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Abstract. Wildfires are among the most influential distur-
bances affecting ecosystem structure and biogeochemical cy-
cles in Siberia. Therefore, accurate fire modeling via dy-
namic global vegetation models is important for predict-
ing greenhouse gas emissions and other biomass-burning
emissions to understand changes in biogeochemical cycles.
We integrated the widely used SPread and InTensity of
FIRE (SPITFIRE) fire module into the spatially explicit
individual-based dynamic global vegetation model (SEIB-
DGVM) to improve the accuracy of fire predictions and
then simulated future fire regimes to better understand their
impacts. The model can reproduce the spatiotemporal vari-
ation in biomass, fire intensity, and fire-related emissions
well compared to the recent satellite-based estimations:
aboveground biomass (R2 =0.847, RMSE =18.3 Mg ha™! ),
burned fraction (R?=0.75, RMSE=0.01), burned area
(R? = 0.609, RMSE = 690 ha), dry-matter emissions (R? =
0.624, RMSE =0.01 ngMm_z; dry matter), and CO»
emissions (R?> =0.705, RMSE = 6.79 Tg). We then pre-
dicted that all of the 33 fire-related gas and aerosol emissions
would increase in the future due to the enhanced amount
of litter as fuel load from increasing forest biomass produc-
tion under climate forcing of four Representative Concentra-
tion Pathways: RCP8.5, RCP6.0, RCP4.5, and RCP2.6. The

simulation under RCP8.5 showed that the CO,, CO, PM; 5,
total particulate matter (TPM), and total particulate carbon
(TPC) emissions in Siberia in the present period (2000-
2020) will increase relatively by 189.66+£6.55, 15.184+0.52,
2.4740.09, 1.8740.06, and 1.3040.04 Tg species yr—!, re-
spectively, in the future period (2081-2100) and the num-
ber of burned trees will increase by 100 %, resulting in a
385.19+40.4gCm~2yr~! loss of net primary production
(NPP). Another key finding is that the higher litter mois-
ture by higher precipitation would relatively suppress the
increment of fire-related emissions; thus the simulation un-
der RCP8.5 showed the lowest emissions among RCPs. Our
study offers insights into future fire regimes and development
strategies for enhancing regional resilience and for mitigat-
ing the broader environmental consequences of fire activity
in Siberia.

1 Introduction

Fires are among the most significant disturbances affect-
ing biogeochemical cycles, atmospheric chemistry, the car-
bon cycle, and ecosystem structure and function worldwide
(Pickett et al., 1999). Wildfires are also the dominant climate-
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driven disturbance agent in boreal forests (Goldammer and
Furyaev, 1996; Shorohova et al., 2011; De Groot et al., 2013),
shaping major forest cover in Russia (Krylov et al., 2014)
and rapidly increasing the burned area and emission inten-
sity in Canada and Alaska (Zheng et al., 2021). Fires in-
fluence vegetation dynamics by allowing plants to adapt to
fire regimes, influencing vegetation productivity, litter, and
fuel load (Cochrane, 2003; Bergeron et al., 2004; Whelan,
2009). The intensity and frequency of large-scale boreal for-
est fires are expected to increase in the future due to increased
global temperatures, drier conditions, and longer fire sea-
sons, which will cause more emissions from biomass burn-
ing (Flannigan et al., 2009; Gauthier et al., 2015) and hu-
man activity using fire for land management (e.g., use of fire
as a tool in the deforestation process) (Hantson et al., 2016;
Archibald et al., 2013; Morton et al., 2008). Globally, from
2000 to 2019, satellites detected a decrease in the burned
area of grassland, while there was a slight increase in the
area of forest fires in Russia (Zheng et al., 2021). Central and
southern European countries, such as France, Spain, Portu-
gal, and Greece, are already experiencing larger and more
devastating fires (Carnicer et al., 2022). Not only large fires
but also small fires have a significant impact: areas burned
by small fires contributed 35 % to the total burned area, from
345 to 464 Mha yr‘l, and related carbon emissions increased
from 1.9 to 2.5Pg C yr~! from 20012010 (Randerson et al.,
2012). This finding is in line with current studies reporting
that the global mean CO; emission intensity has increased
by 0.940.9 % yr~! from 2000 to 2019 (Zheng et al., 2021)
and that the fire weather index (FWI) reached levels above
30, corresponding to high, very high, and extreme levels of
fire frequency, causing CO, emissions to increase in Europe
since 1980 (Carnicer et al., 2022).

Forest fires are important ecological factors that influ-
ence both the establishment and succession of vegetation
(Abaimov and Sofronov, 1996). Climate-driven large fires
are responsible for rapid changes in vegetation (Cleve and
Viereck, 1981), soil properties (Pastor and Post, 1986; Pel-
legrini et al., 2021), biogeochemical cycling, microclimate,
forest ecosystems (Crutzen and Goldammer, 1993), produc-
tivity, stability, and many other ecological properties (Melillo
et al., 1993). Forest fires also indirectly affect vegetation dy-
namics by increasing CO» levels in the atmosphere (Seiler
and Crutzen, 1980; Nguyen and Wooster, 2020), as CO, is
one of the primary products of biomass combustion and is
emitted in all phases of fire (ignition, flaming, glowing, py-
rolysis, and extinction) (Andreae and Merlet, 2001), with
the flaming phase leading to emissions (Lobert et al., 1991;
Ward and Hardy, 1991). Thus, it is challenging to estimate
CO; emissions because they are generated in large quanti-
ties during biomass combustion and because of the different
emission timelines produced during each combustion stage.
Increasing atmospheric CO, concentrations alter the global
carbon cycle by causing global warming (Van Der Werf et
al., 2006, 2010, 2017; Neto et al., 2009; Kaiser et al., 2012;
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Lin et al., 2013), and the resulting global warming is ex-
pected to intensify extreme fire seasons, leading to further
surges in carbon emissions that significantly contribute to the
global burden of greenhouse gases (fire—climate feedbacks)
(Bowman et al., 2009). Therefore, accurate modeling of fu-
ture wildfires and their emissions is required to understand
the associated risks.

Boreal vegetation stores 17 % of the world’s carbon yet en-
compasses almost 30 % of all terrestrial carbon stocks (Ka-
sischke, 2000; Gauthier et al., 2015), with two-thirds being
located in Siberia, Russia (Shvidenko and Nilsson, 2003). In
Siberia, burned-biomass emissions approached 0.4 Gt C yr~!
in 2021, 3 times the average value between 1997 and 2020,
according to GFED4s (Friedlingstein et al., 2020). Kharuk et
al. (2022) also stated that the decadal frequency of wildfires
tripled between 2001-2010 and 2011-2020. Catastrophic
boreal forest fires are expected to continue to increase in
the future due to increased global temperature, drier condi-
tions, and longer fire seasons, and these fires will increase
the severity and emissions produced from biomass burning
(Flannigan et al., 2009). Burning vegetation is a major source
of black carbon (BC), carbon monoxide (CO) (Forster et al.,
2018), and particulate matter (PM) (Reddington et al., 2016).
According to records from the Copernicus Atmosphere Mon-
itoring Service (CAMS), Russia experienced a drastic in-
crease to 8 Mt (metric megatons) in PMj 5 emissions in 2021,
which is 78 % higher than the average level between 2004
and 2021 (4.5 Mt) (Romanov et al., 2022). Furthermore, an
increase in atmospheric emissions negatively affects the cli-
mate by contributing to global warming and climate change
(Randerson et al., 2006; Westerling et al., 2006; Bowman et
al., 2009) and affects weather systems by modulating solar
radiation and cloud properties (Schultz et al., 2008).

