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Abstract. Nutrient resorption from senescing leaves can sig-
nificantly affect ecosystem nutrient cycling, making it an
essential process to better understand long-term plant pro-
ductivity under environmental change that affects the bal-
ance between nutrient availability and demand. Although it
is known that nutrient resorption rates vary strongly between
different species and across environmental gradients, the un-
derlying driving factors are insufficiently quantified. Here,
we present an analysis of globally distributed observations
of leaf nutrient resorption to investigate the factors driving
resorption efficiencies for nitrogen (NRE) and phosphorus
(PRE). Our results show that leaf structure and habit, together
with indicators of nutrient availability, are the two most im-
portant factors driving spatial variation in NRE. Overall,
we find higher NRE in deciduous plants (65.2 %± 12.4 %,
n= 400) than in evergreen plants (57.9 %± 11.4 %, n=

551), likely associated with a higher share of metabolic N
in leaves of deciduous plants. Tropical regions show the
lowest resorption for N (NRE: 52.4 %± 12.1 %), and tun-
dra ecosystems in polar regions show the highest (NRE:
69.6 %± 12.8 %). At the same time, the PRE is lowest in
temperate regions (57.8 %± 13.6 %) and highest in boreal
regions (67.3 %± 13.6 %). Soil clay content, N and P atmo-
spheric deposition (globally available proxies for soil fertil-
ity), and mean annual precipitation (MAP) play an important
role in this pattern. The statistical relationships developed
in this analysis indicate the important role of leaf habit and

type for nutrient cycling and guide improved representations
of plant-internal nutrient recycling and nutrient conservation
strategies in vegetation models.

1 Introduction

Nutrient cycling plays an important role in shaping the global
distribution of terrestrial primary productivity (LeBauer et
al., 2008; Zaehle, 2013; Du et al., 2020). Nitrogen (N) and
phosphorus (P) are the main limiting nutrients for plant
growth. N is needed to maintain and produce essential pro-
teins for the biosynthesis, while P is an element of genetic
material and plays a major role in the regeneration of the
main receptor of carbon (C) assimilation and in the pro-
duction of energy that conducts many processes in living
cells (Chapin, 1980; Güsewell, 2004). The anthropogenic in-
crease in atmospheric CO2 since the beginning of industri-
alization has the potential to enhance the terrestrial carbon
sink through increasing plant photosynthetic rates, a process
known as CO2 fertilization (Bazzaz, 1990). A potential limi-
tation to the fertilization effect is progressive nutrient limita-
tion to growth (Luo et al., 2004) and associated plant strate-
gies to deal with such limitations. Thus, understanding the
ways in which nutrients circulate in ecosystems and are ac-
quired, lost and conserved by plants is essential for simulat-
ing plant response to global changes.
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Nutrient resorption – defined here as the translocation of
nutrients from senescing leaves to temporary storage tissues
– is a plant strategy for nutrient conservation (Killingbeck,
1996; Kobe et al., 2005). It allows plants to directly reuse
nutrients, decreasing the dependence on soil nutrient avail-
ability and the competition for these nutrients with other
plants and microbes, especially in nutrient-limited environ-
ments (Aerts, 1996; Aerts and Chapin, 1999). The question
that arises is then why do plants not all resorb the entirety of
leaf nutrients to be more efficient. The fact that they do not
achieve their maximum resorption capacity implies the ex-
istence of costs and limitations to resorption. A quantitative
understanding of nutrient resorption can yield insights into
plant strategies to cope with nutrient limitation (Aerts and
Chapin, 1999; Chapin et al., 2011). This is because the re-
sorption process influences most other ecosystem processes
that determine plant growth, as it directly affects litter qual-
ity and therefore soil organic matter decomposition and has
indirect consequences for plant nutrient uptake, carbon cy-
cling and finally plant competition (Killingbeck, 1996; Berg
and McClaugherty, 2014). The average fraction of leaf nu-
trients resorbed before abscission is estimated to be ∼ 62 %
for N and ∼ 65 % for P (Vergutz et al., 2012). Cleveland et
al. (2013) estimated that this corresponds to 31 % of a plant’s
annual demand for N and 40 % of the annual demand for P
but with large geographical and species variations.

However, despite advances in recent years, the drivers be-
hind nutrient resorption and its variation are still unclear:
first, soil fertility has long been assumed to be a key driver
of variations in nutrient resorption, with increased resorption
in infertile soils as the plant’s main strategy for nutrient con-
servation (Aerts and Chapin, 1999). This interpretation has
also provided a basis for modelling dynamic resorption effi-
ciency by accounting for nutrient availability in global veg-
etation models (Fisher et al., 2010; Lawrence et al., 2019).
Nonetheless, there is diverging evidence established at differ-
ent geographic scales, showing positive correlations (Aerts
and Chapin, 1999), negative correlations (Yuan and Chen,
2015; Xu et al., 2021), and even a lack of correlation between
soil fertility and resorption efficiency (Vergutz et al., 2012).
Second, climate factors are also considered to be important
drivers of resorption, but the evidence is equally conflicting:
on the one hand, Yuan and Chen (2009) and Yan et al. (2018)
suggested nitrogen resorption efficiency (NRE) is decreas-
ing with mean annual temperature (MAT) and precipitation
(MAP), with the opposite trend for phosphorus resorption ef-
ficiency (PRE), arguing that colder regions tend to be more
N-limited, while P limitation is observed more commonly in
warmer environments. From low to high latitudes globally,
the role of N in limiting productivity tends to increase as
the availability of N is mainly determined by temperature-
limited processes such as biological N fixation and mineral-
ization of soil organic matter (Cleveland et al., 2013; Fay et
al., 2015; Deng et al., 2018), but the presence of N fixers in
tropical forests introduces complexity to the pattern of nutri-

ent limitation between tropical and temperate zones (Hedin
et al., 2009). Nevertheless, the limited availability of P in the
tropics due to highly weathered soils distinguishes low- to
mid-latitude environments (Elser et al., 2007). On the other
hand, Vergutz et al. (2012) and Xu et al. (2021) showed that
NRE and PRE are both increasing with decreasing MAT and
MAP toward higher latitudes.

A third set of studies suggests plant functional types
(PFTs), leaf stoichiometry and plant nutrient demand as
drivers of nutrient resorption (Reed et al., 2012; Han et al.,
2013; Tang et al., 2013; Brant and Chen, 2015; Du et al.,
2020; Chen et al., 2021; Sun et al., 2023). When greater nutri-
ent resorption in evergreen species is found, it is assumed to
be a conservation strategy, given their comparatively low leaf
nutrient content, slow growth rate and predominant occur-
rence in nutrient-limited biomes (Killingbeck, 1996; Yan et
al., 2018; Xu et al., 2021). The same argument has been used
to interpret differences between broad-leaved and needle-
leaved plants, in which nutrient resorption is generally ob-
served to be higher in needle-leaved as a strategy to accli-
matize and survive in resource-limited environments (Aerts
and Chapin, 1999; Yuan et al., 2005; Yan et al., 2018; Xu et
al., 2021). Previous studies have suggested that shrub species
generally display higher nutrient resorption rates compared
to trees, due to their smaller leaves with shorter life cycles
and the need to optimize nutrient use in resource-limited en-
vironments (Killingbeck, 1996; Yuan and Chen, 2009; Yan et
al., 2018; Xu et al., 2021). However, Brant and Chen (2015)
suggest that deciduous plants are more dependent on nutri-
ent resorption as their investment in green leaf nutrients is
higher to maintain their fast growth through high physiolog-
ical activity during the growing season. Plants with a slow
growth strategy, such as evergreens and needle-leaved trees,
have lower photosynthetic nutrient use efficiency due to a
higher allocation of C and N to leaf structural rather than
metabolic compounds (Reich and Flores-Moreno, 2017).
Onoda et al. (2017) empirically support this by showing that
a greater allocation of nutrients to structural compounds is
associated with decreased specific leaf area (SLA) and in-
creased diffusive limitation to photosynthesis. Thus, varia-
tions in leaf traits and construction costs could contribute to
differences in resorption between PFTs. Nevertheless, Dren-
ovsky et al. (2010, 2019) suggested that resorption variability
is influenced by an interplay of the discussed drivers, which
include soil properties, climatic conditions and plant charac-
teristics. Estiarte et al. (2023) support that leaf biochemistry
of plants determines the first limitation to nutrient resorption,
with a secondary regulation in resorption by environmental
conditions, while the costs of leaf ageing remain consistent.

