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Abstract. Advancements in remote sensing technology have
significantly contributed to the improvement of models
for estimating terrestrial gross primary productivity (GPP).
However, discrepancies in the spatial distribution and in-
terannual variability within GPP datasets pose challenges
to a comprehensive understanding of the terrestrial carbon
cycle. In contrast to previous models that rely on remote
sensing and environmental variables, we developed an en-
semble model based on the random forest method (denoted
ERF model). This model used GPP outputs from established
models: Eddy Covariance Light Use Efficiency (EC-LUE),
GPP estimate model based on Kernel Normalized Difference
Vegetation Index (GPP-kNDVI), GPP estimate model based
on Near-Infrared Reflectance of Vegetation (GPP-NIRv),
Revised-EC-LUE, Vegetation Photosynthesis Model (VPM),
and GPP estimate model based on the Moderate Resolution
Imaging Spectroradiometer (MODIS). These outputs were
used as inputs to estimate GPP. The ERF model demonstrated
superior performance, explaining 85.1 % of the monthly GPP
variations at 170 sites and surpassing the performance of se-
lected GPP estimate models (67.7 %–77.5 %) and an inde-
pendent random forest model using remote sensing and en-
vironmental variables (81.5 %). Additionally, the ERF model
improved accuracy across each month and with various sub-
ranges, mitigating the issue of “high-value underestimation

and low-value overestimation” in GPP estimates. Over the
period from 2001 to 2022, the global GPP estimated by the
ERF model was 132.7 PgC yr−1, with an increasing trend
of 0.42 PgC yr−2, which is comparable to or slightly bet-
ter than the accuracy of other mainstream GPP datasets in
terms of validation results of GPP observations independent
of FLUXNET (i.e., ChinaFLUX). Importantly, for a growing
number of GPP datasets, our study provides a way to inte-
grate these GPP datasets, which may lead to a more reliable
estimate of global GPP.

1 Introduction

Gross primary productivity (GPP) is the largest carbon flux
in the global carbon cycle, and it serves as the primary in-
put of carbon into the terrestrial carbon cycle. Uncertainties
in GPP estimates can propagate to other carbon flux esti-
mates, making it crucial to clarify the spatiotemporal pat-
terns of GPP (Ruehr et al., 2023; Xiao et al., 2019). However,
global GPP is variously estimated from 90 to 160 PgC yr−1

across different studies, with these variations becoming more
pronounced when scaled down to regional scales or specific
ecosystem types (Anav et al., 2015; Ryu et al., 2019; Jung
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et al., 2020). This variability underscores the necessity for
innovative methods to reduce uncertainty in GPP estimates.

The light use efficiency (LUE) model is one of the most
widely adopted methods for estimating GPP. It assumes that
GPP is proportional to the photosynthetically active radia-
tion absorbed by vegetation and optimizes the spatiotempo-
ral pattern of GPP through meteorological constraints such as
temperature and moisture (Pei et al., 2022). However, varia-
tions in these constraints vary significantly, leading to dif-
ferences of over 10 % in model explanatory power (Yuan et
al., 2014). Recent studies have proposed some novel vegeta-
tion indices that have been shown to be effective proxies for
GPP through theoretical derivation and observed validation
(Badgley et al., 2017; Camps-Valls et al., 2021). However,
these vegetation indices often only use remote sensing data as
the input for estimating long-term GPP without considering
meteorological factors, which has led to some controversy
(Chen et al., 2024b; Dechant et al., 2022, 2020). Both LUE
and vegetation index models use linear mathematical formu-
las to estimate GPP, but ecosystems are inherently complex,
and the biases introduced by these numerical models increase
the uncertainty of GPP estimates. Machine learning models
have shown great potential for improving GPP estimates in
previous studies (Guo et al., 2023; Jung et al., 2020). These
models are trained by non-physical means directly using GPP
observations and selected environmental and vegetation vari-
ables, and the performance of the models depends on the
quantity and quality of observed data and the representa-
tiveness of input data. Nevertheless, direct validation from
flux towers of FLUXNET reveals that these models typically
explain only about 70 % of monthly GPP variations, with a
similar performance compared to other GPP estimate models
(Wang et al., 2021; Badgley et al., 2019; Zheng et al., 2020;
Jung et al., 2020). Due to deviations in the model structure,
a common limitation across these models is the poor esti-
mate of monthly extreme GPP, leading to the phenomenon of
“high-value underestimation and low-value overestimation”
(Zheng et al., 2020). Especially for extremely high values,
which usually occur during the growing season and largely
determine the annual totals and interannual fluctuations of
GPP, this underestimation may hinder our understanding of
the global carbon cycle.

