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Abstract. Greenhouse gas stabilisation in the atmosphere is
one of the most pressing challenges of this century. Seques-
tering carbon in the soil by changing land use and manage-
ment is increasingly proposed as part of climate mitigation
strategies, but our understanding of this is limited in quan-
titative terms. Here we collate a substantial national and re-
gional data set (15 790 soil cores) and analyse it in an ad-
vanced statistical modelling framework. This produced new
estimates of the effects of land use on soil carbon stock (Sc)
in the UK, different in magnitude and ranking order from
the previous best estimates. Soil carbon stocks were high-
est in woodlands, followed by rough grazing, semi-natural
grasslands, and improved grasslands, and they were lowest
in croplands. Estimates were smaller than the previous esti-
mates, partly because of new data, but mainly because the ef-
fect is more reliably characterised using a logarithmic trans-
formation of the data. With the very large data set analysed
here, the uncertainty in the differences among land uses was
small enough to identify consistent mean effects. However,
the variability in these effects was large, and this variability
was similar across all surveys. This has important implica-
tions for agri-environment schemes seeking to sequester car-
bon in the soil by altering land use, because the effect of a
given intervention is very hard to verify. We examined the
validity of the “space-for-time” substitution, and, although
the results were not unequivocal, we estimated that the ef-
fects are likely to be overestimated by 5 %–33 %, depending
upon land use.

1 Introduction

Conversion of land to agricultural use has had a significant
impact on the global carbon cycle (Le Quéré et al., 2009;
Wilkenskjeld et al., 2014; Obermeier et al., 2021). This is
expected to continue with the rising human population and
demand for agricultural land in some regions and to move
towards reforestation and rewilding in other regions (Gitz
and Ciais, 2004; Levy et al., 2004; Lawrence et al., 2016).
Different land uses affect the inputs of organic matter to the
soil (via plant litter, crop residues, root death, and animal
necromass) and affect the losses via heterotrophic respira-
tion and leaching. Depending on how a given land use af-
fects the balance of these gains and losses, the soil carbon
stock (Sc) may be increased or decreased, relative to its pre-
vious state (Ostle et al., 2009). Under the UNFCCC agree-
ment, each nation is required to estimate its net emission or
sequestration of carbon attributable to land-use change, as
accounted for under the reporting rules for land use, land-use
change, and forestry (LULUCF) (Intergovernmental Panel
on Climate Change (IPCC), 2003). The default method in-
volves estimating the difference in the long-term equilibrium
soil carbon stock among different land uses. Along with data
on the area of land undergoing the transition from each land-
use type to every other land-use type (i.e. a matrix of land-use
change), this is then used to dynamically model the change
in soil carbon for each land-use transition each year. The
key parameters in this model are the equilibrium soil carbon
stock values for the different land uses. In the UK, these are
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estimated using a space-for-time substitute approach, based
on a nationwide survey of soil carbon stock, stratified by
land use and soil series (Milne and Brown, 1997; Bradley
et al., 2005). By examining the differences in soil carbon
stock among land uses occurring on the same soil series, and
averaging across > 400 soil series which cover the UK, we
can estimate the overall mean effect of each land use on soil
carbon stock.

Data from several other soil surveys have become avail-
able since 2005, but these differ in their methods, most crit-
ically in terms of the soil depth sampled, with many focus-
ing on the more easily sampled top soil. In the absence of
measurements over the whole profile, these more recent data
have not previously been used to update the estimates of UK
soil carbon stocks of Bradley et al. (2005) or the effects of
land-use change. However, there are some issues with the
approach of Bradley et al. (2005) which make updating these
estimates timely. Bulk density was generally estimated using
pedotransfer functions, which use organic carbon content as
a predictor, and quite how this non-independence may affect
the results is unclear. Some of the details of the analysis with
respect to land use are not completely clear (the equations
used are not available), and different choices and assump-
tions (about the land-use classification or data transforma-
tions, for example) can give quite different results.

A weakness of the general approach is in the assumption
that the space-for-time substitution is fully valid: we assume
that the spatial differences observed in soil carbon stock
within a soil series are completely attributable to differences
in land use. This will be inappropriate if there are systematic
pre-existing differences in the soil carbon stock on the land
chosen for particular uses (such as arable crops, pasture, and
forestry). For example, the flat, low-lying, free-draining soils
typically chosen for arable crops might differ substantially
from the higher-elevation marginal land typically chosen for
forestry. If there are such differences, this will confound the
analysis, such that we wrongly ascribe cause and effect.

The alternative to the space-for-time substitution approach
is to measure the effect of a land-use change at a single site
repeatedly over time. However, the number of such studies is
very small because of the long timescale required to detect
change and the large sample size needed to detect change
above the local-scale variability (Schrumpf et al., 2011).
Paired-plot or chronosequence studies represent a compro-
mise, whereby the space-for-time substitution assumption is
still made but the spatial variability is minimised by choosing
closely co-located plots. However, the variability found in
such studies is still rather large (Poeplau et al., 2011). Some
survey data suggest that the change in soil carbon occurs over
time, irrespective of land-use change (Bellamy et al., 2005;
Reynolds et al., 2013), though whether changes are real or
general or what causes them is subject to debate (Smith et al.,
2007; Chamberlain et al., 2010). Although most of the sur-
vey data cover only a single short period of time, the Coun-
tryside Survey data are repeated measurements within the

same 1 km squares since 1978. Although bulk density mea-
surements were missing initially, these can still be used to
examine possible trends in time (Thomas et al., 2020a).

The work described here attempted to improve quantifica-
tion of the effects of land use on soil carbon stocks in the UK
by (i) incorporating more recent survey data, (ii) applying
more sophisticated statistical modelling, and (iii) rigorously
assessing the validity of the assumption behind the space-for-
time substitution. As a check for confounding variation, we
look for evidence of change over time not caused by land-use
change where the data allow this.