The divergence of observed patterns highlights the need
for further investigation into the main drivers of variations
in nutrient resorption, distinguishing the influence of plant
types, soil and climatic conditions. In this study, we present
a meta-analysis that combines version 5.0 of the TRY Plant
Trait Database (Kattge et al., 2020) with different ancillary
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datasets for climate and soil factors to investigate global pat-
terns of resorption efficiencies for N and P. We aim to ex-
tend woody species observations for nutrient resorption and
investigate the factors that explain observed patterns along
three main axes: climate, soil fertility and leaf properties.

2 Methods

2.1 Data collection

We assembled the dataset from the TRY Plant Trait Database
(https://www.try-db.org, last access: 14 March 2022, Kattge
et al., 2020, version 5.0) containing field measurements of
paired leaf and litter mass-based tissue N and P concen-
trations (Nmass, leaf, Pmass, leaf, Nmass, litter, Pmass, litter) to de-
rive the fractional nutrient resorption (described in Sect. 2.2)
and plant functional traits recorded in parallel from the same
species and same location to consider as biological predic-
tors variables (Table 1). As additional predictors of nutri-
ent resorption, we combined it with climate and soil input
data (Table 2). We processed the data using R statistical soft-
ware (version 4.0.4), keeping the data at species level. To ma-
nipulate the extracted functional traits, we used the package
{rtry} (Lam et al., 2022), developed to support the prepro-
cessing of the TRY Plant Trait Database (version 1.0.0), and
the {tidyverse} package (Wickham et al., 2019) with its de-
pendencies (version 1.3.2). The data processing followed the
quality control according to the published protocol of TRY
(Kattge et al., 2011, 2020).

As predictors, we used a set of climate variables, N and
P deposition, vegetation type-related variables, and soil data
(Table 2) with a spatial resolution of 0.5°× 0.5° to match
those of the lowest-resolution dataset (P deposition). Soil fer-
tility was represented here by N and P deposition and other
soil characteristics that globally correlate with nutrient avail-
ability, such as total soil P and soil texture. MAT, MAP and
seasonal temperature amplitude were derived from the global
climate database WorldClim (Fick and Hijmans, 2017). We
extracted the Köppen climate classification to represent dif-
ferent climate zones from the TRY Plant Trait Database
and filled data gaps using the {Kgc} R package (Bryant et
al., 2017), which provides the Köppen climate classification
for each latitude and longitude. We calculated mean annual
evapotranspiration (ET) and growing season length (GSL)
from FLUXCOM (Jung et al., 2011), in which GSL was
based on the seasonal phasing of gross primary productivity
(GPP) considering the time period between 20 % and 80 % of
the maximum GPP in an average year for the period 2002–
2015. Total soil P concentrations were derived from Yang
et al. (2013); soil clay content and soil pH were extracted
from the Harmonized World Soil Database (HWSD; Wieder
et al., 2014). We used atmospheric N deposition values from
CESM-CMIP6 (Hegglin et al., 2016) taking the year 2010 as
a reference, summing the emissions and making the annual

mean; P deposition was extracted from Brahney et al. (2015)
and Chien et al. (2016). The N deposition data are interpo-
lated to annual from decadal time slices and derived from
initialized CAM runs; therefore, the information contained
is representative of large-scale features. For consistency with
P deposition, where we only have a decadal mean estimate,
we chose not to include the trend information. All variables
used as predictors of global N and P resorption are described
in Table 2.

2.2 Data derivation

We defined nutrient resorption efficiency (NuRE) as the
amount of nutrient resorbed during leaf senescence calcu-
lated as

NuRE=
(

1−
Nusenesced

Nugreen
MLCF

)
× 100, (1)

where Nugreen and Nusenesced are nutrient (N or P) concentra-
tions in dry green and senesced leaves (mg g), respectively;
MLCF (unitless) is the mass loss correction factor during
senescence to account for the loss of leaf mass when senes-
cence occurs. Omitting MLCF overestimates nutrient con-
centration in senescent leaves and underestimates resorption
values (Zhang et al., 2022). Zhang et al. (2022) showed a
significant overall improvement when considering MLCF,
where both averages of N and P resorption increased by
∼ 9 %, particularly for cases with low resorption efficiencies.
In the present study, not considering the MLCF also under-
estimates the actual nutrient resorption efficiency when com-
paring the fraction of resorption of four subdatasets from the
final global dataset (Appendix A).

We calculated MLCF as the ratio between the dry mass of
senesced and green leaves (Van Heerwaarden et al., 2003a),
where it was not directly available as percentage leaf mass
loss (LML) in the data. We derived average values of MLCF
per plant type from the nutrient resorption dataset to fill
missing values: 0.712 for deciduous, 0.766 for evergreen,
0.69 for conifers and 0.75 for woody lianas, respectively.
To fill in MLCF values for the remaining leaf nutrient and
litter data from TRY, we associated these means of MLCF
with leaf habit, leaf type and growth form information avail-
able on each species. For that, evergreen needle-leaved trees
were associated with conifers MLCF, deciduous trees and/or
shrubs with deciduous woody MLCF and evergreen trees
and/or shrubs with evergreen woody MLCF, respectively. We
grouped climbers and lianas with shrubs. Initially, 107 ob-
servations for NRE and 76 observations for PRE were de-
rived from site-level MLCF data. We increased these num-
bers by 847 for NRE and 378 for PRE when applying the
mean MLCF per PFT. In total we extracted data from 131
sites for NRE and 74 for PRE (Fig. 1), with more than one
entry per site, giving a total of 954 and 454 data points for
NRE and PRE species level, respectively. Temperate biomes
were most strongly represented in the dataset (518 entries),
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Table 1. Traits extracted from the TRY Plant Trait Database to derive nutrient resorption.

Plant traits Variable name Unit

Nmass, leaf Leaf nitrogen (N) content per leaf dry mass mg g
Pmass, leaf Leaf phosphorus (P) content per leaf dry mass mg g
Nmass, litter Litter nitrogen (N) content per litter dry mass mg g
Pmass, litter Litter phosphorus (P) content per litter dry mass mg g
SLA Specific leaf area with different structural exclusions: mm2 mg−1

– Petiole, rachis and midrib excluded
– Petiole excluded
– Petiole included
– Undefined if petiole is included or excluded

LDM Leaf dry mass mg
LDMsenes Leaf senescent dry mass mg
LML Leaf mass loss unitless
PFT Plant functional type/growth form unitless
KGC Köppen climate classification unitless

Table 2. All possible predictors of nutrient resorption.

Variable name Unit Reference

MAT Mean annual temperature °C Fick and Hijmans (2017)
MAP Mean annual precipitation mm Fick and Hijmans (2017)
AmplT Temperature amplitude °C Fick and Hijmans (2017)
ET Evapotranspiration mm Jung et al. (2011)
N_dep2010 Nitrogen deposition kg N ha yr Hegglin et al. (2016)
P_dep Phosphorus deposition kg N ha yr Brahney et al. (2015),

Chien et al. (2016)
soilP_tot Total soil P g P m−2 Yang et al. (2013)
Clay Top soil clay content wt % Wieder et al. (2014)
pH Top soil pH -log(H+) Wieder et al. (2014)
GSL Growing season length days Jung et al. (2011)
SLA Specific leaf area mm2 mg−1 Kattge et al. (2020)
LLS Leaf lifespan month Kattge et al. (2020)
Leaf habit Deciduous/evergreen – Kattge et al. (2020)
Leaf Type Broad-leaved/needle-leaved – Kattge et al. (2020)

followed by tropical (180), boreal (103), polar (102) and dry
ecosystems (65).

