

Supplement of

Tracing rate and extent of human-induced hypoxia during the last 200 years in the mesotrophic lake, Tiefer See (NE Germany)

Ido Sirota et al.

Correspondence to: Ido Sirota (idosir@gfz-potsdam.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1 – varve counting and core correlation

Varve counting and core correlation of all the cores used in this study. Each core is presented as an assemblage of thin sections images, covering the entire varved interval (Unit V). The orange dots mark that counted calcite layers, each dot represents one year. In addition, the marker layers

5 that were determined on the TSK11-K1 master core, are marked on all of the cores with their ages. The year of the onset of varve preservation appears at the base of the varved unit in each core.

Figure S2. Crypto-tephra results and interpretation

- 10 The colorless glass shards from TSK12-K1_22-23cm and TSK13-QP1_19-20cm are similar in major element composition with both being rhyolitic (SiO₂: TSK12-K1_22-23cm 73.70 ± 0.60 wt.% 1 s.d.; TSK13-OP1_19-20cm 73.25 \pm 0.95 wt.% 1 s.d.) and subalkaline with low K₂O (TSK12-K1_22-23cm 2.43 ± 0.05 wt.% 1 s.d.; TSK13-OP1_19-20cm 2.40 ± 0.02 wt.% 1 s.d.) and high CaO (TSK12-K1_22- 23cm: 2.32 ± 0.22 wt.% 1 s.d.; TSK13-OP1 19-20cm: 2.56 ± 0.25 wt.% 1 s.d.; Fig. 2). Due to this
- 15 distinct geochemistry and the chronostratigraphic position of these tephra peaks, we can confidently correlate these glass shards to the eruption of Askja AD 1875 (Fig. 1). This cryptotephra has already been found in Tiefer See in core TSK11-K3_33-34cm by Wulf et al. (2016) and is also found in many other sites throughout north-eastern Europe (e.g. Kinder et al., 2021). The figure shows a Bi-plots of selected major elements of glass shards from Tiefer See cores TSK-
- 20 12 and TSK-13 with comparisons to Askja 1875 distal and proximal deposits (Bergman et al., 2004; Boygle, 2004; Davies et al., 2007; Kinder et al., 2021; Larsen et al., 1999; Pilcher et al., 2008; Stivrins et al., 2016; Wastegård, 2002, 2005; Watson et al., 2015; Wulf et al., 2016) and Hekla 1845 distal (Wastegård, 2002; Watson et al., 2015).

25

Figure S3. Lacustrine fill

The Holocene lacustrine sedimentary fill in the lake was deposited on top glacial sediments since the lake basin is formed within a subglacial channel system. Most of the pre-Holocene sediments are fluvioglacial sands but at two locations remains of glacial till that were not eroded by fluvial

- 30 processes appear elevated and close to the present-day lake bottom. These areas are clearly visible in the sediment seismic image as black spots because of the higher density of the till compared to the sands and organic-rich Holocene lacustrine sediments. Core TSK16-K3 has been obtained from above the till remain in the northern part of the basin confirming till in 62 cm sediment depth. Thus, at this particular location glacial till has been recovered that has a very
- 35 different geochemical composition as reflected by the XRF data.

Figure S4. TOC in sediment trap data

Total organic carbon (TOC) flux, content and $\delta^{13}\text{C}_{\text{org}}$ of sediments from the hypolimnion of the 40 lake are presented for the period of 2015-2021. Active sedimentation was monitored in order to identify the properties of the TOC in the lake. Sediment sampling is conducted at intervals of 15 days with an automated sequential trap (Technicap PPS 3/3; active area 0.125 m2) equipped with 12 sample bottles.

The sediments from the traps were freeze-dried and weighed to determine the dry deposition (i.e.

45 sediment flux: g m–2 d–1). Afterwards, the samples were ground and homogenized. Prior to determination of TOC, 0.2 mg sample aliquots were in situ decalcified in Ag capsules (20% HCl and drying at 75 °C), also in replicates. TOC was measured on in-situ calcified samples using a Carlo Erba NC-2500 elemental analyzer. All process and analytical measurements were done at the laboratories of section 4.3 of the GFZ Potsdam center of geosciences, Potsdam, Germany.

Table S1.

List of marker layers (ML) in cores TSK11-K1 and TSK18-SC4.

55 **Table S2.**

Non-normalized major elements for the peaks analyzed in this study. Values referred to in text are normalized to 100% and with the removal of volatiles.

Table S3.

Secondary standards ran alongside the unknown samples of Tiefer See to ensure precision and 60 accuracy of results

Table S4.

Chironomids counts in cores TSK15-K5 and TSK18-SC4 with division into identified chironomids species. See separate file.

References