It is challenging for a single model to provide accurate
estimates for all global regions. Previous studies have shown
that ensemble models perform significantly better than single
models and can handle some inherent issues in single models
(Chen et al., 2020; Yao et al., 2014). Traditional multi-model
ensemble methods usually use a simple multi-model aver-
age or a Bayesian model averaging. However, these methods
typically assign fixed weights to each model and are essen-
tially linear combinations. Recent studies have incorporated
machine learning techniques into multi-model ensembles to
establish nonlinear relationships between multiple simulated
target variables and a real target variable, improving simu-
lation performance (Bai et al., 2021; Tian et al., 2023; Yao

et al., 2017). Whether this method can improve some com-
mon problems with individual GPP estimate models, such as
high-value underestimation and low-value overestimation, is
not clear and needs further investigation.

In this study, we attempt to use an ensemble model based
on the random forest method (denoted ERF model) to im-
prove global GPP estimates. Specifically, the work of this
study includes the following: (1) recalibrating parameters
for each model, as well as comparing the performance of
six GPP estimate models and the ERF model; (2) focusing
on the phenomenon of high-value underestimation and low-
value overestimation in each model, as well as evaluating the
performance of each model across different months, vege-
tation types, and subranges (high value, medium value, and
low value); and (3) developing a global GPP dataset using
the ERF model and validating its generalization using GPP
observations from ChinaFLUX.

2 Method

2.1 Data at the global scale

In this study, we selected remote sensing data from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
meteorological data from EAR5 (ECMWF Reanalysis v5) to
estimate global GPP (Hersbach et al., 2020). For the remote
sensing data, surface reflectance (red band, near-infrared
band, blue band, and shortwave infrared band), leaf area in-
dex (LAI), and fraction of photosynthetically active radiation
(FPAR) were used. For meteorological data, we selected av-
erage air temperature, dew point temperature, minimum air
temperature, total solar radiation, and direct solar radiation.
Dew point temperature and average air temperature were
used to calculate saturated vapor pressure difference (VPD)
(Yuan et al., 2019), and diffuse solar radiation (DifSR) was
derived as the difference between total solar radiation and di-
rect solar radiation. Minimum air temperature was obtained
from the hourly air temperature. CO2 data were obtained
from the monthly average carbon dioxide levels measured
by the Mauna Loa Observatory in Hawaii. Table 1 provides
an overview of the datasets used in this study.

Previous studies have shown that the photosynthetic ca-
pacity of C4 crops is much higher than that of C3 crops (Chen
et al., 2014, 2011), so it is necessary to divide the cropland
into C3 crops and C4 crops. To estimate the global GPP, we
used the “Harvested Area and Yield for 175 Crops” dataset,
which describes the global harvested area and yield of 175
crops in 2000 (Monfreda et al., 2008). We extracted the sum
of the area ratios of all C4 crops (corn, corn feed, sorghum,
sorghum feed, sugarcane, millet) at each grid as the cover-
age of C4 crops (Fig. S1 in the Supplement). Consequently,
the estimated value of cropland GPP can be expressed as the
coverage of C3 crops multiplied by the simulated GPP value
of C3 crops plus the coverage of C4 crops multiplied by the
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Table 1. Overview of the datasets used in this study.

Variable Dataset Spatial Temporal Temporal Reference
resolution resolution coverage

Surface reflectance (red band MCD43C4 0.05° Daily 2001–2022 Schaaf and Wang (2021)
and near-infrared band)

Surface reflectance (red band, MOD09CMG 0.05° Daily 2001–2022 Vermote (2021)
near-infrared band, blue band,
and shortwave infrared band)

LAI MOD15A2H 500 m 8 d 2001–2022 Myneni et al. (2021)

FPAR MOD15A2H 500 m 8 d 2001–2022 Myneni et al. (2021)

Average air temperature (AT) ERA5-Land 0.1° Monthly 2001–2022 Hersbach et al. (2020)

Dew point temperature (DPT) ERA5-Land 0.1° Monthly 2001–2022 Hersbach et al. (2020)

Minimum air temperature (MINT) ERA5-Land 0.1° Monthly 2001–2022 Hersbach et al. (2020)

Total solar radiation (TSR) ERA5 monthly data 0.25° Monthly 2001–2022 Hersbach et al. (2020)
on single levels

Direct solar radiation (DirSR) ERA5 monthly data 0.25° Monthly 2001–2022 Hersbach et al. (2020)
on single levels

CO2 NOAA’s Earth System – Monthly 2001–2022 Lan et al. (2024)
Research Laboratories

Distribution map of C4 crops Harvested Area and 1/12° Annual 2000 Monfreda et al. (2008)
Yield for 175 Crops

Land use MCD12C1 0.05° Annual 2010 Friedl and Sulla-Menashe
(2022)

simulated GPP value of C4 crops, which has been used in a
previous study (Guo et al., 2023).

The land use map was derived from the International
Geosphere-Biosphere Programme (IGBP) classification of
MCD12C1, and 2010 was chosen as the reference year (that
is, land use data are unchanged in the simulation of global
GPP). In order to meet the requirements of subsequent re-
search, land use types were grouped into nine categories: de-
ciduous broadleaf forest (DBF), evergreen needleleaf forest
(ENF), evergreen broadleaf forest (EBF), mixed forest (MF),
grassland (GRA), cropland (including CRO-C3 and CRO-
C4), savanna (SAV), shrub (SHR), and wetland (WET).