2.3 Statistical analysis

As the nutrient resorption data did not conform to a normal
distribution (Shapiro–Wilk test), we used the nonparametric
Kruskal–Wallis one-way analysis of variance (ANOVA) to
examine differences in NRE and PRE among different cli-
mate zones and the Mann–Whitney–Wilcoxon test to evalu-
ate differences between leaf habit, leaf type and growth form
(deciduous vs. evergreen plants, broad-leaved vs. needle-
leaved, shrubs vs. trees), using the {ggstatsplot} R package
(Patil, 2021). We applied Pearson correlation and linear re-
gression to analyse the relationship between nutrient resorp-
tion and the predictors described in Table 2. For MAP and N
deposition, we performed a log transformation prior to con-

ducting the analysis to have the distribution close to the nor-
mal. To find the best set of predictors of the variance in NRE
and PRE, we used multimodel inference (MMI; Burnham
and Anderson, 2002) using Akaike’s information criterion
(AIC) and estimated the relative importance (RI) of each ex-
planatory variable. Different from setting only a single model
based on AIC, multimodel inference accounts for uncertain-
ties in the model performance and in the considered param-
eters. This approach involves modelling and evaluating all
possible combinations of a predetermined set of predictors.
The evaluation is typically conducted using a criterion, such
as AIC or the Bayesian information criterion (BIC), which
favours simpler models and allows for a comprehensive ex-
amination of all possible models and their respective perfor-
mances. By synthesizing the estimated coefficients of predic-
tors across these models, MMI enables inference regarding
the overall importance of specific predictors. Before apply-
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Figure 1. Global distribution of data for nitrogen resorption effi-
ciency (NRE) and phosphorus resorption efficiency (PRE). Data in-
clude observations from 131 sites for NRE (green circles) and 74
sites for PRE (blue circles). Each site may have multiple entries, re-
sulting in a total of 954 NRE data points and 454 PRE data points
at the species level.

ing MMI, we used generalized linear mixed-effect models to
fit different models after removing drivers described in Ta-
ble 2 that showed the following: (1) high collinearity between
them (R ≥ 0.7; Fig. S5), (2) non-significant correlation with
NRE (soil P) and PRE (MAP and SLA) (Fig. S5), and (3) a
threshold of variance inflation factor (VIF) higher than 10
(James et al., 2013). Specifically, temperature amplitude,
GSL and ET were not considered due to their high correlation
with MAT and MAP and due to high VIF. Based on ecologi-
cal interactions, we fitted the model considering interactions
between climate variables MAT and MAP, as well as between
plant characteristics such as leaf structure, leaf habit and leaf
type (SLA : LeafHabit : LeafType). We accounted for species
identity as a random factor in the mixed-effect models to test
whether intrinsic intra-specific variability plays a role. Envi-
ronmental and biotic factors have strong shared effects in lin-
ear mixed models and therefore are not assessed separately in
this study. If the ratio between the sample size and the num-
ber of parameters considered was higher than 40, we fitted
the model using restricted maximum likelihood (REML) and
AICc (corrected for small sample sizes) to avoid bias. We se-
lected the model with the lowest AIC and applied it to the
“dredge” function implemented in the multimodal inference
package {MuMIn} (Bartoń K, 2023), which generated a full
submodel set. A set of best-performing models for NRE and
PRE was selected using a cut-off of 1AIC < 2, and based on
these top models, the best model parameters were generated.
Using the {MuMIn} package, we also calculated the relative
importance of each predictor through the sum of the Akaike
weights across all models in which the respective parame-
ter was being considered, with a cut-off of 0.8 to distinguish
between important and unimportant predictors (Terrer et al.,
2016). The marginal and conditional R2 values for the fit-
ted mixed models were 0.23 and 0.98 for NRE and 0.29 and
0.48 for PRE respectively. Therefore, fixed and random ef-

fects explain 98 % of the variance in NRE and 48 % in PRE,
with fixed effects alone explaining 23 % for NRE and 29 %
for PRE. We performed all statistical analyses using the p

value <0.05 as statistically significant.

3 Results

3.1 Global patterns of nutrient resorption between
different climate zones

The global median of nutrient resorption is 60.0 % for
N± 12.3 % of standard deviation (n= 954) and 61.2 %
for P± 13.6 % (n= 454), respectively. We find differ-
ences for both NRE and PRE between the climate zones
(Fig. 2). Tropical regions show the lowest resorption
for N (NRE: 52.4 %± 12.1 %), and tundra ecosystems in
polar regions show the highest (NRE: 69.6 %± 12.8 %)
(Fig. 2a). PRE in temperate regions shows the lowest values
(57.8 %± 13.6 %). PRE increases towards higher latitudes
with a significant difference in P resorption from temperate
to boreal regions (67.3 %± 13.6 %) (Fig. 2b). In contrast to
NRE, the difference in PRE between tropical and other cli-
mate zones, as well as polar regions, is not statistically signif-
icant (P>0.05). NRE in dry regions (61.6 %± 9.7 %) is sta-
tistically different from tropical and polar regions, while for
PRE, the difference is not significant between climate zones.
However, the sample for this zone is substantially smaller.
Details of the minimum, maximum and median values can
be found in Table B1.

3.2 Patterns of nutrient resorption between plant
functional types

We explore the variation of nutrient resorption between
plant functional groups. Deciduous woody plants have
a significantly higher NRE (65.2 %± 12.4 %, n= 400)
than evergreens (57.9 %± 11.4 %, n= 551) (P<0.001)
(Fig. 3a), and shrubs have a significantly higher NRE
(63.1 %± 12.4 %, n= 230) than trees (59.2 %± 12.1 %, n=
724) (P<0.001) (Fig. 3c). Conversely, there is no significant
difference in NRE between broad-leaved (59.8 %± 12.5 %,
n= 841) and needle-leaved plants (61.8 %± 9.9 %, n=

103) (P>0.05) (Fig. 3b). PRE does not differ significantly
between deciduous (60.0 %± 12.8 %, n= 220) and ever-
green plants (61.7 %± 14.4 %, n= 231) (P = 0.4) (Fig. 3d)
or between shrubs (64.4 %± 13.5 %, n= 59) and trees
(61.1 %± 13.6 %, n= 395) (P = 0.2) (Fig. 3f). However,
PRE differs significantly between leaf types, with needle-
leaved plants showing higher resorption (72.2 %± 9.2 %,
n= 45) than broad-leaved plants (59.6 %± 13.5 %, n= 404)
(P<0.001) (Fig. 3e). Details of the minimum, maximum and
median values can be found in Table B2.

We next explore how climate zones affect NRE and PRE
within plant functional groups. NRE tends to increase from
tropical to boreal climates (Fig. 4a) – a pattern seen among
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Figure 2. Difference in nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) among climate gradients from
tropical to polar zones based on the Köppen climate classification. Panels display NRE (a) and PRE (b), with boxplots showing the median
(black dots), interquartile range and outliers, indicating data spread and variability. The side distributions show the overall data distribution
for each climate zone. Different letters indicate statistically significant differences in nutrient resorption efficiency between climate zones.
“ns” indicates no significant difference. “n” represents the number of observations per climate zone. The grey distribution on the right of
each panel represents the overall distribution of NRE and PRE values across all observations.

deciduous and evergreen woody plants, among shrubs and
trees, and among broad-leaved but not needle-leaved plants.
Also, PRE increases from temperate to boreal and polar cli-
mates but declines from the tropics to temperate climates in
evergreens (Fig. 4b). Apart from the overall tendency, we ob-
serve a few statistical deviations from the general pattern that
emerges across all plants pooled: NRE is significantly lower
in polar regions compared to boreal forests for evergreens
(NRE: 56.0 %± 13.4 %; NRE: 70.5 %± 10.8 %) and com-
pared to needle-leaved plants (NRE: 56.0 %± 11.5 %; NRE:
51.5 %± 7.3 %) (P<0.001); PRE shows the same pattern
deviation between these regions, but the pattern is not statis-
tically significant (P>0.05). Also, we do not observe lower
NRE for tropical regions in needle-leaved plants because the
only observation of this plant type is in this climate zone.
Details of the minimum, maximum and median values can
be found in Table B3.