1.1 Hierarchical model

Different soil surveys have been carried out for different pur-
poses, using different protocols, and differ in the depth that
is sampled. For example, the CEH Countryside Survey (Em-
mett, 2010) has a large spatial coverage, with repeated sam-
pling at the same locations, but only samples the top 15 cm
of soil. Other surveys have sampled down to a depth of 1 m
or more, but they have limited coverage of land uses and only
occur at one point in time (e.g. Ward et al., 2016). Measure-
ments of bulk density, essential for calculating Sc via Eq. (4),
are sometimes missing and may have to be imputed from pe-
dotransfer functions. This creates a problem in that the data
from different surveys are not directly comparable and that
estimating Sc over the whole profile from the available data
is not straightforward (Kravchenko and Robertson, 2011).

Our approach to this is to use a Bayesian hierarchical
model to estimate Sc as a function of depth. There are strong
theoretical grounds for expecting an exponential decline in
soil carbon with depth. Firstly, the biomass of plant roots de-
clines exponentially with depth, and this is a major source of
carbon input via exudates and root death. Secondly, plant lit-
ter is deposited at the soil surface and moves downwards in
a quasi-stochastic manner (via soil macrofauna, disturbance
events, and leaching), which will produce an exponentially
decreasing vertical distribution. The theory is borne out by
empirical data: Jobbágy and Jackson (2000) found a loga-
rithmic relationship between soil carbon stock and depth in
a meta-analysis of more than 2700 soil profiles. Soil carbon
stock is itself the product of two variables with sizeable sam-
pling error (bulk density and carbon fraction in Eq. 4), so it
would be expected to show a lognormal frequency distribu-
tion. This is also borne out by the analysis of Jobbágy and
Jackson (2000), who found that a logarithmic transformation
of carbon stock fitted the key assumptions of linear modelling
(normality, homoscedasticity, and linearity) much better, ac-
cording to various diagnostic criteria.

Clearly, one could model this relationship using ordi-
nary linear regression. However, a Bayesian hierarchical ap-
proach has several advantages. Firstly, it allows us to “borrow
strength”: by correctly representing the structure of the data,
we can incorporate data from sub-populations of similar but
distinct groups (e.g. data from different sites, locations, or
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surveys). In this way, it produces more accurate estimates be-
cause it distinguishes between artefacts of the sampling pro-
cess, rather than assuming all data points are the same and
lumping all unexplained variance into a single error term. As
such, it can account for the fact that replicate soil cores from
the same location at the same site are not independent sam-
ples but will tend to be similar because of their co-location
(and therefore have similar systematic differences from the
global mean). Similarly, it can account for vagaries of dif-
ferent surveys, acknowledging that the errors and biases are
likely to be similar in data from the same survey, because of
systematic differences in protocols, laboratory procedures,
and instrument calibrations. For example, the temperature
and duration in the combustion furnace used can have a sys-
tematic effect on apparent carbon content measured by loss
on ignition (LOI) (Hoogsteen et al., 2015), but such vagaries
are not explicit in the data typically available.

Secondly, the Bayesian approach allows us to propagate
the uncertainty correctly because we quantify the joint pos-
terior distribution of all the parameters that we estimate (Gel-
man et al., 2013). Thirdly, it allows us to bring in informa-
tion from other sources as informative priors. For example,
we can use the meta-analysis of Jobbágy and Jackson (2000)
to set sensible values and ranges on the prior estimates for
the parameters describing the relationship with depth. We
can thus develop a statistical model which allows us to incor-
porate disparate data sets into coherent estimates of whole-
profile carbon stock, propagating the associated uncertainty
appropriately. Critically, we can make use of the many ob-
servations collected at shallow depths, and use these to im-
prove the estimates of whole-profile carbon stock and the ef-
fects thereon of land use, whilst representing the uncertainty
associated with the fact that these are not measurements of
whole-profile carbon stock.

1.2 Validity of space-for-time substitution

We can use a number of approaches to investigate the validity
of the assumption behind the space-for-time substitution.

1. We would expect any increases in Sc which are caused
by land-use change to be independent of the initial
Sc. By contrast, we expect any pre-existing differences
within a soil series to be in relative terms: a given soil
series might have a high mean Sc, and the differences
between land chosen for arable cropping and forestry
will be proportional to this. We can therefore examine
whether the ostensible effects of land use are consis-
tent with models of absolute or relative change. The de-
gree of relative change can be equated with pre-existing
difference, and the confounding effect can be removed
from the space-for-time substitution.

2. Along similar lines to the above, we can explore cor-
relations between altitude and Sc, removing the effect
of land use. Altitude affects climate and soil formation,

and this strongly influences choices made over land use,
such that different land uses lie on a gradient: as altitude
increases, there is a general shift from arable crops to
improved pasture, rough grazing, and forestry. If there
are pre-existing differences in Sc along this gradient ir-
respective of land use, then this can be estimated and
the confounding effect can be accounted for.

3. In a Bayesian approach, we can use prior information
in combination with observed data to improve our es-
timates. In the current context, we have information
from previous paired-plot studies and modelling stud-
ies, which gives us an expectation of the likely magni-
tude of land-use effects. This can be used to counter-
balance artefacts which may exist in the space-for-time
survey-based estimates of these effects.

1.3 Aims

Our aims here were to improve the estimates of the effects of
land use on soil carbon stocks in the UK by

– using more recent survey data to update the estimates of
Bradley et al. (2005);

– developing a Bayesian hierarchical model whereby data
from different surveys and sampling depths can be in-
corporated into estimates of whole-profile carbon stock,
propagating the associated uncertainty appropriately;
and

– investigating the validity of the assumption behind the
space-for-time substitution.

