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Abstract. Limiting global warming to well below 2 ◦C by the
end of the century is an ambitious target that requires imme-
diate and unprecedented emission reductions. In the absence
of sufficient near-term mitigation, this target will only be
achieved by carbon dioxide removal (CDR) from the atmo-
sphere later during this century, which would entail a period
of temperature overshoot. Aside from the socio-economic
feasibility of large-scale CDR, which remains unclear, the
effects on biogeochemical cycles and climate are key to as-
sessing CDR as a mitigation option. Changes in atmospheric
CO2 concentration and climate alter the CO2 exchange be-
tween the atmosphere and the underlying carbon reservoirs
of the land and the ocean. Here, we investigate carbon cycle
feedbacks under idealized and more realistic overshoot sce-
narios in an ensemble of Earth system models. The responses
of oceanic and terrestrial carbon stocks to changes in atmo-
spheric CO2 concentration and changes in surface climate
(the carbon–concentration feedback and the carbon–climate
feedback, quantified by the feedback metrics β and γ , re-
spectively) show a large hysteresis. This hysteresis leads to
growing absolute values of β and γ during phases of neg-
ative emissions. We find that this growth over time occurs
such that the spatial patterns of feedbacks do not change sig-
nificantly for individual models. We confirm that the β and γ
feedback metrics are a relatively robust tool to characterize
inter-model differences in feedback strength since the rela-

tive feedback strength remains largely stable between phases
of positive and negative emissions and between different sim-
ulations, although exceptions exist. When the emissions be-
come negative, we find that the model uncertainty (model
disagreement) in β and γ increases more strongly than ex-
pected from the assumption that the uncertainties would ac-
cumulate linearly with time. This indicates that the model
response to a change from increasing to decreasing forcing
introduces an additional layer of uncertainty, at least in ideal-
ized simulations with a strong signal. We also briefly discuss
the existing alternative definition of feedback metrics based
on instantaneous carbon fluxes instead of carbon stocks and
provide recommendations for the way forward and future
model intercomparison projects.

1 Introduction

Estimated remaining carbon budgets compatible with lim-
iting anthropogenic warming to 1.5 or 2 ◦C above pre-
industrial levels are extremely tight and will be exhausted
within the next few years if the current emission rate is
maintained (e.g., Rogelj et al., 2015; Goodwin et al., 2018;
Masson-Delmotte et al., 2018; Forster et al., 2023; Smith et
al., 2023). Therefore, unless CO2 emissions are reduced im-
mediately at an unprecedented rate, the 1.5 or 2 ◦C targets
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can only be reached after a period of temperature overshoot
(Rogelj et al., 2015; Ricke et al., 2017; Geden and Löschel,
2017; Riahi et al., 2021). Although the option to remove
large quantities of carbon from the atmosphere remains spec-
ulative (Gasser et al., 2015; Larkin et al., 2018; Fuss et al.,
2018; Creutzig et al., 2019; Smith et al., 2023), in such over-
shoot pathways, excessive near-term carbon emissions would
be compensated for by large-scale carbon dioxide removal
(CDR) later in this century. Research on negative emissions
exploring the reversibility of CO2-induced climate change
has been conducted for more than a decade (e.g., Boucher
et al., 2012; Wu et al., 2015; Tokarska and Zickfeld, 2015;
Li et al., 2020; Jeltsch-Thömmes et al., 2020; Yang et al.,
2021; Schwinger et al., 2022; Bertini and Tjiputra, 2022).
These studies generally report a hysteretic behavior of the
Earth system under negative emission, resulting in greatly
varying reversibility for different aspects of the Earth system.
While the surface temperature trend follows a reduction in at-
mospheric CO2 relatively closely (e.g., Boucher et al., 2012;
Jeltsch-Thömmes et al., 2020), the hysteresis can be large
in the interior ocean, making, for example, rises in the ocean
heat content and steric sea level as well as interior ocean oxy-
gen content changes and acidification largely irreversible on
policy-relevant timescales (Mathesius et al., 2015; Li et al.,
2020; Schwinger et al., 2022; Bertini and Tjiputra, 2022).
The same is true for the loss of carbon from thawing per-
mafrost soils (MacDougall et al., 2015; Gasser et al., 2018;
Park and Kug, 2022; Schwinger et al., 2022).

Carbon emissions drive multiple responses of the Earth
system via changes in its physical climate and the biogeo-
chemical carbon cycle. Under increasing atmospheric CO2
concentrations, increasing carbon uptake by the ocean and
terrestrial biosphere slows down global climate change by
removing the greenhouse gas CO2 from the atmosphere, a
process that is mainly driven by the dissolution of CO2 into
the oceans (e.g., Revelle and Suess, 1957; Siegenthaler and
Oeschger, 1978) and the CO2 fertilization effect on the ter-
restrial biosphere (Schimel et al., 2015). On the other hand,
Earth system model (ESM) simulations show that this car-
bon uptake is reduced by progressive global warming due
to, among others, changes in ocean circulation, a reduction
in CO2 solubility in warmer waters, increased respiration
rates from soils (Tharammal et al., 2019; Arora et al., 2020;
Canadell et al., 2021), and carbon release from degrading
permafrost. These two feedback processes – the response
to rising CO2 concentrations and the response to climate
change – are termed the carbon–concentration feedback and
the carbon–climate feedback, respectively (Gregory et al.,
2009). In the context of overshoot pathways, carbon cycle
feedbacks determine the efficiency of negative emissions, as
the oceans and the terrestrial biosphere will first take up car-
bon at reduced rates but will eventually turn into sources of
carbon for the atmosphere (Jones et al., 2016a; Schwinger
and Tjiputra, 2018).

The carbon–concentration and carbon–climate feedbacks
can be characterized by feedback metrics; for example, by
the feedback factors β and γ (Friedlingstein et al., 2003)
that quantify the gain/loss of carbon in terrestrial or marine
reservoirs per unit change in atmospheric CO2 concentration
and temperature, respectively (see Sect. 2 for details). These
feedback factors are valuable tools to compare the feedback
strength among different models (Friedlingstein et al., 2003,
2006; Yoshikawa et al., 2008; Boer and Arora, 2009; Gre-
gory et al., 2009; Roy et al., 2011; Arora et al., 2013, 2020)
and can be calculated using idealized model simulations in
which the effect of CO2 on the carbon cycle and the radia-
tive effect of CO2 are decoupled. In a biogeochemically cou-
pled (BGC) simulation, the radiation code of an ESM does
not respond to increasing atmospheric CO2 concentrations
but the terrestrial and marine carbon cycles do. There is lit-
tle climate change in such a simulation, which can therefore
be used to quantify the carbon–concentration feedback. The
difference between a standard (fully coupled, COU) simula-
tion and the BGC simulation is used to quantify the carbon–
climate feedback. In the last two phases of the Coupled
Model Intercomparison Project (CMIP5 and CMIP6, Tay-
lor et al., 2012; Eyring et al., 2016), carbon cycle feedbacks
were addressed by conducting additional decoupled simula-
tions of the standard 1 % CO2 simulation which prescribes
an increase in atmospheric CO2 of 1 % yr−1 until the con-
centration has quadrupled (Arora et al., 2013, 2020). Next to
this idealized simulation, the protocol for the CMIP6 Cou-
pled Climate–Carbon Cycle Model Intercomparison Project
(C4MIP, Jones et al., 2016b) also proposes a BGC simula-
tion for the SSP5-3.4-OS (hereafter “ssp534-over”) scenario
(O’Neill et al., 2016). This scenario describes an overshoot
pathway in which emissions increase unmitigated until 2040
but strong mitigation (including CDR) is undertaken there-
after. In contrast to the 1 % CO2 simulation, where no forc-
ing other than atmospheric CO2 is varied, the quantification
of feedbacks in this scenario simulation is complicated by the
presence of land-use change and changes in radiative forcing
through the emissions of aerosols and non-CO2 greenhouse
gasses (Melnikova et al., 2021, 2022).

One open question regarding carbon cycle feedbacks un-
der negative emissions is the state against which the feed-
backs should be measured. A sensible definition requires that
any gain or loss of carbon is calculated relative to a state
where the carbon cycle is in equilibrium. Schwinger and
Tjiputra (2018) opted to keep the pre-industrial state as the
reference after the onset of negative emissions. We follow
this approach here, but we note that Chimuka et al. (2023)
recently proposed an alternative approach which defines the
feedbacks during the negative emission phase relative to the
state at the onset of negative emissions. Since the Earth
system will be in disequilibrium at this point in time, this
approach requires an additional simulation that allows the
lagged response of the Earth system to this disequilibrium
to be estimated and removed.
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Permafrost soils in the northern high latitudes have ac-
cumulated roughly 1100–1700 Pg of carbon in the form of
frozen organic matter – about twice as much as currently con-
tained in the atmosphere (Hugelius et al., 2014; Schuur et al.,
2015). The release of CO2 and methane (CH4) from thaw-
ing permafrost will amplify global warming due to anthro-
pogenic emissions and further accelerate permafrost degra-
dation and microbial decomposition (Feng et al., 2020; Smith
et al., 2022). This positive feedback and the fact that Arctic
temperatures are increasing at a much faster rate than the
global average (Liang et al., 2022; Rantanen et al., 2022)
have caused permafrost to be considered among the key tip-
ping elements of the climate system, although permafrost
degradation may not be an abrupt (albeit irreversible) pro-
cess (Armstrong McKay et al., 2022; Yokohata et al., 2020;
Lenton et al., 2019). A temporary temperature overshoot
might entail important legacy effects, as high-latitude ecosys-
tems and the state of permafrost-affected soils take several
centuries to adjust to the new atmospheric conditions (de
Vrese and Brovkin, 2021). Current-generation ESMs are still
in their infancy when it comes to representing the complex
and often small-scale processes of permafrost carbon degra-
dation. Here we take advantage of the fact that one of the
CMIP6 ESMs considered in this study has a vertically re-
solved representation of soil carbon, which enables us to es-
timate the contribution of permafrost degradation to the total
carbon–climate feedback for this model.

Except for the recent studies by Schwinger and Tjipu-
tra (2018), Melnikova et al. (2021, 2022), and Chimuka et
al. (2023), all previous studies that quantify the carbon–
concentration and carbon–climate feedbacks are based on
ESM simulations with increasing atmospheric CO2. Here,
we take advantage of a simulation conducted for the CMIP6
Carbon Dioxide Removal Model Intercomparison Project
(CDRMIP, Keller et al., 2018) that mirrors the 1 % CO2
simulation by prescribing a decrease in atmospheric CO2 of
1 % yr−1. For simplicity, we refer to these two simulations
as “1pctCO2-cdr” in the following text. We complement
this simulation with a BGC simulation (1pctCO2-cdr-bgc)
to quantify, in a manner consistent with previous feedback
studies (Arora et al., 2013, 2020), the carbon–concentration
and carbon–climate feedbacks under negative emissions in
an ensemble of CMIP6 ESMs. We complement these previ-
ous studies with a spatial analysis of feedback patterns, and
we compare the feedbacks from the positive and negative
emission phases of the 1pctCO2-cdr simulation to the feed-
backs obtained from the ssp534-over scenario. For the latter,
land-use change has been shown to have a dominant effect
over the carbon–concentration or carbon–climate feedbacks
by Melnikova et al. (2021, 2022), and these authors present
a more detailed analysis of the role of land-use change in the
ssp534-over scenario. Since land-use change is not a feed-
back process, we focus in this study on regions that are not
dominated by agricultural areas when comparing feedbacks
between the ssp534-over and 1pctCO2-cdr simulations.

The purpose of this study is to investigate the evolution of
carbon cycle feedbacks and their uncertainty under the de-
ployment of negative emissions. Since feedback metrics are
known to depend on the emission (or concentration) pathway,
we compare the relative feedback strength and the spatial pat-
terns of feedbacks between positive and negative emission
phases as well as between idealized and scenario simulations.
We also briefly explore the contribution of permafrost car-
bon losses to the carbon–climate feedback and the impact of
alternative feedback metric definitions that rely on instanta-
neous carbon fluxes rather than carbon stocks in the context
of negative emissions.

2 Description of feedback metrics, simulations, and
models

2.1 Carbon cycle feedback metrics

The sensitivity of the carbon cycle to changes in atmospheric
CO2 concentration ([CO2]) and its sensitivity to changes
in physical climate can be measured using two feedback
metrics, which can be based on either changes in carbon
stocks (as introduced by Friedlingstein et al., 2003) or in-
stantaneous carbon fluxes (as introduced by Boer and Arora,
2009). Changes in carbon stocks are equivalent to the time-
integrated carbon fluxes across the air–land and air–sea in-
terfaces, such that, for the approach used by Friedlingstein et
al. (2003) (referred to as the integrated flux-based approach),
the two feedback metrics are as follows:

1. β (PgC ppm−1), which quantifies the strength of the
carbon–concentration feedback, i.e., the changes in
oceanic and terrestrial carbon stocks (1CL,O) in re-
sponse to changes in the atmospheric CO2 concentra-
tion (1[CO2]), and

2. γ (PgC ◦C−1), which measures the strength of the
carbon–climate feedback, i.e., the changes in land and
ocean carbon stocks (1CL,O) in response to changes
in the global average surface temperature (1T ), where
1T serves as a proxy for climate change.

