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Abstract. Soils contain large amounts of carbon stored as
organic carbon and carbonates. These carbon pools can con-
tribute to climate regulation and are of primary importance
in ensuring proper soil functioning. However, their accurate
quantification remains a complex task. Rock-Eval® thermal
analysis has emerged as an alternative to classic dry combus-
tion and wet methods due to its ability to simultaneously pro-
vide organic and inorganic carbon measurements on the same
subsample. However, it has been observed that Rock-Eval®
systematically underestimates the soil organic carbon (SOC)
while overestimating the soil inorganic carbon (SIC). In this
technical note, we propose a validated correction of both
SOC and SIC based on a machine-learning model and using
a diverse dataset of 240 soil samples. We show that the pro-
posed correction significantly increases the accuracy of the
Rock-Eval® method when compared to reference SOC and
SIC values and applied to the dataset used for training and
testing and that it can be successfully applied to data origi-
nating from different Rock-Eval® machines without chang-
ing the routine analytical protocol. The transferability of the
model allows for its future implementation in the Geoworks
software so that Rock-Eval® machines can routinely provide
accurate SIC and SOC measurements.

1 Introduction

Soils contain large amounts of carbon stored as organic car-
bon and carbonates (Batjes, 1996; Zamanian et al., 2018).
These carbon pools are dynamic and can contribute to cli-
mate regulation (Chenu et al., 2019; Zamanian et al., 2021).
Moreover, organic carbon is also of primary importance
in ensuring proper soil functioning (Hoffland et al., 2020).
Global stocks of soil inorganic carbon (SIC) and soil or-
ganic carbon (SOC) are of comparable size (~ 2500 Pg)
when the soil is considered down to a depth of 2m (Zama-
nian et al., 2021). Not all soils contain SIC, but the pres-
ence of carbonates is frequent, particularly in arid or semi-
arid regions (Zamanian et al., 2018; Pfeiffer et al., 2023).
The presence of SIC influences soil pH and therefore nutri-
ent availability (e.g., Mkhonza et al., 2020). This explains
the usual agricultural practice of liming to reduce soil acid-
ity. In addition, recent studies have shown that the amount of
SIC can vary significantly over short timescales (~ 10 years)
due to soil acidification resulting from certain farming prac-
tices such as nitrogen fertilization or irrigation (Zamanian
et al., 2021; de Soto et al., 2017), suggesting that it may
be worthwhile to assess the potential role of carbonates as
a source or sink of C in the context of climate change. More-
over, land-based enhanced rock weathering is increasingly
discussed as a strategy to contribute to atmospheric CO, re-
moval. It consists of the spreading of silicate powder, whose
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weathering in soils leads to atmospheric CO, sequestration
in carbonates (e.g., Kelland et al., 2020). Measuring the soil
carbonates produced can provide information on the effec-
tiveness of adding silicate minerals to sequester atmospheric
CO; (Haque et al., 2020). As a result, the accurate quantifi-
cation of soil organic and inorganic carbon (SOC and SIC,
respectively) content is recognized as an increasingly impor-
tant, yet not straightforward, task, especially in carbonated
soils. There exist a wide range of methods for quantifying
SOC and SIC; the two main approaches are dry and wet com-
bustion methods, and they both come with their advantages
and drawbacks.

Dry combustion methods involving CHN (carbon, hydro-
gen, nitrogen) elemental analyzers are increasingly used to
measure total carbon. If the soil sample is not carbonated,
the total carbon therefore represents only SOC. In carbonated
soils, however, the amount of SIC is quantified using a sepa-
rate analysis on a second subsample and the quantity of SOC
is then determined as the difference between total carbon and
SIC. SIC is generally measured using the amount of CO,
produced by a known quantity of soil after acidification with
HCI (Allison and Moodie, 1965). Alternatively, SOC can be
directly quantified using CHN if carbonates have been pre-
viously removed using acid fumigation (Harris et al., 2001).
The standard ISO 10694 method (ISO, 1995, 1999) describes
how organic, inorganic, and total carbon can be measured in
soil samples using dry methods. The main disadvantages of
dry methods are that (1) SIC and SOC quantities are not mea-
sured on the same subsamples and (2) both SOC and SIC
measurements can be inaccurate if the decarbonation is in-
complete.