Understanding how long-term climate change, fire
regimes, and forest vegetation interact under multiple cli-
mate scenarios is critical for forecasting forest succession
trends (Clark and Richard, 1996). Modeling of fire regimes
using dynamic global vegetation models (DGVMs) is a key
approach to analyzing these factors. However, including in-
teractive fire disturbances in vegetation models is critical for
accurately simulating vegetation dynamics (Thonicke et al.,
2001). A well-structured process-based fire module can ac-
curately assess fire activity, consumed biomass due to fire,
and biomass-burning emissions. The assessment of each fire-
related variable is interconnected with another variable, so
the module must be well constructed because the amount
of consumed biomass during forest fires can vary signifi-
cantly. Several factors affect burned biomass, such as spatial
and temporal variations in the burned area based on the igni-
tion factors, quantity and quality of the fuels available, and
vegetation or plant functional type (PFT); additionally, ev-
ery PFT reacts differently to fire disturbance (Cramer et al.,
2001; Ito, 2011). Since the first global fire models were in-
tegrated into dynamic global vegetation models (DGVMs)
2 decades ago, the variety and complexity of fire mod-
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els have expanded (Hantson et al., 2016). The Fire Mod-
eling Intercomparison Project (FireMIP) compared 11 cur-
rent fire models by structure and simulation protocols, us-
ing a benchmarking system to evaluate the models (Rabin
et al.,, 2017). The results indicate that models that explic-
itly distinguish ignition factors, such as lightning and human-
caused “ignition events”, as well as physical properties and
processes that determine fire spread and intensity by plant
functional type (PFT), performed better. One such fire mod-
ule is SPITFIRE (SPread and InTensity of FIRE; an upgrade
of GlobFIRM) (Thonicke et al., 2010), which has been used
in several DGVMs: LPJ-GUESS-SPITFIRE, ORCHIDEE—-
SPITFIRE, JSBACH-SPITFIRE, and LPJ-LMfire. In this
study, we integrated the SPITFIRE fire module into the spa-
tially explicit individual-based dynamic global vegetation
model (SEIB-DGVM) to predict fire, vegetation, and burned-
biomass emission variables in Siberia in the future. We se-
lected SEIB-DGVM because of its high-quality biogeochem-
ical model coupled with a three-dimensional representation
of forest structure where individual trees compete for light
and space (Sato et al., 2007). The SEIB-DGVM processes
physical, physiological, and vegetation dynamics and was
previously used for reconstructing the geographical distribu-
tions of fundamental plant productivity properties (Sato et
al., 2020), evaluating the geographic and environmental het-
erogeneity of larch forests with a special focus on topogra-
phy (Sato and Kobayashi, 2018), and assessing the impacts
of global warming on Siberian larch forests and their interac-
tions with vegetation dynamics and thermohydrology (Sato
et al., 2016). SEIB-DGVM accurately simulates forest ecol-
ogy after typhoon disturbances (Wu et al., 2019), nonstruc-
tural carbohydrate dynamics (Ninomiya et al., 2023), and
masting in a temperate forest (Végh and Kato, 2024).

The original fire module of SEIB-DGVM is Glob-FIRM
(Thonicke et al., 2001), which has several limitations; for ex-
ample, human-changed fire regimes and other land use im-
pacts are not considered (Thonicke et al., 2001). In addition,
GlobFIRM derives the burned fractional area of a grid cell
from the simulated length of the fire season and from the
minimum annual fuel load; this method does not specify ig-
nition sources and assumes a constant fire-induced mortality
rate for each plant functional type (PFT) (Thonicke et al.,
2010). To improve the fire simulations with SEIB-DGVM,
we replaced its fire module with the SPITFIRE model (Thon-
icke et al., 2010) by adding complete ignition equations
(human and lightning effects, etc.). The module included a
calculation mechanism for trace gas and aerosol emissions
(Andreae and Merlet, 2001) and was adjusted to produce
monthly outputs for all variables in SEIB-DGVM. These im-
provements allowed us to simulate fire activity and above-
ground biomass dynamics and spatiotemporally assess the
projected burned biomass and its emissions for the 21st cen-
tury in Siberia under Representative Concentration Pathways
(RCPs).
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2 Methods
2.1 Study sites

Boreal forests represent the largest forest biome and one-
third of global forest cover (De Groot et al., 2013) and play
an important role in the atmosphere—land interactions of the
global climate system (Randerson et al., 2006; Bonan, 2008).
Geographically, boreal forests are found in Canada, Alaska,
and Siberia, of which Siberia has the largest forested area.
Siberia is largely covered by deciduous needleleaf conifers
(Fig. 1), which consist mostly of the larch species Larix
sibirica, L. decidua, and L. dahurica (Abaimov et al., 1998),
which are categorized as pyrophytic species, meaning that
they require periodic fires to persist on the landscape (Kharuk
et al., 2011). The Siberian land cover has changed very little
over the last century (Ivanov et al., 2022), and the boreal for-
est covers approximately > 15 x 10° km?, containing a large
amount of carbon that is comparable to the combined carbon
storage in tropical and temperate forests (Dixon et al., 1994;
Kasischke, 2000).

The main external factors affecting Siberian boreal forests
are fires and climate change (Goldammer and Furyaev, 1996;
Shorohova et al., 2009). Climate change increased the fre-
quency of forest fires, which in turn amplified the impacts of
climate change locally. In the Arctic, a rapid warming trend
has been observed, and the increase in temperature over the
last 20 years of the 20th century was 2 to 3 times higher
than the global average, while in the first 20 years of the
21st century, it exceeded 4 times (Chylek et al., 2022). This
enormous increase in temperature in Siberia affected the du-
ration and speed of snowmelt and accelerated the thawing
of carbon-rich permafrost (Natali et al., 2019; Schuur et al.,
2015; Nitzbon et al., 2020), which results in drier ground
cover, an increased frequency of wildfires, longer fire sea-
sons, and increased ignition sources (Kharuk et al., 2022).
These changes may result in a new climate state in which
heat waves as well as the associated the occurrence of wild-
fires may become routine and more severe (Hantemirov et
al., 2022; Landrum and Holland, 2020). Produced emissions
from thawing permafrost and from wildfires are likely to feed
into the global carbon cycle’s feedback on climate change
(Schuur et al., 2015), triggering further warming trends glob-
ally (Schimel et al., 2001; Kharuk et al., 2011; Krylov et al.,
2014).