Carbon feedback analysis requires, in addition to a standard
fully coupled (COU) simulation, a biogeochemically (BGC)
coupled simulation. In a BGC simulation, atmospheric [CO2]
is kept constant at its pre-industrial values for the radiative
transfer calculations to isolate the response of land and ocean
biogeochemistry to rising [CO2] in the absence of CO2-
induced climate change. Using this pair of simulations (COU
and BGC) results in the following expressions for β and γ
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(see Schwinger et al., 2014 for a derivation):

βX =
1

1[CO2]

(
1CBGC

X 1T COU
−1CCOU

X 1T BGC

1T COU−1T BGC

)

'
1CBGC

X

1[CO2]
(1)

γX =
1CCOU

X −1CBGC
X

1T COU−1T BGC '
1CCOU

X −1CBGC
X

1T COU , (2)

where X can be either L for land or O for ocean. Although
there is no change in the radiative forcing of CO2 in the BGC
simulation (such that we could expect 1T BGC

= 0), the sur-
face temperature can vary due to changes in other radiative
forcing agents (aerosols and non-CO2 greenhouse gasses).
Even in the idealized 1pctCO2-cdr simulation, where CO2
is the only variable forcing, there are some climatic changes
over the land surface due to a reduction in latent heat fluxes
associated with stomatal closure at higher CO2 levels, as well
as changes in vegetation structure, coverage, and composi-
tion (Arora et al., 2020), which result in a small temperature
increase along with changes in precipitation and soil mois-
ture. The assumption of 1T BGC

= 0 will simplify Eqs. (1)
and (2) such that the rightmost term holds. However, the re-
sults presented here are calculated using the complete ex-
pressions for β and γ (without the assumption 1T BGC

= 0)
unless otherwise noted. For comparison, we also provide
feedback factors calculated using the simplified (rightmost)
definitions of β and γ in some figures. The instantaneous
flux-based approach is equivalent to Eqs. (1) and (2) except
that the deviations of the carbon pools 1CX are replaced by
the instantaneous air–sea or air–land carbon fluxes FX. To
distinguish these feedback metrics from the integrated flux-
based ones, the capital Greek letters B and 0 are used to
denote them. The units of B and 0 are PgCyr−1ppm−1 and
PgCyr−1 ◦C−1, respectively.

By combining Eqs. (1) and (2) to yield

βX =
1

1[CO2]

(
1CBGC

X − γX1T
BGC

)
, (3)

it can be seen that, in order to calculate βX, the carbon stock
changes in the biogeochemically coupled simulation are cor-
rected for global mean temperature changes using γX. Hence,
temperature changes in the biogechemically coupled simula-
tion are fully accounted for as long as the underlying assump-
tion of linearity holds. However, this assumption might be
problematic, for example, if the spatial pattern of warming in
a biogeochemically coupled scenario simulation arising from
non-CO2 forcings is very different from the warming patterns
in the fully coupled simulation, particularly if the sign of the
local temperature change is different from the global average
(e.g., local cooling vs. global average warming). Such effects
could become important at regional to local scales and will
be discussed in Sect. 3.4.

It is worth mentioning that these feedback frameworks
should be seen as a technique for assessing the relative sensi-
tivities of models and understanding their differences (i.e.,
the model uncertainty of the estimated feedbacks), rather
than as absolute measures of invariant system properties
(Gregory et al., 2009; Ciais et al., 2013). The values of carbon
cycle feedback metrics can vary over time within a model
simulation (e.g., Arora et al., 2013) or between different sce-
narios (Hajima et al., 2014).

To gain insight into the reasons for differing responses
among models, we apply the decomposition of the simplified
expression for βL (Eq. 1, assuming 1T BGC

= 0) following
Arora et al. (2020). This allows us to investigate the contri-
butions from different processes to changes in vegetation and
soil carbon reservoirs (1CV and 1CS, respectively):

βL =
1CBGC

L
[CO2]

=
1CBGC

V +1CBGC
S

[CO2]

=

(
1CBGC

V

1NPPBGC
1NPPBGC

1GPPBGC
1GPPBGC

[CO2]

)

+

(
1CBGC

S

1RBGC
h

1RBGC
h

1LFBGC
1LFBGC

[CO2]

)

=τcveg1CUE1
1GPPBGC

[CO2]

+τcsoil1
1RBGC

h

1LFBGC
1LFBGC

[CO2]
. (4)

1NPP, 1GPP, 1Rh, and 1LF represent the deviations of
the net primary productivity, gross primary productivity, het-
erotrophic respiration, and litterfall flux, respectively, from
their pre-industrial values. The terms τ cveg1and τ csoil1 are
the turnover times (in years) of carbon in the vegetation and
litter plus soil pools. 1NPP

1GPP is a measure of carbon use effi-
ciency for the fraction of GPP (above its pre-industrial value)
that turned into NPP after subtracting autotrophic respiration
losses (denoted as CUE1). 1GPP

[CO2]
(PgC yr−1 ppm−1) and 1Rh

1LF
are a measure of the global CO2 fertilization effect and the
increase in heterotrophic respiration per unit increase in lit-
terfall rate, respectively. Also, 1LF

[CO2]
(PgC yr−1 ppm−1)mea-

sures the global increase in litterfall rate per unit increase in
CO2.

2.2 Model simulations

The 1 % CO2 experiment is a highly idealized model exper-
iment that prescribes a rate of increase in [CO2] of 1 % yr−1

from pre-industrial values until the concentration has quadru-
pled after 140 years. No other forcings are varied in this
experiment, i.e., land use as well as non-CO2 greenhouse
gasses and aerosol concentrations are held constant at their
pre-industrial levels. This experiment was performed us-
ing the first coupled atmosphere–ocean general circulation
models in the late 1980s, and important climate metrics
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such as the transient climate response (TCR; Meehl et al.,
2020) and the transient response to cumulative emissions
(TCRE; e.g., Gillett et al., 2013) are formally defined through
the 1pctCO2 simulation. Likewise, the C4MIP carbon cycle
feedback analysis for the last two phases of CMIP (Arora
et al., 2013, 2020) relied on this simulation. Given the im-
portance of the 1 % CO2 experiment, the CMIP6 CDRMIP
protocol proposes an experiment that mirrors this simula-
tion by starting from its endpoint at year 140 and decreas-
ing the atmospheric CO2 at a rate of 1 % yr−1 until the pre-
industrial [CO2] is restored. This experiment is designed to
investigate the response of the Earth system to carbon diox-
ide removal in an idealized fashion. As noted above, in this
study we refer to the 1 % CO2 simulation and the mirrored
−1 % CO2 CDRMIP simulation collectively as 1pctCO2-cdr
for simplicity. We note that the implied rates of CDR in the
1pctCO2-cdr simulation are huge and not practically feasi-
ble. Also, there is a jump from very large positive to very
large negative diagnosed emissions at the end of year 140,
which is clearly unrealistic. To investigate carbon cycle feed-
backs under CDR, we have complemented the 1pctCO2-cdr
simulation with a biogeochemical coupled 1pctCO2-cdr-bgc
simulation that starts from the endpoint of the 1pctCO2-bgc
simulation at year 140.

The family of shared socioeconomic pathways (SSPs,
O’Neill et al., 2014) are designed to represent different
socio-economic futures that social, demographic, political,
and economic developments could lead to. These narrative
SSPs are the basis for a set of quantitative future scenarios,
a selection of which are now being used as input for sce-
nario simulations by the latest ESMs in the framework of
the CMIP6 ScenarioMIP (O’Neill et al., 2016). The ssp534-
over scenario follows the high-emission SSP5-8.5 pathway
until 2040, at which point strong mitigation policies are in-
troduced to rapidly reduce emissions to zero by about 2070
and to net-negative levels thereafter (Fig. 3 of O’Neill et al.,
2016). In contrast to the 1pctCO2-cdr simulation, the ssp534-
over scenario includes land-use change as well as tempo-
rally varying forcing from aerosols and non-CO2 greenhouse
gasses throughout the simulation period (Fig. 1 of Liddicoat
et al., 2021). For this study, we use the 1pctCO2-cdr and
ssp534-over simulations from the CMIP6 archive together
with the corresponding biogeochemically coupled simula-
tions of these experiments. We note that the biogeochem-
ically coupled 1pctCO2-cdr-bgc experiment is not part of
CMIP6, but it is performed for this study by participating
modeling groups.

The C4MIP simulation protocol does not allow us to sep-
arate carbon release (or uptake) through land-use changes
from the carbon–concentration feedback, since land use is
active in the biogeochemically coupled ssp534-over simula-
tion. To focus on carbon cycle feedbacks, we eliminate the
effect of land-use changes as much as possible by identi-
fying regions that are mostly unaffected by human activ-
ity (referred to as “natural land”). To accomplish this in a

way that the available CMIP6 output permits, we define nat-
ural land as grid cells with a maximum cropland fraction
of less than 25 % at all time steps during the period 2015–
2100. The threshold of 25 % used here for our heuristic ap-
proach is a compromise between accuracy (some signal of
land-use change is still present) and spatial coverage (with
increasingly lower thresholds, larger areas of the globe are
excluded). Our results are not very sensitive to variations in
the threshold between approximately 10 % and 30 %. Maps
of maximum ssp534-over cropland fraction for each model
(Fig. S1 in the Supplement) indicate that a 25 % thresh-
old identifies hotspots of agricultural production reasonably
well. To make our analysis comparable between the ssp534-
over and 1pctCO2-cdr simulations, we also use the same set
of grid cells for the 1pctCO2-cdr simulation (unless other-
wise noted), even though land cover is not changed from its
pre-industrial state in this simulation. We acknowledge that
our approach does not explicitly address pasture grid cells
or transitions from other land-use types to pasture. Nonethe-
less, in the ssp534-over scenario, a substantial expansion of
bioenergy crops between 2040 and 2070 is assumed to re-
place pasture areas, while the area of land used as pasture
remains relatively stable thereafter (see O’Neill et al., 2016).
Hence, our approach, for this specific scenario, captures the
majority of grid cells with transitions from pasture to crop-
land, while transitions from pasture to forest remain small.

2.3 Participating Earth system models

Table 1 summarizes the five ESMs that contributed to this
study along with the experiments used for the analyses pre-
sented here. The primary features of these models are listed
in Table 2 of Arora et al. (2020). MIROC-ES2L, NorESM2-
LM (which employs version 5 of the Community Land
Model, CLM5), and UKESM1-0-LL have a representation
of the terrestrial nitrogen cycle implemented and coupled
to their carbon cycle. Only the UKESM1-0-LL model has a
land component that dynamically simulates vegetation cover
and competition between their plant functional types (PFTs).
Fire is included in the CNRM-ESM2-1 and NorESM2-LM
models. NorESM2-LM is the only ESM with vertically re-
solved soil carbon, which allows the impact of warming on
the carbon stored in permafrost soils to be studied in more
detail. In this study, a grid cell was considered permafrost
when the pre-industrial maximum active layer thickness was
shallower than 3 m. A description and a comparison of the
ocean biogeochemistry models used in the five ESMs can be
found in the review by Seférian et al. (2020).

3 Results and discussion

3.1 Atmospheric CO2, temperature, and carbon fluxes

The atmospheric CO2 concentration ([CO2]) for the
concentration-driven ssp534-over scenario peaks at 571 ppm

https://doi.org/10.5194/bg-21-411-2024 Biogeosciences, 21, 411–435, 2024
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Table 1. List of the CMIP6 ESMs used in this study, the names of their biogeochemical component models, their resolutions, and the
experimental variants used.

CanESM5 CNRM-ESM2-1 MIROC-ES2L NorESM2-LM UKESM1-0-LL

Atmosphere and
land resolution

2.81◦× 2.81◦ 1.4◦× 1.4◦ 2.81◦× 2.81◦ 1.9◦× 2.5◦ 1.875◦× 1.25◦

Variant∗ r1i1p1f1 & r1i1p2f1 r1i1p1f2 r1i1p1f2 r1i1p1f1 r4i1p1f2 & r1i1p1f2

Ocean resolution 1◦(finer in the tropics) 1◦(finer in the tropics) 1◦(finer close to the
North Pole and Equa-
tor)

1◦(finer near the
Equator)

1◦

Ocean
biogeochemistry
model name

CMOC (biology); car-
bonate chemistry fol-
lows OMIP protocol

PISCESv2-gas OECO2 iHAMOCC MEDUSA-2.1

Land model
name

CLASS-CTEM ISBA–CTRIP MATSIRO (physics),
VISIT-e (BGC)

CLM5 JULES-ES-1.0

Reference Swart et al. (2019) Séférian et al. (2019) Hajima et al. (2020) Tjiputra et al. (2020);
Seland et al. (2020)

Sellar et al. (2019)

∗ The CMIP6 experiment variant used across different simulations, including the piControl, historical, hist-bgc, ssp585, ssp585-bgc, ssp534-over, ssp534-over-bgc, 1pctCO2, 1pctCO2-bgc,
1pctCO2-cdr, and 1pctCO2-cdr-bgc experiments.

(a doubling of the pre-industrial CO2 concentration) in the
year 2062 and decreases to 497 ppm in 2100 (Fig. 1a). Ac-
cording to the scenario design (see O’Neill et al., 2016),
strong mitigation policies (including the deployment of
bioenergy with carbon capture and storage (BECCS) and
other carbon dioxide removal technologies) start in 2040, re-
sulting in an immediate decrease in the CO2 growth rate,
which peaks in 2041 (Fig. 1e). In the 1pctCO2-cdr simula-
tion, the prescribed [CO2] is symmetric around its 4×CO2
peak of 1133 ppm in the year 140 (Fig. 1c). The rate of
change in the CO2 concentration (Fig. 1e) greatly differs
between the ssp534-over and 1pctCO2-cdr experiments. In
particular, the CO2 growth rate in the idealized 1pctCO2-
cdr experiment shows a sudden and large jump from positive
to negative values at the transition from the ramp-up to the
ramp-down phase.

The five participating ESMs show large differences in
global mean surface air temperature change relative to pre-
industrial values in the ssp534-over simulation (Fig. 1b).
Peak temperatures vary from 2 ◦C in NorESM2-LM to
4.35 ◦C in CanESM5. The timing of the global surface air
temperature peak varies from 2062 for the MIROC-ES2L
and UKESM1-0-LL models to 2100 for CNRM-ESM2-1.
After this peak, the temperature declines again (except for
CNRM-ESM2-1), reaching end-of-the-century values that
range from 1.39 ◦C above pre-industrial in NorESM2-LM to
3.47 ◦C in CanESM5. The multi-model mean global surface
air temperature is 2.66 ◦C at the end of the 21st century. The
model-mean growth rate of the global surface air tempera-
ture (Fig. 1f) plateaus at about 0.05 ◦C yr−1 between approx-

imately 2030–2050 before it starts to decline to below zero
towards the end of the simulation.