Finally, for higher-resolution data, we gridded the dataset
to 0.05° by averaging all pixels whose center fell within each
0.05° grid cell for upscaling. For lower-resolution data, we
used the nearest-neighbor resampling method to 0.05°. In ad-
dition, MODIS data were aggregated to a monthly temporal
resolution to ensure spatiotemporal consistency.

2.2 Observation data at the site scale

GPP observations were sourced from the FLUXNET 2015
dataset, which includes carbon fluxes and meteorological
variables from more than 200 flux sites around the world (Pa-

storello et al., 2020). GPP cannot be obtained directly from
flux sites and usually needs to be obtained by decomposing
the net ecosystem exchange. We chose a monthly level GPP
based on the nighttime partitioning method and retained only
high-quality data (NEE_VUT_REF_QC > 0.8) for every
year, ultimately selecting 170 sites with 10 824 monthly val-
ues for this study (Fig. S2). In addition, we selected monthly
average air temperature, total solar radiation, and VPD. The
site observations do not provide direct solar radiation, so we
extracted data from ERA5 that cover the flux tower. Monthly
minimum air temperature was derived from hourly air tem-
perature. Since some required data in GPP simulations are
not directly available at flux sites, LAI and FPAR were ex-
tracted from MOD15A2H (500 m), and surface reflectance
data (red band, near-infrared band, blue band, and shortwave
infrared band) were derived from MCD43A4 (500 m) and
MOD09A1 (500 m). These data are roughly similar to the
footprint of the flux site and can represent the land surface of
the flux site (Chu et al., 2021).

2.3 The GPP estimate model

We selected six independent models to estimate GPP in this
study. These models are widely used with few model pa-
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rameters and have demonstrated reliable accuracy in previ-
ous studies (Zheng et al., 2020; Zhang et al., 2017; Bad-
gley et al., 2017). The six models are Eddy Covariance
Light Use Efficiency (EC-LUE), Revised-EC-LUE, GPP es-
timate model based on the Kernel Normalized Difference
Vegetation Index (kNDVI), GPP estimate model based on
Near-Infrared Reflectance of Vegetation (NIRv), Vegetation
Photosynthesis Model (VPM), and the GPP estimate model
based on MODIS. The VPM, MODIS, and EC-LUE models
are LUE models based on remote sensing data and meteo-
rological data (Running et al., 2004; Xiao et al., 2004; Yuan
et al., 2007). Zheng et al. (2020) proposed the Revised-EC-
LUE model, which divides the canopy into sunlit and shaded
leaves, improving the estimate of global GPP (Zheng et al.,
2020). The NIRv and kNDVI models are novel vegetation in-
dices calculated from the red and near-infrared bands of the
reflectance spectrum (Badgley et al., 2017; Camps-Valls et
al., 2021). Similar to sun-induced chlorophyll fluorescence,
they exhibit a linear relationship with GPP and are consid-
ered effective proxies for GPP. Detailed descriptions of all
models can be found in Sect. S1 in the Supplement.

To reduce uncertainty in GPP estimates from a single
model, we used the ERF model, where the basic idea is to
restructure the simulated values of multiple models. In this
study, we directly used the ERF model to establish the rela-
tionship between the GPP simulated by the six abovemen-
tioned models and GPP observations. In addition, for com-
parison with the ERF model, we also used the random forest
(RF) method for modeling. In this study, we used average
air temperature, minimum air temperature, VPD, direct solar
radiation, diffuse solar radiation, FPAR, and LAI as explana-
tory variables. Both models used the random forest method,
which has been widely used in previous studies of GPP esti-
mates (Guo et al., 2023; Jung et al., 2020). The random for-
est method is an ensemble learning algorithm that combines
the outputs of multiple decision trees to produce a single re-
sult, and it is commonly used for classification and regression
problems (Belgiu and Drăguţ, 2016). In the regression prob-
lem, the output result of each decision tree is a continuous
value, and the average of all decision tree outputs is taken as
the final result. An overview of all models used can be found
in Table 2.

2.4 Model parameter calibration and validation

FLUXNET only provides GPP observations and meteorolog-
ical data, lacking direct measurements for LAI, FPAR, and
surface reflectance, so remote sensing data are needed. Con-
sidering the variety of remote sensing data sources, such as
MODIS and the Advanced Very-High-Resolution Radiome-
ter, it is evident that calibrating the same GPP estimate model
with different remote sensing data can yield varied parame-
ters. In addition, the number of sites used to calibrate model
parameters is also an important influencing factor for model
parameters. The original parameters of these models were