2.2 Improved fire module principles

We improved the SEIB-DGVM fire module by replacing
the Glob-FIRM (Thonicke et al., 2001) with the SPITFIRE
model (Thonicke et al., 2010). First, we added two new in-
put variables for fire ignition: population and lightning data.
Second, we incorporated the complete SPITFIRE equation
(Thonicke et al., 2010), which included new variables, PFT
parameters, and local parameters, and improved the output
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Figure 1. Study site (black rectangle: 60—180° E, 45-80° N). Green and brown indicate the forest types in Siberia as provided by the Global
Land Cover dataset (GLC 2000) for northern Eurasia (Bartalev et al., 2003). Grey indicates other vegetation types in the Siberian area as

provided by the Database of Global Administrative Areas (GADM).

to be able to be produced on a monthly scale (Fig. 2). The
variable integration between the default and improved fire
models requires several parameter-specific PFTs (Table 1).

The default SEIB-DGVM model uses annual time steps
for vegetation dynamics and disturbance, which we improved
to monthly time step outputs. The fraction of individual trees
killed by a fire depends on PFT fire resistance (M3, Ta-
ble 1). All grass leaf biomass, all dead and living tree leaf
biomass, half of the dead tree trunk biomass, and half of the
litter pool are released into the atmosphere as CO; during a
fire, while the dead tree’s residual biomass is converted into
litter. In reaction to fire, all deciduous PFTs convert their
phenology phase to dormancy, and if the stock resource of
grass PFTs (gmass stock) does not meet the minimal value
(50 g DM m~2; dry matter) following a fire, the deficit is sup-
plemented from litter (Sato et al., 2007). Furthermore, related
to the fire—vegetation relationships, for herbaceous PFTs,
both belowground and storage biomass are preserved after a
wildfire and used for the recovery of aboveground biomass.
During this recovery period, herbaceous PFTs work on pro-
ducing aboveground biomass while reducing their storage
biomass, thus increasing the allocation ratio to aboveground
biomass in the post-fire phase. For woody PFTs, fire only
gives the option for individual trees to either die or survive.
The surviving trees only lose their foliage biomass. As the fo-
liage is lost, fine-root biomass becomes unnecessary, leading
to its rapid loss due to its fast turnover rate. In the spring fol-
lowing a fire, surviving trees convert storage resources into
foliage and fine-root biomass. The new net primary produc-
tion (NPP) from the newly formed foliage first prioritizes the
recovery of leaves and fine roots. Therefore, fires increase
the allocation ratio to the foliage and fine roots in surviving
woody plants.

The basic equation of fire disturbance is the area burned,
which we adjusted with the SPITFIRE equation (Thonicke
et al., 2010) by including the fire probability and area of the
grid cell:

Ap,=P, X A, (D

where Ap is the area burned in a grid cell per month
(ha per month), Py is the product of the probability of fire
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per month at any point inside the grid cell (per month), and
A is the area of the grid cell (ha). Py is the fire probability and
is the product of the fuel load (litter + aboveground biomass)
and its moisture factor. We used the same P, mechanism as
that of the default fire module, where if the fuel load satis-
fies the minimum fuel threshold (200 g C m~2), random fires
can occur at any point location inside the grid cells. In this
improvement, P, was modified by considering the ignition
event E(nig) (ha—!) alongside anthropogenic- (human pop-
ulation density) and natural-ignition (lightning strikes) pos-
sibilities, the fire danger index (FDI), and the mean fire area
a f (ha). Thus, Eq. (2) can be represented as follows:

Ap = E (nig) x FDIx a f x A. ()

Technically, the SEIB-DGVM simulation of each grid cell is
carried out independently among the surrounding grid cell,
so the fire cannot spread to other grid cell without those grid
cell meeting the ignition requirements (fuel load and fuel
moisture).

After all variables in the SPITFIRE fire module were in-
tegrated, we added the trace gas and aerosol emission cal-
culation process to the model. Trace gas and aerosol emis-
sion estimation are line with the Fire Modeling Intercompar-
ison Project (FireMIP) protocols (Li et al., 2019), the com-
prehensive study comparison of nine dynamic global vege-
tation models (DGVMs), and produced an important estima-
tion for long-term and large-scale fire emissions. Using the
FireMIP protocol reference, SEIB-DGVM SPITFIRE im-
proved to output PFT-level fire emissions.

Trace gas and aerosol emissions are the result of the to-
tal amount of burned biomass, the sum of dead and live
fuel consumption as the result of surface fire, and crown
scorch. Trace gas emissions are estimated based on fire car-
bon emissions, vegetation characteristics from DGVMs, and
fire emission factors. Fire emissions of trace gas and aerosol
for each species i and PFT j, E; ; (gspecies m~2), are esti-
mated based on Andreae and Merlet (2001):

CE;
Ei,j ZEFi’j X T, (3)
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where EF;; is the PFI-specific emission factor
(g specieskg™! DM); CE ;j is the combusted biomass of PFT
due to the fire (gC m~2); and C is the unit conversion factor
from carbon to dry matter, C =0.5x 10’ gCkg~! DM.
The emission factors (EFs) used in this study are based
on Andreae and Merlet (2001) and the updated pyrogenic
emission species by various types of biomass burning
(Andreae, 2019) (Table S2 in the Supplement).

DGVMs generally simulate vegetation as a combination
of PFTs in a given grid location to represent plant function at
a global scale, instead of land cover types (Li et al., 2019). In
this, we classified the PFTs with the land cover types (LCTs)
to integrate the emission factors of each LCT for trace gas
and aerosol emission estimation processes. The BoNE (bo-
real needleleaf evergreen), BoNS (boreal needleleaf sum-
mergreen), and BoBS (boreal broadleaf summergreen) PFTs
are classified as boreal forest LCTs. Other PFTs have been
integrated with LCTs but are not listed in Table 1, as this
study only covers boreal forest. The other integrated PFTs
include TrBE (tropical broadleaf evergreen), TrBR (tropi-
cal broadleaf raingreen), TeNE (temperate needleleaf ever-
green), TeBE (temperate broadleaf evergreen), TeBS (tem-
perate broadleaf summergreen), TeH (temperate herbaceous
C3 grass), and TrH (tropical herbaceous C4 grass). Related
to the PFTs abbreviations, Tr represents tropical forest and
Te represents temperate forest. SEIB-DGVM did not classify
crop PFTs, so cropland LCTs will not be used.

Further changes to the input and output of the new SEIB-
DGVM SPITFIRE are shown in Appendix Al, while Ap-
pendix A2 summarizes the improvement processes repre-
sented in this study, which can be classified into two groups:
disturbance and biogeochemical dynamics. Appendix A3
lists the symbols used in the model’s equations. Detailed in-
formation about the integration of the SPITFIRE module in
SEIB-DGVM, which includes the improvement and adjust-
ment of all the variables and the main important variables,
such as the ignition events E(njg), fire danger index (FDI),
mean fire area a f, fuel moisture content, rate of spread,
fire fraction and intensity, fire damage to plants, and trace
gas and aerosol emissions, is provided in the Supplement
(Sect. S2.2.1-S2.2.7).

PFTs attributed to land cover types (LCTs) are needed to
classify the fire emission factor (EF) (Table S2) to estimate
trace gas and aerosol emissions (Andreae and Merlet, 2001).

