

Supplement of

The geothermal gradient shapes microbial diversity and processes in natural-gas-bearing sedimentary aquifers

Taiki Katayama et al.

Correspondence to: Taiki Katayama (katayama.t@aist.go.jp)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Tables

Table S1. Depths and water temperatures of the production wells used in this study and their

analytical purposes.

					Analysis										
Well no.	Sample type	Formations	Strainer depth (average, mbgs)	Water Temp. (°C)	Inorganic and organic chemistry	Stable sulfur isotope	Cell counts	Molecular Gene	Radiotracer & cultivation						
well 1	Formation water	Haizume	554	38	+	+	+	+	+						
well 2	Formation water	Haizume & Nishiyama	653	49	+										
well 3	Formation water	Nishiyama	754	51	+		+	+	+						
well 4	Formation water	Nishiyama	768	56	+										
well 5	Formation water	Nishiyama	883	54	+										
well 6	Formation water	Nishiyama	798	57	+										
well 7	Formation water	Nishiyama	849	58	+		+	+	+						
well 8	Formation water	Nishiyama	845	60	+										
well 9	Formation water	Nishiyama	1049	65	+	+	+	+	+						
well 10	Formation water	Nishiyama	1115	73	+	+	+	+	+						
well 11	Formation water	Nishiyama	1373	81	+	+	+	+	+						
well 12	Formation water	Nishiyama	1374	82	+										
wells 13*	Formation water & oil	Nishiyama & Shiiya	1513	67	+	+									
wells 14*	oil	Shiiya	1704	ND		+									
wells 15*	Formation water	Shiiya	1733	96	+	+	+								

* In oil deposits, oil and formation water was collected from several production wells and mix on the ground

Table S2. Analytical method for each molecule dissolved in formation water sample. Table S2. Analytical method for each molecule dissolved in formation water sample.

Analytical methods	Molecules
lon chromatography	CI^{-} , $SO_4^{2^{-}}$, Br^{-} , formate, acetate, propionate, butyrate
Spectrophotometric method using naphthylethylenediamine (NEDA)	NO ₂
Spectrophotometric method using copper-cadmium reduction NEDA	NO ₃
Spectrophotometric method using L-ascorbic acid	PO4 ³⁻
Atomic absorption spectrometry	Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺
Spectrophotometric method using indophenol blue	NH4 ⁺
Inductively coupled plasma (ICP) emission spectrometry	Fe, Mn
Combustive oxidation with non-dispersive infrared (NDIR) detection	HCO ₃ ⁻ , TOC
Spectrophotometric method using zinc acetate precipitation	HS
Gas chromatography mass spectrometry	n-alkanes
Spectrophotometric method using 4-aminoantipyrine	Phenols
Gas chromatography mass spectrometry with headspace sampler	Methanol, toluene, xylene

Table S3. Physicochemical characteristics of the formation water samples.

		Depth	Temp.	pН	ORP	HCO3	CI	SO42-	HS ⁻	NO2	NO_3^-	PO4 ³⁻	Na*	K*	$\mathrm{NH_4}^+$	Ca ²⁺	Mg ²⁺	Ba ²⁺	Fe	Mn	TOC	Formate	Acetate	Propio- nate	Butyrate	Methanol	Toluene	Phenols	Xylenes	δ ¹⁸ Ο	δD
Reservoir	Well no.	mbgs	°C		mV	mg/L	mg/L	mg/L	uM	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mM	mM	mM	mM	μM	μM	mg/L	μM	‰	‰
	well 1	554	38	7.4	-247	720	16000	<5	<0.03	<0.005	< 0.005	0.02	9100	180	110	570	190	1.5	4	0.3	18	0.001	0.014	0.01	0.01	1.82	0.22	< 0.2	0.17	-3.83	-14.4
	well 2	653	49	7.3	-230	470	19000	21	0.9	0.011	< 0.005	0.044	12000	200	140	780	270	2.2	3.6	0.2	26	0.002	0.002	0.01	0.01					-3	-5.71
	well 3	754	51	7.4	-181	420	19000	<5	0.1	<0.005	< 0.005	0.045	12000	220	120	850	200	2.3	4.5	0.4	22	0.001	0.001	0.01	0.01	2.15	0.09	0.3	0.11	-3	-6.09
	well 4	768	56	7.5	-241	520	18000	<5	0.8	0.01	< 0.005	0.048	12000	180	100	710	120	1.9	3.6	0.2	31	0.002	0.028	0.03	0.01					-2.34	-5.34
Gas-associated aquifers	well 5	883	54	7.3	-230	490	19000	22	0.6	0.01	< 0.005	0.043	12000	230	140	830	180	2.5	4	0.2	22	0.001	0.002	0.01	0.01					-3.11	-5.95
	well 6	798	53	7.4	-215	430	21000	5	1.6	0.01	< 0.005	0.066	12000	180	120	730	170	2.3	3.4	0.2	26	0.002	0.007	0.01	0.01					-2.56	-4.67
	well 7	849	58	7.6	-267	500	21000	<5	0.3	<0.005	< 0.005	0.1	13000	170	100	700	110	1.9	3.8	0.3	21	0.001	0.002	0.01	0.01	1.76	0.19	0.3	0.14	-2.87	-5.06
	well 8	845	60	7.6	-233	460	21000	<5	0.8	0.011	< 0.005	0.104	13000	140	110	610	110	2.4	2.8	0.2	22	0.001	0.002	0.01	0.01					-3.15	-6.09
	well 9	1049	65	7.8	-254	600	20000	6	0.4	0.006	< 0.005	0.27	12000	200	120	530	94	4.5	3	0.2	25	0.001	0.013	0.01	0.01	4.76	0.09	0.7	0.14	-2.31	-4.82
	well 10	1115	73	7.5	-290	580	20000	9	2.1	0.009	< 0.005	0.35	13000	140	100	320	110	9.5	1.5	0.1	68	0.040	0.900	0.21	0.01	2.62	0.09	3.2	0.13	-2.38	-5.54
	well 11	1373	81	7.7	-205	640	16000	40	2.4	0.007	< 0.005	0.32	11000	130	87	240	76	8.6	1.2	<0.1	420	0.430	8.780	1.99	0.17	8.09	0.06	10.8	0.14	-0.64	-6.5
	well 12	1374	82	7.9	-241	480	19000	42	3.6	0.021	< 0.005	0.331	12000	140	140	320	99	10	1.1	<0.1	340	0.374	6.152	1.20	0.11					-1.47	-7.05
Oil	wells 13	1513	67	nd	nd	750	10000	31	0.9	<0.005	< 0.005	0.007	7500	82	64	140	44	8.5	17	0.2	1500	0.1897	3.725	0.22	nd					-0.55	-12.16
0.	wells 15	1733	96	6.7	nd	560	16000	31	6.4	<0.005	< 0.005	0.01	8900	76	71	200	48	12	75	0.5	1400	1.08	31.77	5.54	1.32	2.99	5.44	9	10.72	0.34	-11.01
# of replication for measurement						1*	1*	1*	3†	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	1*	6‡	6‡
*In the triplicate m	easurement	ts of the st	andard san	nple, the st	tandard d	eviation w	as less tha	n 10% of t	he mean v	value.																					
†Standard deviation	ons were les	ss than 20	% of each r	mean valu	e.																										
\$Standard deviation	ons of δD ar	nd δ ¹⁸ O we	ere less that	n 2.0 ‰, a	nd 0.5 %	, respectiv	ely.																								