calibrated with only a limited number of sites (e.g., 95 sites
for the Revised-EC-LUE model and 104 sites for NIRv)
(Wang et al., 2021; Zheng et al., 2020). Therefore, to reduce
the impact of the uncertainty of model parameters on sim-
ulation results, we did not use original parameters and con-
ducted parameter calibration for GPP estimate models across
different vegetation types. For EC-LUE, Revised-EC-LUE,
VPM, and MODIS, the Markov chain Monte Carlo method
was used to calibrate model parameters. Traditionally, the
mean of the posterior distribution of parameters is taken as
the optimal value. However, previous studies have indicated
that some model parameters are not well constrained when
calibrating multiple model parameters (Xu et al., 2006; Wang
et al., 2017), so we selected the parameter with the small-
est root-mean-square error (RMSE) as the optimal parameter
in each iteration. For each vegetation type, we randomly se-
lected 70 % of the data for parameter calibration, and we re-
peated the process 200 times. In order to avoid overfitting, we
adopted the mean of the 200 calibrated parameters as the fi-
nal model parameters. Similarly, for the two vegetation index
models, we randomly selected 70 % of the data in each veg-
etation type for parameter calibration, repeating the process
200 times and using the mean of the 200 calibrated parame-
ters as the final model parameters.

After obtaining GPP estimates from the six GPP models,
we evaluated the simulation performance of the RF model
and the ERF model. For both models, we evaluated the model
performance using 5-fold cross-validation, where the process
was repeated 200 times, and the mean of the 200 GPP esti-
mates was considered the final GPP estimate. In addition,
we used a second validation method in which all data from
70 % of the sites were selected for modeling, and only data
from the remaining 30 % of the sites were validated, a pro-
cess that was repeated 200 times. This validation will further
illustrate the generalization of the model, i.e., its potential for
estimating GPP without local observations. We utilized the
determination coefficient (R2) and RMSE as metrics to eval-
uate the simulation performance of all models. Additionally,
we used the ratio of GPP simulations to GPP observations
(Sim / Obs) to measure whether the model overestimates or
underestimates.

2.5 The global GPP estimate based on the ERF model
and its uncertainty

Based on the ERF model, we estimated global GPP for 2001–
2022 (ERF_GPP). It is important to note that in this process
we used all the site data to build the model. The uncertainties
of ERF_GPP can be attributed to two primary factors: the in-
fluence of the number of GPP observations and the influence
of the number of features (that is, the simulated GPP). For
the first type of uncertainty, we randomly selected 80 % of
the data to build a model and simulated the multi-year av-
erage of global GPP. The process was repeated 100 times,
yielding 100 sets of multi-year averages of ERF_GPP. Their
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Table 2. Overview of the models used in this study.

ID Model Input data Output

1 EC-LUE FPAR, VPD, AT, TSR, CO2 GPPEC

2 Revised-EC-LUE LAI, VPD, AT, DifSR, DirSR, CO2 GPPREC

3 kNDVI Red band and near-infrared band (MCD43) GPPkNDVI

4 NIRv Red band and near-infrared band (MCD43) GPPNIRv

5 VPM Red band, near-infrared band, blue band, GPPVPM
shortwave infrared band (MOD09), AT, TSR

6 MODIS FPAR, TSR, MINT, VPD GPPMODIS

7 Random forest model (RF) LAI, FPAR, AT, MINT, VPD, DifSR, DirSR GPPRF

8 Ensemble model based GPPEC, GPPREC, GPPkNDVI, GPPNIRv, GPPMODIS, GPPVPM GPPERF
on random forest (ERF)

standard deviations were considered to be the uncertainty of
ERF_GPP caused by the number of GPP observations. For
the second type of uncertainty, we selected a different num-
ber of features to build a model and simulated the multi-year
average of global GPP. A total of 56 sets of multi-year aver-
ages of ERF_GPP were obtained. The standard deviation of
different combinations was considered to be the uncertainty
of ERF_GPP caused by the number of features.

2.6 Evaluation of the generalization of different GPP
datasets

The majority of flux sites in FLUXNET are concentrated in
Europe and North America; it is unclear whether the different
GPP estimate methods are suitable for regions with sparse
flux sites. Recently, ChinaFLUX has published GPP obser-
vations from several sites, offering an opportunity to eval-
uate the generalization of different GPP datasets. However,
the spatial resolution of most GPP datasets is 0.05°, and a di-
rect comparison with GPP observations at flux sites is chal-
lenging. Therefore, we extracted 0.05° MODIS land use data
covering the flux sites. If the vegetation type of the flux site
matched the MODIS land use data, then the site was used
for the analysis. Finally, a total of 12 flux sites were selected
(Fig. S2), and Table S1 in the Supplement shows the infor-
mation for these sites. The same procedure was applied to
FLUXNET, resulting in the selection of 52 sites. It should
be noted that due to the absence of meteorological data from
some sites in ChinaFLUX, we did not validate all GPP esti-
mate models at the site scale (500 m).