Wet methods are also largely used, especially when CHN
analyzers are not available. The most commonly used wet
oxidation method is the Walkley—Black method, which al-
lows for measuring organic carbon directly in carbonated
and non-carbonated soils (Walkley and Black, 1934). How-
ever, the Walkley—Black method has an average SOC yield
of 77 %, and therefore the results have to be corrected to ac-
count for non-recovered SOC (Food and Agriculture Orga-
nization of the United Nations, 2020). The correction factor
can be significantly different from one soil to another (Neal
and Younglove, 1993), representing a limitation on the accu-
racy of wet oxidation methods (ISO 14235:1998 Soil Qual-
ity, 1998).

More recently, thermal analysis methods have been pro-
posed as an interesting alternative to quantifying both SOC
and SIC on a single subsample (Disnar et al., 2003; Vuong
et al., 2016; Apesteguia et al., 2018). Among thermal meth-
ods, Rock-Eval® (RE) thermal analysis has received particu-
lar attention in the recent years (Koorneef et al., 2023; Hazera
et al., 2023), suggesting that if suitable corrections are ap-
plied, the Rock-Eval® method could provide accurate quan-
tification of both SIC and SOC. Moreover, a recent study has
shown that the results provided by the Rock-Eval method are
highly repeatable and reproducible, with relative errors on
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the order of 2 % to 4 % for the measurements of organic and
inorganic C contents (Pacini et al., 2023). The aim of this
technical note is to provide appropriately validated correc-
tions to enable quantification of both SIC and SOC by Rock-
Eval® and to test the transferability of corrections between
Rock-Eval® machines.

2 Materials and methods
2.1 Soil samples

The study mobilized 240 soil samples taken from the surface
layer (0-30 cm) of French agricultural soils. A stratification
procedure was used to select the samples and ensure that each
combination of texture class, SIC quantity, and SOC quantity
was represented with at least 7 samples for low-carbonated
soils and 14 samples for carbonated soils. As a result, the
selected samples cover a wide range of particle-size distri-
bution and SIC and SOC content, as shown in Fig. 1. SIC
and SOC quantification was conducted at the Laboratory of
Soil Analyses (Laboratoire d’Analyses des Sols, LAS) of
Saint-Laurent-Blangy, accredited by Cofrac (French accred-
itation committee). LAS is a public laboratory operated by
INRAE (French National Research Institute for Agriculture,
Food and Environment) that analyzes samples for the French
and European research community. At LAS, the total carbon
is determined using a CHN analyzer (Thermo Fisher FLASH
2000) and inorganic carbon is quantified using a Bernard cal-
cimeter. In carbonated samples, organic carbon is then deter-
mined as the difference between total carbon and inorganic
carbon. SIC and SOC measured at LAS can be considered
highly accurate and are therefore suitable to constitute refer-
ence measurements. Their associated uncertainties are calcu-
lated as

uncertainty SOC = 0.02 x ([SOC] + 0.12 x [CaCO3])
+0.4940.12 x <0.016 x [CaCOs]
+0.63),ingkg—1, 1)
and

uncertainty SIC =0.12 x (0.016 x [CaCO3]

+O.63), ingkg™!. )

2.1.1 Rock-Eval® measurements

Each of the 240 soil samples was ground using a Fritsch
PULVERISETTE 6 tungsten carbide planetary mill and di-
vided into three subsamples. One subsample was sent to
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Figure 1. Distributions of SOC (a) and SIC (b) and particle size as a proportion of sand, silt, and clay (c), in the dataset of 240 samples, as
measured by LAS, Saint-Laurent-Blangy. The SIC range is 0.5 to 96.8 gC kgfl, and the SOC range is 5.37 to 44.64 g C kgfl.