2.3 Model calibration

We calibrate the improved model using all of the bench-
mark datasets (Table 3). The calibration process is done
sequentially for all of the major variables, burned frac-
tion, burned area, dry matter, aboveground biomass, burned-
biomass emissions, and the forest ecology variables (Fig. 3).
This calibration process involves comparing the average
value of the output variable with the corresponding variable
from the benchmark dataset, ensuring that both are aligned in
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terms of spatiotemporal resolution. The process is sequential
because one variable is used for the calculation of another
variable (such as the burned fraction and burned area affect-
ing aboveground biomass, forest structure, dry matter, and
emissions). One calibration process is performed with mul-
tiple iterations until the output variable has numerical values
and a spatial distribution similar to the benchmark data, and
the process is repeated for other variables once the previous
variable has been calibrated.

2.4 Model application

The original SEIB-DGVM utilizes three computational time
steps: a daily time step for all physical and physiological
processes except for soil decomposition and tree growth, a
monthly time step for soil decomposition and tree growth,
and an annual time step for vegetation dynamics and fire
disturbance (Sato et al., 2007). In this study, we improved
the fire module to calculate natural- and anthropogenic-fire-
ignition factors (based on lightning flashes and population
density) and adjusted it to produce monthly outputs us-
ing temporal-resolution statistical downscaling methods with
user-defined weighted monthly parameters (Table 2). The an-
nual average ignition factor variables (population density and
lightning flash rate) were used consistently throughout all
simulation phases.

We ran the improved model (SEIB-DGVM SPITFIRE)
and the default model (SEIB-DGVM GlobFIRM) under the
same protocols to equally compare and assess their fire prod-
ucts (Fig. S3 in the Supplement). Simulations were run in
three phases (spin-up, historical, and future), and the simu-
lation was run with the fire mode on and fire mode off to
compare and assess the vegetation products during fire, and
also each phase was replicated five times to minimize bias
due to random variables in the tree morality! (see reference
marks in Fig. 3). The model was run in three phasesz: (I)a
1000-year spin-up phase to bring the soil and vegetation car-
bon pools into equilibrium with the climate using daily base-
line CRU TS3.22 (Climatic Research Unit Time-Series) cli-
mate data; (2) a 156-year historical phase also using daily
baseline CRU TS3.22 climate data and spin-up simulation
results as inputs; and (3) a 95-year future phase using daily
MIROCS output submitted for the IPCC Fifth Assessment
Report (ARS) (MirocARS base V3) with RCP8.5, RCP6.0,
RCP4.5, and RCP2.6 climate data and historical simulation
results as inputs (Fig. 3). The MirocARS base V3 dataset has
been bias-corrected with CRU TS3.22 climate data, so using
these two datasets consecutively in spin-up, historical, and
future simulations ensures the harmony of the input climate
data. Five different types of RCP scenario climate data were
used to determine the impact of fire and climate on forest
structure and their interactions.

In the previous SEIB-DGVM study, a 2000-year spin-up
was needed to obtain the convergence amount of soil organic
matter (Sato et al., 2010). However, we have conducted pre-

Biogeosciences, 21, 4195-4227, 2024
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Figure 2. SEIB-DGVM SPITFIRE system diagram. In describing the improvements (SPITFIRE), the interaction with the previous fire
module (Glob-FIRM) is shown. All original SPITFIRE variables were integrated: ignition factor (lightning and population), PFT parameters,
and other fire-related variables. In addition to the default annual output, the improved module has monthly outputs of all variables depending
on the user needs. For definitions of the abbreviations, refer to Appendix A3.

Table 1. SEIB-DGVM SPITFIRE PFT-specific (plant functional type) model parameter values and their attribution to LCTs. This table was

modified from Thonicke et al. (2010).

PFTs  Land Fuel bulk Scorch height Crown Bark thickness Crown Fire
cover density parameter length parameters damage resistance
types (kg m’3) parameter parameter
(LCTs)

pp  Reference F  Reference CL parl par2  Reference r(CK) p M3

BoNE Boreal 25 Miller and Urban (1999), 0.11 Hefy et al. (2003) 173 0.0292 0.2632 Reinhardt et al. 1 3 0.12
forest Hély et al. (2000) (1997)

BoNS 22 Keane et al. (1990) 0.094  Dickinson and Johnson 1/3 0.0347 0.1086 Reinhardt et al. 1 3 0.12

(2001) (1997)
BoBS 22 Keane et al. (1990) 0.094  Dickinson and Johnson 1/3 0.0347 0.1086 Reinhardt et al. 1 3 0.12
(2001) (1997)

liminary simulations with the same study area by setting the
spin-up years to 1000 and 2000 years. We confirmed that the
outputs of the 1000-year and 2000-year spin-up simulations
were very similar; thus, the 1000-year spin-up was enough
to reach carbon stock equilibrium. This parameter setting
is also in line with the simulation settings in other SEIB-
DGVM studies: Sato et al. (2007) performed a 1000-year

Biogeosciences, 21, 4195-4227, 2024

spin-up and combined it with all of the simulation phases to
extract general trends of post-fire succession. Another study
by Arakida et al. (2021) also confirmed that a spin-up period
of 100 years was sufficient for the equilibrium of the LAI
(leaf area index), aboveground biomass, and GPP (gross pri-
mary production) at all the study sites in Siberia.
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In addition, we have a verification stage3 to ensure that the
new input data can be read, produced, and processed prop-
erly (Rabin et al., 2017). Then, we calibrate all of the ma-
jor emissions individually and sequentially with the bench-
mark dataset because each variable affects other variables
and we need to ensure the final output is comparable with
the benchmark datasets*. After verifying that the new module
was incorporated seamlessly, we validated the model outputs
(fire, vegetation, and emission variables) using the GFED4,
GFED4s, ESA Biomass Climate Change Initiative (CCI),
and Global Biomass Burning Emissions Inventory (GBEI)
benchmark datasets”.

2.5 Model benchmarks

A common method for validating the outputs of dynamic
global vegetation models (DGVMs) is to use satellite-based
product datasets. For instance, direct observations of global
fire occurrence by satellite-borne sensors can detect active
fires, fire radiative power, and burned areas, and these ob-
servations have been available since the 1990s (Mouillot
et al., 2014). The Fire Modeling Intercomparison Project
(FireMIP) also used the satellite-based product database as
a benchmark to evaluate the model simulation (Rabin et al.,
2017; Li et al., 2019).

In the last few decades, several global biomass-burning
emission datasets based on the detection of the burning area
and fire radiative energy have been developed and used for
many purposes, such as global climate and vegetation model-
ing, together with environmental, health, and security assess-
ments (Ichoku et al., 2008; Mouillot et al., 2014). Although
fire-related observation datasets are available and globally
accessible, they have relatively large uncertainties and are
poorly constrained, especially in models at the global and
regional levels (Liousse et al., 2010; Petrenko et al., 2012,
2017; Bond et al., 2013; Zhang et al., 2014; Pan et al., 2015;
Pereira et al., 2016).