2 Methods

2.1 The measurement of soil carbon stock and notation

Naming of the relevant quantities involved in measuring soil
carbon is rather inconsistent, and it is useful to define some
notation. Sampling is usually done by extracting a soil core
with an auger or, less commonly, by digging a soil pit (see
Nayak et al., 2019, for a recent review of field and laboratory
methods). This provides a sample with known area (A in m2)
which is typically divided into one or more depth intervals.
These intervals are defined by upper and lower boundaries
z1 and z2, with length d = z2− z1 in metres. The soil from
each depth interval is treated as a separate sample for labo-
ratory analysis. The common laboratory process is to sieve
the soil through a 2 mm sieve, removing stones, roots, and
any identifiable litter or living material to leave the fine earth
component (subscript fe). The total mass of fine earth (Mfe
in kg) in each sample is oven-dried, weighed, and expressed
per unit volume to give the bulk density:

ρfe =
Mfe

dA
[kg m−3

]. (1)
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The organic carbon content of the fine earth is determined
on a very small sub-sample, typically less than 10 g when
using the loss-on-ignition (LOI) method or< 1 g when using
the elemental analyser method, so the soil needs to be ground
and well mixed to homogenise and replicates need to be
taken. In the LOI method, a dried sub-sample is weighed and
then heated to around 350–500 °C for several hours (Ball,
1964; Hoogsteen et al., 2015) so that the organic matter is
combusted to CO2 gas and water vapour. The sample is re-
weighed, and the mass loss is attributed to organic matter;
around 55 % of this is carbon, depending on the chemical
composition of the organic matter. In an elemental analyser,
the combustion gas is trapped, and the exact amounts of CO2
and H2O are determined, so that the carbon loss is measured
directly. Often, elemental analysis is used to verify or cali-
brate the carbon fraction determined by LOI. Depending on
the analytical setup, the total (as opposed to only organic)
carbon content may be measured, from which the inorganic
fraction has to be estimated, and this may be significant in
UK soils. The mass of carbon (Mc) is expressed as a frac-
tion of the mass of fine earth to give the carbon fraction (also
referred to as carbon content or concentration):

fc =
Mc

Mfe
[kgkg−1

]. (2)

The product of this and bulk density gives the density of
carbon:

ρc = ρfefc [kg m−3
]. (3)

The quantity we are ultimately interested in is the mass of
carbon per unit ground area, i.e. the areal density, more com-
monly referred to as the carbon stock. This quantity always
has some implicit value of depth associated with it. We may
refer to the areal density of fine earth or carbon within a given
depth interval i,

sfe,i = diρfe,i [kg m−2
] (4)

sc,i = diρc,i [kg m−2
], (5)

and denote this with a lower-case s. We can accumulate these
with depth through the soil profile to give the cumulative
areal density down to a given depth z,

Sfe,z =

n∑
i=1

sfe,i [kg m−2
] (6)

Sc,z =

n∑
i=1

sc,i [kg m−2
], (7)

and denote this with an upper-case S; n is the number of
intervals above depth z. As discussed below (Sect. 2.2), there
are statistical issues in estimating the cumulative quantity in
this way.

The areal density Sc may be calculated for a specified
depth z or for a specified mass of fine earth Mfe (i.e. spatial

or cumulative mass coordinates sensu Gifford and Roderick,
2003; see Ellert and Bettany, 1995). The latter is important
for removing confounding effects of changes in bulk density
(or sample compression) when only the upper layers of soil
are measured, on the assumption that the areal density of fine
earth Sfe does not change, even if the bulk density ρfe does
change (Toriyama et al., 2011). The distinction is less critical
if measurements effectively encompass the bulk of the soil
profile (down to ∼ 0.6 to 1 m): if a large majority of the soil
containing organic material is sampled, then it matters less
whether this is expressed in spatial or cumulative mass coor-
dinates. More critically, we want a method which allows us
to combine data from surveys which use different sampling
depths, both shallow and deep. We describe this below.

2.2 Model development

Our approach was to build a parsimonious statistical model
which explains the variability in the observations of soil car-
bon as a function of land use and depth. Often the cumu-
lative soil carbon stock Sc,z is used as the response variable,
but this violates the assumption of independence among sam-
ples. The value of Sc,z at each depth is contingent on all val-
ues at shallower depths being correct, so this underestimates
the uncertainty. By using the variables that are actually mea-
sured, we can more correctly represent the structure of the
data and thereby more accurately quantify the associated un-
certainty.

For each soil core i from land use u occurring at location
j within site k, we predict the carbon density ρc as a linear
function of the sampling depth z, according to the following:

log(ρc,z,u)i ∼N
(
µ,σ 2

)
µ= β0,u+β1,uz+ b0j [i],k[i]+ b1j [i],k[i]z

(
b0j
b1j

)
∼N

((
µb0j

µb1j

)
,

(
σ 2
b0j

ρb0j b1j

ρb1j b0j σ 2
b1j

))
,

for loc_id:site_id j = 1, . . .,J

(
b0k
b1k

)
∼N

((
µb0k

µb1k

)
,

(
σ 2
b0k

ρb0kb1k

ρb1kb0k σ 2
b1k

))
,

for site_id k = 1, . . .,K.

(8)

The β0 and β1 parameters represent the global intercept
and slope parameters specific to each land use (“fixed ef-
fects” in the mixed-modelling jargon). The b0 and b1 pa-
rameters represent group-specific parameters describing the
variability among sites and at locations within sites (“ran-
dom intercepts and slopes” in the mixed-modelling jargon).
These local deviations in intercepts and slopes account for
the within-location correlation or site correlation of residu-
als, and they are assumed to be independently drawn from
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normal distributions with the means and covariance matrices
shown above. Analogous terms can be added to account for
systematic differences between surveys (i.e. data sources),
but they are not shown here for brevity. The only difference
is that these are crossed effects, applying to all sites within a
survey, rather than nested effects.