LAS, Saint-Laurent-Blangy, for SIC and SOC determination.
The two other subsamples were analyzed using Rock-Eval®
at ISTeP (Earth Science Institute, CNRS, Sorbonne Univer-
sity, Paris, France), and at Vinci Technologies (Nanterre,
France). At ISTeP, samples were analyzed using a Rock-
Eval® 6 Turbo (RE6 Turbo), whereas at Vinci Technologies
samples were analyzed using an RE6 standard instrument
and a Rock-Eval® 7 (RE7) instrument. The RE7 machine is
the newest version of Rock-Eval® machines, and we there-
fore considered it useful to check whether a correction de-
signed on REG6 can be transferred to the new RE7 version.

The Rock-Eval® thermal analysis consists of a pyrolysis
step followed by an oxidation step. During pyrolysis, the
sample is gradually heated in an inert environment (N3) and
evolved hydrocarbons, CO;, and CO effluents are continu-
ously monitored with time. Then the sample is cooled down
before the start of the oxidation stage. During oxidation, the
sample is gradually heated in purified laboratory air and the
quantity of evolved CO; and CO is continuously monitored.
The analytical setup used was the “SOIL” routine. The py-
rolysis step started with a 3 min isotherm at 200 °C followed
by a heating ramp of 30 °C min~! from 200 to 650 °C (Dis-
nar et al., 2003). The heating routine for the oxidation step
started with a 1 min isotherm at 300 °C followed by a heat-
ing ramp of 20 °C min~! until 850 °C and terminated with a
5 min isotherm at 850 °C (Baudin et al., 2015, adapted from
Behar et al., 2001). The correct determination of SIC us-
ing the original settings of the widely used SOIL routine,
even for carbonate-rich samples (see for instance Delahaie
et al., 2023), suggests that there is no need to modify the
Rock-Eval® acquisition parameters for carbonated soils as
suggested by Hazera et al. (2023). Pacini et al. (2023) detail
the RE6 thermal analysis, as well as the usage of the SOIL
routine in Geoworks.

All samples (ca. 60 mg) on all machines were analyzed us-
ing the SOIL routine. A reference sample (IFPEN_160000)
is measured regularly in Rock-Eval® batch analyses for
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quality control. The target values are 3.28 +=0.06 wt % and
3.26 £0.07wt % for SOC and SIC, respectively. The ma-
chine is recalibrated when SOC and SIC values are outside
this narrow range, which means that the acceptable measure-
ment error is ca. 2 %. The thermograms were integrated to
provide RE parameters and indices using the Geoworks v1.7
software. Notably, TOCre6 and MinC (corresponding to
Rock-Eval® SOC and SIC measurements) were provided by
Geoworks. The thermograms showed that the carbonate soil
samples contained neither dolomite nor siderite.

2.2 Design of the correction methods

It has long been known that TOCre6 and MinC tend to
slightly (by ca. 10 %) underestimate SOC and overestimate
SIC, respectively (Disnar et al., 2003). The data we collected
from LAS, Saint-Laurent-Blangy, and the Rock-Eval® ma-
chines (ISTeP and Vinci Technologies) also respect this gen-
eral tendency, as shown in Fig. 2. The goal of this study
was to design and validate a correction method for soils
that aligns the TOCre6 and MinC values measured by Rock-
Eval® as closely as possible with reference SOC and SIC
measurements provided by LAS. To do so, we considered
several correction methods, each one implementing a dif-
ferent machine-learning (ML) model. We began by learn-
ing a correction method using the data obtained with the
REG6 Turbo machine from ISTeP and pairing it with the soil
organic and inorganic carbon data from LAS, Saint-Laurent-
Blangy. We then tested the generalizability of the correction
by applying it to the data obtained using other machines,
i.e., the RE6 and RE7 data from Vinci Technologies. In the
interest of brevity and legibility, certain modeling choices
and techniques are omitted from the main text and are in-
stead included in the Supplement in the form of a Jupyter
Notebook (Kluyver et al., 2016) using open-source Python 3
code (Van Rossum and Drake, 2009).

