

The comparison between these two model versions is shown in Fig. S3. For some residue types, the measured fraction of added 

C in MAOM was much lower than 0.05, indicating that in those datasets very little soluble C was stabilized at the beginning 

of decomposition. In other datasets data seemed instead consistent with an initial fraction of added C in MAOM of about 0.05. 

Overall, the model assuming 𝑏 = 1 performed better than or comparably to the model assuming 𝑏 = 0.95 in five out of six 

datasets (lower or similar root mean square error). Therefore, considering the uncertainties around the value of b and lack of 

high frequency data to constrain the other model parameters, we can conclude that it is reasonable to assume 𝑏 = 1 across the 

database.  

The parameters estimated with the two models were numerically different but highly correlated between models (Pearson 

correlation coefficients ≳ 0.9; Fig. S4). Specifically, the values of microbial CUE were slightly lower when assuming 𝑏 < 1, 

while the fractions of depolymerized C stabilized as MAOM were much lower. This is expected because the two model 

versions are constrained to fit the same MAOM data. As a consequence, when more C is initially stabilized as MAOM (𝑏 =

0.95), less C will be stabilized at later stages (lower l). The high correlation between parameter values estimated with the two 

models suggests that conclusions on the significance and direction of the effects of soil and environmental drivers on e and l 

(Section 3.4 in the main text) are likely to be robust to variations in residue solubility. 

More detailed studies of the fate of soluble C within days after the start of decomposition, or studies reporting MAOM at high 

frequency during the first days or weeks could provide constraints on the value of b. The equations reported in this 

Supplementary Materials are ready to be tested with such data. 
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Figure S3. Fraction of added C in MAOM, 𝒄𝑴, as a function of the fraction of added C in POM + residues, 𝒄𝑷, at different levels of 

residue solubility (black: 𝒃 = 𝟏; red: 𝒃 = 𝟎. 𝟗𝟓) in six datasets where measurements during the early phase of decomposition (𝒄𝑷 >
𝟎. 𝟕𝟓) were available (Cotrufo et al., 2015; Lavallee et al., 2018; Leichty et al., 2021; Mitchell et al., 2018; Nunez et al., 2022). Curves 

are least square model fitting to the data using Equation (8) with  = 𝟎. 𝟎𝟓 and e and l as fitting parameters (shown in Fig. S4). In 

all panels, residue decomposition progresses from right to left along the curves, as 𝒄𝑷 decreases; initial conditions are indicated by 

filled squares; the dot-dashed black lines indicate 1:1 lines. 

 

Figure S4. Comparisons between parameters estimated when assuming that the added residues were insoluble (𝒃 = 𝟏, black curves 

in Fig. S3) or partly soluble (𝒃 = 𝟎. 𝟗𝟓, red curves in Fig. S3): A) comparison of microbial C use efficiencies (e) and B) comparison 

of fractions of depolymerized C stabilized in MAOM (l). The dot-dashed black lines indicate 1:1 lines; r: Pearson correlation 

coefficients. 
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S4. Data 

Table S1. Sources and types of data in the complete database (Manzoni et al., 2024). In this work, we only considered datasets reporting residues + POM 

data (36 out of 42 datasets). 

Data source 

# 

treatments 

or sites 

# 

residue 

types 

residue 

type 

# 

time 

points 

C compartments N compartments 

residues POM 
residues 

+ POM 
MAOM residues POM 

residues 

+ POM 
MAOM 

Almeida et al. (2021) 1 4 P 1   × ×     

Antonio Telles Rodrigues 

et al. (2022) 
5 1 P 1 × × × ×     

Buckeridge et al. (2022; 

2021) 
4 3 P, M 4   × ×   × × 

Canisares et al. (2023) 2 3 P 1 × × × ×     

Cheng et al. (2023) 1 4 P 3   × ×     

Cotrufo et al. (2015) 1 1 P 5 × × × × ×    

Cotrufo et al. (2022) 2 5 P, O 1 × × × × × × × × 

Cotrufo et al. (in review) 3 4 P, X 4   × ×   × × 

Craig et al. (2022, 2021) 1 16 P 2 ×  × ×     

Dai et al. (2022) 3 1 P 1   × ×     

Duan et al. (2023) 3 1 P 3  ×  ×     

Even and Cotrufo (2024) 4 1 P, O 2 × × × ×     

Fang et al. (2019) 12 1 P 2   × ×     

Ferreira et al. (2021), 

Oliveira et al. (2021) 
2 2 P 2 × × × ×     

Fulton-Smith and Cotrufo 

(2019) 
1 2 P 3 × × × × × × × × 

Haddix et al. (2020) 10 1 P 2   × ×     

Pries et al. (2017) 1 2 P 5 × × × × × × × × 

Pries et al. (2018) 3 1 P 3 × × × ×     

Huys et al. (2022a, b) 1 24 P 4 × × × ×     

Kölbl et al. (2006, 2007) 2 1 P 4  ×  ×  ×  × 

Kou et al. (2023b, a) 3 1 P 4 × × × ×     

Lavallee et al. (2018) 2 2 P 2   × ×   × × 

Leichty et al. (2021) 3 1 P 2 × × × ×     
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Lian et al. (2016) 1 3 P 1 × × × ×     

Liang et al. (2023) 12 1 P 2   × ×     

Liebmann et al. (2020) 1 1 P 2 × × × ×     

Lyu et al. (2023) 1 2 P 2 × × × ×     

Magid et al. (2002) 1 1 P 3   × ×     

Mitchell et al. (2018) 4 1 P 4 × × × × × × × × 

Neupane et al. (2023) 6 1 P 3 × × × ×     

Nunez et al. (2022) 2 1 P 2 × × × × × × × × 

Nyamasoka-Magonziwa 

et al. (2022) 
2 3 P, O 1  ×  ×     

Poeplau et al. (2023) 2 4 P 3   × ×     

Ridgeway et al. (2022) 2 4 P 1   × ×   × × 

Ridgeway et al. (2023b, a) 9 1 P 1   × ×   × × 

Schiedung et al. (2023) 11 2 P, O 1   × ×     

Sokol et al. (2019) 1 3 P 1  ×  ×     

Su et al. 2020 1 1 P 5  ×  ×     

Throckmorton et al. 

(2015) 
2 1 M 5   × ×     

Wang et al. (2017) 1 4 P 4  ×  ×     

Witzgall et al. (2021) 2 1 P 1   × ×     

Xu et al. (2022) 4 2 P 1 × × × ×     

P: plant (leaves, shoots, roots, woody material), M: microbial necromass, O: other residues (e.g., manure, leachates, biochar) 

×: the data source includes some data points in the marked category, but not always in all treatment/site/residue type combinations 
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