

Supplement of

Early life stages of fish under ocean alkalinity enhancement in coastal plankton communities

Silvan Urs Goldenberg et al.

Correspondence to: Silvan Urs Goldenberg (sgoldenberg@geomar.de)

The copyright of individual parts of the supplement might differ from the article licence.

Early life stages of fish under ocean alkalinity enhancement in coastal plankton communities by Goldenberg et al.

Figure S1: Further assessment of carbonate chemistry. Development of **a)** total alkalinity (TA) and **b)** pCO2 in each mesocosm unit. **c)** Depth-dependent variability in pH. Sampling days at the beginning, middle and end of the treatment period serve as examples. These pH measures were taken in situ via CTD with a potentiometric pH sensor (NBS scale) and are hence slightly higher than the spectrometric measures (total scale) shown in figure 1c.

Table S1: Linear models for the responses of fish to OAE, to accompany figure 2 and 3. Δ *TA* is employed as continuous and *Mineral* as categorical explanatory variable.

Response variable	Source of variation	MS	df	F-ratio	p-value
a) Mortality longer-term (all taxa days 7-53)	Δτα	12	1	0.06	0.818
	Mineral	192	1	0.93	0.373
	$\Delta TA \times Mineral$	0	1	0.00	0.976
	Residuals	207	6		
b) Mortality shorter-term (herring only, days 7-15)	Δτα	5.0	1	0.09	0.776
	Mineral	9.6	1	0.17	0.693
	Δ TA × Mineral	20.0	1	0.36	0.573
	Residuals	56.2	6		
c) Abundance (all taxa day 54)	Δτα	2	1	0.00	0.949
	Mineral	333	1	0.82	0.401
	$\Delta TA \times Mineral$	180	1	0.44	0.532
	Residuals	409	6		
d) Per capita size (all taxa day 54)	Δτα	0.270	1	5.00	0.067
log 10 transformed	Mineral	0.038	1	0.69	0.437
	$\Delta TA \times Mineral$	0.063	1	1.17	0.321
	Residuals	0.054	6		
e) Biomass (all taxa day 54)	Δτα	11.9	1	10.92	0.016
	Mineral	0.0	1	0.00	0.994
	Δ TA × Mineral	0.8	1	0.78	0.412
	Residuals	0.8	6		

MS = mean squares; df = degrees of freedom

Figure S2: Responses of individual fish taxa to OAE, assessed at the end of the experiment. Count (a), individual size (b) and total biomass (c) of live fish. Larger points represent mesocosms and smaller points in b single individuals.

Table S2: Linear models for the response of other functional groups (a-c) and predation on herring (d) under OAE, to accompany figure 4. ΔTA is employed as continuous and *Mineral* as categorical explanatory variable.

Response variable	Source of variation	MS	df	F-ratio	p-value
a) Chlorophyll a (days 7-53)	Δτα	0.0034	1	0.28	0.613
	Mineral	0.0122	1	1.01	0.353
	Δ TA × Mineral	0.0088	1	0.73	0.426
	Residuals	0.0121	6		
b) Copepods (days 7-53)	ΔτΑ	0.5	1	0.05	0.838
	Mineral	11.2	1	1.03	0.349
	Δ TA × Mineral	1.6	1	0.14	0.719
	Residuals	10.9	6		
c) Hydrozoa (days 7-53)	ΔτΑ	16.0	1	0.39	0.554
	Mineral	15.2	1	0.37	0.563
	Δ TA × Mineral	26.9	1	0.66	0.446
	Residuals	40.5	6		
d) Fish missing (days 7-54)	ΔτΑ	51	1	0.37	0.563
	Mineral	97	1	0.71	0.431
	Δ TA × Mineral	88	1	0.65	0.452
	Residuals	137	6		

MS = mean squares; df = degrees of freedom