Temperature changes in the BGC simulation of ssp534-
over are not negligible since the non-CO2 forcing agents
as well as land-use change do evolve over time in this sce-
nario, in contrast to the idealized 1pctCO2-cdr simulation.
Positive peak temperature anomalies range from 0.37 ◦C
(CNRM-ESM2-1 in 2098) to 1.29 ◦C (CanESM5 in 2057).
UKESM1-0-LL also shows a pronounced negative tempera-
ture anomaly during the historical period of the BGC simu-
lation of −0.80 ◦C in the year 1990.

In the 1pctCO2-cdr simulation, the peak temperature
anomalies vary from 3.57 ◦C (in year 144) in NorESM2-
LM to 6.84 ◦C (in year 151) in CanESM5 (Fig. 1d). There-
after, temperature anomalies decline to values ranging from
0.29 ◦C in NorESM2-LM to 2.2 ◦C in UKESM1-0-LL at
the end of the ramp-down period (year 280). The 1pctCO2-
cdr BGC simulation shows, compared to the ssp534-over
BGC simulation, smaller temperature anomalies ranging
from −0.22 ◦C (CNRM-ESM2-1 in year 149) to 0.79 ◦C
(UKESM1-0-LL in year 207). The relatively large magnitude
of the temperature anomaly in the ssp534-over-bgc simula-
tion (peak warming of 12 %–29 % of the peak warming in the
fully coupled simulation) suggests that warming due to non-
CO2 forcings might contribute substantially to the carbon–
climate feedback in the ssp534-over scenario.

For atmosphere–land fluxes, our analysis is complicated
by the fact that land-use changes are present in the ssp534-
over scenario. Here, we focus on comparing fluxes and feed-
backs for grid cells that are dominated by “natural land” (see
Sect. 2.2 for more details). Note that, for comparability, we
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Figure 1. Atmospheric CO2 concentration and surface air tempera-
ture changes in the fully coupled (solid lines) and biogeochemically
coupled (dashed lines) configurations of the ssp534-over (a, b) and
1pctCO2-cdr (c, d) experiments. The rates of change in the pre-
scribed atmospheric CO2 concentrations are shown in (e), and the
model mean rate of surface temperature change from the fully cou-
pled simulations is shown in (f). The dotted vertical lines in (e) and
(f) indicate the year of the peak of the CO2 growth rate in the
ssp534-over scenario. The solid vertical line in (f) indicates the year
of the peak of the CO2 concentration in the ssp534-over scenario.
An 11-year moving average has been used in (b, d, f).

consider the same set of grid cells in the 1pctCO2-cdr simu-
lation, even though land cover stays at its pre-industrial state
in this simulation. In the ssp534-over simulations, the model-
mean annual CO2 fluxes (Fig. 2) continue rising until the rate
of change in [CO2] reaches its peak in 2041. After the peak,
atmosphere–land and atmosphere–ocean fluxes start to de-
cline rapidly in all models with little time lag. UKESM1-
0-LL and MIROC-ES2L simulate negative fluxes (i.e., nat-
ural land turns into a carbon source) before the end of the
21st century in the COU simulation (Fig. 2a). Without the
effect of CO2-induced warming (BGC simulation, Fig. 2b),
only MIROC-ES2L shows a significant carbon source from
the terrestrial biosphere before 2100, while the model-mean
still shows a sink. In the fully coupled 1pctCO2-cdr experi-

ment, the sink-to-source transition of the terrestrial biosphere
occurs around year 165 in the model mean, 25 years after
the rate of change in [CO2] peaks (Fig. 2c). Consistent with
what is seen in the biogeochemically coupled ssp534-over,
the sink-to-source transition occurs 10 years later without
the effect of warming in the 1pctCO2-cdr-bgc experiment.
However, the terrestrial CO2 source at the end of the biogeo-
chemically coupled 1pctCO2-cdr simulation is larger than in
the fully coupled simulation. We also observe that models
which take up more (less) terrestrial carbon during the CO2
ramp-up phase release more (less) carbon towards the end
of the CO2 ramp-down phase (1pctCO2-cdr-bgc; Fig. 2c, d),
indicating that these models have a larger (smaller) sensitiv-
ity (1CL/1CO2) to both increases and decreases in atmo-
spheric CO2. We therefore interpret the increased source of
carbon at the end of the 1pctCO2-bgc simulation as a release
of additional carbon that has been taken up in the absence of
climate warming during the biogeochemically coupled sim-
ulation. The net negative emission phase of the ssp534-over
scenario is too short to show this effect in 2100 (when the
warming effect still reduces the model mean terrestrial car-
bon sink).

Likewise, the warming of the world’s oceans in both sim-
ulations tends to reduce the carbon uptake or increase the
oceanic carbon source. The model spread for atmosphere–
ocean carbon fluxes (Fig. 2e–h) appears to be much smaller
than for the atmosphere–land fluxes. In the ssp534-over sim-
ulation, the ocean remains a sink of carbon in all models until
the end of the simulation in 2100. In the 1pctCO2-cdr simula-
tion, the ocean turns into a source of CO2 for the atmosphere
around year 175, and this transition is delayed by 7 years in
the BGC simulation without warming.

3.2 Global mean carbon cycle feedbacks

3.2.1 Ocean

In the BGC simulation, where the effect of the changing
atmospheric CO2 concentration on terrestrial and marine
carbon uptake (the carbon–concentration feedback) is iso-
lated, cumulative atmosphere–ocean carbon fluxes indicate
an almost linear growth with [CO2] as long as atmospheric
CO2 concentrations are increasing in both ssp534-over and
1pctCO2-cdr simulations (Fig. 3a–c). When [CO2] starts to
decline, the atmosphere–ocean carbon flux in the 1pctCO2-
cdr simulation shows pronounced hysteresis with a contin-
ued ocean carbon uptake (until the [CO2] anomaly has been
reduced to roughly 500 ppm) before it starts to decrease to-
wards the end of the ramp-down phase (Fig. 3b). In the
ssp534-over-bgc simulation, where the onset of net negative
emissions is more gradual, the relationship between cumu-
lative atmosphere–ocean fluxes and [CO2] during the phase
of declining atmospheric CO2 concentration also shows hys-
teresis; however, due to the relatively short period of net-
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Figure 2. Time series of annual mean natural atmosphere–land (a–d) and atmosphere–ocean (e–h) carbon fluxes for the fully and biogeo-
chemically coupled ssp534-over and 1pctCO2-cdr experiments as indicated in the panel titles. The dotted vertical lines indicate where the
[CO2] growth rate peaks in each experiment. An 11-year moving average has been used in all panels.

negative emissions, the ocean remains a sink of carbon in
all models until the end of the simulation.

Differences in the cumulative atmosphere–ocean CO2 flux
between the COU and the BGC simulations versus surface
temperature changes (carbon–climate feedback) are shown
in Fig. 3d–f. Increasing the temperature results in less car-
bon uptake by the ocean, except for CNRM-ESM2-1, which
simulates slightly more uptake in the first half of the warm-
ing period under ssp534-over. During the negative emission
phases of the simulations when the air surface temperature is
decreasing, the carbon–climate feedback still decreases the
ocean carbon content, albeit at reduced rates. Even when
pre-industrial CO2 concentrations are restored at the end of
the 1pctCO2-cdr simulation, all models agree that the ocean
is still losing carbon due to the effect of (legacy) warm-
ing (Fig. 3e). The use of the global average ocean poten-
tial temperature (averaged over the full ocean depth) instead
of the surface air temperature as a proxy for oceanic cli-
mate change, as proposed by Schwinger and Tjiputra (2018),
gives a much more linear relationship between changes in the
ocean carbon stock and changes in temperature in the major-
ity of the models (Fig. 3g–i). At the end of the ssp534-over
and 1pctCO2-cdr simulations, the ocean still holds a large
part of the carbon taken up from the atmosphere since pre-

industrial times, between roughly 300–400 PgC in 1pctCO2-
cdr and around 350 PgC in ssp534-over (Fig. S2).

Generally, the ocean carbon–concentration feedback (as
indicated by the cumulative carbon uptake per unit increase
of CO2 concentration, Fig. 3a–c) is larger in the ssp534-
over scenario, which can most likely be explained by the
slower growth rate of [CO2] in this scenario compared to the
1pctCO2-cdr simulation (Fig. 3c). For slower growth rates,
the ocean has more time to mix and partly transport the ad-
sorbed anthropogenic carbon away from the ocean surface to
the interior, increasing the capacity for more uptake. A larger
carbon uptake at slower CO2 growth rates has already been
reported by Gregory et al. (2009) and Hajima et al. (2014),
although only for combined land and ocean fluxes or land
fluxes only. The ocean carbon–climate feedback, in contrast,
is slightly smaller in the ssp534-over scenario, i.e., the car-
bon loss for a given warming is smaller.

3.2.2 Land

For grid cells representing natural land, the response of the
cumulative terrestrial carbon flux to changes in [CO2] and
surface temperature (Fig. 4) is qualitatively similar to the re-
sponse of the atmosphere–ocean fluxes. In both ssp534-over
and 1pctCO2-cdr simulations, a roughly linear relationship
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Figure 3. Ocean carbon cycle feedbacks in the ssp534-over (a, d, g) and 1pctCO2-cdr (b, e, h) simulations for individual models. The model
means for both simulations are shown in (c, f, i). The global mean ocean potential temperature is used on the x axes of (g–i). An 11-year
moving average has been used in all panels.

can be seen between the carbon flux change and the changes
in both [CO2] and surface air temperature during positive
emission phases. An exception is the carbon–climate feed-
back of the CanESM5 model, which is about zero up to
4◦ of warming and becomes positive for higher temperature
increases. This unique behavior is caused by CanESM5’s
high climate sensitivity combined with a larger carbon use
efficiency amongst CMIP6 models (as shown later), which
causes high-latitude vegetation to take up large amounts of
carbon in response to warming. This more than compen-
sates for the carbon loss elsewhere that is associated with cli-
mate warming. During negative emission phases, both feed-

backs show considerable hysteretic behavior, just as for the
ocean (see also below). It is worth mentioning that, unlike
for the ocean, the COU-BGC accumulated atmosphere–land
flux starts to increase, albeit with a lag, in response to cooling
during the negative emissions phase in most models (Figs. 3e
and 4e).

The carbon–concentration feedback (as indicated by the
cumulative carbon uptake per unit increase of CO2 con-
centration) is slightly smaller for the ssp534-over scenario
compared to the 1pctCO2-cdr experiment (see Fig. 4c), but
this difference might be attributed to the remaining influ-
ence of land-use changes. This is because, for “cropland grid
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Figure 4. Terrestrial carbon cycle feedbacks in the ssp534-over (a, d) and 1pctCO2-cdr (b, e) simulations for grid cells that are dominated
by “natural land” (less than a maximum crop fraction of 25 % over the period 2015–2100 in ssp534-over). Note that we consider the same
grid cells in the 1pctCO2-cdr simulation, even though land use stays at the pre-industrial state. The model means for both simulations are
shown in (c, f). An 11-year moving average has been used in all panels.

cells” (with a maximum crop fraction of more than 25 % in
the ssp534-over scenario), the cumulative carbon fluxes are
markedly smaller in the ssp534-over scenario compared to
the 1pctCO2-cdr simulation (compare panel c in Fig. S3 to
panel c in Fig. 4). This indicates that the prescribed land-
use change in the SSP scenario is the driver behind the small
(negative for NorESM2-LM and UKESM1-0-LL) carbon ac-
cumulation for cropland grid cells, which is consistent with
Melnikova et al. (2022), who demonstrate that carbon losses
from land-use changes dominate over gains through CO2 fer-
tilization in crop-dominated areas (see their Fig. 4a, c). Since
grid cells that are dominated by natural land may contain up
to 25 % croplands in our separation approach, we expect a
reduction in cumulative carbon fluxes due to the remaining
land use (changes) in the natural land grid cells. We note that
land-use change is externally prescribed rather than a feed-
back process in our simulations. It is only due to the sim-
ulation design used here (see Sect. 2.2 for details) that the
carbon release (or uptake) due to land-use change modifies
the net atmosphere–land CO2 flux, which is then seen as a
carbon–concentration feedback in the ssp534-over-bgc sim-
ulation.

The model-mean carbon–climate feedback for natural land
is very similar for the ssp534-over and 1pctCO2-cdr simula-

tions during the positive emission phases but deviates there-
after due to hysteresis behavior (Fig. 4f). Interestingly, in
contrast to the carbon–concentration feedback, the model-
mean carbon–climate feedback for cropland and natural land
remains very similar for the ssp534-over and 1pctCO2-cdr
simulations (Fig. S3f). This is likely due to the similar re-
sponse of the soil carbon to changes in surface air tempera-
ture.

3.2.3 Hysteresis

For the 1pctCO2-cdr simulation, hysteresis can be defined
as the difference in, for example, cumulative carbon uptake
during the ramp-up and the ramp-down periods at the same
level of atmospheric CO2 concentration. Here, to quantify the
hysteresis, we choose the years 70 and 210, which represent
states where the atmospheric CO2 has doubled to 570 ppm
and has returned to this value after the overshoot, respec-
tively. We define hysteresis as the cumulative carbon uptake
in year 210 minus the cumulative carbon uptake in year 70
(i.e., the hysteresis is positive if the cumulative carbon uptake
is larger on the ramp-down side of the 1pctCO2-cdr simu-
lation). We refrain from quantifying the hysteresis for the
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ssp534-over scenario because of the relatively short period
of declining [CO2].

The model-mean hysteresis in the carbon–concentration
feedback is 443± 29 PgC (the model uncertainty measured
as one standard deviation) for the ocean and 524± 205 PgC
for natural land, which are both larger than the feedback at
year 70 itself. Although the hysteresis of the ocean carbon–
concentration feedback is smaller than the terrestrial feed-
back in absolute terms, it is larger in relative terms (179 % of
the accumulated carbon uptake at year 70 for the ocean ver-
sus 168 % for the land). In general, the hysteresis seems to be
related to the magnitude of the carbon–concentration feed-
back, since models with a large (small) carbon uptake at year
140 tend to show a large (small) hysteresis at year 210 for
both ocean and land. However, towards the end of the ramp-
down period, this relationship breaks down for CanESM5
and MIROC-ES2L, particularly over land.