3.3 Main drivers of nutrient resorption

We investigate the main drivers of variation in nutrient re-
sorption, considering biological, climatic and soil factors and
using data from all PFTs and climate zones pooled. Dredge
model averaging based on a set of best-performing mod-

els with corrected AIC (see Sect. 2.3) shows that the best
model for NRE includes soil clay content, N deposition,
MAP and growth form (Table 3). The best combination of
predictors of the PRE model includes N deposition, leaf type
and MAT (Table 3). Sums of Akaike weights indicate that
the order of importance of predictors of NRE is N deposition
(RI 0.99), MAP (RI 0.99) and leaf habit (RI 0.98), followed
by soil clay content (RI 0.97), growth form (RI 0.93) and leaf
type (RI 0.87) (Fig. 5a). For PRE, the order is P deposition
(RI 0.99), leaf type (RI 0.99) and N deposition (RI 0.94), fol-
lowed by leaf habit (RI 0.89) (Fig. 5b). The criteria to fit the
model selecting and/or excluding predictors and interactions
for the multimodel inference can be found in Sect. 2.3. Cor-
relations between all variables, as well as linear relationships
to the regression slope between nutrient resorption and all
possible predictors, can be found in Figs. C1, C2 and C3.

4 Discussion

Through an extensive global dataset of leaf nutrient resorp-
tion and a multifactorial analysis, we show that leaf habit
and type are a strong driver of the spatial variation in nutri-
ent resorption, with thicker, longer-lived leaves having lower
resorption efficiencies. Climate and soil-availability-related
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Figure 3. Differences in nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) between plant functional
types (PFTs) on a global scale. Panels display NRE (a, b, c) and PRE (d, e, f) for different PFT comparisons: deciduous vs. evergreen species
(a, d), broad-leaved vs. needle-leaved species (b, e) and shrubs vs. trees (c, f). Boxplots depict median (black dots), interquartile range and
outliers, indicating data spread and variability. The side distributions show the overall data distribution for each PFT. “n” represents the
number of observations. p values indicate the significance of differences in nutrient resorption efficiency between PFTs. “ns” indicates no
significant difference.

Table 3. Summarized results of dredge model averaging for nitrogen resorption efficiency (NRE) and phosphorus resorption efficiency
(PRE). Significant codes: ∗∗∗∗ 0, ∗∗∗ 0.001, ∗∗ 0.01, ∗ 0.05, 0.1. SE means standard error.

NRE Estimate SE Adjusted SE z value Pr(>|z|)

Intercept 63.24 2.86 2.87 21.96 <0.001∗∗∗∗

Clay content −0.33 0.09 0.09 3.54 <0.001∗∗∗∗

Growth form 2.57 1.11 1.12 2.30 0.02∗∗

Leaf habit 2.02 2.32 2.33 0.86 0.38
Leaf type 0.66 2.51 2.52 0.26 0.79
MAP −5.07 1.58 1.58 3.19 0.001∗∗∗

N deposition 0.57 0.11 0.11 5.07 <0.001∗∗∗∗

Leaf habit : leaf type −0.51 2.69 2.70 0.19 0.84

PRE Estimate SE Adjusted SE z value Pr(>|z|)

Intercept 78.28 9.45 9.56 8.18 <0.001∗∗∗∗

Clay content −0.44 0.24 0.24 1.81 0.06∗

Growth form −1.35 2.99 3.03 0.44 0.65
Leaf habit 2.72 1.75 1.77 1.53 0.12
Leaf type −10.34 4.29 4.35 2.37 0.01∗∗

MAT 1.08 0.49 0.49 2.18 0.02∗∗

N deposition −1.77 0.54 0.54 3.23 0.001∗

P deposition −97.13 65.80 66.75 1.45 0.14
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Figure 4. Median nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) across different plant functional
types (PFTs) and climate zones. Panels display median NRE (a) and PRE (b) for the following PFTs: deciduous vs. evergreen species,
broad-leaved vs. needle-leaved species and shrubs vs. trees. Each bar represents a climate zone (A: tropical; B: dry; C: temperate; D: boreal;
E: polar) based on the Köppen classification, with colour-coded legends. Error bars indicate variability. Numbers in parentheses denote the
number of observations, and letters above bars indicate statistically significant differences between climate zones within each PFT. “ns”
indicates no significant difference).

factors also emerge as strong drivers, in which we discuss a
secondary regulation related to environmental conditions in
space and time. Our study covers significantly more woody
species observations for nutrient resorption, especially for N,
than previous studies (Yuan and Chen, 2009; Yan et al., 2018;
Xu et al., 2021). We also account for variations in the mass
loss of senescing leaves by deriving the MLCF when leaf
mass loss or leaf dry mass was available and then apply the
calculated average MLCF to the missing data rather than us-
ing a single average of MLCF from the literature per PFT
(Yan et al., 2018; Xu et al., 2021), which may lead to a more
correct estimate of nutrient resorption (see Sect. 2.2).

4.1 Nutrient resorption limited by leaf structure

The structural properties of leaves limit the efficiency of re-
sorption along geographic and climatic ranges. We find that
the global median for NRE is significantly higher in decidu-
ous than evergreen plants and is higher in shrubs than trees
(discussed at the end of this section) (Fig. 3a, c). This finding
is in contrast to previous global studies that found decreasing
nutrient resorption with increasing green leaf nutrient con-
tent, implying that deciduous species, which generally have
higher leaf N content than evergreen species, have lower re-
sorption (Yan et al., 2018; Xu et al., 2021). Nevertheless, our
finding is in agreement with Vergutz et al. (2012), who re-

ported that deciduous woody species had higher NRE than
evergreen woody species and found no significant differences
for PRE.

We find that leaf habit is a strong driver of variation in re-
sorption for both nutrients (Table 3; Fig. 5). Figure 3a shows
that leaf habit is associated with clearly different median
NRE values for evergreen and deciduous species, while the
relationship of the average resorption is less clear for PRE
(Fig. 3d). This is likely the consequence of a dominance of
evergreen species in the tropics in our dataset, but we can-
not conclude that the lower number of data for PRE is also a
driver of this pattern. The inconsistencies of patterns and sig-
nificance in P resorption can be related to high biochemical
divergence in leaf P fractions compared to N, leading to var-
ied mobilization paths (Estiarte et al., 2023). The breakdown
of proteins is the main way N moves around, as 75 %–80 %
of N is allocated in proteins, while P mobilization involves
many different catabolic pathways that lead to a wider vari-
ety in P dynamics in leaves during leaf development (Estiarte
et al., 2023).

We observe no statistical difference between leaf types for
NRE (Fig. 3). The higher PRE in needle-leaved than broad-
leaved plants (Fig. 3e) is likely a species effect since almost
all needle-leaved plant observations for PRE are plants of the
same family, Pinaceae. Nevertheless, leaf type is also a strong
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Figure 5. Importance of the abiotic and biotic predictors on nitrogen resorption efficiency (NRE; a) and phosphorus resorption efficiency
(PRE; b). The relative importance (RI) of each predictor is calculated through the sum of the Akaike weights derived from the multimodal
inference selection, using corrected Akaike’s information criteria. The blue line marks the threshold for important predictors (RI >0.8).
Interactions between predictors are denoted by colons. MAP: mean annual precipitation. MAT: mean annual temperature. SLA: specific leaf
area.

driver of variance in NRE and PRE (Table 3; Fig. 5). This
finding goes together with the view of thicker, longer-lived
leaves – such as evergreens and needle-leaved plants – hav-
ing lower resorption efficiencies. One possible explanation
for this global leaf habit and type pattern is that thicker leaves
from evergreens plants, i.e. those with low SLA, have more
N allocated to structural leaf compartments, which means it
is harder to break down and resorb nutrients back, leading to
less resorption. This is different to deciduous plants, in which
leaves are characterized by a higher SLA and a larger N in-
vestment into metabolic compounds (Onoda et al., 2017). Al-
though SLA is not directly selected in the statistical model,
our results implicitly contain the effects of SLA on nutri-
ent resorption through the strong and known relationship be-
tween SLA and leaf type and habit (Fig. C5).