We evaluated the generalization of ERF_GPP at 12 Chi-
naFLUX sites and 52 FLUXNET sites. In addition, we se-
lected a number of widely used GPP datasets for comparison,
including BESS (Li et al., 2023), GOSIF (Li and Xiao, 2019),
FLUXCOM (the random-forest-based version, FLUXCOM-
RF, and the ensemble version, FLUXCOM-ENS; Jung et al.,

2020), NIRv (Wang et al., 2021), Revise-EC-LUE (Zheng et
al., 2020), MODIS (Running et al., 2004), and VPM (Zhang
et al., 2017), which were generated using different GPP es-
timate methods. These GPP datasets all have a spatial reso-
lution of 500 m to 0.5°, similar to the resampling process in
Sect. 2.1, and we have unified them to 0.05°. The common
time range for these datasets spanned from 2001 to 2018, and
the temporal resolution was unified to monthly to match the
GPP observations.

3 Result

3.1 Performance of the GPP estimate models at the site
scale

Tables S2–S7 show the optimization results of the six GPP
estimate model parameters. Consistent with a previous study,
in the Revised-EC-LUE model the light use efficiency pa-
rameter of shaded leaves was significantly higher than that of
sunlit leaves (Zheng et al., 2020). Therefore, it is necessary
to divide cropland into C3 crops and C4 crops. In all models,
the light use efficiency parameters of C4 crops were signifi-
cantly higher than those of C3 crops, which was particularly
reflected in the two vegetation index models of GPPkNDVI
and GPPNIRv; the slope of the linear regression directly re-
flected the difference in photosynthetic capacity of the dif-
ferent crops.

Figure 1 shows the performance of all models across
different vegetation types. Overall, the performance of the
ERF model was better than that of the other GPP estimate
models. GPPERF had a higher accuracy among all mod-
els, with R2 between 0.61–0.91 and RMSE between 0.72–
2.78 gC m−2 d−1. In contrast, the LUE and vegetation index
models performed slightly worse, especially in EBF, where
R2 was below 0.5 for both. It is worth noting that, compared
to other vegetation types, the RMSE was highest for crop-
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land, with six out of eight models for C4 crops exceeding
3 gC m−2 d−1, suggesting that these existing GPP estimate
models may not properly capture the seasonal changes in
cropland GPP. The six models with calibrated parameters and
the ERF model were found to have no significant deviation
across vegetation types. However, GPPRF was significantly
underestimated for C4 crops and overestimated for SHR.

Combining the results of all flux sites, GPPERF explained
85.1 % of the monthly GPP variations, while the seven
GPP estimate models only explained 67.7 %–81.5 % of the
monthly GPP variations (Fig. 2). Another validation method
in which the validation data were not selected randomly (but
instead sites were entirely used for either training or val-
idation) also showed similar results. The average R2 and
RMSE of 200 validation results of the ERF model were
0.822 and 1.68 gC m−2 d−1, respectively, which were obvi-
ously better than other models (Fig. S3). In order to further
prove the robustness of the ERF model, we also used GPP
estimate models with original parameters for modeling and
validation. As shown in Fig. S4, the performance of these
GPP estimate models decreased significantly, with R2 rang-
ing from 0.570 to 0.719 and RMSE ranging from 2.29 to
3.81 gC m−2 d−1. The phenomenon of high-value underesti-
mation and low-value overestimation was also pronounced.
However, the ERF model maintained a consistent advantage,
with R2 significantly higher than other GPP estimate mod-
els (0.856). In addition, we tested the effect of the number
of GPP estimate models on the accuracy of the ERF model.
As shown in Table S8, as the number of GPP observations in
the ERF model increased, the performance gain of the model
gradually decreased.

In summary, GPPERF showed high accuracy in terms of
vegetation type and the ability to interpret monthly variations
in GPP, which also illustrates the potential of the ERF model
to improve the GPP estimate. However, it was observed that
most GPP simulations exhibited the phenomenon of high-
value underestimation and low-value overestimation. For ex-
ample, GPPEC, GPPREC, GPPMODIS, and GPPRF showed ob-
vious underestimation in the months when the monthly GPP
value surpassed 15 gC m−2 d−1 (Fig. 2). Therefore, it is nec-
essary to evaluate the performance of different models in
each month and with different subranges.

3.2 Performance of the GPP estimate models in each
month and with different subranges

Figure 3 shows the simulation accuracy of the eight models
in each month. The ERF model maintained a higher accu-
racy than other GPP estimate models, with GPPERF consis-
tently achieving higher R2 and lower RMSE in most months
and with no evident phenomenon of high-value underesti-
mation and low-value overestimation. In contrast, the accu-
racy of other GPP estimate models was less satisfactory, es-
pecially during winter (most flux sites are concentrated in the
Northern Hemisphere). The LUE models tended to underes-

timate GPP, and the Sim / Obs ratio remained in the range
0.72–1.01, although R2 values were above 0.7. Meanwhile,
the vegetation index models overestimated GPP, Sim / Obs
remained in the range 1.34–1.73, and R2 values were rela-
tively low (mostly around 0.6).