The parameters of hierarchical models are commonly es-
timated by maximum-likelihood estimation (MLE). Here,
we used MLE for exploratory analysis but used a Bayesian
method for the final model, for the reasons given earlier.
Bayesian methods generally uses Markov chain Monte Carlo
(MCMC) sampling, an iterative algorithm for calculating
numerical approximations of multi-dimensional integrals.
Many MCMC algorithms are available, and the mechanics
of performing Bayesian statistical analysis are described in
several textbooks (e.g. Gelman et al., 2013). Here we use the
Hamiltonian sampling algorithm, which provides a computa-
tionally efficient means of estimating the posterior distribu-
tion (Betancourt, 2017) via the R package brms (Bürkner,
2021). The Bayesian approach allows us to incorporate some
prior knowledge of the intercept and slope parameters. We
know that ρc is always positive and that the intercept β0 on
the log scale is typically in the range of 3–4 (from the data
of Jobbágy and Jackson, 2000), corresponding to ρc at z= 0
between 20 and 55 kg C m−3). We represent this with a nor-
mal distribution on the log scale as β0 ∼N (µ= 3.5,σ = 2),
which encompasses all the plausible values. The slope with
depth is typically between −4 and −2 (also from the data
of Jobbágy and Jackson, 2000), meaning that the relative de-
cline in ρc over 1 m is between 2 % and 13 % (i.e. between
exp(−4) and exp(−2)). Again, we represent this with a nor-
mal distribution as β1 ∼N (µ=−3,σ = 2).

Equation (8) predicts carbon density, whereas the quan-
tity we require is the carbon stock Sc,z over a 1 m depth (as
used by Bradley et al., 2005). The prediction from the lin-
ear model at the mid-point z/2 yields E[log(ρc)], equivalent
to the geometric mean or median ρc over the depth z. How-
ever, the quantity equivalent to Sc,z is E[ρc] or the arithmetic
mean ρc. The inequality between these is well known, and
the “transformation bias” can be approximated in a number
of ways (e.g. Miller, 1984). Here, we use a simple but reli-
able method, whereby we numerically calculate E[ρc] from
a set of predictions from Eq. (8) at 1 mm intervals over a 1 m
depth. We then calculate the depth at which the arithmetic
mean ρc occurs as

zm =
log(ρ̄c)−β0,u

β1,u
[m], (9)

where β0,u and β1,u are the estimated intercept and slope for
each land use in Eq. (8). Although these parameters vary by
land use, so zm is not completely constant, the variation is
only a few centimetres, and we can use the mean value of
zm = 0.37 m for all with little loss in accuracy. Having es-
tablished the depth at which the arithmetic mean soil carbon

occurs, we can then use predictions from Eq. (8) at z= zm,
where E[ρc] is equal to Sc,z.

Some variants on Eq. (8) are possible, including log-
transforming both axes, neither axis, or only the depth axis
(Jobbágy and Jackson, 2000), along with the nature and form
of the hierarchical grouping structure (which terms to in-
clude and whether to allow both intercept (b0) and slope (b1)
to vary by these groups). We assessed these model variants
in terms of variance explained (r2 and root-mean-square er-
ror), standard information criteria. The so-called marginal
and conditional r2 values were used, as defined for mixed-
effect models by Nakagawa et al. (2017). Graphically, we
examined quantile plots and trends in residuals with increas-
ing carbon density, and we compared the posterior predic-
tions with the observed data; a good model should be able to
reproduce similar patterns to those in the observations.

2.3 Data sources

2.3.1 Bradley et al (2005)

Bradley et al. (2005) collated soil core data from separate sur-
veys covering England, Wales, Scotland, and Northern Ire-
land. Common depth layers were defined across all survey
results (0–30 and 30–100 cm). Litter horizons were included,
but unconsolidated subsoil horizons and bedrock were ex-
cluded. The soils were classified according to four land-use
types: crops and cultivated land (mainly arable); improved,
managed grassland; grassland that received no management
and semi-natural vegetation; and woodland. For brevity, we
refer to these as crops, improved grass, rough grazing, and
woods, respectively. These classes were chosen so that there
would be a reasonable chance of having measured data that
could be used for each soil series/land-use combination, and
the classes are broad enough that they can be applied across
all the other surveys described below. Bulk density measure-
ments were infrequent in the data, so they were modelled us-
ing regression equations on the basis of organic carbon, clay,
and silt content.

2.3.2 Countryside Survey

Countryside Survey is a unique study of the natural re-
sources of the UK’s countryside, carried out at approximately
decadal intervals since 1978 (Emmett, 2010; Robinson et al.,
2020). The survey uses a sampling approach which samples
1 km squares randomly located within different land classes
in the UK. The original 1978 survey consisted of 256 1 km
squares and collected five soil samples per square, taken from
random coordinates in five segments of the square. There has
been an increase in the number of sample squares over time,
and, in 2007, 591 1 km squares were sampled, with a total
of 2614 samples returned for analysis. The survey became a
rolling programme in 2018 (Robinson et al., 2020). Within
each 1 km square, a set of soil samples were taken from five
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pre-determined random locations. A sample was taken by in-
serting a cylindrical plastic tube, 15 cm long, into the soil.
The carbon fraction was measured using loss on ignition on
a 10 g air-dried sub-sample taken after sieving to 2 mm. The
sub-sample was dried at 105 °C for 16 h to remove moisture,
weighed, then combusted at 375 °C for 16 h. In 2007 and
thereafter, bulk density was measured on the extracted soil
material after drying. Prior to this, bulk density was not mea-
sured, so it was estimated based on a simple model. The pre-
2007 estimates of carbon stock have correspondingly higher
uncertainty because of this.

2.3.3 Glastir Monitoring and Evaluation Programme
(GMEP)

A total of 300 1 km squares in Wales were sampled between
2013 and 2016 as described by Robinson et al. (2019). The
same protocol was used as in the post-2007 Countryside Sur-
vey, described above.

2.3.4 Reading Agricultural Consultants (RAC) surveys

A large soil sampling campaign was conducted along the
route of the High Speed 2 (HS2) rail project (Heming, 2021)
and at other locations in England, providing almost 2000
soil cores in total. Soil sampling procedures are described
in Heming (2021) and report carbon in 0–25 and 25–50 cm
layers. Soil carbon analysis used the elemental analyser tech-
nique. Bulk density was not measured, and it was estimated
at each location using typical values from the Soil Survey of
England and Wales.