The leaf economics spectrum (LES) distinguishes “fast”
and “slow” economic strategies found globally and existing
independent of climate (Wright et al., 2004). A rapid return
on investments, or “fast” economic strategy, is typically asso-
ciated with deciduous plants and achieved through a combi-
nation of traits such as shorter leaf longevity, higher nutrient
concentrations and thinner leaves (high SLA), resulting in
higher gas exchange rates per unit mass / area (Reich et al.,
1992, 1997; Wright et al., 2004). Conversely, a slow return
on investments is associated with the opposite set of traits and
typically found in evergreen plants (Reich et al., 1992, 1997;
Wright et al., 2004). The low SLA of long-lived leaves is
associated with low photosynthetic N-use efficiency but with

nutrient investment spread over a longer period. The low pho-
tosynthetic N-use efficiency can be attributed to a higher pro-
portion of C and N being allocated to structural rather than
metabolic components of the leaf (Reich et al., 2017), which
aligns with the theory on leaf carbon optimization proposed
by Kikuzawa (1995) and posits that shorter leaf longevity is
associated with higher photosynthetic rates or lower costs of
leaf construction.

Here, we find that plants with a conservative nutrient re-
sorption strategy are located at the non-conservative end of
the LES, that is, in the “fast” economic strategy. The discus-
sion that revolves around the LES is determined by a com-
bination of trade-offs between investments in structural and
metabolic components, as well as trade-offs over time in the
expected returns on those investments (Reich et al., 2017).
The non-transferable and possibly transferable nutrients de-
pend on where they are located in the cell and their biochem-
istry (Estiarte et al., 2023). Metabolic fractions are consid-
ered to be fully accessible for resorption, while structural
fractions have been considered non-degradable (Estiarte et
al., 2023). Wang et al. (2023) bring the worldwide pattern of
high leaf lifespan (LLS) in plants with low SLA as a natu-
ral selection response to maximize carbon gain during leaf
development, with variations in SLA in deciduous and ever-
green species being determined by microclimate conditions.
This pattern scales up from the organ level to a broader per-
spective that encompasses the trade-off between growth and
survival at the plant level (Kikuzawa and Lechowicz, 2011).
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We find higher NRE in shrubs than trees, as observed in pre-
vious studies (Yuan and Chen, 2009; Yan et al., 2018; Xu et
al., 2021), which is also reflected in the identification of plant
growth form as one of the main driving factors of NRE in the
multimodel inference analysis (Table 3; Fig. 5a). Compared
to trees, shrubs typically have smaller leaves and shorter leaf
lifespans. With that they need to be more resourceful with the
nutrients available and prioritize nutrient resorption as a way
to optimize nutrient usage for growth.

Resorption is an internal plant process that aims to main-
tain the balance of soil–plant interactions in the acquisition
and conservation of nutrients, considering which process is
less costly for the plant. The efficiency in nutrient use by
plants is determined mainly by the nutrient residence time in
the plant, which can be accessed through the leaf longevity
maintaining the nutrients or through resorption before leaf
abscission (Veneklaas, 2022). Our results support the con-
cept that nutrient resorption is mainly driven by the share of
metabolic vs. total leaf N and P, which co-varies with SLA
(proxy for construction costs).

Therefore, higher resorption in deciduous trees may be an
important conservation strategy as this process is less ener-
getically costly than new growth. Brant and Chen (2015) dis-
cuss the dependence of deciduous trees on nutrient resorption
efficiency, as their investment in green leaf nutrients is higher
to keep fast physiological activity during growing season, or
the entire nutrient economy is compromised. With that, we
can argue that leaf longevity may be an important strategy for
evergreen plants to conserve their lower leaf nutrient content,
as the nutrient residence time is higher in evergreens. These
plants retain nutrients for as long as possible, because once
the nutrients are transferred to the soil through litterfall, they
are partially lost from the system.

4.2 Effects of climate factors

Our global dataset shows that NRE significantly increases
from tropical to polar zones (Fig. 2a), while PRE is lowest in
temperate zones and significantly increases toward the poles
(Fig. 2b). This suggests that the resorption of both nutrients
is governed to some extent by a comparable dependency on
climate, possibly related to slowed soil organic matter de-
composition at lower temperatures, which reduces the net
rate of mineralization and, in turn, limits the availability of
nutrients for plant uptake from the soil (Sharma and Kumar,
2023). MAT emerges as one of the main drivers of PRE but
not of NRE (Table 3). This result may be the outcome of
the overall distribution of deciduous and evergreen species
across climate zones, suggesting that global variations in N
and P resorption along climatic gradients may arise primarily
from global patterns in deciduous vs. evergreen and needle-
leaved vs. broad-leaved plants. This statement is important
in the context of projecting nutrient cycling under altered cli-
mate and indicates limited responses in resorption to tem-
poral changes in climate at decadal timescales – before the

global distribution of leaf habit and type changes as a result
of shifts in species composition.

MAP emerges as an important driver of NRE (Table 3;
Fig. 5). One explanation is that low MAP leads to low soil
moisture, constraining nutrient mobility and increasing the
carbon cost for plants to take up nutrients (Gill and Finzi,
2016). Therefore, together with limited N-resorption mobil-
ity in leaf tissues discussed above (Estiarte and Peñuelas,
2015), soil moisture constrains N mobilization during the
mineralization process (Thamdrup, 2012). Liu et al. (2017)
analysed the relation between soil N mineralization and tem-
perature sensitivity on a global scale and showed largest N-
mineralization rates at tropical latitudes and a general pole-
ward decrease. We can observe a similar pattern of NRE with
latitude (Fig. C4). Deng et al. (2018) observed a negative re-
lationship between NRE and mineralization rate, which sug-
gests a reciprocal causal relationship where systems emerge
exhibiting both simultaneously low mineralization and high
resorption rates. The strong link we find here between NRE
and leaf habit and leaf type – traits that are immutable within
a given species – indicates that the variations we observe in
resorption might be a possible reflection of species compo-
sition, with a direct consequence for N cycling. It suggests
that a positive feedback mechanism exists that leads ecosys-
tems to be characterized by high resorption and a slower
soil cycling or vice versa (Phillips et al., 2013). For exam-
ple, species adapted to low soil N are favoured in N-limited
environments, but they also produce low-N litter that de-
creases mineralization and further favours their competitive-
ness (Chapin et al., 2011).

In addition, we find a negative correlation between resorp-
tion and GSL (Figs. C1 and C2). Plant strategies in regions
with short growing seasons (e.g. high latitudes or seasonally
dry subtropical regions) are focused on nutrient conservation
to maximize growth during the favourable period, despite nu-
trient availability. In very cold and seasonal environments,
as seen in grassy tundra vegetation, soil nutrients are often
not available concurrently with plant demand (Lacroix et al.,
2022), implying that it may be more advantageous for plants
to retain their nutrients. While we did not include GSL in
the multimodel inference analysis due to its high collinearity
with MAT, this aspect is partially reflected in leaf habit.

When we separate the global patterns for different climate
zones and PFTs, our results show that the major climatic pat-
tern is consistent across the growth forms and leaf types and
leaf habit (Fig. 4), in which NRE and PRE increase towards
higher latitudes and PRE shows a minimum at mid-latitudes.
Our findings support that maximum NRE and PRE may be
firstly constrained by leaf properties, with secondary effects
from climate and soil texture (discussed below). Estiarte et
al. (2023) suggest that a plant’s leaf biochemistry (biochemi-
cal and subcellular fractions of N and P) is the primary factor
in limiting nutrient resorption, followed by secondary regu-
lation related to environmental conditions in space and time.
They present that resorption efficiency declines when soil nu-
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trient availability rises, as plant uptake becomes less costly
in more fertile soil. However, the expenses linked to ageing
leaves remain constant (Estiarte et al., 2023).