We further compared the performance of all models with
different subranges, including high (GPP > 15 gC m−2 d−1),
medium (15 gC m−2 d−1 > GPP > 2 gC m−2 d−1), and low
values (GPP < 2 gC m−2 d−1). For extreme values, most
models performed poorly (Fig. 4), with R2 for GPP estimate
models falling below 0.3, and only GPPVPM showed a better
performance in the high-value range. GPPERF demonstrated
some improvement in both low- and high-value ranges, with
R2 values of 0.32 and 0.43, RMSE values of 0.89 and
4.73 gC m−2 d−1, and Sim / Obs ratios closer to 1, respec-
tively. In the medium-value range, all models performed bet-
ter, with no significant bias in the GPP estimate. The R2

of GPP estimate models ranged from 0.44 to 0.68, and the
RMSE remained between 1.82 and 2.54 gC m−2 d−1. Fur-
ther analysis was made at two typical sites. It was obvi-
ous that GPPEC, GPPREC, and GPPMODIS at Qianyanzhou
in China (CN-Qia) exhibited obvious underestimation during
the growing season (Fig. S5). At Lägeren forest in the Jura
Mountain range (CH-Lae), GPPkNDVI and GPPVPM were sig-
nificantly overestimated (Fig. S6). In contrast, at both sites,
GPPERF was more consistent with observations.

3.3 Temporal and spatial characteristics of ERF_GPP
and its generalization evaluation

Figure 5a shows the spatial distribution of the multi-year av-
erage of ERF_GPP. The high values of GPP were mainly
concentrated in tropical areas (exceeding 10 gC m−2 d−1)
and were relatively high in southeastern North America,
Europe, and southern China (about 4–6 gC m−2 d−1). From
2001–2022, China and India showed the fastest increase
in GPP, mostly at 0.1 gC m−2 d−1 (Fig. 5b), similar to a
previous study that reported that China and India led the
global greening (Chen et al., 2019). We further investi-
gated the annual maximum GPP, as shown in Fig. 5c,
and the North American Corn Belt was the global leader
in GPP at more than 15 gC m−2 d−1 compared to only
10 gC m−2 d−1 in most tropical forests. In 2001–2022, the
global GPP was 132.7± 2.8 PgC yr−1, with an increas-
ing trend of 0.42 PgC yr−2 (Fig. 5d). The lowest value
was 128.6 PgC yr−1 in 2001, and the highest value was
136.2 PgC yr−1 in 2020.

The results of the two uncertainty analyses consistently
indicated that ERF_GPP exhibited higher uncertainty in
tropical regions (Figs. S7 and S8), and the uncertainty of
ERF_GPP caused by the number of GPP observations was
relatively small. The standard deviation of 100 simulations
was about 0.3 gC m−2 d−1 in the tropics and lower in other
regions (below 0.1 gC m−2 d−1). In contrast, the uncertainty
of ERF_GPP caused by the number of features was more
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Figure 1. The performance of the eight models on different vegetation types. Panels (a), (b), and (c) represent R2, RMSE, and Sim / Obs,
respectively.

pronounced, especially when fewer features were included
in the model. It is worth noting that when the number of
features was five the uncertainty was already substantially
less, and the standard deviation was generally lower than
0.5 gC m−2 d−1.

As shown in Fig. 6, ERF_GPP and other GPP datasets
were validated using GPP observations from ChinaFLUX.
Among all models, VPM demonstrated the best performance,
with R2 of 0.86 and RMSE of 1.34 gC m−2 d−1. ERF_GPP
also exhibited high generalization, with R2 of 0.75 and
RMSE of 1.72 gC m−2 d−1. There was no high-value un-
derestimation and low-value overestimation phenomenon,

which was comparable to the accuracy of BESS and GOSIF.
However, the simulation accuracy of the other GPP datasets
in ChinaFLUX was relatively poor, with the R2 of NIRv
being only 0.64, while FLUXCOM-ENS, FLUXCOM-RF,
MODIS, and Revised-EC-LUE were significantly underes-
timated, with Sim / Obs being only from 0.71 to 0.89. In
the validation of FLUXNET, the R2 values of FLUXCOM-
ENS, MODIS, and Revised-EC-LUE ranged from 0.57 to
0.67, and the RMSE ranged from 2.67 to 3.30 gC m−2 d−1.
The models exhibited different degrees of underestimation
(Fig. S9). Other GPP datasets demonstrated similar perfor-
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Figure 2. Comparison between the GPP simulations of the eight models and the GPP observations. Panels (a)–(h) represent GPPEC,
GPPNIRv, GPPkNDVI, GPPREC, GPPVPM, GPPMODIS, GPPRF, and GPPERF, respectively.

mances, with ERF_GPP being the best (R2
= 0.74; RMSE

= 2.26 gC m−2 d−1).