2.3.5 Ward et al. (2016)

Ward et al. (2016) conducted a survey of 180 permanent
grassland sites located throughout England. Sampling sites
were in 60 different geographical locations, from 12 broad
regions of England. At each of the 60 locations, three dif-
ferent fields were selected to give a gradient of management
intensity of extensive, intermediate, and intensive manage-
ment. Soil cores 3.5 cm in diameter were taken from three
random areas in each field to 1 m depth using an Edelman
auger and were divided into five depth increments: 0–7.5,
7.5–20, 20–40, 40–60, and 60–100 cm. The carbon fraction
was measured using an elemental analyser, along with bulk
density.

2.3.6 Ecosystem Land Use Model (ELUM)

A total of 27 sites were sampled for the Ecosystem Land
Use Model (ELUM) project (Keith et al., 2011), covering
bioenergy crops, arable crops, grasslands, and woodlands.
Soil sampling details were the same as for Ward et al. (2016),
but the depth layers were 0–30, 30–50, and 50–100 cm.

2.3.7 Easter Bush

Repeated intensive soil sampling took place at the Easter
Bush site in central Scotland in 2004, 2012, and 2015
(Schrumpf et al., 2011; Jones et al., 2017). Although this
covers only a single site, we include the data here for the
detailed characterisation of the variation in soil carbon with
depth. At each sampling time, 100 cores were taken on a
regular grid with 15 m spacing, sampling the whole profile
depth (to around 60 cm). A corer with an inner diameter of
8 cm was used for extracting soil samples and bulk density
measurements. Both loss on ignition and elemental analyser
techniques were used.

2.3.8 Meta-analyses

Various published studies have collated data from the litera-
ture to perform meta-analyses of land-use effects on soil car-
bon. We compare results with several of these studies (Post
and Kwon, 2000; Guo and Gifford, 2002; Berthrong et al.,
2009; Poeplau et al., 2011).

2.4 Validity of space-for-time substitution

We used two approaches to investigate the validity of the as-
sumption behind the space-for-time substitution. Because we
expect increases in Sc which are caused by land-use change
to be independent of the initial Sc, we examined whether the
ostensible effects of land use are consistent with models of
absolute or relative change. The degree of relative change
can be equated with the pre-existing difference. To do this,
we used the data of Bradley et al. (2005) because the sur-
vey includes measurements on multiple land uses on each of
several hundred soil series. We expressed the effect of land
use as the difference from the value for arable crops on the
same soil series; using the land use with the lowest soil car-
bon stock on average as the reference level means that the
overall effects of the three other land uses are positive.

Along similar lines to the above, we explored correlations
between altitude and Sc, removing the effect of land use. If
Sc increases with altitude and land use also systematically
changes with altitude, this relationship could confound our
estimate of the effect of land use per se based on the data. To
do this, we fitted a simple linear model of Sc as a function
of altitude and land use to all the data where altitude was
available.

3 Results

Figure 1 shows examples of the relationship between carbon
density ρc and depth in four soil cores, taken from different
sites and surveys. With a logarithmic y axis, a reasonably
linear relationship is seen. Variants using logarithmic trans-
formations of x, y, and both x and y axes were explored.
The best model in terms of the metrics used (variance ex-
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Figure 1. Examples of the relationship between carbon density ρc and depth in four soil cores from various sites. Note the logarithmic y-axis
scaling. Of the various simple models using different transformations, this gave the best linear relationship. The soil cores come from the
surveys of Ward et al. (2016) (samples 226 and 7), ELUM (sample 9), and Easter Bush (sample EB-2004-18), chosen to illustrate the typical
range of this relationship. Points represent soil from a depth interval and are plotted against the mid-point of the depth interval.

plained and the analysis of quantile and residual plots) was
the one shown in Fig. 1. In organic soils, reasonable relation-
ships were still seen, but ρc was much more constant with
depth, so the variance explained by a linear trend was less.
We saw some cases where the fit with depth was poorer, in-
dicating soils with more complex vertical structures, such as
organic horizons within mineral soils, but these soils were
relatively infrequent.

The entire data set is plotted on these same axes in Fig. 2,
split by the main land uses. The appearance of a gap in the
data at 0.25 m depth is an artefact of the depth intervals cho-
sen in the surveys and plotting using the mid-point of the
depth interval. Clearly, there is considerable variation within
the main land uses (particularly noting that the y axis is loga-
rithmic). Much of this is accounted for by the group-specific
terms in the hierarchical model, such that the full model ac-
counts for more than 90 % of the variance (Table 1). Close
to 60 % of this is attributable to the effects of land use and
depth, with the remainder attributable to the survey, site, and
location group-specific terms. The interpretation of the lat-
ter is that there is consistent survey-to-survey, site-to-site,
and location-to-location variation in the data, which we can
identify and separate from the estimate of the population-
level effect of land use. However, the group-specific terms do
not represent “explained variance” in the sense that they are
not useful for prediction outwith the sample. Ordinary least-
squares regression lines are shown for each survey within
these groups to identify the broad differences between sur-

veys. The surveys give broadly similar results, but some sys-
tematic differences seem to be apparent. The results from
Ward et al. (2016) sit higher than the others for grassland;
the results from the ELUM survey sit lower. The slope with
depth was generally greater in the data of Bradley et al.
(2005) than in the RAC survey data, but the mean values
were very close. No surveys measured at the same sites, so
separating these effects in the model is difficult. With a site-
specific effect already accounted for in the model, the ad-
ditional survey-specific effect made only a small difference
to the model selection criteria shown in Table 1. Given that
this adds a considerable number of extra parameters to be es-
timated, we considered this was not warranted and that the
form of the model shown in Eq. (8), corresponding to the
third column in Table 1, was parsimonious.