4.3 Effect of soil nutrient availability

N and P deposition and clay content emerge as important pre-
dictors of both PRE and NRE (Table 3; Fig. 5). This likely
reflects the influence of soil N and P availability for NRE and
PRE. Clay content is an important factor determining the nu-
trient retention capacity and cation exchange capacity in soils
(Chapin et al., 2011). Chronic N deposition has increased soil
N availability (Galloway et al., 2004) and leaf nutrient con-
tent (Chapin et al., 2011) over the 20th century and likely
affected plant-internal recycling and resorption as indicated
by our spatial results. In a fertilization experiment, higher
P input had a negative effect on both NRE and PRE (Yuan
and Chen, 2015), suggesting that increased P deposition may
reduce the plant-internal recycling and thus resorption. The
cycling and accessibility of soil P are influenced by N depo-
sition (Marklein and Houlton, 2012) through various mech-
anisms, including changes in plant P-use strategies (Dalling
et al., 2016; Wu et al., 2020a). Higher N deposition tends to
reduce total soil P content (Sardans et al., 2016), so plants
would need to increase PRE to compensate for the high soil
N : P stoichiometry and P limitation. Jonard et al. (2015) sug-
gested that forest ecosystems are becoming less efficient at
recycling P due to excessive N input and climatic stress. This
observation likely contributes to our finding that N and P de-
positions emerge as a stronger driver in a negative correla-
tion with PRE (Figs. 5 and C2; Table 3). The lack of effect
by total soil P on NRE and PRE may result from the fact
that this variable does not represent the actual fraction of P
available for plant uptake. Nevertheless, N deposition has a
strong positive effect on NRE (Fig. 5; Table 3) – contrary to
expectations (Aerts and Chapin, 1999; Yuan and Chen, 2015;
Fisher et al., 2010). This indicates that the influence of N de-
position might be via effects on SLA, whereby increasing N
deposition increases the fraction of non-structurally bound N
and therefore increases the fraction of N that can be resorbed.
This effect, corrected for covariant factors such as leaf type
and growth form, overlaps with the negative effect of soil
clay content on NRE and PRE, which suggests that resorp-
tion decreases with nutrient availability in clay-rich soils.
Our results raise an important point on the correlation of leaf
nutrient resorption and nutrient limitation, showing that the
relationships are complex and driven by multiple interacting
and seemingly opposing factors.

Another soil factor we find to be important for nutrient
resorption is the clay content (Table 3). Clay minerals are
formed during soil weathering and have a high surface area
that influences the soil’s water retention capacity and a nega-
tive charge that enables nutrient retention and exchange with
plant roots (Chapin et al., 2011). High-latitude soils that are
younger and experience slow rates of chemical weathering

usually have low clay content and, therefore, less potential
for mineral nutrient storage, which may affect their availabil-
ity for plant uptake (Chapin et al., 2011). As a result, plants in
these environments need to invest more in resorption. Thus,
together with MAP and MAT, soil clay content is also closely
related to soil nutrient supply on a global scale, which is re-
flected in its role as driving resorption (Table 3; Fig. 5), as
well as in the negative correlation between clay content and
nutrient resorption (Figs. C1 and C2). The important effect of
leaf properties on nutrient resorption, along with climate, soil
texture and soil fertility (as previously suggested by Aerts
and Chapin, 1999; Yuan and Chen, 2015; Xu et al., 2021),
may indicate that biological and environmental factors are
interconnected, as it is also influenced by multiple elements
such as litter quality, precipitation, parent materials and soil
texture. For example, P availability is geologically and pedo-
logically limited in warm environments, which means it is
mainly determined by soil parent materials (Augusto et al.,
2017); therefore, soil texture becomes an important factor of
P limitation in tropical regions. Also, the role of P deposi-
tion in relation to plant demand is high for tropical forests
(Van Langenhove et al., 2020) but low worldwide (Cleveland
et al., 2013). PRE in the tropics does not differ statistically
from other climate zones, although we observe an increase
of PRE from mid-latitudes to low latitudes (Figs. B1b and
C4), which may indicate data limitation for PRE. The com-
bination of plant properties with an underlying soil and cli-
mate control as driving factors of resorption variation is also
supported by Drenovsky et al. (2010, 2019), who suggested
a combination of soil properties, climatic factors and plant
morphology to explain changes in nutrient resorption.

4.4 Data uncertainties and implications

Our study contributes to the existing research on nutrient re-
sorption by using a comprehensive approach to deriving re-
sorption values from the TRY Plant Trait Database. How-
ever, we encounter limitations in this derivation due to a lack
or limited quality of data. The absence of co-located nutri-
ent measurements in leaf and litter led to a shortage of suit-
able data pairs, mainly for PRE, in which the robustness of
the model selection raised concerns about its reliability. In
addition, it is not possible to assess the entire temporal as-
pect of data collection, which increases intraspecific variabil-
ity. For NRE, 645 of a total of 954 observations are from
the same growing season, as we have collection information
for green leaves and litter samples whether they were picked
from the plant, recently fallen or from litterfall traps cleared
every week. Consequently, for approximately 30 % of the
data, we cannot confirm that the leaf and litter measurements
are from the same growing season and legitimately from the
same individual. This is indeed one of the greatest limitations
in assessing reliable nutrient resorption values. Nevertheless,
it remains the accepted – and only – method for evaluating
resorption on a broad scale.

https://doi.org/10.5194/bg-21-4169-2024 Biogeosciences, 21, 4169–4193, 2024



4180 G. Sophia et al.: Leaf habit drives leaf nutrient resorption

While our approach of accounting for the MLCF improves
estimates of resorption (Appendix A), we could not esti-
mate the MLCF for all data pairs or fill all gaps using av-
erage functional type characteristics due to the lack of trait
attributes in the TRY Plant Trait Database. These two fac-
tors reduce the number of data points available for statistical
analysis using the multi-model inference. Furthermore, al-
though we recognize the importance of leaf lifespan (LLS),
it is not possible to analyse the relationship between resorp-
tion and LLS due to the few measurements of this functional
trait. Nevertheless, applying the available statistical methods
to analyse the drivers behind NRE and PRE, we find consis-
tent patterns for the key gradients of climate, soil and PFTs,
which are informative for other studies despite the remaining
unexplained variance. In addition, we find that even within
species of the same family, the distribution of NRE values is
nearly as wide as the distribution for PFTs. This coordination
in the observed spread likely reflects a substantial contribu-
tion from environmental variability, which would be interest-
ing for further analysis if more data were available. In order
to improve the depth of resorption investigation, we encour-
age researchers in fieldwork to perform concurrent measure-
ments of litter nutrient content as well as leaf and litter dry
mass.

The statistical analysis of dredge multi-model inference
depends on the specific factors used in the analysis. We re-
moved highly collinear variables and tested the impact of dif-
ferent combinations of factors. Although changing the fac-
tors affects the exact number of data points used in each
multi-model inference, the overall identification of important
and less important factors of NRE and PRE remains robust,
especially for PFTs. However, ensuring that our analysis is as
global as possible, the statistical dredge model analysis can
consequently be influenced by temperate-region bias, which
is an inherent limitation we cannot fully mitigate but one that
is present in any global meta-analysis of this kind.