For the carbon–climate feedback, the hysteresis in climate-
induced carbon loss or gain (the difference between COU-
BGC evaluated at year 70 and COU-BGC evaluated at year
210) is −102± 22 and −158± 181 PgC for ocean and nat-
ural land, respectively. Just as for the carbon–concentration
effect, a relationship between the magnitude of carbon loss
or gain at year 140 and the hysteresis is found. Models with
a large (small) climate-induced loss of carbon tend to have a
large (small) hysteresis.

For the ocean carbon cycle, hysteresis in the carbon–
concentration feedback occurs mainly due to the long
timescales of ocean overturning circulations. Schwinger and
Tjiputra (2018) have shown that the hysteresis strongly in-
creases with water mass age. Young waters, which reside
close to the ocean surface, exchange quickly with the at-
mosphere and show little hysteresis, whereas the responses
of old, deep ocean water masses to declining atmospheric
CO2 will be delayed and thus show considerable hystere-
sis. Over land, both the vegetation and soil carbon pools
show a lagged response to decreasing CO2 due to the fact
that transient changes in [CO2] lead to a long-term dise-
quilibrium between the CO2 fertilization effect, vegetation
biomass, litterfall, and soil carbon (e.g., Krause et al., 2020).
Therefore, despite declining [CO2] levels at the beginning
of the ramp-down phase, there is still an increase in vege-
tation biomass due to CO2 fertilization and consequently an
increase in soil carbon due to the still-increasing litterfall.
Warming-induced hysteresis appears to be larger for soil car-
bon in most models. Similar to the large warming-induced
hysteresis (e.g., Schwinger and Tjiputra, 2018; Schwinger
et al., 2022; Santana-Falcón et al., 2023) in the ocean, this
is caused by the fact that even though warming levels start
to decline shortly after the onset of the ramp-down phase,
environmental conditions remain warmer than in the pre-
industrial period over the whole duration of the ramp-down
simulation.

3.3 Carbon cycle feedback metrics

3.3.1 Model-mean global land and ocean responses

We now discuss the model-mean time evolutions of the feed-
back metrics β and γ (Eqs. 1 and 2) derived from the
1pctCO2-cdr and ssp534-over simulations. In the ssp534-
over scenario (Fig. 5a), the model-mean feedback metric βL
increases monotonically from about 0.7 to 1.9 PgC ppm−1

during the period 2000–2100. Over the ocean, βO in the
ssp534-over scenario decreases slightly until the mid-21st
century and then rises to about 1.7 PgC ppm−1. Due to the
much larger spread in carbon fluxes over land (Fig. 2), the
resulting model spreads for βL and γL are also much larger
than those for βO and γO, respectively.

For the 1pctCO2-cdr simulation, β initially increases and
then decreases slightly with increasing [CO2] during the
ramp-up phase over both land and ocean (Fig. 5b), consistent
with the results of Arora et al. (2013) for the same experi-
ment but using CMIP5 ESMs. In contrast, during the ramp-
down phase of the 1pctCO2-cdr experiment, β reaches very
high values over both land and ocean (Fig. 5c). This is be-
cause, during the carbon removal phase of the 1pctCO2-cdr
experiment, there is a much larger amount of accumulated
ocean and terrestrial carbon for the same atmospheric CO2
concentration due to the large hysteresis seen in Figs. 3 and
4. Eventually, while [CO2] approaches pre-industrial values
(i.e., 1[CO2] reaches zero), changes in cumulative fluxes
(i.e., carbon stocks) relative to their pre-industrial values re-
main positive, making β ill-defined towards the end of the
1pctCO2-cdr ramp-down. For the same reason, increases in
βL and βO are also seen in the ssp534-over scenario after the
CO2 concentration peak in 2062.

The model-mean feedback factor γ is negative, as the im-
pact of climate change generally reduces the carbon stocks of
the land and the ocean. In both the ssp534-over and 1pctCO2-
cdr experiments, the carbon–climate feedback increases over
time (γ becomes more negative; Fig. 5d and e), similar to
Fig. 6 of Arora et al. (2013). The carbon–climate feedback
is generally much smaller for the ocean than for land, and
the model uncertainty for γO is only a small fraction of γL.
Note that the same globally averaged surface air temperature
anomaly is used for the calculation of both γO and γL (Eq. 2).
As noted above, the CanESM5 model simulates a globally in-
creasing land uptake due to climate change towards the end
of the 1pctCO2-cdr simulation (Fig. 4e), resulting in a pos-
itive γL for this model. During the ramp-down phase of the
1pctCO2-cdr experiment (Fig. 5f), γ reaches very large nega-
tive values. Similar to β, this is caused by the large hysteresis
of the climate change impact on the cumulative carbon stock
while the surface temperature change becomes small (see
Eq. 2). The assumption of 1T BGC

= 0 generally works well
except for γL in the ssp534-over scenario, where non-CO2
forcings make a significant contribution to 1T BGC (dashed
curves in Fig. 5d).
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Figure 5. Model-mean feedback metrics β (a–c) and γ (d–f) in the ssp534-over and 1pctCO2-cdr experiments for natural land and ocean.
Panels (b) and (e) show zooms of the ramp-up phases of the time series shown in (c) and (f), respectively. Shading shows the range across the
models. The dotted vertical line in (a) indicates where the [CO2] growth rate peaks in the fully coupled ssp534-over experiment. The dotted
curves in (d) indicate the model means obtained with the assumption of negligible temperature changes in the BGC simulation (Eq. 2). An
11-year moving average has been used in all panels.

The global feedback factors B and 0 for the ssp534-
over and 1pctCO2-cdr simulations are shown in Fig. S4.
These feedback metrics directly reflect the instantaneous
fluxes, not cumulative fluxes, and are therefore less influ-
enced by the history of carbon fluxes, unlike β and γ . Consis-
tent with Fig. 2, the model-mean B remains positive during
the ssp534-over simulation and during the positive emission
phase of 1pctCO2-cdr over both natural land and ocean. Only
one model indicates a negative carbon–concentration feed-
back over natural land towards the very end of the ssp534-
over simulation during its relatively short negative emis-
sion phase. B reflects the saturation of carbon sinks in the
1pctCO2-cdr simulation with time and decreases monotoni-
cally during the positive emission phase. Similar to what we
saw earlier for β, B shows large but negative values towards
the end of the 1pctCO2-cdr ramp-down phase (Fig. S4c).

An interesting difference between the γ and 0 feedback
metrics is seen towards the end of the 1pctCO2-cdr negative
emissions phase (Fig. S4f), where 0L turns positive around
year 180. This indicates that the land biosphere starts gain-
ing carbon that was previously lost due to the impacts of
climate change. In contrast, 0O remains negative, indicat-
ing that the ocean continues to lose carbon due to warmer

than pre-industrial conditions until the end of the 1pctCO2-
cdr ramp-down phase. Because they are based on cumula-
tive emissions, both γO and γL remain negative throughout
the 1pctCO2-cdr ramp down. This illustrates that the use of
a feedback metric based on time-integrated carbon fluxes
might obscure changes in important processes during net-
negative emission phases. Eventually, both approaches for
calculating feedback metrics become ill defined when the de-
viation of [CO2] or temperature from its pre-industrial value
becomes small. This implies that neither feedback metric
is suited to describing feedbacks towards the end (and be-
ginning) of a concentration-driven simulation setup where
pre-industrial concentrations are restored. We note that this
problem is connected to the choice of the reference relative
to which the feedbacks are calculated. In the approach of
Chimuka et al. (2023), where the reference is chosen to be
at the transition from positive to negative emissions, singu-
larities towards the end of the 1pctCO2-cdr simulation are
avoided.
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3.3.2 Model uncertainties and relative feedback
strength in global feedback metrics

Figure 6 shows the model spread of feedback metrics at dif-
ferent points in time for the 1pctCO2-cdr simulation and the
ssp534-over scenario (see also Table 2). The larger model-
mean values during the negative emission phases were dis-
cussed in the previous section, but Fig. 6 also shows a strong
increase in model uncertainty (measured as the standard de-
viation around the model mean; Table 2) between the ramp-
up and ramp-down phases of the 1pctCO2-cdr simulation.
For both βL and βO, there is either no (βO) or only a small
(βL) increase in model uncertainty between the years 70 and
140 of the 1pctCO2-cdr simulation, whereas the uncertainty
has increased by a factor of about 4 at year 210. This “jump”
in uncertainty in β is solely caused by differences in how
the models react to the sharp change in forcing from increas-
ing to decreasing CO2 at year 140 (see Eq. 1; note that at-
mospheric CO2 is prescribed and 1T BGC is small). Similar
behavior is seen for γO, while the increase in model uncer-
tainty is more gradual for γL, i.e., the increase between years
70 and 140 is about the same as between years 140 and 210.
There is also a consistent increase in model uncertainty in all
feedback metrics from the positive to the negative emissions
phase in the ssp534-over scenario.

The relative feedback strengths among the models re-
main relatively stable over time, between positive and nega-
tive emission phases, and between the different experiments.
Model A having stronger (weaker) feedback than model B at
one of the instances depicted in Fig. 6 indicates that model
A will have stronger (weaker) feedback than model B for the
other instances with only a few exceptions. Most of these ex-
ceptions arise because modeled feedbacks are very similar,
meaning that small changes in feedback strength can lead
to a different ranking. In a few cases, the relative feedback
strength evolves differently in different models. For exam-
ple, NorESM2-LM evolves from having a weaker than av-
erage γL in the positive emission phase of the 1pctCO2-cdr
simulation to having a stronger than average γL in the nega-
tive emission phase.

Finally, it is worth noting that while the model uncertainty
in γO is much smaller than that in γL during the ramp-up
phase of the 1pctCO2-cdr simulation (the uncertainty in γO
is only 15 % of that in γL at year 140), this situation changes
for the ramp-down phase. At year 210, the uncertainty in
the ocean carbon–climate feedback has grown much stronger
than the uncertainties in the terrestrial carbon–climate feed-
back, such that the model uncertainties in γO are 42 % of
those in γL.

3.3.3 Model differences in the terrestrial
carbon–concentration feedback

Figure 7 shows the individual components of the decompo-
sition of β (Eq. 4) separately for tropical and subtropical
(30◦ S–30◦ N) and higher (between 30◦ N/S and the poles)
latitudes during both the ramp-up and ramp-down phases
(years 70 and 210, respectively) of the 1pctCO2-cdr-bgc ex-
periment. The time periods are selected such that the atmo-
spheric CO2 concentration is the same (569 ppm, a doubling
of the pre-industrial CO2 concentration). All models con-
sistently show increases in both τcveg1 and τcsoil1 during
the ramp-down compared to the ramp-up phase since these
metrics are based on cumulative vegetation and soil carbon
(Eq. 4), which are slower than the NPP and GPP in react-
ing to decreasing [CO2]. Lower (higher) latitudes are asso-
ciated with higher τcveg1 (τcsoil1) values. Likewise, the lit-
terfall term 1LF

[CO2]
is larger during the ramp-down phase in

all models due to the lagged reaction of vegetation carbon
to the decrease in [CO2], with this effect generally being
most pronounced at low latitudes. There is also a consis-
tent but small increase in the term 1GPP

[CO2]
, which represents

the CO2 fertilization effect. This increase implicitly includes
the effect of changes (typically an increase) in standing veg-
etation biomass and leaf area index for all models, but it
also includes changes in vegetation cover as [CO2] varies for
UKESM1-0-LL, which simulates dynamic vegetation cover.
For the dimensionless fractions 1Rh

1LF and CUE1, changes
between the ramp-up and ramp-down phases are less con-
sistent between the models. For CUE1, three models show
an increase and two models show a decrease, although the
changes between the ramp-up and ramp-down phases are
generally small. For 1Rh

1LF , changes range from a 115 % in-
crease (CNRM-ESM2-1 at low latitudes) to a small decrease
(UKESM1-0-LL). It is worth noting that for four out of six
terms in Eq. (4) (τcveg1, τcsoil1, 1Rh

1LF , and 1LF
[CO2]

), the model
disagreement is significantly larger during the ramp-down
phase of the 1pctCO2-cdr simulation, indicating that changes
in these processes are responsible for the strong increase in
model uncertainty in βL between the positive and negative
emission phases pointed out in the previous section.

The decomposition applied here helps us to understand
some of the model differences visible in Fig. 4. As already
pointed out in Arora et al. (2020), the high accumulation of
terrestrial carbon by the CNRM-ESM2-1 model in the BGC
simulation (Fig. 4b) is not caused by a particularly strong
CO2 fertilization effect or CUE1 but rather by relatively
high values of τcveg1 and τcsoil1, indicating long residence
timescales in vegetation and soil. Likewise, CanESM5’s
higher than average atmosphere–land C flux (Fig. 4b) de-
spite its near-average CO2 fertilization effect strength and
soil and vegetation turnover times is due to its high CO2 fer-
tilization effect at lower latitudes and also its high CUE1,
through which the model converts a much larger fraction of
the GPP to NPP. Compared to the other models, CanESM5
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Figure 6. Globally averaged values of β (a, c) and γ (b, d) in the 1pctCO2-cdr (years 70, 140, and 210) and ssp534-over (years 2045 and
2090) experiments for natural land and ocean. The bars show the mean±1 standard deviation range, and the colored dots represent individual
models.

also shows the largest relative increase (85 % and 134 % for
lower and higher latitudes, respectively) in τcsoil1 between
years 70 and 210.

3.3.4 Northern Hemisphere high-latitude permafrost
and non-permafrost regions

Of the ESMs considered here, only NorESM2-LM has a ter-
restrial model that vertically resolves soil carbon (CLM5,
Lawrence et al., 2019). Since this is a prerequisite for skill-
fully simulating carbon release during gradual permafrost
degradation, we restrict our analysis of high-latitude and per-
mafrost feedbacks to the NorESM2-LM model. If only natu-
ral land is considered, the area associated with permafrost
and non-permafrost regions north of 45◦ N is about 14.7
and 17.5× 106 km2, respectively (the total area is 14.7 and
24.1× 106 km2).