To estimate the mean soil carbon stock for each land use,
we use predictions from the model over a depth of 1 m (at
zm where E[ρc] = Sc,z), excluding the site- and location-
specific terms (which average out to zero at population level).
These are shown in Fig. 3 with associated 95 % confidence
intervals and prediction intervals. Soil carbon stocks are
highest in woods, followed by rough grazing and improved
grasslands, with arable crops having the lowest values. The
differences among land uses are larger than the 95 % confi-
dence intervals in all cases, so we can regard these as real,
discernible effects. The prediction intervals, which represent
the variability in predictions of the effect at a site outwith the
sample, are much larger than the effect size.
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Figure 2. Relationship between carbon density ρc and depth by land-use type, showing all data. Note the logarithmic y axis. Points represent
soil from a depth interval and are plotted against the mid-point of the depth interval, with some random variation added in the x dimension
so that the points are not all overlying each other at a small number of x values. Ordinary least-squares regression lines are shown for each
survey.

Table 1. Measures of model fit for three model variants, differing in their specification of the grouping structure. The first column corresponds
to a model in which the hierarchical grouping structure (location within site within survey) specifies only an intercept term (so a single global
slope with depth is estimated for each land use). The second column corresponds to a model in which the same hierarchical grouping specifies
both intercept and slope terms. The third column corresponds to a model in which the hierarchical grouping specifies both intercept and slope
terms but only representing variation among locations and sites. The measures are standard deviation (SD) of the residual error, marginal
r2 excluding the hierarchical grouping terms, conditional r2 including the hierarchical grouping terms, Akaike information criterion (AIC),
Bayesian information criterion (BIC), intra-class correlation coefficient (ICC), and root-mean-square error (RMSE).

Hierarchical terms, Hierarchical terms Hierarchical terms incl.
intercept only incl. slope incl. slope excl. survey

Residual SD 0.186 0.120 0.121
Num. obs. 26381 26381 26381
R2 marg. 0.571 0.483 0.592
R2 cond. 0.943 0.976 0.977
AIC 203 742.0 189 376.9 191 000.4
BIC 203 840.1 189 524.2 191 123.2
ICC 0.9 1.0 0.9
RMSE 0.36 0.23 0.23

The estimated effects of land use are expressed in Fig. 4 as
the difference from the mean soil carbon stock. The effects
are estimated from each survey individually and by using all
the data. In almost all cases, the effect is of similar magni-
tude and sign. The sign of the effect appears more variable
in improved grasslands, but this lies near the mean, and the
degree of variability between surveys is similar to elsewhere,
so values may be above or below the mean. The 95 % con-

fidence intervals generally do not include zero, so we can
be reasonably sure of the overall effects. The prediction in-
tervals, however, span positive and negative values and are
much larger than the effect size.

Also shown are results from three other sources: predic-
tions from the IPCC Tier 1 default method for comparable
land-use types, the meta-analysis of Guo and Gifford (2002),
and the mean effects from the synthesis of (mostly) paired-
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Figure 3. Predicted mean soil carbon stocks to a depth of 1 m for
each land use, as estimated by the hierarchical model using all data.
Associated 95 % confidence intervals are shown as blue error bars,
and prediction intervals are shown in black. Confidence intervals
express the uncertainty in the estimate of the true global mean,
whereas prediction intervals express the estimated interval in which
a new sample would lie with 95 % probability. Both were estimated
by a Bayesian estimation of the hierarchical model.

Table 2. Estimates of the effect of land use on soil carbon stock
from this study, with 95 % confidence intervals, compared with the
estimates reported by Bradley et al. (2005). Effects are expressed
relative to arable crops, the land use with the lowest carbon stock,
so all effects appear positive. Units are kg C m2.

Land use Bradley et This study 95 % CI,
al. (2005) this study

Woods 13 7.26 6.73 to 7.81
Improved grass 4 2.95 2.53 to 3.39
Rough grazing 20 5.47 4.98 to 5.97

plot studies by Poeplau et al. (2011). These all show similar
effect sizes to each other and are consistently in the same di-
rection as the UK data. The magnitude of the effect size in
arable crops is also very similar to the UK data: that in im-
proved grasslands is close but consistently positive, whereas
the UK data are on average lower than the mean (but, as
noted above, both lie close to the mean). The effect size
for woods is considerably larger in the UK data than in the
meta-analyses. The comparison for rough grazing is more
restricted, as there is no comparable land use in the meta-
analyses, but the IPCC default values are rather lower than
the UK data.

Table 2 shows the results of this study compared to the re-
sults reported by Bradley et al. (2005), in terms of the effect
of land use on soil carbon stock. Because mean values dif-
fer between studies, we use the value for arable crops as the
reference level: the land use with lowest carbon stock. This
does not affect the magnitude of the effects, but it ensures all

effects appear positive. Our values are 1.3, 1.7, and 3.4 times
smaller than those of Bradley et al. (2005).

In Fig. 5, we examine whether the ostensible effects of
land use are consistent with models of absolute or relative
change. This shows the apparent size of the land-use effect
with increasing soil carbon stock in the data of Bradley et al.
(2005). This is expressed as the difference from the value
for arable crops on the same soil series so that the overall
effects are positive in all three cases. If differences caused by
land-use change were independent of the initial Sc, we would
expect the horizontal black line, indicating no change in the
mean effect size. If there were pre-existing differences within
a soil series between land chosen for arable cropping and,
say, forestry, these would be expected to be proportional to
the soil carbon stock (because the variance in Sc is typically
proportional to Sc). This would cause the apparent effect of
land use to increase with Sc, and this is what we observe in
Fig. 5. The slope is greatest in woods and least in grass, so
the magnitude of any error will vary among land uses.