4 Discussion

4.1 Performance analysis of different models

After parameter calibration, both LUE and vegetation index
models obtained reliable model accuracy. However, notice-
able errors persist in different months and subranges, indi-
cating the prevalent phenomenon of high-value underestima-
tion and low-value overestimation (Figs. 1–4). In addition to
MODIS, the GPP simulated by the other three LUE mod-
els is generally underestimated in winter (Fig. 3), which may
be caused by biases in the parameters used in meteorologi-
cal constraints. In the mathematical form of the temperature
constraint adopted by LUE models, the maximum temper-

ature, minimum temperature, and optimum temperature for
limiting photosynthesis are all constants; however, these val-
ues may not be fixed (Grossiord et al., 2020; Huang et al.,
2019). A previous study has demonstrated that the GPP es-
timate could be effectively improved by using dynamic tem-
perature parameters (Chang et al., 2021). Moreover, the form
of meteorological constraint is also an important influenc-
ing factor. Compared with other LUE models, VPM does not
use VPD constraints but incorporates the land surface wa-
ter index from satellite observations as constraints (Xiao et
al., 2004), which may be the reason why the model performs
better than other models at high values (Fig. 4). Conversely,
the two vegetation index models overestimated GPP in win-
ter, and they even overestimated it by 70 % in December.
The vegetation index model does not consider meteorolog-
ical constraints that assume that all environmental impacts
on vegetation have been included in the vegetation indices
(kNDVI, NIRv) (Badgley et al., 2017; Camps-Valls et al.,
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Figure 3. Performance of the eight models in each month. Panels (a), (b), and (c) represent R2, RMSE, and Sim / Obs, respectively.

2021). However, it is a fact that under high-temperature or
low-radiation conditions the vegetation index may still main-
tain the appearance of high photosynthesis (greening) while
in fact the GPP is low (Doughty et al., 2021; Yang et al.,
2018; Chen et al., 2024b). Furthermore, the relationship be-
tween these vegetation indices and GPP is not robust, and the
vegetation indices based on reflectance may have hysteresis
(Wang et al., 2022).

Compared to other GPP estimate models, the ERF model
demonstrated better performance (R2

= 851). Since there are
no physical constraints, the machine learning model needs
to find the relationship between explanatory variables and a
target variable from a large amount of training data (such
as GPP = f (LAI, T , P , etc.)) (Guo et al., 2023; Jung et

al., 2020). Therefore, the reliability of the model usually de-
pends on the representativeness of the training data. For ex-
ample, LAI can explain GPP to a large extent, while complex
modeling relationships are still needed from LAI to GPP.
The difference between the ERF model and the RF model
lies in the explanatory variables. The ERF model uses mul-
tiple GPP simulations that are more representative of and
aligned with the target variable, thus making the GPP sim-
ulations more accurate. In other words, the ERF model does
not need to take into account the uncertainties of the model
structure (such as meteorological constraints) and model pa-
rameters (such as maximum light use efficiency), but it rather
focuses on the uncertainties inherent in the simulated GPP.
To further clarify the impact of explanatory variables on
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Figure 4. Performance of eight models with different subranges.

Figure 5. Spatial and temporal characteristics of ERF_GPP during 2001–2022. Panel (a) represents the multi-year average, (b) represents
the trend, (c) represents the multi-year average of the annual maximum, and (d) represents the interannual change in GPP.
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Figure 6. Comparison between the GPP datasets and the GPP observations from ChinaFLUX. Panels (a)–(i) represent BESS, FLUXCOM-
ENS, FLUXCOM-RF, GOSIF, MODIS, NIRv, VPM, Revise-EC-LUE, and ERF_GPP, respectively.

the ERF model, we conducted a feature importance analysis
(Fig. S10). From an average of 200 times, the results of the
ERF model did not depend on a single GPP simulation. Even
GPPMODIS, with the highest relative importance, accounted
for no more than 25 %, suggesting that the ERF model be-
haves more like a weighted average of multiple GPP sim-
ulations. In addition, it is important to emphasize that the
accuracy of the ERF model is still robust even for GPP simu-
lations of original parameters (Fig. S4), which means that we
can try to use this method to integrate the currently published
GPP datasets to obtain a more accurate global GPP estimate.

It is worth noting that in the study by Tian et al. (2023)
the ERF model was also used to improve the GPP estimate.
Our study extends this work in several ways. Firstly, param-
eter calibration was carried out in our study so that the fi-

nal validation results are comparable; that is, differences in
model performance are mainly due to the uncertainty of the
model structure. Secondly, our study focused on the phe-
nomenon of high-value underestimation and low-value over-
estimation of GPP estimate models, with results indicating
that the ERF model performed well across various vegeta-
tion types, months, and subranges. Finally, we generated the
ERF_GPP dataset and validated it on different observational
datasets, further confirming the robustness of the ERF model
in the GPP estimate.

4.2 Robustness of ERF_GPP

Due to the inherent advantages of the RF method, the accu-
racy of the model was comparable to that of the ERF model,
even if a very simple model that used longitude, latitude,
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month, and year as explanatory variables (Fig. S11a). How-
ever, the global GPP estimated by this model was not reli-
able (Fig. S11b). This illustrates that an excellent model per-
formance based on the FLUXNET sites does not necessar-
ily imply an equivalent prediction skill in other regions. The
ERF model can overcome this limitation to some extent. On
the one hand, the explanatory variables used in the model are
derived from GPP simulations that contain a lot of remote
sensing information, which can ensure that the global GPP
estimated by the model is reliable. On the other hand, the
second validation method further shows that the ERF model
has good generalization and has greater potential than other
models in estimating global GPP.