The effect of warming on carbon uptake in the high-
latitude non-permafrost region is positive (γ > 0, increased
uptake) in NorESM2-LM in both the ssp534-over and the
1pctCO2-cdr simulation (Fig. 8a–c, blue lines). Within the
permafrost region, γ is close to zero for the ssp534-over sim-

ulation up to 2100 and the ramp-up phase of the 1pctCO2-
cdr simulation (Fig. 8a, b, red line), albeit with a decreas-
ing (more negative) trend. This is due to a balance between
vegetation carbon gain and soil carbon losses (Fig. S5). Dur-
ing the ramp-down phase of the 1pctCO2-cdr simulation,
permafrost soil carbon losses increase until approximately
year 210 of the simulation (Fig. S5). Thereafter, permafrost
soil carbon stays roughly constant, with a cumulative loss
of about 55 PgC over the simulation. Vegetation carbon over
the permafrost region still increases for the first 30 years of
the ramp-down phase of the 1pctCO2-cdr simulation, after
which it decreases, mainly due to a decreasing temperature
(Fig. S5g). The γ value calculated for the permafrost re-
gion therefore shows a sharp decrease during the ramp-down
period of the 1pctCO2-cdr simulation (Fig. 8c). Eventually,
when 1T approaches small values, γ loses its significance,
as seen before for the global feedback factors.

In both the ssp534-over scenario and the 1pctCO2-cdr
simulations, β is positive (except initially in the ssp534-over
simulation), although the absolute values remain very small.
The carbon–concentration feedback is stronger over the non-
permafrost area, where both soil and vegetation carbon in-
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Table 2. Globally averaged values of β (Pg C pm−1) and γ (PgC ◦C−1) at years 70, 140, and 210 of the 1pctCO2-cdr simulation and years
2045 and 2090 of the ssp534-over experiment for natural land and ocean.

MIROC-ES2L UKESM1-0-LL CNRM-ESM2-1 CanESM5 NorESM2-LM Mean

βL(70) 1.15 1.02 1.36 1.09 0.94 1.11 (SD= 0.16)
βL(140) 0.94 0.76 1.36 1.03 0.87 0.99 (SD= 0.23)
βL(210) 2.48 2.43 4.51 3.05 2.88 3.07 (SD= 0.85)
βL(2045) 1.04 0.56 1.59 0.88 0.57 0.93 (SD= 0.42)
βL(2090) 1.55 1.22 2.63 1.59 1.14 1.63 (SD= 0.59)
γL(70) −42.14 −19.54 −41.58 0.82 −14.12 −23.31 (SD= 18.5)
γL(140) −44.17 −31.19 −74.97 17.78 −16.31 −29.77 (SD= 34.3)
γL(210) −77.26 −60.45 −144.01 12.77 −71.64 −68.12 (SD= 55.8)
γL(2045) −41.08 −6.80 −48.46 −10.93 −15.78 −24.61 (SD= 18.9)
γL(2090) −56.43 −34.76 −69.66 −10.41 −25.95 −39.44 (SD= 23.7)
βO(70) 0.85 0.93 0.82 0.92 0.90 0.88 (SD= 0.05)
βO(140) 0.76 0.81 0.73 0.81 0.82 0.78 (SD= 0.04)
βO(210) 2.49 2.60 2.35 2.50 2.70 2.53 (SD= 0.13)
βO(2045) 1.08 1.09 0.97 1.09 1.08 1.06 (SD= 0.05)
βO(2090) 1.59 1.57 1.43 1.55 1.60 1.55 (SD= 0.07)
γO(70) −10.09 −7.95 −3.60 −10.13 −10.84 −8.52 (SD= 2.96)
γO(140) −22.40 −14.56 −9.44 −16.77 −20.48 −16.61 (SD= 5.10)
γO(210) −58.94 −29.78 −20.16 −32.75 −76.28 −43.59 (SD= 23.2)
γO(2045) −7.88 −5.43 0.78 −6.75 −9.56 −5.77 (SD= 3.96)
γO(2090) −14.50 −11.98 −1.10 −11.05 −21.50 −12.03 (SD= 7.35)

crease, than over the permafrost area, where soil and veg-
etation carbon stay almost constant in the BGC simulation
(Fig. S5).

NorESM2-LM has the smallest transient climate response
(TCR) of the models considered here, and it can be expected
that the permafrost carbon–climate feedback estimated here
would be larger in a model with higher TCR. Neverthe-
less, the permafrost carbon loss of 26.9 PgC ◦C−1 in the year
210 of the simulation contributes 38 % of the total carbon–
climate feedback at this point in time in NorESM2-LM.

3.4 Geographical pattern of carbon cycle feedback
metrics

We have calculated the feedback factors β and γ at grid scale
to assess the spatial patterns of feedbacks over the land and
ocean (Figs. 9 and 10). In order to compare positive and
negative emission phases, we selected 21-year time intervals
centered at years 70 and 210 of the ramp-up and ramp-down
phases of the 1pctCO2-cdr simulation at an atmospheric CO2
concentration of 570 ppm (corresponding to a doubling of
the pre-industrial CO2 concentration). We also selected a 21-
year time interval centered at year 2045 (corresponding to a
CO2 concentration of 523 ppm), shortly before the CO2 peak
in the ssp534-over scenario. We also analyzed a 21-year time
interval during the net-negative emission phase of the SSP
scenario (centered at year 2090), but since the time period
of net-negative emissions in the SSP scenario is relatively
short, we focus on comparing the feedbacks during the posi-
tive and negative emission phases of the 1pctCO2-cdr simu-

lation along with the feedbacks during the positive emission
phase of ssp534-over. For completeness, Fig. S6 shows the
spatially resolved feedback during the net-negative emission
phase of ssp534-over.

In the 1pctCO2-cdr simulation, increasing [CO2] increases
the modeled carbon sinks almost everywhere (i.e., positive
β) over the land and ocean (Fig. 9a–e). CanESM5 shows a
weak negative β over northern high-latitude land areas, and
there are some spurious negative values of β over desert ar-
eas in some models. For the ocean, all models agree that the
regions with the strongest increase in the oceanic CO2 sinks
in response to higher [CO2] are the North Atlantic and the
Southern Ocean. As seen for the global average (Fig. 5), β
remains positive and increases in magnitude during the ramp-
down phase (Fig. 9f–j; note the different color scales). As
an overarching observation, the large-scale patterns of the
carbon–concentration feedback are remarkably similar dur-
ing the ramp-up and ramp-down phases of the 1pctCO2-cdr
simulation (with spatial correlations, averaged across all the
models, of 0.93 and 0.80 over the land and the ocean, respec-
tively), but the magnitude of the feedback is about two times
larger in the ramp-down phase, consistent with the lagged
response of cumulative carbon uptake to the decrease in at-
mospheric CO2 (Figs. 3 and 4). The most prominent change
in the spatial pattern of β occurs in the equatorial Pacific. All
models consistently show that this area turns from a cumula-
tive carbon sink at year 70 to a cumulative carbon source at
year 210.
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Figure 7. Individual terms in Eq. (4) that contribute to βL. Values for tropical and subtropical regions (between 30◦ S and 30◦ N) are in
green, and those for northern and southern latitudes (above 30◦ S and 30◦ N) are in blue. Bars with a lighter (darker) color in each panel
correspond to the middle of the ramp-up (ramp-down) phase of the 1pctCO2-cdr-bgc experiment (years 70 and 210, respectively).

We find the largest values of β over tropical land and,
to a lesser extent, over Northern Hemisphere temperate and
boreal ecosystems coincident with areas of large biomass
(forests). For three of the models (NorESM2-LM, CanESM5,
and UKESM1-0-LL), the feedback is clearly dominated by
tropical and subtropical regions, while for MIROC-ES2L,
the feedback is of approximately the same strength in north-
ern temperate and high-latitude regions. For CNRM-ESM2-
1, the carbon–concentration feedback is on average stronger
north of 30◦ latitude than it is in tropical/subtropical regions.
For NorESM2-LM and UKESM1-0-LL, the tropical domi-
nance of the carbon–concentration feedback stems from veg-
etation carbon, while for CanESM5, both vegetation and soil
carbon contribute about equally (Figs. S7 and S8).

The results presented in Sect. 3.3.3 provide a mechanis-
tic understanding of these model differences to some ex-
tent. CNRM-ESM2-1 has the highest CO2 fertilization ef-
fect 1GPP

[CO2]
at high latitudes and the lowest CUE1 at low

latitudes. This, combined with a large high-latitude τcsoil1,
leads to greater carbon accumulation in vegetation and soil at
higher latitudes than in the tropics/subtropics in this model.
The three models with a tropical dominance of β (NorESM2-
LM, CanESM5, and UKESM1-0-LL) have relatively high
τcveg1 and relatively low τcsoil1 values. CanESM5 shows
the strongest tropical/subtropical CO2 fertilization effect but
also a large response of the litterfall term, leading to large
responses in both vegetation and soil carbon.

In the ssp534-over simulation, the ocean β magnitude is
similar to that of the 1pctCO2-cdr simulation, and the spatial
distribution of the response of the ocean to the [CO2] rise is
roughly consistent between the models (Fig. 9k–o). In con-
trast, the feedback pattern over natural land is different in
some regions and models between the SSP scenario simula-
tion and the idealized 1pctCO2-cdr experiment. UKESM1-
0-LL, CanESM5, and, to a lesser extent, NorESM2-LM
project negative β values in some northern high-latitude re-
gions (e.g., Siberia). These negative β values are either not
seen at all (UKESM1-0-LL, NorESM2-LM) or are weaker
(CanESM5) in the 1pctCO2-cdr simulation, and they origi-
nate from a combination of vegetation and soil carbon pools
(Figs. S7 and S8). Unlike in the 1pctCO2-cdr experiment,
temperature changes are not negligible in the BGC simula-
tion of the ssp534-over experiment (Fig. 1). Furthermore, the
spatial pattern of temperature changes is very different for
some models, particularly for UKESM1-0-LL, NorESM2-
LM, and CNRM-ESM2-1, which show local cooling that is
not present (or much weaker) in the fully coupled simulations
(Fig. S9). This cooling (and other changes in surface cli-
mate related to non-CO2 forcings) lead to local carbon losses
and negative β values in UKESM1-0-LL and NorESM2-LM
at northern high latitudes. In addition, according to Eq. (3),
these negative values are reinforced by positive β values in
this region and a positive global mean temperature change in
ssp534-over in these models (see Eq. 3). In contrast, CNRM-
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Figure 8. γ (a–c) and β (d–f) for Northern Hemisphere high-latitude (above 45◦ N) natural land permafrost and non-permafrost regions in
the ssp534-over and 1pctCO2-cdr simulations using the NorESM2-LM model. An 11-year moving average has been used in all panels.

ESM2-1 does not show negative values of β at northern high
latitudes (despite local cooling), which can be explained by
much larger β values to begin with and a smaller (and nega-
tive) temperature sensitivity β at high latitudes.

Figure 10 indicates that the ESMs considered here sim-
ulate predominantly negative values of γO over the ocean.
Positive values of γO are found in the Arctic, and most mod-
els simulate a banded pattern of positive (adjacent to Antarc-
tica), negative (centered between 60 and 50◦ S), and positive
(between approximately 50 and 40◦ S) values in the Southern
Ocean. In the region adjacent to Antarctica, climate change
increases the ocean CO2 sink, mainly due to a reduction in
sea ice coverage (Roy et al., 2011; Schwinger et al., 2014).
The North Atlantic Ocean and the Southern Ocean have the
largest negative γO values due to changes in ocean circulation
and deep water formation. In tropical and subtropical ocean
regions, the reduced oceanic carbon uptakes can be attributed
to warming-induced decreased CO2 solubility and increased
stratification (Roy et al., 2011).

Over land, climate change generally reduces carbon sinks
in the tropics and mid-latitudes. In the high latitudes, models
disagree on the strength and the sign of the carbon–climate
feedback. In northern high latitudes, CNRM-ESM2-1 shows
relatively strong soil carbon losses which overcome vege-
tation carbon gains (Figs. S10 and S11), leading to mostly
negative values of γL in this region. As mentioned above,

CanESM5’s carbon–climate feedback switches from weakly
negative at 2×CO2 to positive at 4×CO2. Figure 10c clearly
shows that the positive global γ values originate from the
Northern Hemisphere high latitudes. Also, the positive γL in
CanESM5 over the northern high latitudes is seen in both
vegetation and soil carbon reservoirs, but with a time lag
for soil carbon. Consistent with our analysis in Sect. 3.3.4,
NorESM2-LM shows permafrost carbon loss in northeastern
Siberia and northern Alaska, but these losses become signif-
icant only during the ramp-down phase of the 1pctCO2-cdr
simulation (Fig. 10j).

The spatial pattern of the carbon–climate feedback is
similar during the ramp-up and ramp-down phases of the
1pctCO2-cdr simulation, but the magnitude roughly doubles
during the ramp-down phase, consistent with the cumulative
nature of the γ feedback metric used here (note the different
color scales used in Fig. 10). The correlations of the spatial
patterns at years 70 and 210 are lower than those for β and
range from 0.41 (MIROC-ES2L) to 0.66 (UKESM1-0-LL)
for γO and from 0.49 (NorESM2-LM) to 0.88 (UKESM1-0-
LL) for γL.