4 Discussion

The results here have improved the estimates of the effects
of land use on soil carbon stocks in the UK by increasing the
amount of data they are based upon and by providing a more
sophisticated analysis which allows the incorporation of soil
samples measured at any depth. The Bayesian hierarchical
approach allows us to compensate for biases in the choice of
sites and protocols used in different surveys and to propagate
the associated uncertainty appropriately. Accurate estimates
of the soil carbon stocks associated with different land uses is
critical to the estimates of emissions from LULUCF, as these
differences are the basis of the IPCC methodology.

Because of the large sample size, the data of Bradley et al.
(2005) still carry a lot of weight in the overall estimates.
However, the new estimates are substantially smaller than
the reported estimates of Bradley et al. (2005). We identify
a number of factors behind this. The main factor is simply
because we use a logarithmic transformation of the carbon
density data. This is done for several reasons: it gives an ap-
proximately linear relationship with depth, it stabilises the
variance so that it is relatively constant with increasing ρc,
and it makes the model residuals close to normal. The ef-
fect is to give less weight to extreme values. Implicit in using
a logarithmic transformation is an assumption that the vari-
ance is constant in relative, not absolute terms. Whilst the
log transformation is a fundamentally better model in this
case (because the assumption of relative variance is borne
out by the data), it is not a perfect model, and other options
are possible: different transformations, Box–Cox transforma-
tion, and a generalised linear model with gamma-distributed
residuals. All of these would give somewhat different an-
swers, with different weights given to extreme values, and, in
reality, there remains epistemic uncertainty as to the best way
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Figure 4. Predicted effect of land use on soil carbon stocks to a depth of 1 m, as estimated by the hierarchical model, expressed relative to
the mean soil carbon stock. Associated confidence intervals are shown as blue error bars, and prediction intervals are shown in black. Values
are shown for each survey individually and for the full data set. In addition, we plot comparable predictions from the IPCC Tier 1 model
and from the meta-analyses of Guo and Gifford (2002) and Poeplau et al. (2011). For the latter, in the case of rough grazing, no comparable
values were available, so these are missing rather than zero.

to summarise the data in the form of a model. A more com-
prehensive analysis could apply several of these approaches
and use a model-averaging approach to indicate the posterior
uncertainty that is introduced by this. Clearly this can be con-
siderable, as seen by comparing the results with the previous
analysis on the untransformed data.

A second factor is in the analytical method used by
Bradley et al. (2005), which implicitly weighted the effect
from each soil series by its area. This would give more weight
to the soil series with the largest expanse, although these may
have little or no land-use change (e.g. in large areas of the
uplands). If this effectively gives more weight towards ar-
eas with high soil carbon stocks, and the effect of land-use
change is overestimated in these areas for the reasons dis-
cussed earlier, then this could introduce a bias. Our approach
does not re-weight the data based on estimated areal cover-
age, and it attempts to estimate the overall effect of land use,
having accounted for the vagaries of different sites and soil
series. This is a slightly different approach, but it should give
the best estimate of the effect at a new location outwith the
sample.

The results suggest that the assumption underlying the
space-for-time substitution is not completely valid, although
they are not unequivocal. The apparent increase in the ef-
fect of land use with increasing soil carbon suggests that
there are pre-existing differences which confound the com-
parison, leading us to overestimate the effect. This overesti-
mation varies across land uses, greatest in woods and rough

grazing (∼ 30% and 15 %, respectively). This tallies with the
comparison with meta-analyses of paired-plot studies, which
show a smaller effect size. However, the difference is much
less in improved grasslands and arable crops, so the effect
of pre-existing differences may be much less in these cases.
Exploring the trend in soil carbon with altitude, which might
lead to an expectation of pre-existing differences in land se-
lected for different uses, showed no strong relationship (al-
though this did not include the Bradley et al. (2005) or the
Countryside Survey data). Long-term single-site experiments
where changes in land use have been recorded over several
decades are still very valuable as a reference point for other
analyses. (e.g. the Rothamsted Park Grass Experiment). The
Countryside Survey data are important, as they are the result
of one of the few long-term surveys with repeated measure-
ments at a spread of locations wide enough to be used to
infer national-scale trends. Although these did not include
bulk density in the early surveys, so we cannot make strong
inferences about Sc, the data show no substantial change in
carbon fraction. A more general point is the importance of
measuring bulk density when attempting to estimate carbon
stock: the fact that this was missing from the data of Bradley
et al. (2005), RAC, and the earlier Countryside Surveys make
these data sources much more uncertain. Carbon stock is the
product of two terms, and one of these terms is missing in
these data. Bradley et al. (2005) report a within-sample ac-
curacy of around 10 % in their modelled estimates of bulk
density, which propagates directly into estimates of carbon
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Figure 5. The apparent relationship between the effect of land use and increasing soil carbon stock in the data of Bradley et al. (2005).
The effect is expressed as the difference from the value for arable crops on the same soil series so that the overall effects are positive in all
three cases. The horizontal black line indicates an expected constant mean effect size in the absence of any effect. Red lines show ordinary
least-squares regression lines fitted to the data. The individual data points are not shown because they are highly variable and so require a
much larger y-axis scale for display.

stock. More problematically, there is a high probability of
introducing systematic errors when using carbon fraction to
predict bulk density (as they did) because the change in this
relation (over time or induced by land-use change) is criti-
cal but very poorly constrained without simultaneous mea-
surements of both terms. Ideally, all the data would be re-
analysed, propagating all the uncertainties appropriately, but
the availability of the necessary raw data limits the feasibility
of this.