Pan et al. (2020) reported that this uncertainty could be
caused by various measurement and/or analysis processes,
including the detection of fire or burned areas, retrieval of
fire radiative power, emission factor information, biome type,
burning stage, and fuel consumption estimation. The emis-
sion factor (EF) is considered an important factor for obtain-
ing specific gaseous or particulate species of smoke emit-
ted from burned dry matter in all major burned-biomass
(BB) emission datasets. Some EFs originate from labora-
tory experiments where fuel samples are burned in combus-
tion chambers (Christian et al., 2003; Freeborn et al., 2008),
whereas others originate from large-scale, open biomass-
burning and wildfire experiments. The combustion proper-
ties might differ greatly between these two categories; e.g.,
because of personnel security and other logistical consider-
ations, some EF measurement locations are often not close
enough to the biomass-burning source (Aurell et al., 2019).
Another factor is the biome type, which affects the scaling
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factor of the emission coefficient for the FRP-based (fire ra-
diative power) BB datasets (GFAS, Global Fire Assimilation
System; FEER, Fire Energetics and Emissions Research; and
QFED, Quick Fire Emissions Dataset). The emission factors
of all BB datasets were assigned based on the type of biome,
and most of the examined BB datasets had different defini-
tions of major biome types, so uncertainty might be present
at certain levels (Pan et al., 2020).

We validated the improved SEIB-DGVM fire module
products using the burned-area (GFED4) and burned-fraction
(GFED4s) datasets, corresponding to the model’s output.
These datasets have higher resolutions than other burned-
area-based datasets, and all of the uncertainty probabilities
regarding the selected database described by Pan et al. (2020)
were adjusted with our model configurations. We used the
emission factor (EF) from Andreae and Merlet (2001) with
the latest update from Andreae (2019) and integrated the
plant functional type (PFT) model with the land cover types
(LCTs) used in the EF (Tables 1 and S2).

Furthermore, fire models should be evaluated together
with their associated vegetation models because the former
might produce burned areas perfectly but incorrectly simu-
late aboveground biomass (AGB) patterns. Fire products de-
pend on AGB availability, and fire also affects AGB avail-
ability and succession after forest fires. Thus, to ensure that
the model conducted correct assessments, we evaluated the
aboveground biomass variable using the ESA Biomass Cli-
mate Change Initiative dataset (Table 3). The AGB data from
the ESA Biomass Climate Change Initiative (CCI) v3 (2010,
2017, and 2018) include high-quality data with a large reso-
Iution of 100 m x 100 m obtained from multiple remote sens-
ing observations collected around the year 2010 (Santoro et
al., 2021), making them suitable for validating our improved
model product.

Overall, we validated the model spatially and numerically
at the Siberian level and in smaller regions to determine the
performance of the model in many points of view (spatial,
numeric, wide, and small region). We classified Siberia into
three regions: west region (60-90° E, 45-80° N), central re-
gion (90-120°E, 45-80°N), and east region (120-180°E,
45-80° N) (Fig. S12).

3 Results
3.1 Improved model validation
3.1.1 Fire products

We compared the annual average distribution patterns of the
burned-fraction variable (1997-2016) in the SEIB-DGVM
SPITFIRE and GFED4s data, and most patterns differed only
in the east region of Siberia (Figs. 4, S10). Compared to the
burned-fraction variable, burned-area GFED4 has a smaller
distribution pattern because it does not consider small fires

Biogeosciences, 21, 4195-4227, 2024



4202

R. K. Nurrohman et al.: Future projections of Siberian wildfire and aerosol emissions

New Input

GPWv4 LIS/OTD HRFC
Population Data Lightning Data

| ]

» START
Soil Dataset
v

-

ﬁ No

DEFAULT Climate SEIB-DGVM
SEIB-DGVM Dataset SPITFIRE
SIMULATION! SIMULATION'
i Atmospheric l
No €O, / /
OUTPUT \\ OUTPUT \\

Code Modification [

Preprocessing

SEIB-DGVM P Data }<

SEIB-DGVM SPITFIRE
Major Variables

— Location —

Y

A 4

Simulation

Data
Year? — Preprocessing

SEIB-DGVM
SPITFIRE >

Population and Ligtning Data

Verification3

=

Yes

SEIB-DGVM SPITFIRE
Burned Fraction and
Burned Area

SEIB-DGVM SPITFIRE
Aboveground Biomass

SEIB-DGVM SPITFIRE
Dry Matter and CO,
Emission

I J

) 4

Validation’ Data

GFED4 ESA Biomass

Burned Area ‘ ccl

Preprocessing |

Yes

\ 4

GFED4s ‘
Burned Fraction, Dry
Matter, and CO,

GBEI
CO,

OUTPUT
data comparison |

SEIB-DGVM SPITFIRE
Validated Output

Legend

Input and

Predefined

Process
Process

‘ < Output

Figure 3. Workflow of improving the SEIB-DGVM fire module.

(Fig. S9a). Comparison analysis of burned-fraction variables
between SEIB-DGVM SPITFIRE and GFED4s showed a
linear relationship with a correlation coefficient of R = 0.87
(R2=0.75) (Fig. S1la). Similar to the comparison with
GFED4s, the comparison of the SEIB-DGVM SPITFIRE
output of burned-area variables with GFED4 data (1996-
2016) shows a linear relationship with a correlation coef-
ficient of R =0.78 (RZ=0.61) (Fig. S11b). Furthermore,
in the three regions (west, central, and east), the partial
comparison of the burned-fraction variable with GFED4s
showed values of R?=0.68, R*>=0.51, and R*=0.58
(Fig. S13), while for the burned-area variable showed val-
ues of R? =0.51, R? = 0.54, and R? = 0.506 (Fig. S14), re-
spectively. The burned fraction correlated better because both
the GFED4s and the model’s fire module considered small
fires; scattered fire data with values less than 0.1 and approx-
imately 0.1 were found in both the model’s output and the
GFED4s data.

The fire products (burned fraction and burned area) in the
improved model have the same spatial distribution because
they are calculated based on one core variable (fire proba-
bility) (Eq. 1). However, the spatial distributions of GFED4s
(burned fraction) and GFED4 (burned area) differ for two
reasons: first, because GFED4 does not consider small fires
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(Giglio et al., 2013), while GFED4s does, and, second, be-
cause GFED4s uses the modified burned-fraction equation,
which is able to calculate the exact fire fraction and fuel load
(not uniformized) in a grid cell (Van Der Werf et al., 2017).

Although the spatial distributions and patterns of the fire
products (burned fraction and burned area) in the model and
benchmark datasets (GFED4s and GFED4) data slightly dif-
fered, the model was able to produce annual mean value data
that were similar to both benchmark datasets. The mean av-
erage burned fraction during 1997-2016 was 0.0137 in the
simulations, compared to the GFED4s, which recorded the
same value of 0.0137 with an RMSE value of 7.2 x 1074
Furthermore, the mean average burned area of the model
in 1996-2016 was 1428.5haper grid per year, compared
to the GFED4 burned-area data, which closely recorded
value of 1425.1 haper grid per year by an RMSE value of
70.2 haper grid per year. In summary, the model was able to
produce mean average data that precisely resembled obser-
vational data.

3.1.2 Aboveground biomass
The improved model simulated aboveground biomass val-

ues similar to those of the benchmark data. In 2010, 2017,
and 2018, the simulations predicted 63.714464.89, 64.141+
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Table 2. SEIB-DGVM SPITFIRE input data descriptions.