By quantifying these trends that we have found, we can
delve deeper into ecosystem models by improving model pa-
rameterization and developing a dynamic nutrient resorption
concept. Studies that utilize data to infer nutrient cycling fre-
quently simplify resorption by making general assumptions
(Finzi et al., 2007; Cleveland et al., 2013) or simply repre-
senting this process as a fixed value of 50 % (Vergutz et al.,
2012; Zaehle et al., 2014), which may cause inaccuracies in
their findings on nutrient cycling. The flow of recycling nu-
trients in land surface models is a factor that determines how
strong the soil nutrient availability controls plant production.
N resorption and N uptake in the FUN model (Fisher et al.,
2010), for example, are defined by the relative acquisition
cost of the two sources. Fisher et al. (2010) discuss that the
cost of resorption assumes a constant based on global obser-
vations, but it may require a clearer connection to leaf phys-
iology. Here, we provide a start for a statistical model that
can connect resorption and plant properties and restrict how
much plants could actually resorb nutrients, as well as the

dataset to test the predictions of a physiological model. In
addition, environmental drivers that have been shown to in-
fluence the overall patterns, such as soil texture and climate,
could be considered to influence the resorption efficiency af-
ter primary leaf physiology limitation. Such information is
essential when estimating how it can constrain carbon assim-
ilation in the face of global changes (Galloway et al., 2008)
and, therefore, essential to predict future plant growth and
the capacity of the forest to act as a carbon sink (Thornton et
al., 2007; Arora et al., 2022).

5 Conclusions

Our analysis of the global plant trait database indicates that
variations of NRE and PRE are driven by the combination
of plant properties with an additional soil and climate con-
trol. Systematic variations of NRE across leaf habit and type
indicate that these traits are linked to plant nutrient use and
conservation strategies and that leaf structure plays an im-
portant role in determining the proportion of nutrients that
can be resorbed. Different metrics of soil fertility and soil-
related variables influence NRE and PRE together with cli-
matic variables and leaf structure and habit. Clay content, N
and P deposition have a strong influence with a negative rela-
tionship – possibly an expression of its role in nutrient reten-
tion – as well as MAP. These trends provide a target to bench-
mark the simulation of nutrient recycling in global nutrient-
enabled models. A focus on considering the links between
leaf structure and nutrient resorption efficiency should enable
a more realistic consideration of ecological and environmen-
tal controls on nutrient cycling and limitation than the current
state of the art. The importance of intrinsic plant properties
raises important questions about the flexibility of leaf resorp-
tion under future changes in climate, CO2 concentrations and
atmospheric deposition.

Appendix A: Sensitivity study of the importance of
MLCF

We assembled the global dataset from the gap-filled version
of the TRY Plant Trait Database (https://www.try-db.org, last
access: 14 March 2022, Kattge et al., 2020, version 5.0) con-
taining field measurements of paired leaf and litter-mass-
based tissue N and P concentrations (Nmass, leaf, Pmass, leaf,
Nmass, litter, Pmass, litter) to derive the fractional nutrient re-
sorption (described in Sect. 2.1).

In order to understand the importance of considering
MLCF in the formula to derive reliable nutrient resorption
values, we compared four subdatasets from the final global
dataset:
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Figure A1. Difference in nitrogen resorption efficiency (NRE %) among climate gradients from tropical to polar zones based on the Köppen
climate classification, comparing four subdatasets to understand the importance of mass loss correction factor (MLCF) in the formula to
derive nutrient resorption values: (a) nutrient resorption values derived directly from the nutrient resorption dataset with MLCF calculated
from leaf dry mass or leaf mass loss measurements, (b) nutrient resorption values derived directly from the nutrient resorption dataset but
with missing MLCF filled by the mean for each plant functional type (PFT), (c) nutrient resorption values derived from TRY traits with no
MLCF in the formula and (d) nutrient resorption values derived from TRY traits but with missing MLCF filled by the mean for each PFT.
Boxplots depict median (black dots), interquartile range and outliers, indicating data spread and variability. The side distributions show the
overall data distribution for each climate zone. The dashed line indicates the overall mean NRE of 50 % used in most land surface models.
“n” represents the number of observations per climate zone.

a. We derived nutrient resorption from the nutrient resorp-
tion database, in which MLCF was calculated directly
from leaf dry mass or leaf mass loss measurements.

b. For the second dataset we derived nutrient resorption
from the nutrient resorption database as well, but we
filled the missing values of MLCF using the mean for
each plant functional type (PFT): 0.712 for decidu-
ous, 0.766 for evergreen, 0.69 for conifers and 0.75 for
woody lianas, respectively.

c. For the third dataset we derived nutrient resorption us-
ing leaf nutrient and litter data from TRY traits, in which
we did not include MLCF in the formula, calculated as

NuRE=
(

1−
Nusenesced

Nugreen

)
× 100. (A1)

d. For the fourth dataset we derived nutrient resorption us-
ing leaf nutrient and litter data from TRY, but here we
filled MLCF with the mean per PFT calculated before,

in which we associated these means with leaf habit, leaf
type and growth form information. For that, evergreen
needle-leaved trees received conifer MLCF, deciduous
trees and/or shrubs received deciduous woody MLCF,
and evergreen trees and/or shrubs received evergreen
woody MLCF, respectively.

Figure A1 shows nitrogen resorption efficiency (NRE) be-
tween different climate zones, where we can see underesti-
mated values of resorption only when we do not consider
MLCF in the formula (Fig. A1c), with values around or lower
than 50 % of N resorption. We can see more reliable resorp-
tion values around 60 % when considering MLCF in the for-
mula (Fig. A1a, b, d). When applying the mean of MLCF
for the table deriving NRE from TRY traits (Fig. A1d), we
are able to reproduce a similar pattern compared to the re-
sorption database imported from TRY (Fig. A1a). Figure A2
shows the distribution of NRE for each subset described be-
fore, where we can see a clear difference in data distribu-
tion only when we do not consider MLCF in the formula
(Fig. A2c). For our final dataset, we then considered the
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dataset (Fig. A2b) and (Fig. A2d) together, in which the most
reliable data are for nutrient resorption as it provides more
data points for resorption and considers MLCF in the for-
mula.

Figure A2. Distribution of nitrogen resorption efficiency (NRE %) comparing four subdatasets to understand the importance of mass loss
correction factor (MLCF) in the formula to derive nutrient resorption values: (a) nutrient resorption values derived directly from the nutrient
resorption dataset with MLCF calculated from leaf dry mass or leaf mass loss measurements, (b) nutrient resorption values derived directly
from the nutrient resorption dataset but with missing MLCF filled by the mean for each plant functional type (PFT), (c) nutrient resorption
values derived from TRY traits with no MLCF in the formula and (d) nutrient resorption values derived from TRY traits but with missing
MLCF filled by the mean for each PFT.
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Appendix B: Global patterns of nutrient resorption
efficiency for N and P by PFTs and climate zones

Table B1. Summary of nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) in different climate zones. For
each relationship, the number of observations (N ), minimum (Min), maximum (Max), median and standard deviation (SD) were reported.
Letters under “Significance” show the statistical comparison between each climate zone. “ns” indicates no significant difference.

Resorption (%) Climate zone N Min Max Median SD Significance

NRE Tropical 178 19.77 78.23 52.46 12.15 a
Dry 65 37.17 85.48 61.66 9.72 bc
Temperate 507 28.77 89.11 59.18 11.06 c
Boreal 102 29.64 86.72 69.03 11.0 b
Polar 102 41.42 87.89 69.62 12.84 b

PRE Tropical 100 27.65 87.23 61.7 12.84 ns
Dry 5 42.55 72.31 66.09 11.47 ns
Temperate 273 29.14 95.11 57.80 13.65 a
Boreal 57 35.92 88.88 67.36 13.65 b
Polar 12 52.16 83.58 68.02 8.84 ns

Table B2. Summary of nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) in different plant functional
types (PFTs). For each relationship, the number of observations (N ), minimum (Min), maximum (Max), median, p value and standard
deviation (SD) were reported. p value <0.05 indicates statistical significance.