Table S4. Methanogen diversity based on the mcrA gene in the original formation water and culture

Seper logen diversity based on the mcrA gene in the original formation water and culture samples.

			-							Culture samples								
				C	riginal f	ormatio	n water	samples		Meth/	ГМА	H ₂ /CO ₂						
			Depth (mbgs)	559	754	845	1049	1115	1373	559	754	559	754	845	1049	1373		
			Temp. (°C)	38.2	50.7	57.7	65.2	73	81.1	37	50	37	50	55	65	80		
Representative clone ID in OTU	Accession no.	Related species	AA seq. identity (%)		I	Proporti	on (%)				Proportion (%)							
N245FW2_mf24	LC783983	Methanolobus vulcani	97.9	19.6	59.4	0	2.6	0	0	100	100	0	0	0	0	0		
N103FW1_mf25	LC783984	Methanobacterium alkalithermotolerans	98.5	47.8	3.1	25	52.6	0	0	0	0	0	18.8	0	0	0		
N245FW2_mf32	LC783985	Methanothermobacter tenebrarum	96.3	0	15.6	0	0	100	58.6	0	0	0	0	0	0	0		
N245FW2_mf25	LC783986	Methanobacterium ferruginis	96.2	10.9	21.9	20	2.6	0	0	0	0	13.3	81.3	62.5	0	0		
N142FW6_mf24	LC783987	Methanothermobacter defluvii	100	0	0	0	0	0	41.4	0	0	0	0	18.8	75	53.3		
N103FW1_mf36	LC783988	Methanobacterium alcaliphilum	92.6	13	0	45	13.2	0	0	0	0	0	0	0	0	0		
N103FW1_mf27	LC783989	Methanocalculus alkaliphilus	96.5	4.3	0	5	28.9	0	0	0	0	86.7	0	0	0	0		
N142F_HF_m12	LC783990	Methanothermobacter thermautotrophicus	99.3	0	0	0	0	0	0	0	0	0	0	18.8	25	46.7		
N103FW1_mf37	LC783991	Methanobacterium alkalithermotolerans	94.7	4.3	0	5	0	0	0	0	0	0	0	0	0	0		

Abbreviation: Meth, methanol; TMA, trimethylamine; AA, amino acids.

Fig. S1. Genetic diagram of δ^{13} C-CH₄ versus CH₄/(C₂H₆ + C₃H₈) (upper) and δ^{13} C-CH₄ versus δ^{13} C-CO₂ (lower) of gas samples from the Nishiyama and Shiiya Formations. The deduced origin of gas is based on Milkov and Etiope (2018). Abbreviations: EMT, early mature thermogenic gas; OA, oil-associated thermogenic gas; LMT, late mature thermogenic gas.

Fig. S2. GC-MS chromatograms of hydrocarbons and phenols in formation water samples and oil sample (1664 mbgs).

Fig. S3. The δD vs $\delta^{18}O$ plot of formation water samples from upper aquifers and lower oil deposits (numbers indicate average depths), and surface meteoric water in the study area (Waseda and Nakai 1983). The dashed line indicates the meteoric water line in the study area determined by Kato and Kajiwara (1986).

References

- Kato, S., and Kajiwara, Y.: Isotopic composition of hydrogen and oxygen in waters associated with oil and gas from Niigata basin, Japan. J. Jpn. Assoc. Petrol. Technol. 5, 113-122, https://doi.org/10.3720/japt.51.113, 1986.
- Milkov, A. V., and Etiope, G.: Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 125, 109-120, https://doi.org/10.1016/j.orggeochem.2018.09.002, 2018.
- Waseda, S., and Nakai, N.: Isotopic compositions of meteoric and surface waters in central and northeast Japan. Chikyukagaku 17, 83-91, https://doi.org/10.14934/chikyukagaku.17.83, 1983.