4203

Model Product Variable Spatial res- Temporal Temporal Reference
input olution resolution coverage
Climatic CRU TS3.22 high- Cloud cover, diurnal 0.5° Monthly 1901-2013  University of East An-
data resolution  gridded temperature range, glia Climatic Research
data of month-by- frost day frequency, etal. (2014)
month variation in PET, precipitation,
climate daily mean tempera-
ture, monthly average
daily maximum and
minimum temperature,
vapor pressure, and wet
day frequency
MirocARS base Air temperature, soil 0.5° Daily 1850-2100  Watanabe et al. (2011),
daily V3 (historical, temperature, fraction of Sato et al. (2020)
RCPS.5, cloud cover, precipi-
RCP6.0, RCP4.5, tation, humidity, and
and RCP2.6) wind velocity
CO, Atmospheric CO, Global atmospheric - Annual 1850-2100  IPCC (2013)
concentration input carbon dioxide concen-
for the Coupled trations (COy)
Model Intercompar-
ison Project Phase 5
(CMIP5)
Soil Global Soil Wetness Soil moisture at satu- 1° Time-fixed  Time-fixed  http://cola.gmu.edu/
proper-  Project 2 ration point, field ca- (360 x 180) gswp/dods.html
ties pacity, matrix poten- (last access: 19 Au-
tial, wilting point, and gust 2024)
albedo
Ignition LIS/OTD (Lightning Lightning flash rate 2.5 arcmin Annual 2000-2020  CIESIN (2018)
factors Imaging Sensor—
Optical Transient
Detector) High
Resolution Full
Climatology (HRFC)
V2.3.2015
Gridded Popula- Population density 0.5° (720 x ~ Annual 2015 Cecil (2001)
tion of the World 360)
(GPWv4)

65.54, and 64.313 +£65.61 MgDMha~! yr~!, respectively,
while the ESA Biomass CCI data showed 64.027 4= 56.95,
64.548454.69, and 65.05455.78 Mg DM ha~! yr—!, respec-
tively, for the same years. The annual average AGB of
the model in these years also showed the same increas-
ing trend as the benchmark data, and the spatial distribu-
tions of the AGB model under CRU TS3.22 climate data
and ESA Biomass CCI also agreed, with values of 83 %,
85 %, and 85 %, respectively (Figs. S15 and S16). Further-
more, when viewed on a smaller regional scale, the model
is able to project better values in the west, central, and east
regions, with average values of RZ=0.73, R> =0.69, and
R% =0.74, respectively (Fig. S17). Although there was an
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annual average increase in the number of forest fires, there
was a high-variability trend in the model AGB values indicat-
ing succession after forest fires and a correct response to cli-
mate inputs variables based on each RCP scenario (Fig. 9d).

3.1.3 Annual and seasonal fluctuations in burned dry
matter

The model’s dry-matter data have a spatial distribution pat-
tern similar to that of the model’s fire products (burned frac-
tion and burned biomass), as calculated from the available
fire and fuel load data (fire product derivatives). The annual
average dry-matter variability from the 1997-2016 model

Biogeosciences, 21, 4195-4227, 2024
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Table 3. Description of the observational datasets used for model evaluation.

Type Variable Unit Source Spatial res- Temporal Temporal Reference
olution resolution coverage
Fire Burned area  ha Global Fire Emissions 0.25° Monthly, 1996-2016  Giglio et al.
Database, Version 4.0 annual (2013)
(GFED4)
Burned frac- - Global Fire Emissions 0.25° Monthly, 1997-2016  Giglio et al.
tion Database, Version 4.1 annual (2013)
(GFED4s)
Dry matter kg_1 DM m 2
CO, emis- gCOpyr~!
sions
CO; emis- gCO, yr_1 Global Biomass Burn- 1° Annual 2001-2020  Shiraishi et al.
sions ing Emissions Inven- (2021)
tory (GBEI)
Vegetation Aboveground Mg ha~! ESA Biomass Cli- 100m Annual 2010, Santoro and
biomass mate Change Initiative 2017-2018  Cartus (2021)

(Biomass CCI): global
datasets  of  forest
aboveground biomass
for the years 2010,

2017, and 2018 (v3)

. GFED only . GFED and SEIB-DGVM agreement

SEIB-DGVM only

Figure 4. Spatial distribution comparison of the annual average burned-fraction variable (1997-2016) from SEIB-DGVM SPITFIRE and

GFED4s.

(under the historical climate product CRU TS3.22) and the
GFED4s data agreed with 6.24 %, similar to the agreement
of the fire products (Fig. S20). Spatial comparisons at the re-
gional scale in the west, central, and east regions of Siberia
show lower values than the Siberian region as a whole, with
an agreement of 60.2 %, 64.4 %, and 58.8 % (Fig. S21).

We also compared seasonal dry-matter data to ensure
that the monthly outputs of SEIB-DGVM SPITFIRE agree
with the observations, as this difference influences seasonal
aerosol emissions. Between 1997 and 2016, the GFED4s
data exhibited high fluctuations and dynamics depending on
the month and year, while SEIB-DGVM SPITFIRE was not
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able to reproduce these dynamics or accurately predict the
occurrence of extreme events (Fig. S18a). For example, in-
tense forest fires were recorded in 2003, 2012, and 2016.
The monthly burned-dry-matter data for these years peaked
in 2003 in May and in 2012 and 2016 in July (Fig. S18b-
d). Severe wildfires in 2003 were due to low precipitation,
as total precipitation reached only 36.0 mm in the Republic
of Buryatia and 45.7 mm in the Chita Region between Au-
gust 2002 and May 2003 (IFFN, 2003). The 41-year average
precipitation between August and May (1981-2022) in the
Republic of Buryatia was approximately 332.23 mm, and in
the Chita Region was approximately 119.45 mm. Thus, the
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low precipitation in 2003 was an anomaly outside of the an-
nual average range.

Furthermore, the improved model’s monthly average
burned dry matter in 2003, 2012, and 2016 was also lower
compared to the GFED4s data. The burned-dry-matter values
of the improved model were 58.64 +5.86, 59.41 5.9, and
59.98 £5.99 kg DM m~2, while the benchmark data showed
values of 122.36, 101.7, and 69.95 kg DM m~2, respectively.

However, considering the entire period from 1997 to 2016,
not only during years with extreme fire events but also for
multiple years and time-series data was the model also able
to reproduce similar average values. When comparing the
monthly averages during 1997-2016, the model data yielded
a value of 58.94 +5.89 kg DM m~2, while the GFED4s data
yielded 59.12 kg DM m~2. The model is not yet able to re-
produce the exact value at a specific time of year or month
because it runs in a long-term phase and is not yet able to pre-
dict sudden natural and anthropogenic conditions (factors).
Overall, the spatial distribution comparison of the monthly
dry-matter variables from GFED4s and SEIB-DGVM SPIT-
FIRE for 20 years (1997-2016) revealed a correlation of
99 % (Fig. 5); therefore, the model was able to approximate
the monthly averages.