The value of the feedback metric γ in the ssp534-over sce-
nario simulation is less affected by land-use change, since
the same land-use changes are imposed in both the COU and
the BGC simulation. In contrast to β, which is directly al-
tered by carbon stock changes due to land-use changes, γ
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Figure 9. The spatial distribution of β (kg C m−2 ppm−1) at year 70 of the ramp-up phase of the 1pctCO2-cdr simulation (a–e), at year 210
of the ramp-down phase of the 1pctCO2-cdr simulation (f–j), and at year 2045 (natural land only; gray areas are crop-dominated grid cells)
during the positive emission phase of the ssp534-over scenario (k–o).

is only influenced indirectly, possibly by different sensitivi-
ties of the new vegetation cover after a land-use transition or
by changes in local to regional climatic conditions. In terms
of the global mean, the carbon–climate feedback during the
positive emission phase is very similar for the SSP scenario
and the 1pctCO2-cdr simulation (Fig. 5d and e). Also, the
spatial patterns of γL are largely similar between the ssp534-
over and the ramp-up phase of the 1pctCO2-cdr simulation,
with correlations ranging from 0.71 (NorESM2-LM) to 0.84
(CNRM-ESM2-1). The largest difference between the two
simulations is an enhanced positive feedback over northern
high-latitude land in the UKESM1-0-LL model in the SSP
scenario compared to the 1pctCO2-cdr simulation, which is

seen in both vegetation and soil carbon pools (Figs. S10 and
S11). These differences are related to the negative β values
(discussed above) for these models, which make the carbon
gain due to warming (the difference 1Ccou

−1Cbgc) con-
siderably larger than in the 1pctCO2 simulation. Again, this
is reinforced by the fact that the global average temperature
change in the ssp534-over simulation is positive and thus
(1T cou

−1T bgc) is smaller than the actual (local) temper-
ature differences. This indicates that, if the global mean tem-
perature change due to non-CO2 forcings does not broadly
reflect local changes correctly (e.g., local cooling vs. global
warming), regional-scale feedback factors might show unex-
pected results.
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Over the ocean, the global mean carbon–climate feedback
is slightly smaller in ssp534-over compared to the 1pctCO2-
cdr simulation (Fig. 3f), but, again, the spatial pattern is
largely similar, with correlations ranging from 0.47 (CNRM-
ESM2-1) to 0.78 (MIROC-ES2L).

4 Summary and conclusions

We have investigated carbon cycle feedbacks in a highly ide-
alized model experiment with an exponentially increasing
and decreasing atmospheric CO2 concentration (1pctCO2-
cdr) and in a more realistic overshoot scenario simulation
(ssp534-over). We employed an ensemble of five CMIP6
ESMs to run additional (biogeochemically coupled) simula-
tions that allowed us to separate out the effects of the chang-
ing atmospheric CO2 and those of the changing surface cli-
mate on the simulated carbon cycle.

We find that both the carbon–concentration (β) and the
carbon–climate (γ ) feedbacks show considerable hysteretic
behavior during negative emission phases. The well-known
reduction in ocean and land carbon uptake with increas-
ing temperature continues long into the negative emissions
phases of the simulations (when the temperature is decreas-
ing), albeit at a reduced rate. For the ocean, there is still
a reduction in carbon stocks due to legacy warming when
pre-industrial atmospheric CO2 is restored in the 1pctCO2-
cdr simulation, consistent with the single-model studies of
Schwinger and Tjiputra (2018) and Bertini and Tjiputra
(2022). In contrast, all models agree that the effect of legacy
warming is less important for the terrestrial carbon–climate
feedback, as reducing the global mean surface temperature
leads to a reduction in temperature-induced losses of terres-
trial carbon towards the end of the 1pctCO2-cdr simulation.

Carbon cycle feedback metrics vary over time and between
different scenarios. When the deviations in surface tempera-
ture and atmospheric CO2 become small towards the end of a
modeled negative emission scenario, the magnitudes of these
feedback metrics “explode”, since they are defined as the ra-
tio between the deviations in carbon stocks and the change
in temperature and atmospheric CO2, respectively. Arguably,
the latter is mainly a problem in the 1pctCO2-cdr experiment
due to the strongly idealized simulation design, but not for
more realistic scenarios such as ssp534-over. Also, using a
different definition of the reference state for the feedback
metrics, as proposed by Chimuka et al. (2023), avoids this
problem.

We find that the relative strength of the feedback re-
mains relatively robust between positive and negative emis-
sion phases and between the different simulations considered
here. For example, a model with a stronger than average ter-
restrial carbon–concentration feedback (βL) during the posi-
tive emission phase of the 1pctCO2-cdr simulation will also
show a stronger than average βL during the negative emission
phase or for the ssp534-over scenario. Regarding the model

uncertainty in feedback metrics, we find that there is an in-
crease in uncertainty in all feedback metrics between the pos-
itive and negative emission phases of the 1pctCO2-cdr sim-
ulation. Except for γL, this increase is much larger than ex-
pected from an accumulation of uncertainty over time. This
indicates that there is an additional component of model un-
certainty resulting from differences in the lagged model re-
sponses to the change from increasing to decreasing radiative
forcing.

The geographical patterns of the terrestrial feedback met-
rics β and γ highlight that differences in the responses of
tropical/subtropical versus temperate/boreal ecosystems are
a major source of model disagreement. For individual mod-
els, however, the spatial feedback patterns are remarkably
similar during phases of increasing CO2 compared to phases
of decreasing CO2 concentrations, indicating that the in-
creases in the global mean values of β and γ due to lagged re-
sponses of the carbon cycle during negative emissions phases
do not stem from a particular region but are generally seen
over the whole globe. We only estimated the contribution of
permafrost carbon release to the carbon–climate feedback for
one of the five ESMs (NorESM2-LM, which vertically re-
solves soil carbon). Permafrost carbon release is clearly seen
as a strong positive feedback (i.e., negative γ ) over the per-
mafrost area, but it emerges relatively late in the simulations.
Permafrost carbon release accounts for 38 % of NorEMS2-
LM’s carbon–climate feedback at the midpoint of the nega-
tive emission phase of the 1pctCO2-cdr simulation.

In the ssp534-over simulation, the presence of land-use
change complicates the analysis of feedbacks. Land-use
change is not a feedback process; yet, owing to the C4MIP
simulation design, carbon losses (or gains) due to land-use
change are confounded with the carbon–concentration feed-
back derived from a biogeochemically coupled scenario sim-
ulation. If we disregard agricultural areas, terrestrial car-
bon cycle feedback patterns in the ssp534-over scenario are
largely similar to those in the 1pctCO2-cdr simulation, al-
though there are some differences, particularly in high north-
ern latitudes due to the influences of non-CO2 forcings.

We conclude with some recommendations for future re-
search and the design of future model intercomparison
projects (MIPs) like C4MIP and CDRMIP. Attempts to iden-
tify and better understand the causes of differences in the
lagged model response to decreasing emissions, which we
have shown to increase the model disagreement under nega-
tive emissions, should be pursued further with high priority.
The feedback metrics based on the integrated flux (β and γ )
and those based on the instantaneous flux (B and 0) as well
as their uncertainties become difficult to interpret in scenar-
ios where the atmospheric CO2 concentration decreases, par-
ticularly in the extreme case when the atmospheric CO2 con-
centration and the surface temperature approach their pre-
industrial levels. In the light of the discussion around CDR,
perhaps it is time to rethink other related forms of these met-
rics (e.g., see Chimuka et al., 2023) that describe the response
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Figure 10. Same as Fig. 9 but for γ (kg C m−2 ◦C−1). Note that cropland areas are not excluded from panels (k–o) as in Fig. 9.

of land and ocean carbon systems in scenarios of decreasing
atmospheric CO2 in a more robust manner.

The 1pctCO2 simulation combined with the 1pctCO2-cdr
simulation is an extremely idealized model experiment with
huge (and infeasible) amounts of implied net-negative emis-
sions and a discontinuity at year 140, when implied emis-
sions jump from large positive to large negative values. As
we know that carbon cycle feedbacks are scenario depen-
dent, it would be preferable to assess these feedbacks using
model simulations that have a more realistic emission path-
way and that include more realistic amounts of net-negative
emissions. Alternative idealized simulation designs that in-
clude negative emissions have been proposed in the liter-
ature (MacDougall, 2019; Schwinger et al., 2022), and we

have also considered the ssp534-over scenario in this study.
However, the presence of land-use change and variable non-
CO2 forcings in SSP scenarios complicates the quantifica-
tion of carbon cycle feedbacks. Whether this problem can
be solved for future phases of C4MIP by providing more
detailed model output or by requesting additional idealized
experiments (e.g., scenario simulations with fixed land use)
should be discussed in the C4MIP community.

Finally, most proposed negative emission options would
be realized by manipulating the terrestrial or oceanic carbon
sinks (e.g., bioenergy with carbon capture and storage, af-
forestation, or ocean alkalinization), thereby not only chang-
ing the atmospheric CO2 concentration and possibly the sur-
face climate but also the carbon cycle feedbacks themselves.
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Such interactions go beyond what can be addressed with the
traditional C4MIP design of fully and biogeochemically cou-
pled ESM simulations. Consequently, a new framework for
determining feedbacks caused by large-scale CDR in realis-
tic scenarios of CDR deployment is needed and should be
developed in close collaboration with the integrated assess-
ment modeling community that will create such scenarios.

Data availability. All CMIP6 model output data are freely
available through the Earth System Grid Federation (for
example, at https://esgf-data.dkrz.de/search/cmip6-dkrz/,
last access: 10 June 2022). The model output data from
the 1pctCO2-cdr-bgc simulation are available through the
Norwegian Research Data Archive and can be accessed at
https://doi.org/10.11582/2023.00136 (Asaadi et al., 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-21-411-2024-supplement.

Author contributions. AA, JS, HL, VA, RS, TH, and CDJ concep-
tualized this study, AA, JS, JT, VA, RS, SL, TH, YSF, and CDJ
conducted the model simulations and provided data. AA, with su-
pervision of JS, analyzed the model runs and wrote the first draft of
the manuscript. All authors contributed to the writing of the paper.

Competing interests. The contact author has declared that none of
the authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the World Climate Research
Programme, which, through its Working Group on Coupled Mod-
elling, coordinated and promoted CMIP6. We thank the climate
modeling groups for producing their model output and making it
available, the Earth System Grid Federation (ESGF) for archiving
the data and providing access, and the multiple funding agencies
who support CMIP6 and ESGF.

Financial support. Ali Asaadi, Jörg Schwinger, and Hanna Lee
were supported by the Research Council of Norway through
the project IMPOSE (grant no. 294930). Jörg Schwinger and
Hanna Lee also received funding from the European Union’s Hori-
zon Europe research and innovation program (project RESCUE,
grant agreement no. 101056939). Supercomputing and storage re-
sources for additional NorESM2 simulations were provided by
UNINETT Sigma2 (projects nn9708k/ns9708k). Tomohiro Hajima

was supported by the Integrated Research Program for Advancing
Climate Models (TOUGOU, grant number JPMXD0717935715)
and the Program for the Advanced Studies of Climate Change Pro-
jection (SENTAN, grant number JPMXD0722681344) from the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT), Japan. Chris D. Jones and Spencer Liddicoat were sup-
ported by the Joint UK BEIS/Defra Met Office Hadley Centre Cli-
mate Programme (GA01101) and the European Union’s Horizon
2020 research and innovation program under grant agreement no.
101003536 (ESM2025 – Earth System Models for the Future).
Roland Séférian and Yeray Santana-Falcón are grateful for the sup-
port of the team in charge of the CNRM-CM climate model. Super-
computing time was provided by the Meteo-France/DSI supercom-
puting center. Roland Séférian acknowledges the European Union’s
Horizon 2020 research and innovation program under grant agree-
ment no. 101003536 (ESM2025 – Earth System Models for the Fu-
ture). Yeray Santana-Falcón acknowledges the TRIATLAS project
under grant agreement no. 817578 and the COMFORT project un-
der grant agreement no. 820989. Jerry Tjiputra acknowledges the
OceanICU project under grant agreement no. 101083922.

The work reflects only the authors’ view; the European Commis-
sion and their executive agency are not responsible for any use that
may be made of the information the work contains.

Review statement. This paper was edited by Anja Rammig and re-
viewed by Kirsten Zickfeld and one anonymous referee.

References

Armstrong McKay, D. I., Staal, A., Abrams, J., Winkelmann, R.,
Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rock-
ström, J., Lenton, T. M., Exceeding 1.5 ◦C global warming could
trigger multiple climate tipping points, Science, 377, eabn7950,
https://doi.org/10.1126/science.abn7950, 2022.

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C.
D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cad-
ule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and
Wu, T.: Carbon–Concentration and Carbon–Climate Feedbacks
in CMIP5 Earth System Models, J. Climate, 26, 5289–5314,
https://doi.org/10.1175/JCLI-D-12-00494.1, 2013.

Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin,
V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cad-
ule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher,
R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven,
C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton,
A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri,
K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–
concentration and carbon–climate feedbacks in CMIP6 models
and their comparison to CMIP5 models, Biogeosciences, 17,
4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.

Asaadi, A., Schwinger, J., Arora, V., Séférian, R., Liddicoat, S.,
Hajima, T., Santana-Falcón, Y., and Jones, C. D.: Biogeo-
chemically coupled 1pct-cdr simulation [data set], Norstore,
https://doi.org/10.11582/2023.00136, 2023.

Bertini, L. and Tjiputra, J.: Biogeochemical Timescales of Climate
Change Onset and Recovery in the North Atlantic Interior Under

https://doi.org/10.5194/bg-21-411-2024 Biogeosciences, 21, 411–435, 2024

https://esgf-data.dkrz.de/search/cmip6-dkrz/
https://doi.org/10.11582/2023.00136
https://doi.org/10.5194/bg-21-411-2024-supplement
https://doi.org/10.1126/science.abn7950
https://doi.org/10.1175/JCLI-D-12-00494.1
https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.11582/2023.00136


432 A. Asaadi et al.: Carbon cycle feedbacks

Rapid Atmospheric CO2 Forcing, J. Geophys. Res.-Oceans, 127,
e2021JC017929, https://doi.org/10.1029/2021JC017929, 2022.

Boer, G. J. and Arora, V.: Temperature and concentration feed-
backs in the carbon cycle, Geophys. Res. Lett., 36, L02704,
https://doi.org/10.1029/2008GL036220, 2009.

Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher,
M., Jones, C. D., Lowe, J., Ringer, M. A., Robertson, E., and
Wu, P.: Reversibility in an Earth System model in response
to CO2 concentration changes, Environ. Res, Lett., 7, 024013,
https://doi.org/10.1088/1748-9326/7/2/024013, 2012.

Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha,
L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S.,
Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampun-
gani, S., Zaehle, S., and Zickfeld, K.: Global Carbon and other
Biogeochemical Cycles and Feedbacks, in: Climate Change
2021: The Physical Science Basis, Contribution of Working
Group Ito the Sixth Assessment Report of the Intergovernmen-
tal Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud,
N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K.,
Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 673–
816, https://doi.org/10.1017/9781009157896.007, 2021.

Chimuka, V. R., Nzotungicimpaye, C.-M., and Zickfeld,
K.: Quantifying land carbon cycle feedbacks under neg-
ative CO2 emissions, Biogeosciences, 20, 2283–2299,
https://doi.org/10.5194/bg-20-2283-2023, 2023.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Le Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon
and Other Biogeochemical Cycles, in: Climate Change 2013:
The Physical Science Basis, Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia,
Y., Bex, V., and Midgley, P. M., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, ISBN
is 978-1-107-66182-0, 2013.

de Vrese, P. and Brovkin, V.: Timescales of the permafrost carbon
cycle and legacy effects of temperature overshoot scenarios, Nat.
Commun., 12, 2688, https://doi.org/10.1038/s41467-021-23010-
5, 2021.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Feng, J., Wang, C., Lei, J., Yang, Y., Yan, Q., Zhou, X., Tao,
X., Ning, D., Yuan, M. M., Qin, Y., Shi, Z. J., Guo, X.,
He, Z., Van Nostrand, J. D., Wu, L., Bracho-Garillo, R. G.,
Penton, C. R., Cole, J. R., Konstantinidis, K. T., Luo, Y.,
Schuur, E. A. G., Tiedje, J. M., and Zhou, J.: Warming-
induced permafrost thaw exacerbates tundra soil carbon decom-
position mediated by microbial community, Microbiome, 8, 3,
https://doi.org/10.1186/s40168-019-0778-3, 2020.

Forster, P. M., Smith, C. J., Walsh, T., Lamb, W. F., Lamboll, R.,
Hauser, M., Ribes, A., Rosen, D., Gillett, N., Palmer, M. D.,
Rogelj, J., von Schuckmann, K., Seneviratne, S. I., Trewin, B.,

Zhang, X., Allen, M., Andrew, R., Birt, A., Borger, A., Boyer,
T., Broersma, J. A., Cheng, L., Dentener, F., Friedlingstein, P.,
Gutiérrez, J. M., Gütschow, J., Hall, B., Ishii, M., Jenkins, S.,
Lan, X., Lee, J.-Y., Morice, C., Kadow, C., Kennedy, J., Kil-
lick, R., Minx, J. C., Naik, V., Peters, G. P., Pirani, A., Pongratz,
J., Schleussner, C.-F., Szopa, S., Thorne, P., Rohde, R., Rojas
Corradi, M., Schumacher, D., Vose, R., Zickfeld, K., Masson-
Delmotte, V., and Zhai, P.: Indicators of Global Climate Change
2022: annual update of large-scale indicators of the state of the
climate system and human influence, Earth Syst. Sci. Data, 15,
2295–2327, https://doi.org/10.5194/essd-15-2295-2023, 2023.

Friedlingstein, P., Dufresne, J.-L., Cox, P. M., and Rayner,
P.: How positive is the feedback between climate
change and the carbon cycle?, Tellus B, 55, 692–700,
https://doi.org/10.3402/tellusb.v55i2.16765, 2003.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W.,
Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala,
G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M.,
Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner,
P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R.,
Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the
C4MIP Model Intercomparison, J. Climate, 19, 3337–3353,
https://doi.org/10.1175/JCLI3800.1, 2006.

Gasser, T., Kechiar, M., Ciais, P., Burke, E. J., Kleinen,
T., Zhu, D., Huang, Y., Ekici, A., and Obersteiner, M.:
Path-dependent reductions in CO2 emission budgets caused
by permafrost carbon release, Nat. Geosci., 11, 830–835,
https://doi.org/10.1038/s41561-018-0227-0, 2018.

Geden, O. and Löschel, A.: Define limits for temper-
ature overshoot targets, Nat. Geosci., 10, 881–882,
https://doi.org/10.1038/s41561-017-0026-z, 2017.

Gillett, N. P., Arora, V. K., Matthews, D., and Allen, M. R.: Con-
straining the Ratio of Global Warming to Cumulative CO2 Emis-
sions Using CMIP5 Simulations, J. Climate, 26, 6844–6858,
https://doi.org/10.1175/JCLI-D-12-00476.1, 2013.

Goodwin, P., Katavouta, A., Roussenov, V. M., Foster, G. L.,
Rohling, E. J., and Williams, R. G.: Pathways to 1.5 ◦C and 2 ◦C
warming based on observational and geological constraints, Nat.
Geosci., 11, 102–107, https://doi.org/10.1038/s41561-017-0054-
8, 2018.

Gregory, J. M., Jones, C. D., Cadule, P., and Friedlingstein, P.:
Quantifying Carbon Cycle Feedbacks, J. Climate, 22, 5232–
5250, https://doi.org/10.1175/2009JCLI2949.1, 2009.

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M.
A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito,
A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.:
Development of the MIROC-ES2L Earth system model and the
evaluation of biogeochemical processes and feedbacks, Geosci.
Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-
2197-2020, 2020.

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E.
A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G.
J., Koven, C. D., O’Donnell, J. A., Elberling, B., Mishra, U.,
Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks
of circumpolar permafrost carbon with quantified uncertainty
ranges and identified data gaps, Biogeosciences, 11, 6573–6593,
https://doi.org/10.5194/bg-11-6573-2014, 2014.

Biogeosciences, 21, 411–435, 2024 https://doi.org/10.5194/bg-21-411-2024

https://doi.org/10.1029/2021JC017929
https://doi.org/10.1029/2008GL036220
https://doi.org/10.1088/1748-9326/7/2/024013
https://doi.org/10.1017/9781009157896.007
https://doi.org/10.5194/bg-20-2283-2023
https://doi.org/10.1038/s41467-021-23010-5
https://doi.org/10.1038/s41467-021-23010-5
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1186/s40168-019-0778-3
https://doi.org/10.5194/essd-15-2295-2023
https://doi.org/10.3402/tellusb.v55i2.16765
https://doi.org/10.1175/JCLI3800.1
https://doi.org/10.1038/s41561-018-0227-0
https://doi.org/10.1038/s41561-017-0026-z
https://doi.org/10.1175/JCLI-D-12-00476.1
https://doi.org/10.1038/s41561-017-0054-8
https://doi.org/10.1038/s41561-017-0054-8
https://doi.org/10.1175/2009JCLI2949.1
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/gmd-13-2197-2020
https://doi.org/10.5194/bg-11-6573-2014


A. Asaadi et al.: Carbon cycle feedbacks 433

Jeltsch-Thömmes, A., Stocker, T. F., and Joos, F., 2020: Hysteresis
of the Earth system under positive and negative CO2 emissions,
Environ. Res. Lett., 15, 124026, https://doi.org/10.1088/1748-
9326/abc4af, 2020.

Jones, C. D., Ciais, P., Davis, S. J., Friedlingstein, P., Gasser,
T., Peters, G. P., Rogelj, J., van Vuuren, D. P., Canadell, J.
G., Cowie, A., Jackson, R. B., Jonas, M., Kriegler, E., Little-
ton, E., Lowe, J. A., Milne, J., Shrestha, G., Smith, P., Tor-
vanger, A., and Wiltshire, A.: Simulating the Earth system re-
sponse to negative emissions, Environ. Res. Lett., 11, 095012,
https://doi.org/10.1088/1748-9326/11/9/095012, 2016a.

Jones, C. D., Arora, V., Friedlingstein, P., Bopp, L., Brovkin, V.,
Dunne, J., Graven, H., Hoffman, F., Ilyina, T., John, J. G.,
Jung, M., Kawamiya, M., Koven, C., Pongratz, J., Raddatz,
T., Randerson, J. T., and Zaehle, S.: C4MIP – The Coupled
Climate–Carbon Cycle Model Intercomparison Project: experi-
mental protocol for CMIP6, Geosci. Model Dev., 9, 2853–2880,
https://doi.org/10.5194/gmd-9-2853-2016, 2016b.

Keller, D. P., Lenton, A., Scott, V., Vaughan, N. E., Bauer, N., Ji,
D., Jones, C. D., Kravitz, B., Muri, H., and Zickfeld, K.: The
Carbon Dioxide Removal Model Intercomparison Project (CDR-
MIP): rationale and experimental protocol for CMIP6, Geosci.
Model Dev., 11, 1133–1160, https://doi.org/10.5194/gmd-11-
1133-2018, 2018.

Krause, A., Arneth, A., Anthoni, P., and Rammig, A.: Legacy
effects from historical environmental changes dominate future
terrestrial carbon uptake, Earth’s Future, 8, e2020EF001674,
https://doi.org/10.1029/2020EF001674, 2020.

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W.,
Swenson, S. C., Bonan, G., Collier, N., Ghimire, B., van Kam-
penhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F.,
Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M.,
Vertenstein, M., Wieder, W. R., Xu, C., Ali, A. A., Badger,
A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns,
S. P., Buzan, J., Clark, M., Craig, A., Dahlin, K., Drewniak,
B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, P., Hoff-
man, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J.,
Leung, L. R., Lipscomb, W. H., Lu, Y., Pandey, A., Pelletier,
J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., Sanderson,
B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Mar-
tin, M. V., and Zeng, X.: The Community Land Model Version
5: Description of New Features, Benchmarking, and Impact of
Forcing Uncertainty, J. Adv. Model. Earth Sy., 11, 4245–4287,
https://doi.org/10.1029/2018MS001583, 2019.

Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richard-
son, K., Steffen, W., and Schellnhuber, H. J.: Climate tip-
ping points – too risky to bet against, Nature, 575, 592–595,
https://doi.org/10.1038/d41586-019-03595-0, 2019.

Li, X., Zickfeld, K., Mathesius, S., Kohfeld, K., and Matthews,
J. B. R.: Irreversibility of Marine Climate Change Impacts
Under Carbon Dioxide Removal, Geophys. Res. Lett., 47,
e2020GL088507, https://doi.org/10.1029/2020GL088507, 2020.

Liang, Y.-C., Polvani, L. M., and Mitevski, I.: Arctic am-
plification, and its seasonal migration, over a wide range
of abrupt CO2 forcing, Npj Clim. Atmos. Sci., 5, 14,
https://doi.org/10.1038/s41612-022-00228-8, 2022.

Liddicoat, S. K., Wiltshire, A. J., Jones, C. D., Arora, V. K.,
Brovkin, V., Cadule, P., Hajima, T., Lawrence, D. M., Pongratz,
J., Schwinger, J., Séférian, R., Tjiputra, J. F., and Ziehn, T.: Com-

patible Fossil Fuel CO2 Emissions in the CMIP6 Earth System
Models’ Historical and Shared Socioeconomic Pathway Exper-
iments of the Twenty-First Century, J. Climate, 34, 2853–2875,
https://doi.org/10.1175/JCLI-D-19-0991.1, 2021.

MacDougall, A. H., Zickfeld, K., Knutti, R., and Matthews, H.
D.: Sensitivity of carbon budgets to permafrost carbon feed-
backs and non-CO2 forcings, Environ. Res. Lett., 10, 125003,
https://doi.org/10.1088/1748-9326/10/12/125003, 2015.

Masson-Delmotte, V., Zhai, P., Pörtner, H-O., Roberts, D., Skea,
J., Shukla, P. R., Pirani, A., and Moufouma-Okia, W., Péan, C.,
Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou,
X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Wa-
terfield, T.: IPCC, 2018: Summary for Policymakers, in: Global
Warming of 1.5 ◦C, An IPCC Special Report on the impacts
of global warming of 1.5 ◦C above pre-industrial levels and re-
lated global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, Cam-
bridge University Press, Cambridge, UK and New York, NY,
USA, 3–24, https://doi.org/10.1017/9781009157940.001, 2018.

Mathesius, S., Hofmann, M., Caldeira, K., and Schellnhu-
ber, H. J.: Long-term response of oceans to CO2 removal
from the atmosphere, Nat. Clim. Change, 5, 1107–1113,
https://doi.org/10.1038/nclimate2729, 2015.

Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J.-F.,
Stouffer, R. J., Taylor, K. E., and Schlund, M.: Context for in-
terpreting equilibrium climate sensitivity and transient climate
response from the CMIP6 Earth system models, Sci. Adv., 6,
eaba1981, https://doi.org/10.1126/sciadv.aba1981, 2020.

Melnikova, I., Boucher, O., Cadule, P., Ciais, P., Gasser, T., Quil-
caille, Y., Shiogama, H., Tachiiri, K., Yokohata, T., Tanaka,
K.: Carbon Cycle Response to Temperature Overshoot Be-
yond 2 ◦C: An Analysis of CMIP6 Models, Earths Future, 9,
e2020EF001967, https://doi.org/10.1029/2020EF001967, 2021.

Melnikova, I., Boucher, O., Cadule, P., Tanaka, K., Gasser, T.,
Hajima, T., Quilcaille, Y., Shiogama, H., Séférian, R., Tachi-
iri, K., Vuichard, N., Yokohata, T., and Ciais, P.: Impact
of bioenergy crop expansion on climate–carbon cycle feed-
backs in overshoot scenarios, Earth Syst. Dynam., 13, 779–794,
https://doi.org/10.5194/esd-13-779-2022, 2022.

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S.,
Carter, T. R., Mathur, R., and van Vuuren, D. P.: A new sce-
nario framework for climate change research: the concept of
shared socioeconomic pathways, Clim. Change, 122, 387–400,
https://doi.org/10.1007/s10584-013-0905-2, 2014.

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedling-
stein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F.,
Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sander-
son, B. M.: The Scenario Model Intercomparison Project (Sce-
narioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482,
https://doi.org/10.5194/gmd-9-3461-2016, 2016.