Since the current GPP datasets are generated based on
remote sensing data and FLUXNET GPP observations,
there is a strong similarity in spatial distribution among all
GPP datasets. Therefore, the validation of GPP observa-
tions independent of FLUXNET is crucial. Validation re-
sults from GPP observations from ChinaFLUX indicated
that ERF_GPP exhibited good generalization in China (R2

=

0.75), which was slightly lower than the accuracy of 5-fold
cross-validation during modeling, possibly due to the mis-
match between the 0.05° GPP estimate and the footprint of
the flux tower (Chu et al., 2021). In addition, the validation
of FLUXNET further confirms the reliability of ERF_GPP.
Overall, this is comparable to or slightly better than the sim-
ulation accuracy of current mainstream GPP datasets. We
also observed a clear improvement in the spatial maximum
value of ERF_GPP in some corn-growing regions, such as
the North American Corn Belt (Fig. 5c), which is supported
by previous studies showing that C4 crops have much higher
GPP peaks than other vegetation types (Yuan et al., 2015;
Chen et al., 2011).

Due to the increasing drought trend, the constraining ef-
fect of water on vegetation is gradually increasing, and some
studies have reported the decoupling phenomenon of LAI
and GPP under some specific conditions (Jiao et al., 2021;
Hu et al., 2022). However, in China and India with signif-
icant greening, GPP continues to increase in most datasets,
and ERF_GPP supports this view. This phenomenon may be
attributed to the low drought pressure on croplands in China
and India due to irrigation, which poses less constraints on
GPP (Ambika and Mishra, 2020; Ai et al., 2020). The global
estimate of ERF_GPP is 132.7±2.8 PgC yr−1, which is close
to estimates from most previous studies (Wang et al., 2021;
Badgley et al., 2019). A study has suggested that global GPP
may reach 150–175 PgC yr−1 (Welp et al., 2011); however,
there is no further evidence to support this view. A recent
study combining emergent constraints and multiple remote
sensing datasets put the global GPP estimate for 2001–2014
at 126.8 PgC yr−1 (Chen et al., 2024a), and our results are
very close to that value (130 PgC yr−1 for 2001–2014).

ERF_GPP exhibited higher uncertainty in tropical regions,
and similar reports have been made in previously published
GPP datasets (Badgley et al., 2019; Guo et al., 2023). The

scarcity of flux observations in these regions, coupled with
the well-known issue of cloud pollution and saturation in re-
mote sensing data (Badgley et al., 2019), exacerbates the un-
certainty in GPP estimates for these regions. Therefore, in
future studies, on the one hand, more flux observations in
tropical regions are needed, and on the other hand, attempts
can be made to combine optical and microwave data to im-
prove the GPP estimate.

4.3 Limitations and uncertainties

In this study, we improved the GPP estimate based on the
ERF model. Nonetheless, there are still some limitations and
uncertainties due to the availability of data and methods.
First, C4 crop distribution maps were used in our study to im-
prove estimates of cropland GPP. However, this dataset only
represents the spatial distribution of crops around the year
2000, which introduces uncertainty into GPP simulations of
cropland in a few alternating C3 and C4 areas. Secondly, the
ERF model considers six GPP simulations, and it is not clear
whether adding more GPP simulations to the model can fur-
ther improve the GPP estimate. Finally, our model did not
consider the effect of soil moisture on GPP, and some pre-
vious studies have highlighted the importance of incorporat-
ing soil moisture in GPP estimates, especially for dry years
(Stocker et al., 2019, 2018).

5 Conclusions

In this study, we compared the performance of the ERF
model with other GPP estimate models at the site scale,
especially for the phenomenon of high-value underestima-
tion and low-value overestimation, and we further devel-
oped the ERF_GPP dataset. Overall, GPPERF had higher
model accuracy, explaining 85.1 % of the monthly GPP
variations, and demonstrated reliable accuracy in different
months, vegetation types, and subranges. Over the period
from 2001 to 2022, the global estimate of ERF_GPP was
132.7± 2.8 PgC yr−1, corresponding to an increasing trend
of 0.42 PgC yr−2. Validation results from ChinaFLUX indi-
cated that ERF_GPP had good generalization. For the current
and emerging GPP estimate models, the ERF model provides
an alternative method that can lead to better model accuracy.

Code and data availability. The ERF_GPP dataset for 2001–2022
is available at https://doi.org/10.6084/m9.figshare.24417649 (Chen
et al., 2023). The spatial resolution of ERF_GPP is 0.05°, and the
temporal resolution is monthly. Code is available from the corre-
sponding author upon reasonable request.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-21-4285-2024-supplement.
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