3.1.4 Carbon dioxide (CO;) and PM;_ 5 emissions

Emissions from biomass burning contribute significantly to
the global budget for residual gases and aerosols that affect
the climate. It is estimated that biomass burning contributed
up to 50 % of global CO and NO, emissions in the tropo-
sphere (Galanter et al., 2000), and the most emitted gas dur-
ing biomass burning is CO; (Ritchie et al., 2020). Since CO,
emissions are the primary emissions that contribute to cli-
mate change, it is critical to assess and monitor them contin-
uously.

In this study, out of 33 projected emissions (Tables 4
and S6), we validated the CO, variable that is able to repre-
sent all projected emissions because all estimated emissions
are derived from the same burned-dry-matter variable, which
differs only in the emission factor value of each gaseous
emission. The highest annual average value of CO;, emis-
sions from 1997 to 2020 is from GFED4 data, followed
by SEIB-DGVM SPITFIRE and then the GBEI product,
with values of 105.64 £ 50.69 x 10'3, 76.12£0.87 x 103,
and 62.4 4 26.09 x 10'3 g CO», respectively (Table S3). The
GFED4s and GBEI data have higher standard deviation val-
ues than the SEIB-DGVM SPITFIRE data and appear to have
a large difference.

Spatially, the annual average CO;, emission model data
were 61.3 % (Fig. 6a) and 79.8 % (Fig. 6b) correlated with
the GFED4s and GBEI data, respectively. Furthermore, CO,
emissions of the model compared to the GFED4s in the three
regions (west, central, and east) showed lower agreement
than Siberia as a whole, at 62.7 %, 62.5 %, and 61.6 %, re-
spectively (Fig. S29), whereas the comparison to GBEI data
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at the three regions showed agreements of 74.7 %, 77.6 %,
and 64.3 %, respectively (Fig. S30). In addition, spatial com-
parison of annual mean data over 95 years (2006-2100)
from SEIB-DGVM SPITFIRE, GFED4s, and GBEI datasets
reveals similar values of 141.1+11.5, 157.2+14.8, and
148.7+7.12Gg CO, yr~!, respectively.

Our study area covers the boreal Asia (BOAS) area and a
small part of central Asia (CEAS), differing from the GFED4
basis region classification; therefore, we extracted these areas
from the GFED4s data for comparison (Fig. S22). A compar-
ison of the GFED4s CO, data between the BOAS area and
the Siberian area showed that the two datasets had a simi-
larity of 98.2 % (Fig. S26), confirming the accuracy of the
GFED4s validation data.

As all emission products are derived from fire prod-
ucts (dry-matter variables), emission factors displayed spa-
tial and value dynamics similar to those of the fire products
(Figs. S19, S27, and S43). When comparing the annual av-
erage dry-matter emission data and CO, emissions gener-
ated by the model, the results correlated perfectly (100 %,
Fig. S31), indicating that the model runs well according to
Eq. (3) and that the projected CO; and other emissions have
the same distribution patterns as the dry-matter variable be-
cause all of the emission calculations are based on the dry-
matter variable. However, they differ in their values because
each emission species has a different emission factor.

We also compared the modeled PM; 5 emissions and their
distribution patterns with the Copernicus Atmosphere Mon-
itoring Service (CAMS) (Romanov et al., 2022) data in
seven Russian territories (Amur Region, Republic of Burya-
tia, Irkutsk Region, Khabarovsk Territory, Krasnoyarsk Ter-
ritory, Transbaikal Territory, Yakutia (Republic of Sakha))
during 2010-2021. The improved model data and CAMS
data both exhibited an increasing trend (Figs. 7a and 2 in
Romanov et al., 2022) and a correlation of 85.8 % (Fig. 7b).

3.2 Burned fraction

The improved model (SEIB-DGVM SPITFIRE) produces
burned-fraction variables more accurately than the default
model (SEIB-DGVM GlobFIRM). A spatial comparison of
the average burned-fraction variables from 1997-2016 be-
tween GFED4s, SEIB-DGVM SPITFIRE, and the default
SEIB-DGVM shows that SEIB-DGVM SPITFIRE achieves
a 75 % similarity with GFED4s data, whereas the default
model achieves only 68 % (Fig. S5).

The burned-fraction variable in the improved model exhib-
ited a spatial distribution pattern different from that in the de-
fault model (Fig. S4a). According to the improved model, the
burned-fraction data were distributed in the west, central, and
southern areas (Fig. S4b). We compared the burned-fraction
variable with the lightning flash rate and population density
data to confirm that the produced variable considered the new
ignition factor. The burned fraction showed a 46 % correla-
tion with the lightning flash rate and a 6 % correlation with
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population density between 2006 and 2100 (Fig. S7a and b).
In general, the burned fraction under all the RCP scenarios
exhibited an increasing trend from 2006 to 2100, with the
highest value occurring under the RCP4.5 scenario. Under
the RCP4.5 scenario, the lowest value was 0.01371 and the
highest value was 0.01427, with an average value of 0.01398
(Fig. S4d).

In contrast to the results produced from the improved
model, the burned-fraction data from the default model were
spread throughout most of the area (Fig. S4a). From 2006
to 2100 under all RCP scenarios, the burned fraction in the
default model also exhibited an increasing trend. Under the
RCP4.5 scenario, the lowest value is 0.002996 and the high-
est value is 0.003113, with an average value of 0.00306
(Fig. S4c), which is well below the outputs of the improved
model.
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3.3 Burned area

The burned area of the improved model showed a simi-
lar spatial distribution pattern under all the RCP scenarios
(Fig. S6a). The distribution pattern of the burned-area vari-
able was also similar to that of the burned-fraction variable,
as the burned-area and burned-fraction calculation processes
are both based on fire probability (Eq. 1). Overall, under all
the scenarios, the burned area exhibited the same increasing
trend, with the RCP4.5 scenario reaching the highest value.
Under the RCP4.5 scenario from 2006 to 2100, the burned
area has an average value of 1945.9 haper grid per year and
is projected to increase with values of 79.7 to 83.8 x 10° ha
(Fig. S6b). Since the default model does not compute burned
area, this variable could not be compared between the im-
proved model and the default model.
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3.4 Burned biomass

The improved model confirmed uniform spatial distribution
patterns for the fire variables: burned fraction (Fig. S4b),
burned area (Fig. S6a), and burned biomass (Fig. 8b). All
of the improved module fire variables confirmed to be mu-
tually integrated because the calculation process comes from
the first fire variable (burned fraction). Compared to the im-
proved model, the spatial distribution pattern of the burned-
biomass variable from the default model was wider and
spread across the entire Siberian region (Fig. 8a). The spa-
tial distribution pattern of the burned fraction (Fig. S4a)
and burned biomass (Fig. 8a) in the default model is dif-
ferent and exhibited a box-like pattern in the center of the
map. The internal model calculation flow relationship be-
tween the burned-fraction and burned-biomass variables in
both the default and improved models shows a positive lin-
ear correlation, indicating harmony between these variables.
A higher burned fraction corresponds to a higher burned
biomass. The default model (SEIB-DGVM GlobFIRM) has
an R? value of 0.83, while the improved model (SEIB-
DGVM SPITFIRE) demonstrates better integration, with an
R? value of 0.93 (Fig. S8a and d). Under all RCP scenarios
from 2006 to 2100, the burned-biomass variable in both the
default and improved models exhibited an increasing trend
(Fig. 8c and d). This indicates correct integration between
the burned-fraction and burned-area variables and an appro-
priate response to the climate input data. Furthermore, under
the RCP6.0 climate scenario from 2000 to 2100, the burned-
biomass value in the default model increases from 50.4 to
60.6kg DM m~2 (Fig. 8dc), while in the improved model it
increases from 53 to 73.98kgDMm~2 (Fig. 8d). The 20-
year variations and their trends of dry-matter emissions up to
2100 in the improved model (SEIB-DGVM SPITFIRE) are
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55.90 4 1.31 (10.5%), 60.52 £ 1.12 (11.4 %), 64.43 £ 1.36
(12.1 %), 69.23+£1.37 (13%), and 71.814£0.94 (13.5%)
(Fig. $32).