Park, S.-W. and Kug, J.-S.: A decline in atmospheric CO2 lev-
els under negative emissions may enhance carbon retention
in the terrestrial biosphere, Commun. Earth Environ., 3, 1–8,
https://doi.org/10.1038/s43247-022-00621-4, 2022.

Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K.,
Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen,
A.: The Arctic has warmed nearly four times faster than

https://doi.org/10.5194/bg-21-411-2024 Biogeosciences, 21, 411–435, 2024

https://doi.org/10.1088/1748-9326/abc4af
https://doi.org/10.1088/1748-9326/abc4af
https://doi.org/10.1088/1748-9326/11/9/095012
https://doi.org/10.5194/gmd-9-2853-2016
https://doi.org/10.5194/gmd-11-1133-2018
https://doi.org/10.5194/gmd-11-1133-2018
https://doi.org/10.1029/2020EF001674
https://doi.org/10.1029/2018MS001583
https://doi.org/10.1038/d41586-019-03595-0
https://doi.org/10.1029/2020GL088507
https://doi.org/10.1038/s41612-022-00228-8
https://doi.org/10.1175/JCLI-D-19-0991.1
https://doi.org/10.1088/1748-9326/10/12/125003
https://doi.org/10.1017/9781009157940.001
https://doi.org/10.1038/nclimate2729
https://doi.org/10.1126/sciadv.aba1981
https://doi.org/10.1029/2020EF001967
https://doi.org/10.5194/esd-13-779-2022
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1038/s43247-022-00621-4


434 A. Asaadi et al.: Carbon cycle feedbacks

the globe since 1979, Commun. Earth Environ., 3, 168,
https://doi.org/10.1038/s43247-022-00498-3, 2022.

Riahi, K., Bertram, C., Huppmann, D., Rogelj, J., Bosetti, V., Cabar-
dos, A.-M., Deppermann, A., Drouet, L., Frank, S., Fricko, O.,
Fujimori, S., Harmsen, M., Hasegawa, T., Krey, V., Luderer, G.,
Paroussos, L., Schaeffer, R., Weitzel, M., van der Zwaan, B.,
Vrontisi, Z., Longa, F. D., Després, J., Fosse, F., Fragkiadakis,
K., Gusti, M., Humpenöder, F., Keramidas, K., Kishimoto, P.,
Kriegler, E., Meinshausen, M., Nogueira, L. P., Oshiro, K., Popp,
A., Rochedo, P. R. R., Ünlü, G., van Ruijven, B., Takakura, J.,
Tavoni, M., van Vuuren, D., and Zakeri, B.: Cost and attainabil-
ity of meeting stringent climate targets without overshoot, Nat.
Clim. Change, 11, 1063–1069, https://doi.org/10.1038/s41558-
021-01215-2, 2021.

Ricke, K. L., Millar, R. J., and MacMartin, D. G.: Constraints
on global temperature target overshoot, Sci. Rep., 7, 14743,
https://doi.org/10.1038/s41598-017-14503-9, 2017.

Rogelj, J., Meinshausen, M., Schaeffer, M., Knutti, R., and Riahi,
K.: Impact of short-lived non-CO2 mitigation on carbon budgets
for stabilizing global warming, Environ. Res. Lett., 10, 075001,
https://doi.org/10.1088/1748-9326/10/7/075001, 2015.

Roy, T., Bopp, L., Gehlen, M., Schneider, B., Cadule, P.,
Frölicher, T. L., Segschneider, J., Tjiputra, J., Heinze, C.,
and Joos, F.: Regional Impacts of Climate Change and At-
mospheric CO2 on Future Ocean Carbon Uptake: A Multi-
model Linear Feedback Analysis, J. Climate, 24, 2300–2318,
https://doi.org/10.1175/2010JCLI3787.1, 2011.

Roy, T., Sallée, J. B., Bopp, L., and Metzl, N.: Diagnosing CO2-
Emission-Induced Feedbacks between the Southern Ocean Car-
bon Cycle and the Climate System: A Multiple Earth Sys-
tem Model Analysis Using a Water Mass Tracking Approach,
J. Climate, 34, 9071–9092, https://doi.org/10.1175/JCLI-D-20-
0889.1, 2021.

Santana-Falcón, Y., Yamamoto, A., Lenton, A., Jones, C. D.,
Burger, F. A., John, J. G., Tjiputra, J., Schwinger, J.,
Kawamiya, M., Frölicher, T. L., Ziehn, T., and Séférian,
R.: Irreversible loss in marine ecosystem habitability after
a temperature overshoot, Commun. Earth Environ., 4, 343.
https://doi.org/10.1038/s43247-023-01002-1, 2023.

Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing
CO2 on the terrestrial carbon cycle, P. Natl. Acad. Sci. USA, 112,
436–441, https://doi.org/10.1073/pnas.1407302112, 2015.

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden,
J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P.,
Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E.,
Schaefer, K., Turetsky, M. R., Treat, C. C., and Vonk, J. E.: Cli-
mate change and the permafrost carbon feedback, Nature, 520,
171–179, https://doi.org/10.1038/nature14338, 2015.

Schwinger, J. and Tjiputra, J.: Ocean Carbon Cycle Feedbacks Un-
der Negative Emissions, Geophys. Res. Lett., 45, 5062–5070,
https://doi.org/10.1029/2018GL077790, 2018.

Schwinger, J., Tjiputra, J. F., Heinze, C., Bopp, L., Christian,
J. R., Gehlen, M., Ilyina, T., Jones, C. D., Salas-Mélia, D.,
Segschneider, J., Séférian, R., and Totterdell, I.: Nonlinearity of
Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Mod-
els, J. Climate, 27, 3869–3888, https://doi.org/10.1175/JCLI-D-
13-00452.1, 2014.

Schwinger, J., Asaadi, A., Steinert, N. J., and Lee, H.: Emit now,
mitigate later? Earth system reversibility under overshoots of dif-

ferent magnitudes and durations, Earth Syst. Dynam., 13, 1641–
1665, https://doi.org/10.5194/esd-13-1641-2022, 2022.

Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A.,
Colin, J., Decharme, B., Delire, C., Berthet, S., Chevallier, M.,
Sénési, S., Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Ge-
offroy, O., Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A.,
Rocher, M., Roehrig, R., Salas-y-Mélia, D., Sanchez, E., Terray,
L., Valcke, S., Waldman, R., Aumont, O., Bopp, L., Deshayes,
J., Éthé, C., and Madec, G.: Evaluation of CNRM Earth Sys-
tem Model, CNRM-ESM2-1: Role of Earth System Processes in
Present-Day and Future Climate, J. Adv. Model. Earth Sy., 11,
4182–4227, https://doi.org/10.1029/2019MS001791, 2019.

Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagli-
abue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne,
J., Gehlen, M., Ilyina, T., John, J. G., Li, H., Long, M. C.,
Luo, J. Y., Nakano, H., Romanou, A., Schwinger, J., Stock,
C., Santana-Falcón, Y., Takano, Y., Tjiputra, J., Tsujino, H.,
Watanabe, M., Wu, T., Wu, F., and Yamamoto, A.: Track-
ing Improvement in Simulated Marine Biogeochemistry Be-
tween CMIP5 and CMIP6, Curr. Clim. Change Rep., 6, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020.

Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A.,
Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg,
A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y.,
Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H.,
Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spens-
berger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and
Schulz, M.: Overview of the Norwegian Earth System Model
(NorESM2) and key climate response of CMIP6 DECK, histor-
ical, and scenario simulations, Geosci. Model Dev., 13, 6165–
6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020.

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A.,
Wiltshire, A., O’Connor, F. M., Stringer, M., Hill, R., Palmieri,
J., Woodward, S., de Mora, L., Kuhlbrodt, T., Rumbold, S.
T., Kelley, D. I., Ellis, R., Johnson, C. E., Walton, J., Abra-
ham, N. L., Andrews, M. B., Andrews, T., Archibald, A. T.,
Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M.,
Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T.,
Harper, A. B., Hendry, M. A., Hewitt, A. J., Johnson, B., Jones,
A., Jones, C. D., Keeble, J., Liddicoat, S., Morgenstern, O.,
Parker, R. J., Predoi, V., Robertson, E, Siahaan, A., Smith, R.
S., Swaminathan, R., Woodhouse, M. T., Zeng, G., and Zer-
roukat, M.: UKESM1: Description and Evaluation of the U.K.
Earth System Model, J. Adv. Model. Earth Sy., 11, 4513–4558,
https://doi.org/10.1029/2019MS001739, 2019.

Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., and Ro-
manovsky, V. E.: The changing thermal state of permafrost, Nat.
Rev. Earth Environ., 3, 10–23, https://doi.org/10.1038/s43017-
021-00240-1, 2022.

Smith, S. M., Geden, O., Nemet, G., Gidden, M., Lamb, W. F.,
Powis, C., Bellamy, R., Callaghan, M., Cowie, A., Cox, E.,
Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan,
A., Müller-Hansen, F., Peters, G., Pratama, Y., Repke, T., Ri-
ahi, K., Schenuit, F., Steinhauser, J., Strefler, J., Valenzuela,
J. M., and Minx, J. C.: The State of Carbon Dioxide Re-
moval – 1st Edition, The State of Carbon Dioxide Removal,
https://doi.org/10.17605/OSF.IO/W3B4Z, 2023.

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca,
J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna,

Biogeosciences, 21, 411–435, 2024 https://doi.org/10.5194/bg-21-411-2024

https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s41558-021-01215-2
https://doi.org/10.1038/s41558-021-01215-2
https://doi.org/10.1038/s41598-017-14503-9
https://doi.org/10.1088/1748-9326/10/7/075001
https://doi.org/10.1175/2010JCLI3787.1
https://doi.org/10.1175/JCLI-D-20-0889.1
https://doi.org/10.1175/JCLI-D-20-0889.1
https://doi.org/10.1038/s43247-023-01002-1
https://doi.org/10.1073/pnas.1407302112
https://doi.org/10.1038/nature14338
https://doi.org/10.1029/2018GL077790
https://doi.org/10.1175/JCLI-D-13-00452.1
https://doi.org/10.1175/JCLI-D-13-00452.1
https://doi.org/10.5194/esd-13-1641-2022
https://doi.org/10.1029/2019MS001791
https://doi.org/10.1007/s40641-020-00160-0
https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/10.1029/2019MS001739
https://doi.org/10.1038/s43017-021-00240-1
https://doi.org/10.1038/s43017-021-00240-1
https://doi.org/10.17605/OSF.IO/W3B4Z


A. Asaadi et al.: Carbon cycle feedbacks 435

S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C.,
Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K.,
Yang, D., and Winter, B.: The Canadian Earth System Model
version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873,
https://doi.org/10.5194/gmd-12-4823-2019, 2019.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of
CMIP5 and the Experiment Design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Tharammal, T., Bala, G., Devaraju, N., and Nemani, R.: A review
of the major drivers of the terrestrial carbon uptake: model-based
assessments, consensus, and uncertainties, Environ. Res. Lett.,
14, 093005, https://doi.org/10.1088/1748-9326/ab3012, 2019.

Tjiputra, J. F., Schwinger, J., Bentsen, M., Morée, A. L., Gao, S.,
Bethke, I., Heinze, C., Goris, N., Gupta, A., He, Y.-C., Olivié,
D., Seland, Ø., and Schulz, M.: Ocean biogeochemistry in the
Norwegian Earth System Model version 2 (NorESM2), Geosci.
Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-
2393-2020, 2020.

Tokarska, K. B. and Zickfeld, K.: The effectiveness of net
negative carbon dioxide emissions in reversing anthro-
pogenic climate change, Environ. Res. Lett., 10, 094013,
https://doi.org/10.1088/1748-9326/10/9/094013, 2015.

Wu, P., Ridley, J., Pardaens, A., Levine, R., and Lowe, J.: The re-
versibility of CO2 induced climate change. Clim. Dynam., 45,
745–754, https://doi.org/10.1007/s00382-014-2302-6, 2015.

Yang, S., Tian, D., Chou, J., Wei, T., Zhu, X., and Dong, W.: Re-
versibility of historical and future climate change with a com-
plex earth system model, Theor. Appl. Clim., 146, 1061–1068,
https://doi.org/10.1007/s00704-021-03757-z, 2021.

Yokohata, T., Saito, K., Ito, A., Ohno, H., Tanaka, K., Hajima, T.,
and Iwahana, G.: Future projection of greenhouse gas emissions
due to permafrost degradation using a simple numerical scheme
with a global land surface model, Prog. Earth Planet. Sc., 7, 56,
https://doi.org/10.1186/s40645-020-00366-8, 2020.

Yoshikawa, C., Kawamiya, M., Kato, T., Yamanaka, Y., and Mat-
suno, T.: Geographical distribution of the feedback between fu-
ture climate change and the carbon cycle, J. Geophys. Res.-
Biogeo., 113, G03002, https://doi.org/10.1029/2007JG000570,
2008.

https://doi.org/10.5194/bg-21-411-2024 Biogeosciences, 21, 411–435, 2024

https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1088/1748-9326/ab3012
https://doi.org/10.5194/gmd-13-2393-2020
https://doi.org/10.5194/gmd-13-2393-2020
https://doi.org/10.1088/1748-9326/10/9/094013
https://doi.org/10.1007/s00382-014-2302-6
https://doi.org/10.1007/s00704-021-03757-z
https://doi.org/10.1186/s40645-020-00366-8
https://doi.org/10.1029/2007JG000570

	Abstract
	Introduction
	Description of feedback metrics, simulations, and models
	Carbon cycle feedback metrics
	Model simulations
	Participating Earth system models

	Results and discussion
	Atmospheric CO2, temperature, and carbon fluxes
	Global mean carbon cycle feedbacks
	Ocean
	Land
	Hysteresis

	Carbon cycle feedback metrics
	Model-mean global land and ocean responses
	Model uncertainties and relative feedback strength in global feedback metrics
	Model differences in the terrestrial carbon–concentration feedback
	Northern Hemisphere high-latitude permafrost and non-permafrost regions

	Geographical pattern of carbon cycle feedback metrics

	Summary and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