Biogeosciences, 21, 4229-4237, 2024
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Figure 2. Comparison of the SIC and SOC measurements before correction from the RE6 analysis by ISTeP and reference measurements by
LAS, Saint-Laurent-Blangy. The red line represents the 1 : 1 diagonal.

After having tested several different approaches, the cor-
rective model we propose here is a support vector machine
(SVM) (Cortes and Vapnik, 1995) regression as implemented
in the scikit-learn Python library (Pedregosa et al., 2011).
SVMs are a collection of supervised ML models that are well
suited to our usage as they adapt to both linear and non-linear
data. SVMs using the RBF (radial basis function) kernel offer
two different regularization hyper-parameters, which allows
us to avoid overfitting the training data. Other models we
have tested are a regular least-squares linear regression (LR),
a constrained ridge regression (Ridge), and a random forest
(RF) model. The LR model is an ordinary-least-squares lin-
ear regression that minimizes the residual sum of the differ-
ences between the observed and the predicted data. Ridge is a
special case of LR where regularization is added to the coeffi-
cients using the £2 norm so as to avoid overfitting the training
data. Lastly, RF is an ensemble modeling method that uses
averaging of a collection of randomized decision trees, i.e., a
random subset of features and of samples, to predict the tar-
get variable. Like SVMs, RFs are capable of capturing linear
and non-linear relationships in the data. After correcting the
SIC and SOC, it can happen that the corrected value is a small
negative number close to zero, especially for low-carbonated
soil samples. In this case, we simply set these negative SIC
and SOC values to zero.

The dataset contains all the RE parameters (such as the
hydrogen index (HI), the oxygen index (OI), pyrolyzable
carbon (PC), or temperature stability parameters; see Pacini
et al., 2023, and Baudin, 2024, for an exhaustive list) for the
240 soil samples including TOCre6 (namely SOCgrgg) and
MinC (namely SICgrgg), as well as SOC and SIC provided
by LAS.

Biogeosciences, 21, 4229-4237, 2024

We develop two separate models for predicting the re-
quired correction of the SOC and the SIC. Our target vari-
able is the difference between the SOC (or SIC) measured by
LAS and the RE6 analysis:

3)
“)

All the models are cross-validated during the training
phase using two-thirds of the available data and then tested
on the remaining one-third of samples. After a correlation
analysis between the target variables and the RE6 parame-
ters, as well as running several multivariable models, we con-
cluded that the Rock-Eval® SOC (or SIC) alone is sufficient
to accurately estimate the required correction. This procedure
began by calculating the Spearman correlation, whereby it
was evident that the SOCRrge¢ and SICrgg are the most highly
correlated with the target variables. Next, we trained the four
ML models mentioned above (SVM, LR, Ridge, RF) using
all RE parameters or subsets of them that were highly cor-
related with the target. We used two different thresholds of
0.3 and 0.5 in Spearman correlation for detecting the highly
correlated parameters, allowing us to have a smaller or larger
set of parameters. We also removed any parameters that were
highly correlated among each other, this time using a thresh-
old of 0.9 in terms of Spearman correlation. The results of
all these tests were overwhelmingly in favor of using only
the SICrge and SOCRrgg in the correction models. Therefore,
in the remainder of this note, all the proposed corrections are
single-feature models. Finally, the corrected SIC and SOC of
RE can be calculated as

ysoc = SOCcun — SOCgEg,
ysic = SICcun — SICRgg.

SOCcorrected = SOCREé + ?soc (5)

https://doi.org/10.5194/bg-21-4229-2024
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and

SICcorrected = SICRrEs + .’Y\Sle (6)

where ysoc and ygyc are the predicted corrections to the ML
model.