The results show some systematic differences between
surveys in estimates of carbon stocks, and this is to be ex-
pected for various reasons. Bradley et al. (2005) included all
litter horizons in their definition of soil, whereas the Coun-
tryside Survey and GMEP included only the F (folic, par-
tially decomposed) and H (humic, decomposed) layers and
excluded the readily recognisable litter. Differences in the
attribution of litter material to the soil have been noted be-
fore as a key difference between soil survey schemes and
as an important factor for consistency in experimental com-
parisons, particularly in wood and forest environments (Poe-
plau et al., 2011). This may explain why the data of Bradley
et al. (2005) show higher carbon densities in woodlands com-
pared to the Countryside Survey, with the greatest differ-
ence in woodlands. The effect is less pronounced in other
land uses where there is less litter. This may explain some
of the difference shown in the comparison of the effect of
woodland land use among surveys (Fig. 4) and in Table 2,
although the effect of log transformation is the dominant dif-

ference here. There will also be differences among surveys
caused by differences in laboratory analytical procedures.
Various authors have shown effects of sample mass, com-
bustion temperature, and duration on the mass loss observed
in the loss-on-ignition method, particularly highlighting the
extent of structural water loss and its dependency on clay
content (e.g. Hoogsteen et al., 2015). Heming (2021) rejects
the method on the basis of the uncertainty introduced by the
latter. Similarly, the elemental analyser approach is prone to
the uncertainties associated with separating organic and in-
organic carbon (Wang et al., 2012), and this will introduce
a different set of biases. Consistency is key in long-running
survey schemes so that true changes over time can be sep-
arated from changes related to different analytical methods.
The hierarchical statistical method used attempts to remove
such effects, partitioning them into group-level effects rather
than viewing them as part of the overall effect of land use
which we are trying to discern.

Soils vary widely in depth, and the modelling approach
used here makes the comparison across a standardised depth
of 1 m, based on the guidelines for UNFCCC reporting.
Many soils in the UK are shallower than this: around half
the soils in Wales are in classifications with a lithoskeletal
substrate, which define the soil to be less than 80 cm thick.
We note that the results should be interpreted as predictions
of the effect of land use on a typical but hypothetical soil of
1 m depth, taking into account the way in which carbon den-

https://doi.org/10.5194/bg-21-4301-2024 Biogeosciences, 21, 4301–4315, 2024



4312 P. Levy et al.: UK soil carbon

sity declines with depth. A more complex model would be
required to make accurate spatial predictions.

Cropland soils are typically ploughed to a depth of around
30 cm. This means that the top layer will be repeatedly mixed
with soil from below and could reduce the slope of soil car-
bon versus depth because of the mixing effect of the plough.
Furthermore, the effect of ploughing might be to create two
different layers (above and below the plough depth) with
different slopes (soil carbon vs. depth), so something like a
“broken-stick” model might be more appropriate. In fact, we
do not see evidence for either of these effects in the data, but
this may be because the samples lack the vertical resolution
to discern such trends. Given the level of aggregation in the
available data, the logarithmic decline appears to be reason-
able.

With the large data set analysed here, the uncertainty in
the differences among land uses was small enough to iden-
tify consistent mean effects. However, a striking feature of
the results is the extent of the variability in these effects, rep-
resented by the large prediction intervals, and this was sim-
ilar across all surveys. Mapping soil carbon using geostatis-
tical or machine learning methods has become widespread
and increasingly accurate because of the strong spatial rela-
tionships in the data (Hengl et al., 2017). However, this may
lead to a false sense of understanding of causal relationships.
The data here highlight the degree of variability, and the ef-
fects of land use, whilst discernible in very large samples,
are not as clear as is generally pre-supposed (Baker et al.,
2007; Kravchenko and Robertson, 2011). This has important
consequences for attempts to verify schemes which aim to
sequester carbon in the soil by altering land use.

With pressure to find measures which will help meet tar-
gets for net-zero emissions, there is now considerable interest
in options for sequestering carbon in agricultural soil (Sous-
sana et al., 2019; Alliance, 2022). To be credible, these op-
tions will need to be verifiable and governed to ensure per-
manence and prevent leakage or reversals (Smith et al., 2020;
Black et al., 2022). If soil carbon credits are to be used to pay
farmers for changes in land use or management, the effects
need to be demonstrable over relatively short timescales and
at a practicable cost. The results we find here have implica-
tions for the prospects for this. Although we can demonstrate
an overall mean effect greater than the uncertainty bounds
with a large sample size (more than 25 000 individual sam-
ples (core depth sections) at several thousand locations), we
find that the variability in these effects is much larger. The
prediction intervals were much larger than the mean effect
size, and they spanned both positive and negative effect sizes.
This result was consistent across all the surveys we analysed.
In any given instance where we wish to verify the change in
soil carbon, our expectation is that the observed change in
soil carbon will lie in a very wide range, encompassing both
possible gain and loss. Indeed, there will often be instances
where the observed effect is opposite to the expected mean
effect. The effect of a given intervention is therefore very

hard to verify, and this raises questions on how this might be
handled in such schemes as a formal part of efforts to miti-
gate climate change.

The effect of the changes to the estimates of equilibrium
soil carbon on the carbon fluxes arising from land-use change
is not obvious. The changes will reduce the gross fluxes from
each land-use change, but how this affects the net effect de-
pends on the balance of changes and the transition matrix of
land-use change each year (Levy et al., 2018), so the net ef-
fect is not linearly predictable and requires further analysis.

5 Conclusions

We have produced new estimates of the effects of land use on
soil carbon stocks in the UK. These are smaller than the pre-
vious best estimates of Bradley et al. (2005), partly because
of new data but mainly because the effect is more reliably
characterised using a logarithmic transformation of the data.
We characterised the uncertainty and variability in the effect.
With the very large data set analysed here, the uncertainty in
the differences among land uses was small enough to identify
consistent mean effects. However, the variability in these ef-
fects was large, and this was similar across all surveys. This
has important consequences for attempts to verify schemes
which aim to sequester carbon in the soil by altering land
use. Whilst we can estimate the expected overall effect at na-
tional scale, the effect in any given instance is expected to
lie in a very wide range. The effect of a given intervention is
therefore very hard to verify and may be difficult to include
as a formal part of efforts to mitigate climate change. Exam-
ining whether the “space-for-time” substitution is valid, the
results were not unequivocal, but we estimated that the ef-
fects are likely to be overestimated by 5 %–33 %, depending
upon land use.
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