Resorption (%) PFT N Min Max Median p value SD

NRE Deciduous 400 29.64 89.11 65.27
<0.001

12.48
Evergreens 551 19.77 87.89 57.96 11.45

Broad-leaved 841 19.77 89.11 59.8
0.05

12.53
Needle-leaved 103 40.19 87.89 61.84 9.97

Shrubs 230 30.13 85.48 63.17
<0.001

12.48
Trees 724 19.77 89.11 59.27 12.17

PRE Deciduous 220 29.22 95.78 60.04
0.46

12.86
Evergreens 231 27.65 91.78 61.7 14.41

Broad-leaved 404 27.65 95.11 59.64
<0.001

13.50
Needle-leaved 45 51.35 88.88 72.2 9.23

Shrubs 59 32.97 87.23 64.4
0.89

13.50
Trees 395 27.65 95.11 61.1 13.67
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Table B3. Summary of nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) in different plant functional
types (PFT) separated in different climate zones. For each relationship, the number of observations (N ), minimum (Min), maximum (Max),
median and standard deviation (SD) were reported. Letters under “Significance” show the statistical comparison between each climate zone.
“ns” indicates no significant difference.

NRE

PFT Climate zones N Min Max Median SD Significance

Deciduous Tropical 31 31.97 71.80 52.53 11.64 a
Dry 31 37.17 85.48 65.95 11.68 b
Temperate 216 31.95 89.11 62.39 11.84 cb
Boreal 61 29.64 86.72 68.28 11.17 db
Polar 61 47.15 84.16 75.60 9.99 e

Evergreens Tropical 147 19.77 78.23 52.43 12.28 a
Dry 34 40.97 79.57 60.42 7.06 bc
Temperate 288 28.77 81.56 58.40 9.93 cd
Boreal 41 30.13 82.44 70.57 10.87 b
Polar 41 41.42 87.89 56.03 13.44 d

Broad-leaved Tropical 174 19.77 78.23 52.46 12.15 a
Dry 63 37.17 85.48 61.66 9.42 bc
Temperate 453 28.77 89.11 59.18 11.36 c
Boreal 69 29.64 86.72 68.28 12.13 b
Polar 82 41.42 84.16 75.10 12.34 b

Needle-leaved Tropical 1 65.25 65.25 65.25 – ns
Dry 2 46.60 79.65 63.13 23.37 ns
Temperate 47 40.19 81.56 58.80 7.45 a
Boreal 33 51.02 82.44 71.52 7.33 b
Polar 20 46.76 87.89 56.03 11.58 a

Shrubs Tropical 21 33.81 74.33 59.60 11.45 a
Dry 33 37.17 85.48 63.72 12.08 ns
Temperate 77 31.29 80.96 59.16 10.63 a
Boreal 27 30.13 85.15 65.77 13.66 ns
Polar 72 41.42 84.16 71.16 11.92 b

Trees Tropical 157 19.77 78.23 52.35 12.18 a
Dry 32 47.10 76.26 60.08 6.59 bc
Temperate 430 28.77 89.11 59.18 11.13 c
Boreal 75 29.64 86.11 70.05 9.49 b
Polar 30 46.76 87.89 68.44 14.89 bc
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Table B3. Continued.

PRE

PFT Climate zones N Min Max Median SD Significance

Deciduous Tropical 25 35.92 76.26 64.40 13.14 ns
Dry 4 64.40 72.31 66.29 3.44 ns
Temperate 145 29.22 95.11 59.95 13.32 ns
Boreal 33 35.92 84.33 59.31 12.18 ns
Polar 6 59.31 71.52 64.51 4.90 ns

Evergreens Tropical 75 27.65 87.23 61.70 12.81 a
Dry 1 42.55 42.55 42.55 – ns
Temperate 125 29.14 91.78 57.44 13.85 a
Boreal 24 61.38 88.88 79.26 7.58 b
Polar 6 52.16 83.58 73.73 11.03 ns

Broad-leaved Tropical 97 27.65 87.23 61.70 12.98 ns
Dry 5 42.55 72.31 66.10 11.47 ns
Temperate 249 29.14 95.11 57.28 13.93 ns
Boreal 36 35.92 84.33 60.14 11.92 ns
Polar 10 52.16 83.58 68.03 9.63 ns

Needle-leaved Temperate 22 51.35 82.62 65.25 7.06 a
Boreal 21 61.38 88.88 80.14 7.22 b
Polar 2 67.02 73.00 70.01 4.22 ns

Shrubs Tropical 14 47.85 79.97 61.95 10.39 ns
Dry 3 42.55 66.09 64.40 13.13 ns
Temperate 20 32.97 87.23 52.72 17.36 ns
Boreal 13 46.60 82.20 67.17 10.70 ns
Polar 9 52.16 83.58 71.52 10.0 ns

Trees Tropical 86 27.65 87.23 61.70 13.24 ns
Dry 2 66.49 72.31 69.40 4.11 ns
Temperate 253 29.14 95.11 58.78 13.35 a
Boreal 44 35.92 88.88 67.78 14.48 b
Polar 3 61.11 68.68 67.03 3.97 ns
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Appendix C: Linear regressions of nutrient resorption
with environmental and biological factors

PFTs do not appear in the correlation matrix shown in
Figs. C1, C2 and C3, as PFTs constitute a categorical vari-
able. However, we explore the implication of SLA on nutri-
ent resorption based on the strong and known relationship
between SLA and PFTs in our dataset (Fig. C5), which de-
rives from the leaf economics spectrum (LES) theory.

Figure C1. Linear regression of nitrogen resorption efficiency (NRE %) with all possible predictor variables. Environmental predictors:
mean annual temperature (MAT), mean annual precipitation (MAP), evapotranspiration (ET), temperature amplitude (T amplitude), nitrogen
deposition (N deposition), phosphorus deposition (P deposition), total soil P (soil P), soil clay fraction (Soil Clay) and soil pH. Biological
predictors: growing season length (GSL) and specific leaf area (SLA). R denotes Pearson correlation. p<0.05 is the statistical significance.
N indicates the number of observations. The distribution on the right of the correlation represents the overall distribution of NRE values for
each predictor.
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Figure C2. Linear regression of phosphorus resorption efficiency (PRE; %) with all possible predictor variables. Environmental predictors:
mean annual temperature (MAT), mean annual precipitation (MAP), evapotranspiration (ET), temperature amplitude (T amplitude), nitrogen
deposition (N deposition), phosphorus deposition (P deposition), total soil P (soil P), soil clay fraction (Soil Clay), and soil pH. Biological
predictors: Growing season length (GSL) and specific leaf area (SLA). R denotes the Pearson correlation. p < 0.05 is the statistical signif-
icance. N indicates the number of observations. The distribution on the right of the correlation represents the overall distribution of PRE
values for each predictor.
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Figure C3. Multiple Pearson correlation matrices between all predictors. The colour scale indicates the strength of the correlations, with
green representing positive correlations and orange representing negative correlations, with non-significant correlations at p<0.05 indicated
by “X”. Environmental predictors: mean annual temperature (MAT), mean annual precipitation (MAP), evapotranspiration (ET), temperature
amplitude (T amplitude), nitrogen deposition (N deposition), phosphorus deposition (P deposition), total soil P (soil P), soil clay fraction
(Soil clay) and soil pH. Biological predictors: growing season length (GSL) and specific leaf area (SLA).
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Figure C4. Relationship between nitrogen resorption efficiency (NRE %) and phosphorus resorption efficiency (PRE %) with latitude. The
scatter plots display individual observations, with the blue lines representing the smoothed regression curves, indicating trends in NRE
and PRE across latitudes. Histograms on the top and right margins show the density distributions of latitude and resorption efficiencies,
respectively. This visualization highlights the variation in nutrient resorption efficiencies across different latitudinal gradients.

Figure C5. Difference in the specific leaf area (SLA; mm2 mg−1) between plant functional types (PFTs) on a global scale, comparing
deciduous vs. evergreens, broad-leaved species vs. needle-leaved and shrubs vs. trees. Boxplots depict median, interquartile range and
outliers, indicating data spread and variability. The side distributions show the overall data distribution for each PFT. “n” represents the
number of observations. p values indicate the significance of differences in SLA between PFTs. “ns” indicates no significant difference.
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