For the sake of comparison, we also implemented the cor-
rective approach described by Hazera et al. (2023) derived
from a seminal study by Disnar et al. (2003). In this study,
two different corrections are proposed for SOC in calcare-
ous samples, depending on the state of degradation of or-
ganic matter. The proposed correction for samples enriched
in fresh organic matter is hereafter named Disnargrg for
biopolymer-rich samples, whereas the correction for samples
containing more processed organic matter is hereafter named
Disnargei;. As the degradation state of soil organic matter
sensu (Disnar et al., 2003) is not easy to determine, we de-
cided to consider both corrections in our study for carbonated
and non-carbonated samples. The correction for carbonated
biopolymer-rich samples (Disnargrs) is

SOCeorrected = 1.17 x SOCRrEg @)
and
SICcorrected = SICRgg — 0.092 x SOCREs. ®)

For non-carbonated samples, the same authors propose the
following correction (Disnarge;)):

SOCeorrected = (SOCRrE¢ + SICRrEs) x 1.068 9
and
SICcorrected =0. (10)

For non-BRS soils, they propose the following correction,
Disnarg;, for carbonated soils:

SOCcorrected = SOCRrEgg + 1.092 x SICRrEgg (11)
and
SIC orrected = SICREs — 0.092 x SICRrEge. (12)

They propose the following for non-carbonated soils:

SOCcorrected = SOCRE6 + SICRE6 (13)
and
SICcorrected = 0. (14)

As the Disnar et al. (2003) model divides the soil samples
into carbonated and non-carbonated soils, we also divide our
data using a similar threshold of 2 g Ckg~! of SIC. This ap-
proach results in three different datasets: the non-carbonated
(80 samples), carbonated (160 samples), and all data (240
samples). In the accompanying Notebook, we have detailed
a second threshold used to distinguish carbonated and non-
carbonated samples based on the contribution to the S5 sig-
nal in the RE6 analysis. Due to the similarity of the two ap-
proaches, we have only presented the former in the following
text of this publication.

https://doi.org/10.5194/bg-21-4229-2024

2.3 Metrics to evaluate the correction methods

We use several different metrics to quantify the quality of
the provided correction. The R? coefficient of determination
is the proportion of the variable in the dependent variable
that can be explained by the independent variable. Its upper
bound and best score is 1, while its lower bound is minus
infinity. An R? score of 0 means that none of the dependent
variable’s variability is explained and the model only predicts
the mean value. It is calculated as
=2
— Z(y’—_y_’)z (15)
Y=

where 3; is the predicted value of the ith sample and y is
the average value over all samples. The root mean square

error (RMSE) and relative RMSE (RRMSE) are calculated
as follows:

)2
RMSE = ,mTyl)’ (16)

RMSE
RRMSE = (17)

— 3

y

R*=1

where N is the number of samples. We also calculate the bias
as the difference between the mean of the measured values
and the mean of the predicted values. The bias allows us to
know if the model tends to systematically over- or underesti-
mate the target variable.

3 Results and discussion

3.1 Comparison of performances of the corrective
methods

Having introduced several models for both the SIC and the
SOC, we proceed with assessing their corrective perfor-
mance using the test dataset. The metric we are mainly in-
terested in is the RMSE, and to a lesser extent we are in-
terested in the bias, the R? coefficient of determination, and
the ordinary-least-squares linear equation describing the re-
lationship between the reference CHN values provided by
LAS and the (corrected) RE values.

Figure 3 shows the RMSE for the original data and for the
corrected data after using one of the four different tested ML
models and the correction factors provided by Disnar et al.
(2003). Concerning the SIC correction, the overall best per-
formance is achieved by the SVM model, as it is the only one
to significantly reduce the error in all three datasets (carbon-
ated, non-carbonated, and all samples). With the exception of
the RF model for non-carbonated data, all the models we pro-
pose offer a considerable decrease in RMSE. The RF model,
due to its intrinsic complexity and bootstrapping, is probably
more impacted than other ML models by the smaller dataset
size, as only the 80 non-carbonated samples were considered

Biogeosciences, 21, 4229-4237, 2024
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Figure 4. Precision of the proposed SVM correction applied to the test dataset.

and one-third of those were set aside for testing. Regarding
the SOC correction, the models we propose strongly increase
the similarity between LAS and Rock-Eval® ISTeP SOC val-
ues. They have virtually equal performance, resulting in a 2-
to 3-fold decrease in RMSE. A more detailed comparison of
the behavior of the models as a function of the input data is
available in the Supplement.