3.5 Aboveground biomass

The aboveground biomass calculations in the default model
and improved model used the same estimation process be-
cause the trunk biomass in SEIB-DGVM included coarse-
root biomass; therefore, only approximately two-thirds of the
trunk biomass was classified as aboveground biomass (Sato
et al., 2007). However, during the calibration of the above-
ground biomass variable with the ESA Biomass CCI bench-
mark dataset, we adjusted the calculation impact of fire and
its distribution pattern (based on natural- and anthropogenic-
ignition factors) on the availability of aboveground biomass.

According to the default model, the AGB distribution pat-
tern appears to be the same as that of the fire variable; a
box-like pattern still occurs on the map (Fig. 9a). Under the
RCP8.5 scenario, from 2000 to 2100, the AGB increased
from 63.72 to 120. MgDMha~! and the average value
was 86.3MgDMha~! (Fig. 9c). The aboveground biomass
(AGB) variables in both the default and improved models
exhibit an increasing trend and vary across RCP scenarios,
with the highest values observed under RCP8.5 and the low-
est under RCP2.6. This indicates that the models effectively
read and process the RCP input climate data.

Compared to the default model, the improved AGB model
has distribution patterns that are a bit different (Fig. 9b).
In the central region of Siberia, some locations that have
high AGB have been reduced due to the impact of for-
est fires so that the box-like pattern is no longer visible
(Fig. 9b). The temporal variation in aboveground biomass
in the improved model also shows an increasing trend due

Biogeosciences, 21, 4195-4227, 2024



4208

R. K. Nurrohman et al.: Future projections of Siberian wildfire and aerosol emissions

(C)  5'SEIB-DGVM GlobFIRM

(d) SEIB-DGVM SPITFIRE

2000 2025 2050 2075 2100
Year

Scenario Historical

RCP2.6

a @ ~
3 & 3

Burned Biomass (kg DM m? yr‘*)

o
&

2000 2025 2050 2075 2100
Year

RCP4.5 = RCP6.0 = RCP8.5

Figure 8. (a) Spatial distribution of annual average burned biomass from SEIB-DGVM GlobFIRM from 2000 to 2100. (b) Spatial distribution
of annual average burned biomass from SEIB-DGVM SPITFIRE from 2000 to 2100. (¢) Temporal variation in annual average burned biomass
from SEIB-DGVM GlobFIRM from 2000 to 2100. (d) Temporal variation in annual average burned biomass from SEIB-DGVM SPITFIRE

from 2000 to 2100.

to the warming scenario of each RCP climate data input.
The AGB under the RCP8.5 scenario from 2000 to 2100
increased from 59.08 to 126.7MgDMha~! (Fig. 9d), and
the mean was 88.68 MgDMha~!. The 20-year variations
and their trends of aboveground biomass up to 2100 are
65.454+1.19 (10.8 %), 71.69 £2.90 (11.8 %), 83.38 £3.61
(13.7 %), 99.17 £ 5.06 (16.3 %), and 117.92 £5.41 (19.4 %)
(Fig. S33).

3.6 Forest ecological variables under fire-on and
fire-off simulations

We conducted complete simulations under fire-on and fire-
off modes to compare and assess vegetation dynamics dur-
ing forest fires. Assessing vegetation dynamics can be done
by understanding the carbon pools in the certain region or
globally, where carbon pools are easier to measure than car-
bon fluxes. In this study, the net primary production (NPP) is
used as a reference variable because it is an important met-
ric of the global carbon cycle (Running, 2022) and measures
the rate of global plant growth. We obtained the NPP loss
variable due to wildfire from fire-on and fire-off simulations.
The NPP loss variable under all RCP scenarios shows an in-
creasing trend. Under the RCP8.5 scenario, an average NPP
loss of 385.194+40.4gCm~2yr~! occurred during 2000
2100 (Fig. S25a). In addition to the NPP variable, the im-
proved model (SEIB-DGVM SPITFIRE) can also simulate
net biome production (NBP). Under the same RCP8.5 sce-
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nario, the annual average NBP from 2000-2100 shows a pos-
itive value of 307.7 43 TgCyr—! (Fig. S25b), with a con-
tinuous increasing trend.

In relation to wildfires, assessing pre- and post-fire tree
density variables is critical for measuring the impact of fires.
Under the RCP8.5 scenario, in the fire-on simulation from
1997 to 2100, it is projected that the tree density in Siberia
was 2181 treesha~!. However, under the same RCP and
time range in the fire-off simulation, the tree density was
2363 trees ha~!. We also compared the tree density between
the fire-on and fire-off simulations under all the RCP sce-
narios and found that the tree density increased in the fire-
off simulations compared to that in the fire-on simulations.
Under the RCP8.5 scenario, on average, 174 trees ha~! yr‘1
died due to the fire (Fig. S25¢).

We also conducted a more detailed assessment of sev-
eral forest structure variables, such as the tree diameter at
breast height (DBH), crown area, and tree height, from 2006
to 2100 under all the RCP scenarios. Under the RCP8.5
scenario, in the fire-on simulation, the results showed that
tree DBH values varied from 0 to 4.7 m (average of 0.9 m),
tree height varied from O to 75.4 m (average of 24.2 m), and
crown area varied from 0 to 15.1 m? (average of 5.7 m?).
The average tree structure in the fire-off simulation was
greater than that in the fire-on simulation, with an average
tree DBH, tree height, and crown area of 0.97m, 24.1 m,
and 6.5m?, respectively. The correlations between the tree
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Figure 9. (a) Spatial distribution of annual average aboveground biomass from SEIB-DGVM GlobFIRM from 2000 to 2100. (b) Spatial
distribution of annual average aboveground biomass from SEIB-DGVM SPITFIRE from 2000 to 2100. (¢) Temporal variation in aboveground
biomass from SEIB-DGVM GlobFIRM from 2000 to 2100. (d) Temporal variation in aboveground biomass from SEIB-DGVM SPITFIRE

from 2000 to 2100.

structure variables under fire-on and fire-off simulation con-
ditions were similar and highly correlated; the overall aver-
age correlation among the tree DBH, tree height, and crown
area variables was 97 % (Fig. 10). Specifically, according
to region classification, from the highest to the lowest, the
values of tree height, tree DBH, and crown area are in
the west region, centr