The correction factors proposed by Disnar et al. (2003)
significantly decreased the RMSE for SIC and SOC for all
datasets. However, Fig. 3 clearly shows that this correction
is not optimal as the RMSE is on average about two times
higher compared to the ML-based corrections. This is not
very surprising as, contrary to the other methods, the correc-
tion proposed in Disnar et al. (2003) is not derived from an
optimized model trained and tested on separate data. Even

Biogeosciences, 21, 4229-4237, 2024

though the four ML-based corrections render highly similar
performance, the overall best-performing model is SVM. A
paired ¢-test comparison between the Disnar and SVM mod-
els is available in the Notebook and shows the two correc-
tions provide significantly different results. The results of the
SVM correction are shown in Fig. 4. The RMSE is divided
by a factor of more than 3 for the SIC and more than 2 for the
SOC with respect to the raw data before correction. For both
the SIC and the SOC, the equation describing the relationship
between corrected RE6 and LAS data is almost identical to
the 1: 1 ratio, showing that our proposed correction closes
the gap between the two methods.

https://doi.org/10.5194/bg-21-4229-2024
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Figure 5. Results of applying the proposed SVM correction to data obtained using Vinci Technologies’ RE6 and RE7 machines.

3.2 Transferability of the corrective method to other
Rock-Eval® machines

In order to test the transferability of our results to other Rock-
Eval® machines, we apply our SVM model learned on IS-
TeP’s RE6 Turbo machine to the data obtained using Vinci
Technologies’ RE6 and RE7 machines. The reference SIC
and SOC data stay the same, i.e., provided by LAS, Saint-
Laurent-Blangy. Figure 5 shows a comparison for the RE6 (a
and b) and RE7 data (c and d), respectively. The correction
quality is comparable to that of the ISTeP data, with, not sur-
prisingly, only slightly higher RMSEs. The overall bias is not
only of the same order but also sometimes lower, in part due
to the larger sample size as the original correction metrics
are calculated on only one-third of the dataset used as test-
ing data. The possibility of transferring a correction model
for SIC and SOC learned on one Rock-Eval® machine to an-

https://doi.org/10.5194/bg-21-4229-2024

other was somehow expected, as Pacini et al. (2023) observed
that TOCre6 and MinC are very reproducible across different
REG6 instruments and for RE6 and RE7 instruments.

4 Conclusions

Accurately estimating the quantity of soil organic carbon has
important implications for the monitoring of soil health as
well as climate regulation techniques and policies. The clas-
sic dry combustion and wet methods, though standardized
decades ago, come with a series of drawbacks when consid-
ering carbonated soils. Previous studies have suggested that,
on top of providing information on soil organic matter bio-
geochemical stability (Barré et al., 2016), thermal analyses
could be an accurate means of determining SOC and SIC
quantities in carbonated soil with lower experimental uncer-
tainty. Our work confirms this hypothesis and proposes the

Biogeosciences, 21, 4229-4237, 2024
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first validated correction method to accurately determine the
quantities of SOC and SIC from a Rock-Eval® thermal anal-
ysis. This correction method, based on SVM machine learn-
ing, can be transferred to different RE6 and RE7 instruments
and will be implemented in the Geoworks software so that
Rock-Eval® machines can routinely provide accurate SIC
and SOC measurements, at least in the SOC and SIC value
ranges investigated in this study (up to ca. 5% and ca. 8 %
for SOC and SIC, respectively).

Code and data availability. The Jupyter Notebook implementing
the code and the data accompanying this technical note have both
been made available (see Stojanova et al., 2024).
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